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Introduction 1.Recent landforms in the Northern Plains on Mars: An overview

Although the surface of the northern lowlands appears smooth and flat at kilometer scale [START_REF] Kreslavsky | Kilometer-scale roughness of Mars'surface: Results from MOLA data analysis[END_REF], many small landforms are visible at smaller scale. Of special interest are landforms that have long been interpreted as results of the presence and action of water and/or ice (e.g., [START_REF] Kargel | Evidence of ancient continental glaciation in the Martian northern plains[END_REF], a notion that was supported when highresolution images became available and provided evidence for the aggradation and degradation of materials in a permafrost context (e.g., [START_REF] Morgenstern | Deposition and degradation of a volatile-rich layer in Utopia Planitia and implications for climate history on Mars[END_REF][START_REF] Séjourné | Evidence of an eolian ice-rich and stratified permafrost in Utopia Planitia, Mars[END_REF]. Moreover, the lowlands cover the northern part of the bi-hemispheric latitude belt of ~30° to ~60°, which hosts a variety of possible periglacial and glacial landforms such as thermal contraction cracks, gullies, and viscous flow features (e.g., [START_REF] Milliken | Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images[END_REF], Levy et al., 2010;[START_REF] Harrison | Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation[END_REF][START_REF] Hubbard | Glacier-like forms on Mars[END_REF]. These and other landforms such as a layered latitude-dependent mantle [START_REF] Mustard | Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice[END_REF]Kreslavsky andHead, 2002a, Kostama et al., 2006) may represent a morphological record of recent ice ages [START_REF] Head | Recent ice ages on Mars[END_REF]. Moreover, a growing number of observations suggests the existence of significant volumes of subsurface excess ice in the northern lowlands [START_REF] Byrne | [END_REF][START_REF] Kadish | Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism[END_REF][START_REF] Bramson | Widespread excess ice in Arcadia Planitia, Mars[END_REF][START_REF] Viola | Expanded secondary craters in the Arcadia Planitia region, Mars: Evidence for tens of Myr-old shallow subsurface ice[END_REF][START_REF] Viola | Subsurface volatile content of martian double-layer ejecta (DLE) craters[END_REF][START_REF] Stuurman | SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars[END_REF][START_REF] Pathare | Driven by Excess? Climatic Implications of New Global Mapping of Near-Surface Water-Equivalent Hydrogen on Mars[END_REF], some of which seems to be exposed at cliffs (Dundas et al., 2018a). As such ice reservoirs are not in equilibrium with current atmospheric conditions, it has been suggested that the ice was precipitated during recent episodes of different climatic conditions (e.g., Head et al., 2003 and further references therein;[START_REF] Dundas | HiRISE observations of new impact craters exposing Martian ground ice[END_REF][START_REF] Bramson | Preservation of mid-latitude ice sheets on Mars[END_REF] forced by orbital and spin-axis variations (e.g., [START_REF] Laskar | Long term evolution and chaotic diffusion of the insolation quantities of Mars[END_REF][START_REF] Forget | Recent Climate Variations[END_REF].

The geographical distribution of water-and/or ice-related landforms can provide important constraints on their formation mechanism and the past Martian climate and its evolution.

While the populations of some of the landforms that are relevant for the recent volatile and climate history of Mars have been localized (e.g., [START_REF] Kadish | Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism[END_REF][START_REF] Balme | Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data[END_REF][START_REF] Dickson | Martian gullies in the southern midlatitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography[END_REF], Levy et al., 2010;[START_REF] Harrison | Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation[END_REF][START_REF] Hubbard | Glacier-like forms on Mars[END_REF], a comprehensive mapping of all of them over the entire lowlands is still missing. However, given the small scale of many such landforms, and surface textures, their large number and overlapping relationship over the vast expanse of the northern lowlands, it appears inefficient to map them individually and represent the results in a traditional map. Instead, it was the objective of an International Space Science Institute (ISSI) team to map three North-South traverses across the major lowland basins (Arcadia, Utopia, and Acidalia Planitiae) (Figure 1)

and focus on possibly ice-related landforms (Table 1). We used a recently developed grid mapping technique [START_REF] Ramsdale | Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas[END_REF], which enables effective and fast mapping of small-scale landforms over large areas. This technique (described in detail below) was successfully applied to the Hellas impact basin [START_REF] Voelker | Grid-mapping Hellas Planitia, Mars -Insights into distribution, evolution and geomorphology of (Peri)-glacial, fluvial and lacustrine landforms in Mars' deepest basin[END_REF] and results in a consistent and comparable database of landform locations, which can subsequently be statistically interrogated for different spatial relationships. We report on the results of the grid mapping as well as any serendipitous science observations in three separate studies covering Acidalia

Planitia (this study), Arcadia Planitia (Ramsdale et al., this issue), and Utopia Planitia (Séjourné et al., this issue). In the following, we provide first an overview on the context and the geology of Acidalia Planitia (sections 1.2). We then describe the applied grid mapping techniques (section 2), present the mapping results (section 3) and the mutual spatial relations of landforms as well as their relation to independent parameters such as topography or geology (section 4), and finally discuss the implications of our findings (section 5).

Geology

In the southern part of the study area, the oldest Noachian geologic units are the highly cratered Noachis Terra unit (Nn), Crater (AHc) and Crater floor (AHcf) units in the dichotomy boundary and the Hesperian fluvial material of Chryse Planitia 1 (HNCc1) and 2 (HCc2) units [START_REF] Tanaka | Geologic Map of Mars[END_REF]. Further north, the Acidalia Mensae/Acidalia Colles region is located and exposes the Noachis Terra unit and the mass-wasting talus deposits of Nepenthes Mensae (HNn) unit [START_REF] Tanaka | Geologic Map of Mars[END_REF] (Figure 13/n). The Acidalia Colles form a topographically high plateau a few hundred meters above the northern plains and are characterized by a relatively smooth surface, which represent mass-wasting, sedimentary and volcanic origins [START_REF] Tanaka | Geologic Map of Mars[END_REF]. It is overlaid by the most extensive geologic unit in the northern lowlands, the socalled Late-Hesperian/Early-Amazonian Vastitas Borealis Formation (VBF) with the interior (ABvi) and marginal (ABvm) units (Figure 13/n). The VBF is a sedimentary veneer that formed as the residue of outflow channel deposits and overlies the Hesperian ridged volcanic plains material [START_REF] Rice | Catastrophic flood sediments in Chryse Basin, Mars, and Quincy Basin, Washington: Application of sandar facies model[END_REF]. The VBF has a characteristic surface roughness at 3 km-scale and an estimated minimum thickness of 100 meters (Kreslavsky andHead, 2000, 2002b). [START_REF] Werner | Mars: The evolutionary history of the northern lowlands based on crater counting and geologic mapping[END_REF] proposed a formation age for VBF between 3.75 and 3.4Ga ago. [START_REF] Ivanov | Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean[END_REF][START_REF] Ivanov | Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitae on Mars[END_REF] estimated an absolute model age of 3.61 (+0.05/-0.08) Ga for Acidalia Planitia and a similar age of 3.57 ± 0.02Ga for the surface units of Utopia Planitia that is in good agreement with the existence of a hypothesized Late-Hesperian ocean (Kreslavsky andHead, 2000, 2002b).

Data and Methods

Study area

The study area in Acidalia Planitia (Figure 1) is a 300 km wide strip extending from latitude 20° to 84° N, centered on longitude 22.5° W. The selection of the location of the strip was primarily maximize the availability of CTX (Context Camera) 6 m/pixel images in early 2014.

We used CTX as it has nearly global coverage and spatial resolution that is sufficient to resolve landforms associated with ice at or close to the surface.

Data

Imaging

The data set best suited to serve as a base map for our approach was acquired through the CTX instrument on the MRO (Mars Reconnaissance Orbiter) spacecraft [START_REF] Malin | Context Camera Investigation on board the Mars Reconnaissance Orbiter[END_REF]. It offers both good contiguous spatial coverage and a relatively high spatial resolution. The images were obtained from the Planetary Data System archive and processed with the ISIS (Integrated Software for Imaging Spectrometers) software developed for planetary data processing by USGS in Flagstaff. After processing we compiled a mosaic with a resolution of 6 m/pixel.

We also used images from the MRO High Resolution Imaging Science Experiment (HiRISE, 25

or 50 cm/pixel in map-projection) [START_REF] Mcewen | The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)[END_REF] for detailed inspection where available.

Topography

The only dataset that provides topographic information across the entire mapping traverse is the gridded MOLA (Mars Orbiter Laser Altimeter) DEM (Digital Elevation Model), with a cell size of 463 m (Figure 2/a) [START_REF] Smith | Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars[END_REF]. It is interpolated from MOLA profiles, which have individual shot-spacing along-track spacing of 300 m. These profiles are aligned in an approximately North-South direction along the near polar orbit of the MGS spacecraft [START_REF] Albee | Mars Global Surveyor Mission: Overview and status[END_REF] and were used for detailed topographic analysis at selected locations. We also used data derived from the gridded MOLA DEM, such as slope maps and roughness maps at different base-lengths. A kilometer-scale surface roughness map at 0.6 km, 2.4 km and 9.2 km scale derived from MOLA profiles was used from [START_REF] Kreslavsky | Kilometer-scale roughness of Mars'surface: Results from MOLA data analysis[END_REF] (Figure 2/b). It is important to note that slopes referred to in this study were derived from gridded MOLA DEM, i.e. were measured over base-lengths of several hundred meters and can be considered regional slopes. Locally, however, much steeper slopes exist in the mapping area.

SHAllow RADar

To correlate the subsurface structures with the geomorphological observations, we analyzed the MRO SHAllow RADar (MRO SHARAD, vertical: 10 m/pixel, horizontal: 300 -1000 m/pixel (along track), 3000 -6000 m/pixel (cross-track)) data [START_REF] Seu | SHARAD: The MRO 2005 shallow radar[END_REF]. We analyzed 157 observations from the shallow radar (SHARAD) instrument that cross the Acidalia Planitia swath (Figure 15). Radar profiles (radargram + simulation) were interpreted in several steps.

First, a comparison with a simulated radargram, based on topographic data from the Mars Orbiter Laser Altimeter (MOLA, [START_REF] Smith | Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars[END_REF] was completed. Simulated radargrams are designed to predict where reflections that originate on the surface, both from nadir and to the side, will lie on the collected radargram. Often, surface side reflections appear beneath the surface due to their longer time delay than the nadir point. These reflections, or clutter, must be distinguished from true subsurface reflections. Therefore, where clutter is predicted and matches a subsurface interface, we do not interpret a subsurface reflection. However, when clutter is not predicted for a location but a reflection appears, we interpret that to indicate a subsurface interface and mark it in the grid.

The second step is to distinguish sidelobes. Sidelobes are an artifact of radar processing deconvolution that occur just below the surface echo. They parallel the surface reflection and are always at a lower intensity. Reflections that are determined to be neither clutter nor sidelobes considered to be subsurface interfaces.

Radar reflections represent an interface between contrasting materials and may come from many sources: air-regolith; regolith-ice; ice-basement. In this grid-mapping survey we search only for detection interfaces and do not measure the dielectric properties of the materials that create the reflection. Thus, composition of the material causing the reflection is not constrained. The spatial relationships are recorded for each orbital/observation ground track.

All detections were then recorded and projected into map view while looking for spatial correlations. The methods employed here are described in more detail in [START_REF] Smith | Spiral trough diversity on the north pole of Mars, as seen by Shallow Radar (SHARAD)[END_REF].

Other Map products

Several other data sets and map products were used for comparison to our results. A Water Equivalent Hydrogen (WEH) map compiled from the Mars Odyssey Neutron Spectrometer (MONS) data [START_REF] Wilson | Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data[END_REF] and models of ground ice depth and ice stability at different obliquity [START_REF] Mellon | The distribution and behavior of Martian ground ice during past and present epochs[END_REF], Mellon et al., 2004[START_REF] Chamberlain | Response of Martian ground ice to orbitinduced climate change[END_REF] were compared to the distribution of landforms, especially which were suspected to have an origin of ice-related processes (e.g. Latitude Dependent Mantle (LDM), textured terrain, scalloped terrains, small-scale polygons and gullies).

In order to compare our grid mapping results with independent data and results, we used formal geological maps published by the U.S. Geologic Survey [START_REF] Greeley | Geologic map of the eastern equatorial region of Mars[END_REF][START_REF] Scott | Geologic map of the western equatorial region of Mars[END_REF][START_REF] Tanaka | Geologic map of the polar regions of Mars[END_REF][START_REF] Tanaka | Geologic map of the northern plains of Mars[END_REF][START_REF] Tanaka | Geologic Map of Mars[END_REF] (Figure 13/n) and geological and geomorphological maps published in other studies (e.g., [START_REF] Ivanov | Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean[END_REF][START_REF] Ivanov | Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitae on Mars[END_REF]. We discuss our findings in Section 4.

Mapping Approach

The mapping of small-scale landforms over vast areas is a challenging task because it requires both a homogeneous data set and a small mapping scale. Traditional geomorphological mapping [START_REF] Smith | Geomorphological Mapping. Methods and Applications[END_REF][START_REF] Bishop | Geospatial technologies and digital geomorphological mapping: Concepts, issues and research[END_REF][START_REF] Wilhelms | Geologic mapping[END_REF] is not feasible in this case as it is too time-consuming. To enable identification of the presence and distribution of landforms that are relevant to the questions addressed in this study, we adopted a grid "tick box" approach to effectively determine where the specific landforms are. Here we only describe the basics of the method, a full description of this approach is available in Ramsdale et al. ( 2017) and [START_REF] Voelker | Grid-mapping Hellas Planitia, Mars -Insights into distribution, evolution and geomorphology of (Peri)-glacial, fluvial and lacustrine landforms in Mars' deepest basin[END_REF].

Mapping as a team helps to share the work and increases the-efficacy to deliver timely results, but entails some challenges such as the homogeneity of the outcome. We therefore tried to eliminate subjectivity as far as possible by implementing a multi-tiered approach:

First, the individual landforms (e.g. gullies, scalloped terrain, etc…) to be mapped were selected by the respective experts in the team. We then prepared a catalog with several examples of each landform for each team member. Then, we prepared one attribute table for GIS containing all landforms and started to map grids one-by-one. This enabled us controlling grids more than one time, double-checking the results so each grid was inspected by at least two mappers. The mappers and their contribution in this study can be seen in Figure 13/o.

The mapping area (Figure 1) is divided into a grid system of 20×20 km cells, resulting in a grid of 15×3119 cells in east-west and north-south direction, respectively (Figure 13). Each grid cell was inspected visually at a scale of 1:10,000 in ArcGIS 10.2 software environment. The presence of each individual landforms was recorded in a classification system consisting of five classes: "0: not present", "1: present", "2: dominant" or "P: possible", and it was also documented if a grid cell was not covered by data or by low quality images, "N: no data" (Figure 3). For landforms in a grid cell to be "present", it is sufficient that a landform is observed at least once, e.g., one single gully in an entire cell would result in a value of 1 for this cell. A landform that is covering an entire cell or abundant in a cell would be classified as dominant (i.e. 2). If there is some uncertainty in the identification of a landform, e.g., due to limited image quality, or resolution, but the mapper felt that there was sufficient evidence to suggest that this landform was present, it would be classified as "P". We opted to use a Cassini projection (similar to a cylindrical projection rotated by 90°) centered on the 22.5° West meridian to minimize distortion across the full length of the strip.

The results together with additional comments were stored in an attribute table that was used for statistical tests to determine the correlation of landforms to each other and to independent data sets such as geological maps, topography or derived data products (e.g., slopes, roughness). To visualize the results for a given landform, each cell of the grid was colored according to its class (Figure 3), enabling a quick assessment of its spatial distribution across the whole strip. When overlain on context maps, this forms a digital geomorphological map.

Landform Selection

The first step of this approach is the definition of landforms to be mapped, based on the literature and a reconnaissance survey in GIS. We focus on landforms that are associated with past and present ice and water-related processes or are relevant to assess the context of landscape evolution. We mapped 13 geomorphological features that are listed in Table 1 and representative examples are shown in Figure 4-12. Additionally, we prepared Supplementary Information (SI 1) with examples of grids with landform being "present", "dominant" and "possible", respectively. Moreover, we added additional examples of each landform. We describe each landform here, and our findings in chapter 3.1.

The Latitude Dependent Mantle (LDM) occurs at the mid-and high-latitudes of Mars and is composed of a layered mixture of fine-grained ice and dust deposits [START_REF] Soderblom | Latitudinal distribution of a debris mantle on the Martian surface[END_REF], Kreslavsky and Head, 2002a[START_REF] Mustard | Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice[END_REF]. The typical LDM is characterized by a smooth surface, which clearly overlies and mantles older terrains and is thus the stratigraphically youngest geological unit on the surface. The thickness of these layers varies from 1m to 10m [START_REF] Mustard | Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice[END_REF], but [START_REF] Conway | Decameter thick remnant glacial ice deposits on Mars[END_REF] estimated a thickness of the LDM from gully incisions that ranges between 3m and 94m (average 27m). This smooth and geologically young (Late-Amazonian Epoch) deposit represents the result of recent climate changes on Mars (Figure 4/a). The uppermost mantling layer could have been formed

during the last high-obliquity peak 0.4-2 Myr ago [START_REF] Head | Recent ice ages on Mars[END_REF]. The exposure of recent subsurface ice on steep, pole-facing scarps at the mid-latitudes indicates a significant mass of pure ice (<100m) in mantle deposits that is not in equilibrium with the atmosphere (Dundas et al., 2018a).

Textured Terrain is characterized by a type of small-scale surface pattern that was described as "wrinkled", "pitted", "brain", or "basketball" terrains by previous studies [START_REF] Mangold | High latitude patterned grounds on Mars: classification, distribution and climatic control[END_REF][START_REF] Kostama | Recent high-latitude icy mantle in the northern plain of Mars: Characteristics and ages of emplacement[END_REF][START_REF] Levy | Concentric crater fill in Utopia Planitia: History and interaction between glacial "brain terrain" and periglacial mantle processes[END_REF][START_REF] Mellon | Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars[END_REF]. The "basketball"-textured surface forms evenly spaced, dome-shaped knobs which appear to be arranged randomly or in linear structures, whereas the "wrinkle"-textured surface type is composed of linear structures on gently-sloping hills. The "brain terrain" displays undulating topography which forms curvilinear ridges with a spacing that is commonly ~20m wide [START_REF] Kostama | Recent high-latitude icy mantle in the northern plain of Mars: Characteristics and ages of emplacement[END_REF]. We refer to these modification or dissection features of LDM as "textured terrain", because we were not able to resolve further details at CTX-scale. These degradation processes on the surface of ice-rich landforms indicate the dissection of LDM. Recent changes in insolation and climate [START_REF] Head | Recent ice ages on Mars[END_REF] at the latitudes where such degradational features are mostly observed (>50°-55°N; [START_REF] Mangold | High latitude patterned grounds on Mars: classification, distribution and climatic control[END_REF][START_REF] Kostama | Recent high-latitude icy mantle in the northern plain of Mars: Characteristics and ages of emplacement[END_REF].

Small-scale Polygons are orthogonal and hexagonal networks of polygons with diameters of tens to hundreds of meters, located on inter-crater plains and on crater floors. Their planview shape is morphologically consistent with that of thermal-contraction cracks. Various types of thermal contraction cracks have been proposed, such as ice-wedge polygons (Soare et al., 2014a), sand-wedge polygons [START_REF] Soare | The Tuktoyaktuk Coastlands of Northern Canada: A Possible Wet Periglacial Analogue of Utopia Planitia, Mars[END_REF], Séjourné et al., 2011[START_REF] Ulrich | Thermokarst in Siberian ice-rich permafrost: Comparison to asymmetric scalloped depressions on Mars[END_REF] or sublimation-type polygons [START_REF] Marchant | Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars[END_REF], Levy et al, 2009a, Levy et al., 2010). However, an origin as desiccation cracks also appears possible, especially for polygons on some crater floors [START_REF] El Maarry | Crater floor polygons: Desiccation patterns of ancient lakes on Mars?[END_REF].

Scalloped Terrain consists of isolated or coalesced shallow, rimless, asymmetric depressions of varying sizes, exhibiting steeper poleward-facing scarps. Their origin is probably related to thermokarst and the substantial loss of excess ice (i.e., ice exceeding the natural pore water content in a non-frozen state). Scalloped terrain was proposed to be the result of the groundice melting and subsequent evaporation of meltwater [START_REF] Costard | Outwash Plains and Thermokarst on Mars[END_REF][START_REF] Soare | Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past[END_REF][START_REF] Mangold | Ice sublimation as a geomorphic process: a planetary perspective[END_REF]. Alternatively, those features may have formed by the sublimation of ground-ice and removal of the remaining sublimation lag by aeolian processes [START_REF] Morgenstern | Deposition and degradation of a volatile-rich layer in Utopia Planitia and implications for climate history on Mars[END_REF][START_REF] Lefort | Observations of periglacial landforms in Utopia Planitia with the high resolution imaging science experiment (HiRISE)[END_REF], 2010[START_REF] Ulrich | Thermokarst in Siberian ice-rich permafrost: Comparison to asymmetric scalloped depressions on Mars[END_REF], Zanetti et al., 2010, Séjourné et al. 2011).

Gullies are systems of erosional and depositional landforms characterized by a head alcove, incised channel and debris apron [START_REF] Malin | Evidence for Recent Groundwater Seepage and Surface Runoff on Mars[END_REF] with lengths of up to a few kilometers and possibly indicative of liquid water, supplied by the melting of snow packs [START_REF] Christensen | Formation of Recent Martian Gullies Through Melting of Extensive Water-Rich Snow Deposits[END_REF] or near-surface ground-ice [START_REF] Costard | Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity[END_REF]. Alternatively, their formation may be a result of a ''dry'' flow processes [START_REF] Treiman | Geologic Settings of Martian Gullies: Implications for Their Origins[END_REF][START_REF] Pelletier | Recent Bright Gully Deposits on Mars: Wet or Dry Flow?[END_REF] involving CO2 ice [START_REF] Dundas | Modeling the development of martian sublimation thermokarst landforms[END_REF](Dundas et al., , 2018b)). They can overlap each other, indicating a formation by episodically occurring, subsequent processes.

Pits have circular, elongated or irregular plan-view shapes and reach diameters of up to a few hundred meters. They may have raised rims. We do not map pits that are degradational landforms in typical LDM, but those that are associated with bedrock material and exhibit the further described morphology in sections 3.1.6. and 4.3.

Large-scale Viscous Flow Features (VFF) are identified along the dichotomy boundary between the northern lowlands and southern highlands by previous studies: Lobate Depris Aprons (LDA), Lineated Valley Fills (LVF), and Concentric Crater Fills (CCF) (e.g., [START_REF] Squyres | Martian fretted terrain: flow of erosional debris[END_REF][START_REF] Squyres | The distribution of lobate debris aprons and similar flows on Mars[END_REF], Milliken et al., 2003, Head et al., 2006a[START_REF] Head | Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation[END_REF][START_REF] Levy | Concentric crater fill in Utopia Planitia: History and interaction between glacial "brain terrain" and periglacial mantle processes[END_REF], van Gasselt et al., 2010, Fassett et al., 2014, Levy et al., 2014). The term "large-scale VFF" has been used by [START_REF] Milliken | Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images[END_REF] to define large-scale ice-related features (LDA, LVF, and CCF), therefore we refer to that throughout the text. Head et al. (2006a[START_REF] Head | Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation[END_REF] suggested that the LDAs represent debris-covered glaciers with relatively pure ice [START_REF] Holt | Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars[END_REF][START_REF] Plaut | Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars[END_REF] derived from snowfall during a glacial period and show an extended lobe at their distal point similarly to piedmont-type glaciers on Earth [START_REF] Lucchitta | Mars and Earth: comparison of cold-climate features[END_REF]. LVFs are remnants of valley glacial land systems commonly represented by multiple branches of valleys. CCFs appear on crater floors, where the ice-rich material moved downslope from the crater wall [START_REF] Weitz | Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model[END_REF]. In Acidalia Planitia the most common features are LDAs and CCFs.

Km-scale Polygons

or "giant polygons" are outlined by delineating troughs with an average depth of ~30m and spacing of 5 to 10km. Their origin might be related to sediment expulsion [START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF][START_REF] Berndt | Kilometrescale polygonal seabed depressions in the Hatton Basin, NE Atlantic Ocean: Constraints on the origin of polygonal faulting[END_REF][START_REF] Moscardelli | Deep-water polygonal fault systems as terrestrial analogs for large-scale Martian polygonal terrains[END_REF][START_REF] Buczkowski | Giant polygons and circular graben in western Utopia basin, Mars: Exploring possible formation mechanisms[END_REF][START_REF] Allen | Fluid expulsion in terrestrial sedimentary basins: A process providing potential analogs for giant polygons and mounds in the martian lowlands[END_REF][START_REF] Orgel | Distribution, origin and evolution of hypothesized mud volcanoes, thumbprint terrain and giant polygons in Acidalia, Utopia and Arcadia Planitae: Implications for sedimentary processes in the northern lowlands of Mars[END_REF] or elastic rebound after unloading of water or ice from the ground [START_REF] Hiesinger | Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data[END_REF].

Large Pitted Mounds (LPM) are positive topographic features with a domical or pie-like crosssectional shape and typically exhibit a summital pit [START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF]. They have circular to sub-circular plan-view shapes and basal diameters of hundreds of meters to over a kilometer (150 measured: 300m-2200m, average: 830m, Oehler and[START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF]. LPM are characterized by a high albedo relative to the surrounding plains. They were interpreted to be related to rapid sedimentation of fluid-rich sediment, dewatering and fluid expulsion processes (similar to terrestrial mud volcanism [START_REF] Farrand | Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data[END_REF][START_REF] Mcgowan | Spatial distribution of putative water related features in Southern Acidalia/Cydonia Mensae, Mars[END_REF][START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF][START_REF] Skinner | Constraining the origin of pitted cones in Chryse and Acidalia Planitae, Mars, based on their statistical distributions and marginal relationships[END_REF][START_REF] Allen | Fluid expulsion in terrestrial sedimentary basins: A process providing potential analogs for giant polygons and mounds in the martian lowlands[END_REF][START_REF] Salvatore | On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitae[END_REF][START_REF] Orgel | Distribution, origin and evolution of hypothesized mud volcanoes, thumbprint terrain and giant polygons in Acidalia, Utopia and Arcadia Planitae: Implications for sedimentary processes in the northern lowlands of Mars[END_REF] or impact-related, seismically induced liquefaction [START_REF] Skinner | Evidence for and implications of liquefaction in the Vastitas Borealis marginal unit in Southern Utopia Planitia[END_REF].

Here, we mapped LPM as high albedo, circular, domical features with summital pit using THEMIS and CTX data together. On THEMIS data, LPM can be distinguished from thumbprint terrain (TPT), because LPM exhibit "dark", circular features, but TPT does not. LPM can appear as coalesced mounds in line, similar to TPT (described below), but when each mound exhibited the above described characteristics, we still mapped them as LPM, rather than TPT.

Small Pitted Mounds (SPM) are high albedo features, and has the same morphology to LPM, but smaller in size with an average basal diameter of 170m (this study). They generally occur in clusters, but are also found solitarily [START_REF] Farrand | Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data[END_REF][START_REF] Orgel | Distribution, origin and evolution of hypothesized mud volcanoes, thumbprint terrain and giant polygons in Acidalia, Utopia and Arcadia Planitae: Implications for sedimentary processes in the northern lowlands of Mars[END_REF].

Thumbprint Terrain (TPT) consists of uniformly-sized cones which are characterized by multiple summit pits and have an average basal diameter of 455m [START_REF] Farrand | Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data[END_REF]. TPT is typically arranged in curvilinear chains of mounds or forms contiguous ridges. Multiple origins have been proposed for the TPT: cinder cones [START_REF] Plescia | Cinder cones of Isidis and Elysium[END_REF], sublimation [START_REF] Grizzaffi | Isidis basin: Site of ancient volatile-rich debris layer[END_REF] or lacustrine features (Lokwood et al., 1992), mud volcanoes [START_REF] Davis | Curvilinear ridges in Isidis Planitia, Mars -The result of mud volcanism?[END_REF][START_REF] Farrand | Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data[END_REF][START_REF] Orgel | Distribution, origin and evolution of hypothesized mud volcanoes, thumbprint terrain and giant polygons in Acidalia, Utopia and Arcadia Planitae: Implications for sedimentary processes in the northern lowlands of Mars[END_REF], tuff cones [START_REF] Bridges | Selection of the landing site in Isidis Planitia of Mars probe Beagle 2[END_REF], phreatomagmatic features [START_REF] Bruno | Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes[END_REF], and devolatilized pyroclastic flows [START_REF] Ghent | The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits[END_REF]. Individual cones of TPT have smaller sizes than LPM.

Massive ice refers to exposed surface ice (e.g., inside polar craters; [START_REF] Conway | Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region[END_REF] as well as the polar cap itself.

Bedrock is defined here as outcrops of rock, commonly on slopes. It can be exposed by the detachment of ice-bearing material, or by a crater-forming impact. Here, we refer to all materials as bedrock that are not covered by LDM (Figure 7-9, 12).

Observations

Grid-mapping results

In this section, we present the grid-mapping results (Figure 13), especially focusing on the latitude-, elevation-, and slope-dependence of the landforms visualized by the box plots (Figure 14 and Supplementary Information (SI 2)). Colles from ~-4700m to ~-5600m, but 50% of the landform occur at around -5000m. The textured terrain is further present at slightly higher elevations of ~-4600m, and commonly located in the same latitude range as LDM. Similarly, LDM and textured terrain are present on slopes of up to 3.3°, but commonly on gentle slopes between 0.6° and 1.3°. In the Acidalia

Colles region, they appear on steeper slopes up to 10° (Figure 14). The distribution of textured terrain is consistent with previous studies [START_REF] Mangold | High latitude patterned grounds on Mars: classification, distribution and climatic control[END_REF][START_REF] Kostama | Recent high-latitude icy mantle in the northern plain of Mars: Characteristics and ages of emplacement[END_REF], but our observations indicate textured terrain at latitudes north of those reported by [START_REF] Kostama | Recent high-latitude icy mantle in the northern plain of Mars: Characteristics and ages of emplacement[END_REF].

Small-scale Polygons

Small-scale polygons occur most commonly from 51°N to 74°N, but are heavily concentrated between 61°N and 72°N (Figure 5/a and Figure 13/c) on the inter-crater plains and on the floors of filled impact craters. They occur within a narrow elevation band from -5037m to -5154m and 50% of the features are dominant at ~-5100m, which is a slightly lower elevation than the main concentration of LDM and textured terrain. They appear on almost flat surfaces of <1° slopes, but extreme cases show slopes up to 1.5° (Figure 14). The spatial distribution of these polygons is very similar to that of the LDM and textured terrain, supporting the hypothesis of a dissected LDM. The distribution of small-scale polygons in our mapping is in good agreement with previous studies [START_REF] Mangold | High latitude patterned grounds on Mars: classification, distribution and climatic control[END_REF][START_REF] Kostama | Recent high-latitude icy mantle in the northern plain of Mars: Characteristics and ages of emplacement[END_REF][START_REF] Mellon | Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars[END_REF], Levy et al., 2009a;[START_REF] El Maarry | Crater floor polygons: Desiccation patterns of ancient lakes on Mars?[END_REF]. Planitia [START_REF] Morgenstern | Deposition and degradation of a volatile-rich layer in Utopia Planitia and implications for climate history on Mars[END_REF], Séjourné et al., 2011, Séjourné et al., this issue). Scalloped terrain co-occurs with the LDM and textured terrain, but is surprisingly less correlated with the small-scale polygons. The scalloped terrain occurs at elevations from ~-4600m to ~-5000m, but 50% of the landforms are concentrated between ~-4700m and ~-4900m, similarly to VFF. The slope distribution of scalloped terrain ranges from 1.4° to 7°, but half of the population occurs on slopes between 2.8° and 5.7° (Figure 14).

Gullies

Gullies are observed within a limited latitude range between 32°N and 53°N (Figure 13/e) in Acidalia Planitia. The clustered gully distribution in the Acidalia Colles region (Figure 6) is also the area with the highest gully density in the northern hemisphere [START_REF] Harrison | Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation[END_REF], likely due to the occurrence of relatively steep hillslopes in this area (Figure 2) which is a prerequisite for gully formation (e.g. [START_REF] Reiss | Regional differences in gully occurrence on Mars: A comparison between the Hale and Bond craters[END_REF]. Gullies appear at elevations from ~-4300m to ~-4900m, but the half of the population occurs between ~-4500m and ~-4800m with a median of 4686m (Figure 14). The orientation of gullies in the Acidalia Mensa and Acidalia Colles region between 44°N and 53°N latitude shows a strong equatorward orientation [START_REF] Canzler | Geologic map of gullies and cold-climate landforms in Acidalia Mensa, Mars[END_REF][START_REF] Decker | Geologic map of gullies and cold-climate landforms in Acidalia Colles, Mars[END_REF], whereas gullies located at latitudes <44°N predominantly occur on poleward-facing slopes (Figure 13/e), which is consistent with mantle-free bedrock. This gully distribution within a limited latitude range is in agreement with previous gully studies in the northern hemisphere [START_REF] Bridges | Northern hemisphere Martian gullies and mantled terrain: Implications for near-surface water migration in Mars' recent past[END_REF][START_REF] Heldmann | Observations of martian gullies and constraints on potential formation mechanisms II. The northern hemisphere[END_REF][START_REF] Kneissl | Distribution and orientation of northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA data[END_REF][START_REF] Harrison | Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation[END_REF] and consistent with an orientation preference observed in the southern hemisphere on Mars [START_REF] Balme | Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data[END_REF][START_REF] Dickson | Martian gullies in the southern midlatitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography[END_REF].

Pits

Pits occur mostly in the southern part of Acidalia Planitia, to the west and northwest of Cydonia Mensae. They are preferentially located on equator-facing slopes, e.g., on the inner walls of impact craters (Figure 7) or on the flanks of wrinkle ridges, thumbprint terrain, or other landforms with positive topography (Figure 8 and 9/a). They are found on regional slopes up to 3.2°, but commonly on gentler slopes between 0.7° and 1.8° (Figure 14). They occur as isolated features, but most commonly form clusters (Figure 7) or chains (Figure 9). Their spatial distribution overlaps with that of the Large Pitted Mounds (LPMs), Small Pitted Mounds (SPM) and partly with that of the Thumbprint Terrain (TPT) (Figure 12). These giant polygons do not overlap with the small-scale polygons, which are situated further north in the study area. However, the km-scale polygons may be partly hidden from observation beneath the youngest mantle if that is thick enough, masking the true total distribution of the large polygons. The km-scaled polygons completely disappear at the Acidalia Colles region and northward, thus it seems that the low lying, flat areas are more favorable for their emplacement. They appear between ~-4500m and ~-5000m elevation on slopes from 0.5° to 1.3° with a median of 0.8° (Figure 14). The distribution of giant polygons in our mapping area is consistent with results presented by [START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF].

3.1.9. Large Pitted Mounds (LPM)

LPM in the Acidalia mapping area are located further north than thumbprint terrain (TPT) and occur isolated or arranged in clusters between 38°N and 54°N and disappear completely at TPT cones have smaller basal diameter than LPM and have more pits on their flanks. This landform co-exists with SPM up to 34°N. TPT is not observed north of 39°N. This distribution of TPT in our mapping area is consistent with previous studies [START_REF] Farrand | Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data[END_REF][START_REF] Mcgowan | Spatial distribution of putative water related features in Southern Acidalia/Cydonia Mensae, Mars[END_REF][START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF]. appears to be gradational rather than a distinct boundary.
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At the northern end of the mapped swath the North Polar Layered Deposits (NPLD) and outlier deposits dominate the subsurface signal (Figure 15 is being discussed as a group, because its features may have a common origin and relation to LDM, which is the focus of this study. The pits are discussed in a dedicated chapter because these features have never been described in detail before. We summarize the controlling factors that influence the formation of landforms in Table 2. ). This strongly re-confirms its latitude-dependence and the postulated origin as an icerich air-fall deposit [START_REF] Mustard | Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice[END_REF], Kreslavsky and Head, 2002a[START_REF] Head | Recent ice ages on Mars[END_REF]. The dissection of the LDM appears to grade from less severe in the north to more severe in the south. Three other landform types occur within the latitude range of LDM and textured terrain: Small-scale polygons, scalloped terrain, and gullies (Figure 13/c-e). Small-scale polygons are located in the region of dominant LDM and textured terrain. They have been interpreted as thermal contraction cracks in a fine-grained cohesive material (e.g., [START_REF] Levy | Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies[END_REF][START_REF] Ulrich | Polygon pattern geomorphometry on Svalbard (Norway) and western Utopia Planitia (Mars) using highresolution stereo remote-sensing data[END_REF], and the most straightforward explanation would be that this material is ice-cemented regolith or even excess ice (Levy et al., 2009a[START_REF] Levy | Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies[END_REF], both in agreement with hypotheses of LDM composition (e.g., [START_REF] Mustard | Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice[END_REF]. The small-scale polygons show the same trend of disappearance toward south, which may indicate a LDM that is thinning towards south, or that is containing less cementing ice, or both. A link to LDM may also be plausible for scalloped terrain and gullies. Scalloped terrain is thought to be a result of thermokarstic degradation of LDM (e.g., [START_REF] Ulrich | Thermokarst in Siberian ice-rich permafrost: Comparison to asymmetric scalloped depressions on Mars[END_REF][START_REF] Lefort | Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE[END_REF]Dundas et al., 2015a), and many gullies are incised into LDM [START_REF] Dickson | Recent climate cycles on Mars: Stratigraphic relationships between multiple generations of gullies and the latitude dependent mantle[END_REF]. The limited extent of terrain displaying scalloped terrain and gullies within the much larger LDM may be explained by other controlling factors (see sections 4.2.2. and 4.2.3, and Table 2). Bedrock outcrops are exposed in the Acidalia Colles region due to the detachment of mantle or VFF on the slopes of hills and mesas. Bedrock is also present in the southern parts of the mapping area where LDM is absent, hence its extent is complementary to LDM.

Latitude Dependent

The landform assemblage 3 (LA3) also shows a distribution that seems to be restricted to a certain latitude range (~30°N to 50°N), with an additional region displaying km-scale polygons north of the Acidalia Colles and Mensae (54°N-63°N). Among the single classes of landforms within the LA3, there is a trend of increasingly northward location of TPT, SPM, LPM, and kmscale polygons. Whereas such a trend could indicate a control by insolation, an alternative interpretation is that a varying thickness of the Vastitas Borealis Formation (VBF) is responsible. A link between the VBF and both km-scale polygons and LPM has been proposed by previous studies: The VBF has been hypothesized to be the residual deposit of originally volatile-rich effluents from the outflow channels [START_REF] Kreslavsky | Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water[END_REF], and the kmscale polygons are spatially associated with the terminations of the outflow channels [START_REF] Lucchitta | Sedimentary deposits in the northern lowland plains, Mars[END_REF] and have been explained by various processes acting on such sediments (e.g., [START_REF] Mcgill | Origin of giant Martian polygons[END_REF][START_REF] Lane | Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars[END_REF][START_REF] Allen | Fluid expulsion in terrestrial sedimentary basins: A process providing potential analogs for giant polygons and mounds in the martian lowlands[END_REF]. On the other hand, the LPM have been proposed to represent surface manifestations of subsurface sediment mobilization of outflow channel sediments [START_REF] Salvatore | On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitae[END_REF][START_REF] Hemmi | High-Resolution Topographic Analyses of Mounds in Southern Acidalia Planitia, Mars: Implications for Possible Mud Volcanism in Submarine and Subaerial Environments[END_REF]. The km-scale polygons cover a relatively large region south and north of the Acidalia Colles and Mensae (Figure 13 , 2018). This may suggest that the control on their distribution is some varying property of the VBF, e.g., thickness, rather than climate.

Elevation-and slope-dependence

LDM and textured terrain occur over a broad range of elevations (from ~-4700 m to ~-5600 m)

and slopes (up to 10°), therefore no evidence exists for elevation or slope-dependency, consistent with a hypothesized origin of LDM as a result of precipitation that drapes all but the steepest underlying relief [START_REF] Head | Recent ice ages on Mars[END_REF][START_REF] Madeleine | Recent ice ages on Mars: The role of radiatively active clouds and cloud microphysics[END_REF]. In contrast, VFF and gullies are concentrated in the Acidalia Colles region and on impact crater walls, suggesting a strong relation to varying slopes. Of all mapped landforms, gullies occur together with VFF on average on the steepest slopes (Figure 14). As both types of features are thought to be a result of gravity-driven processes (ice creep and debris or granular flows, respectively), this observation is not surprising. Of all mapped landforms, scalloped terrain occurs together with gullies and VFF on average on the steepest slopes (Figure 14). The reason for this is unclear, but local variations in insolation may cause heterogeneities in the stability of subsurface ice, leading to preferential sublimation and thermokarst initiation at steeper slopes [START_REF] Aharonson | Subsurface ice on Mars with rough topography[END_REF].Small-scale polygons and scalloped terrain appear commonly in a narrower elevation range than LDM, demonstrating a strong dependency on elevation, although they do not show a common spatial distribution. Small-scale polygons only appear on smooth, flat surfaces with slopes <1°, which would be consistent with an origin as desiccation cracks in ponds as proposed by El Maarry et al. ( 2010), although it does by no means exclude an origin as thermal contraction cracks. Scalloped terrain occur on varying slopes between 2.8° and 5.7°, and we observe the concentration of scallops in a narrow elevation range (between ~-4700m and ~-4900m), thus the elevation dependence of scalloped terrain is clear. We conclude that this observation, in combination with the latitude dependence of scalloped terrain, suggests an insolation-and climate-controlled origin (see also [START_REF] Dundas | Effects of varying obliquity on Martian sublimation thermokarst landforms[END_REF].

Orientation-dependence

We observed a preferential location of gullies on pole-facing slopes at mid-latitudes between 32°N and 44°N and on equatorial-facing slopes for more northern gullies, in agreement with previous studies both the northern hemisphere [START_REF] Heldmann | Observations of martian gullies and constraints on potential formation mechanisms II. The northern hemisphere[END_REF][START_REF] Kneissl | Distribution and orientation of northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA data[END_REF][START_REF] Harrison | Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation[END_REF] and the southern hemisphere [START_REF] Balme | Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data[END_REF][START_REF] Dickson | Martian gullies in the southern midlatitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography[END_REF].

A control of gully formation by insolation (and, at these latitudes, ultimately by obliquity; Schorghofer, 2008) seems therefore the most likely explanation for this latitude-dependent change of orientation dependence. On the other hand, we do not observe a correlation of scalloped terrain and slope orientation (aspect), in agreement with [START_REF] Lefort | Observations of periglacial landforms in Utopia Planitia with the high resolution imaging science experiment (HiRISE)[END_REF], who note an apparent absence of orientation dependence. The small, irregularly-shaped pits are preferentially located on equator-facing slopes, and we discuss this in section 4.3.

Climatic implications

Various equilibrium models predict that near-surface ground ice should be stable under current obliquity and orbital conditions poleward of approximately ±50-55° latitude on both hemispheres [START_REF] Mellon | The distribution and behavior of Martian ground ice during past and present epochs[END_REF][START_REF] Mellon | The presence and stability of ground ice in the southern hemisphere of Mars[END_REF][START_REF] Schorghofer | Stability and exchange of subsurface ice on Mars[END_REF][START_REF] Chamberlain | Response of Martian ground ice to orbitinduced climate change[END_REF]. The distribution of shallowly buried subsurface ice in the uppermost layer of the Martian regolith as measured with neutron and gamma-ray spectroscopy is consistent with these models (e.g., [START_REF] Boynton | Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits[END_REF][START_REF] Feldman | Global distribution of nearsurface hydrogen on Mars[END_REF]Mitrofanov et al., 2004;[START_REF] Jakosky | Mars low-latitude neutron distribution: Possible remnant near-surface water ice and a mechanism for its recent emplacement[END_REF][START_REF] Wilson | Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data[END_REF]. To see the correlation between different dataset and model results to our mapping, we refer to our Supplementary Information (SI3). The extent of dominant LDM as mapped in our study (Figure 13/a) is broadly (but not perfectly, see below) consistent with both the GRS results (Figure 14/d) and the models of ice stability, and supports the hypothesis that LDM does indeed contain water ice (as already early hypothesized by, e.g., Kreslavsky and Head, 2002a). Small-scale polygons in Acidalia occur mostly at latitudes of ~60-70°N, where LDM is prominent and near-surface ground ice should be stable under current conditions. According to the model of [START_REF] Chamberlain | Response of Martian ground ice to orbitinduced climate change[END_REF], the depth of ground ice is likely at ~10 cm around 63°N at current conditions, which is in good correlation with the concentration of small-scale polygons in Acidalia Planitia and in-situ measurements of the Phoenix Lander mission [START_REF] Mellon | Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars[END_REF]. This observation may support the hypothesis that the polygonal pattern is a result of thermal contraction cracking in regions with ice-cemented regolith. It does not, however, excludes a formation as desiccation cracks.

The bedrock distribution is anticorrelated to the LDM and shows that LDM is not a significant element of the landscape at latitudes equatorward of about 50°N (Figure 13/m). However, the correlation of LDM and its degraded varieties (textured terrain; Figure 13/b) with the GRS and model results is not perfect. Both LDM and textured terrain start already at ~45°N, slightly south of the southern equilibrium boundary predicted by modeling. This may indicate that the current LDM was deposited in the past at higher (mean) obliquities (25°-30°, [START_REF] Chamberlain | Response of Martian ground ice to orbitinduced climate change[END_REF], as already suggested by LDM dating (e.g., [START_REF] Willmes | Surface age of the ice-dust mantle deposit in Malea Planum, Mars[END_REF], and is currently degrading as indicated by its textured varieties, and theoretically predicted by modeling [START_REF] Schorghofer | History and anatomy of subsurface ice on Mars[END_REF]. The persistence of LDM at latitudes between 45°N

and 50-55°N, where it is not dominant, would therefore be a remnant of a formerly more dominant LDM that is now not in equilibrium with environmental conditions. The presence of scalloped terrain at the very latitude where LDM and textured terrain become dominant supports this view. Scalloped terrain is thought to be a thermokarst landform resulting from sublimation [START_REF] Dundas | Effects of varying obliquity on Martian sublimation thermokarst landforms[END_REF], and by definition requires a certain minimum thickness of LDM and/or textured terrain to develop. During the present period of LDM degradation at a phase of relatively low mean obliquity after the end of an ice age [START_REF] Smith | An ice age recorded in the polar deposits of Mars[END_REF], scalloped terrain would therefore be expected to occur at the southernmost extent of dominant LDM/textured terrain, as is indeed observed (Figure 13/d). With further thermokarstic degradation of the LDM, the extent of scalloped terrain should move further northward as the stability of ice follows the tilt of the rotational axis [START_REF] Chamberlain | Response of Martian ground ice to orbitinduced climate change[END_REF].

Individual scalloped depressions are smaller in Acidalia than in Utopia, which appears to be consistent with the observation that the southern boundary of LDM/textured terrain is located further north in Acidalia when compared to Utopia and Arcadia Planitiae. This shift in LDM extent may suggest a less extended and possibly thinner LDM in Acidalia, and consequently a smaller dimension of scalloped depressions, as observed.

Small pits on equator-facing slopes

Small pits are mostly located in the southern parts of the mapping area, immediately north of that pit formation was not the latest geological event in that region, they appear to be relatively young based on their pristine morphology and the lack of small impact craters in their interiors.

The raised rims suggest that either the negative topographic landforms were excavated by a high-energy process that threw out material, or that material accumulated around or embayed a former positive topographic landform that has now disappeared (relief inversion).

Alternatively, the raised rims would imply the collapse of pingos. Pingos are massive ice cored mounds, which develop through pressurized groundwater flow, progressive freezing mechanisms and up-doming of the surface in terrestrial periglacial environments [START_REF] Mackay | Pingo growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study[END_REF][START_REF] Wu | Migrating pingos in the permafrost region of the Tibetan Plateau, China and their hazard along the Golmud-Lhasa railway[END_REF], Hauber et al., 2011). The hydraulic (open) system pingos (OSP) derive their water pressure from a topographic (hydraulic) gradient [START_REF] Wu | Migrating pingos in the permafrost region of the Tibetan Plateau, China and their hazard along the Golmud-Lhasa railway[END_REF], Hauber et al., 2011). The recharge zone of the groundwater flow is located in topographic heights and the discharge zone is usually in the topographic lows. The groundwater flows through the subpermafrost or intra-permafrost aquifers. During continuous and slow water supply, high pressure builds up under the frozen surface layer at the topographical low area. The water injects into the frozen layer and the ice core of the pingo starts to grow, which can take centuries to form. OSP occur in clusters on river deltas, alluvium of valley bottoms or alluvial fans (Mackay, 1998, Hauber et al., 2011) and show an oval or oblong shape. During the growth of a pingo, dilation cracks form due to the increasing tension and the width of these cracks develops over time and exposes the ice-core of the pingo. As the result of the exposure, the ice core will consequently melt away and this process leads to the collapse of the pingo. The residual landform exhibits a raised rim compared to the surrounding topography [START_REF] Mackay | Pingo growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study[END_REF]. Possible OSP were described in and around the Argyre basin at the mid-latitudes of Mars [START_REF] Soare | Possible open-system (hydraulic) pingos in and around the Argyre impact region of Mars[END_REF]. The shape of mounds ranges from circular to elongate and are subkilometer in diameter. They occur in both sparse and dense clusters in different locations such as on the inner crater walls or on crater floors together with gullies [START_REF] Soare | Possible open-system (hydraulic) pingos in and around the Argyre impact region of Mars[END_REF]. Both the pingo candidates and pits are similar in size and morphology along with the occurrence of landforms on the inner crater walls. However, pingos do not show a "nested" appearance on the steepest slopes of the inner crater walls, unlike the pits. In contrast to the strong orientation dependence of equator-facing pits, there is no reported orientation preference for pingos in Argyre basin. Furthermore, pits do not occur together with gullies in Acidalia Planitia. In any case, the raised rims rule out a formation by simple collapse.

The preferential location of small pits on equator-facing slopes and their sometimes very irregular plan view shapes argues against a formation as primary or secondary craters.

Similarly, an igneous volcanic origin (as speculated by Martínez-Alonso et al., 2011) appears unlikely, as there would be little reason to expect an insolation control on volcanic vents.

It has been suggested that these pits formed as blowouts in response to unidirectional winds [START_REF] Kuznetsov | Wind-related erosion depressions within a small impact craters in Chryse and Elysium Planitiae on Mars[END_REF]. A blowout is a saucer-, cup-or trough-shaped hollow formed by wind erosion on a sand deposit, usually as a result of a loss of vegetation [START_REF] Hesp | Foredunes and blowouts: initiation, geomorphology and dynamics[END_REF]. Blowouts on Earth are commonly observed in coastal environments, but are also known from dunes in cold climates (Dijkmans and Koster, 1990). However, although aeolian bedforms are abundant in and around the pits, an erosional formation as blowouts appears unlikely, as the high amount of boulder-sized blocks is not consistent with a dune-like substrate. Moreover, it is impossible that boulder-sized objects, which could not be resolved in the images available to [START_REF] Kuznetsov | Wind-related erosion depressions within a small impact craters in Chryse and Elysium Planitiae on Mars[END_REF], were displaced by wind. A control by unidirectional winds blowing in southwesterly directions, as proposed by [START_REF] Kuznetsov | Wind-related erosion depressions within a small impact craters in Chryse and Elysium Planitiae on Mars[END_REF] on the basis of wind streaks orientation in the lee of craters, is inconsistent with the location of pit clusters on slopes with different aspects (Figure 7/b). We therefore conclude that aeolian processes were not the main responsible mechanism for pit formation.

The preferential location of the pits on equator-facing slopes strongly suggests a control by insolation. One possibility would be a formation that is somehow linked to water ice. Although there is no currently observable trace of LDM at the locations of the pits, water ice may have been present at these latitudes in the past. Mars Odyssey Neutron Spectrometer Water Equivalent Hydrogen (WEH) maps show near-surface water ice at low latitudes between 20°N and 30°N [START_REF] Wilson | Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data[END_REF][START_REF] Pathare | Driven by Excess? Climatic Implications of New Global Mapping of Near-Surface Water-Equivalent Hydrogen on Mars[END_REF], and there is evidence for past and present water ice deposits equatorward of 30°N (e.g., [START_REF] Head | Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars[END_REF][START_REF] Hauber | Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: Indicators of the Martian paleoclimate[END_REF][START_REF] Vincendon | Near-tropical subsurface ice on Mars[END_REF]. The WEH map [START_REF] Wilson | Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data[END_REF] shows <10% of water at the latitude range of the pits, suggesting that LDM or other types of water ice deposits may have extended that far south (Figure 14/d andSI3).

The morphology of some pits, especially the downslope margins, resembles that of glacial moraines (Figure 7). Sublimation of glacial ice (e.g., as "dry" ablation hollows; [START_REF] Mangold | Ice sublimation as a geomorphic process: a planetary perspective[END_REF] would indeed leave a rimmed depression, but only if some material had accumulated along the ice margins, e.g., as ice-sediment contact or drop moraines at the margins of cold-based glaciers [START_REF] Atkins | Geomorphological evidence for cold-based glacier activity in South Victoria Land, Antarctica[END_REF]. If there was ever any glacial ice, it would probably have been cold-based as no proglacial or glaciofluvial features such as channels or eskers (Fassett et al., 2010, Gallagher andBalme, 2015) were observed. A repeated sequence of past ice accumulation and sublimation could explain the "nested" occurrence of pits (Figure 7/a). However, the very small sizes of the depressions would imply numerous very small glaciers next to each other (Figure 9/a). It is not clear either how sediment would have accumulated all around them, without an obvious source of boulder-sized sediments (e.g., Figure 8/a).

If the pits were related to subsurface ice lenses or other forms of excess ice instead of glaciers, then the ice may have been precipitated during periods of high obliquity (above 45°) [START_REF] Forget | Formation of glaciers on Mars by atmospheric precipitation at high obliquity[END_REF]) and sublimated at periods of low obliquity (below 25°) from the equatorial and mid-latitudinal regions [START_REF] Levrard | Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity[END_REF]. However, a formation by sublimation of water ice and thermokarstic collapse is unlikely, as it would not fully explain the irregular-shaped raised rims of the pits.

Another, more speculative hypothesis would be a dynamic scenario of CO2 ice or clathrate hydrate destabilization. For example, downslope transport of sediment deposited above sublimating slabs of CO2 ice was modelled by Cedillo-Flores et al. ( 2011), who found that loose sediment can be fluidized. However, the model only accounted for fluidization of thin layers of sand and dust (<<1 m) mostly in polar regions, and does not seem applicable for metersized boulders at latitudes equator-wards of 30°N. Another scenario was proposed by [START_REF] Kieffer | Annual punctuated CO2 slab-ice and jets on Mars[END_REF] and [START_REF] Kieffer | CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal South Polar ice cap[END_REF] to explain the formation of dark splotches in the south polar region during the retreat of seasonal CO2 ice in spring and summer. Warming of the regolith by insolation causes some CO2 ice at the bottom of the slab to sublimate, building up gas pressure that eventually ruptures the slab and causes an eruptive jet of CO2 gas and regolith material. If the proportion of regolith material in the jets is large enough, such an "explosive" mechanism may account for raised rims around a depression, analogous to an explosive volcanic eruption building a scoria or tuff cone. In an attempt to explain gully formation without liquid water, [START_REF] Pilorget | Formation of gullies on Mars by debris flows triggered by CO2 sublimation[END_REF] examined the possibility of mobilizing regolith that is sandwiched between ice-cemented, impermeable permafrost at depth and a slab of translucent CO2 ice on top. When the regolith is heated by insolation in spring, CO2 ice at the bottom of the slab sublimates, the gas pressure can be high enough to crack the slab.

The gas pressure is suddenly released and a jet of CO2 gas can eject solid regolith material.

This type of process would explain the control by insolation, large boulders and the raised rims, however, at none of the modelled obliquities (25.2° and 35.2°) would this type of activity be expected at equator-facing scarps. As no CO2 ice has yet been observed at the low latitudes at which the pits are located [START_REF] Vincendon | Identification of Mars gully activity types associated with ice composition[END_REF], models of pit formation involving solid-state CO2 are difficult to reconcile with the present climate of Mars and do not seem to apply at the latitudes at which the pits are observed. On the other hand, very cold surface areas might cause occasionally CO2 condensation even close to the equator [START_REF] Piqueux | Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars[END_REF]). If CO2 accumulation was much higher at some time in the recent past at latitudes <30°N, it may have been linked to formation of pits.Alternatively, dissociation of clathrate hydrates (methane

[CH4•nH2O] or CO2 [CO2•nH2O]
) could perhaps trigger an energetic release of volatiles. On Earth, violent gas blowouts have created craters with raised ejecta rims on the Yamal peninsula in Russia (e.g., [START_REF] Leibman | New permafrost feature -deep crater in Central Yamal (West Siberia, Russia) as a response to local climate fluctuations[END_REF][START_REF] Buldovich | Cryogenic hypothesis of the Yamal crater origin: Results of detailed studies and modeling[END_REF], and subaqueous craters in the Arctic were formed by massive release of methane from destabilized gas hydrates [START_REF] Andreassen | Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[END_REF]. Methane has been detected in the Martian atmosphere [START_REF] Webster | Background levels of methane in Mars' atmosphere show strong seasonal variations[END_REF], and may have been present in the past as well. Thermodynamic calculations predict the past and perhaps present formation of methane clathrate at the base of the cryosphere at depths of a few kilometers, and at the surface or in the shallow subsurface down to a few meters at past periods of higher atmospheric (and methane partial) pressure [START_REF] Mousis | Volatile Trapping in Martian Clathrates[END_REF]. While the most plausible location of Martian clathrates would be the cold polar regions (the formation requires temperatures down to ~150 K), metastable clathrates could even be present at lower latitudes than thermodynamic models suggest [START_REF] Mousis | Volatile Trapping in Martian Clathrates[END_REF]. The release of metastable methane clathrate particles (i.e., not gaseous CH4) has been proposed to account for the methane in the Martian atmosphere [START_REF] Chassefière | Metastable methane clathrate particles as a source of methane to the martian atmosphere[END_REF]. It was also speculated that methanogenic explosions were responsible for the origin of thousands of small cratered mounds in Elysium Planitia on Mars [START_REF] Page | A candidate methane-clathrate destabilisation event on Mars: A model for sub-millennial-scale climatic change on Earth[END_REF].

The small pits are located in a latitude range that partly overlaps the TPT and with SPM, and which has its northern margin approximately where LPM and km-scale polygons begin (Figure 13). Most of these landforms have been associated with some sort of subsurface sediment mobilization and volatile release (e.g., [START_REF] Farrand | Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data[END_REF][START_REF] Skinner | Martian mud volcanism: Terrestrial analogs and implications for formational scenarios[END_REF][START_REF] Oehler | Evidence for pervasive mud volcanism in Acidalia Planitia, Mars[END_REF][START_REF] Etiope | Methane emissions from Earth's degassing: Implications for Mars[END_REF][START_REF] Allen | Fluid expulsion in terrestrial sedimentary basins: A process providing potential analogs for giant polygons and mounds in the martian lowlands[END_REF][START_REF] Salvatore | On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitae[END_REF][START_REF] Oehler | Methane Seepage on Mars: Where to Look and Why[END_REF][START_REF] Hemmi | High-Resolution Topographic Analyses of Mounds in Southern Acidalia Planitia, Mars: Implications for Possible Mud Volcanism in Submarine and Subaerial Environments[END_REF]. In this respect, it may be speculated that there is a whole spatially contiguous series landforms related to subsurface volatile release which consists, from north to south, of km-scale polygons and LPM, SPM, TPT, and small pits.

If this is true, a local control of methane release by enhanced insolation might explain the control of slope aspect (orientation) on pit location (Figures 789). Indeed, obliquity (insolation)

variations were proposed to be a triggering factor in possible methane clathrate destabilization on Mars [START_REF] Root | Potential effects of obliquity change on gas hydrate stability zones on Mars[END_REF][START_REF] Kite | Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars[END_REF]. The spatial alignment of many small pits along topographic ridges (Figure 9) may be explained by a control of vent locations by fractures beneath the ridges, which would provide pathways for ascending volatiles if these were deep-seated. Deeply-rooted fractures would not, however, account for pit locations in south-facing crater walls (Figure 7), so post-impact shallow methane clathrates (rather than deep ones) would seem more likely in the craters.

It has been hypothesized that methane clathrate hydrates might have been destabilized in the interglacial starting at 0.4 Ma [START_REF] Prieto-Ballesteros | Interglacial clathrate destabilization on Mars: Possible contributing source of its atmospheric methane[END_REF], when a confining ice layer retreated poleward and reduced the pressure in a zone of clathrate stability. Such a scenario would be consistent with the apparent young age of the pits. Nevertheless, it needs to be emphasized that evidence for low-latitude methane clathrate hydrate deposits, either deeply seated or in the near subsurface, is still missing, and at last for the latter it is unclear if they could ever have formed in the respective climatic conditions [START_REF] Kieffer | Clathrates are not the culprit[END_REF][START_REF] Kuhs | CO2 clathrate hydrates on Mars[END_REF][START_REF] Falenty | Laboratory study on the kinetics of CO2 hydrates in a broad p-T range relevant to Mars[END_REF].

In summary, the enigmatic pits were only observed in Chryse/Acidalia Planitiae in our mapping studies (Ramsdale et al., this issue; Séjourné et al., this issue) and are very rare elsewhere [START_REF] Kuznetsov | Wind-related erosion depressions within a small impact craters in Chryse and Elysium Planitiae on Mars[END_REF], thus we suggest that specific conditions in southern Acidalia Planitia, perhaps related to the accumulation of large amounts of fine-grained volatile-rich sediments, favour their origin. They may belong to a suite of landforms that may all be related to volatile release, and their specific locations are locally controlled by slope aspect (orientation).The raised and irregular-shaped morphology suggests an energetic release of volatiles, although the mechanism remains unclear.

Conclusion

We performed the first contiguous regional mapping of selected ice-and water-related landforms at full CTX resolution along a 300 km wide strip in Acidalia Planitia, from 20°N to 84°N latitude. Our mapping of Acidalia Planitia is part of a joint effort to study the three main basins of the northern lowlands: Acidalia, Utopia and Arcadia Planitiae. We used a gridmapping technique [START_REF] Ramsdale | Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas[END_REF][START_REF] Voelker | Grid-mapping Hellas Planitia, Mars -Insights into distribution, evolution and geomorphology of (Peri)-glacial, fluvial and lacustrine landforms in Mars' deepest basin[END_REF] to analyze the distribution of 13 types of possibly volatile-related landforms. This technique has proven to be very effective to map small-scale features over very large areas. Our results show a similar pattern of landform distribution as previous studies of individual landforms, but there are significantly more details in the present study using the high-resolution grid-mapping technique.

Our mapping identified four assemblages of landforms based on their distribution, spatial association at small scale and correlation to various datasets:

(1) 'Geologically recent' polar cap (massive ice)

(2) Possible water-related features (km-scale polygons, Large Pitted Mounds (LPM), Small Pitted Mounds (SPMs), thumbprint terrain (TPT))

(3) Ice-related landforms, such as geologically young Latitude Dependent Mantle (LDM), textured terrain, small-scale polygons, scalloped terrain, gullies and large-scale Viscous Flow Features (VFF).

(4) Irregular-shaped, equator-facing pits with a hypothesized origin by energetic release of volatiles or mantle degradation. These features have never been described in detail before on the basis of very high-resolution images.

LDM and textured terrain occur ubiquitously from 44°N to 78°N in Acidalia Planitia further north than in Arcadia and Utopia Planitiae (Ramsdale et al., this issue, Séjourné et al., this issue). The origin of ice by air-fall deposition is most likely, as LDM and its degraded varieties are draped over the terrain regardless of topography and are uncorrelated with geologic boundaries, outflow channels, or tectonic features, as would be expected if the ice had a fluvial or groundwater origin. This finding is consistent with climatic models (e.g., Mellon andJakosky, 1995, Chamberlain and[START_REF] Chamberlain | Response of Martian ground ice to orbitinduced climate change[END_REF] predicting current ice stability down to 50°N.

Moreover, models of WEH distribution show <10% of hydrogen far southward than the present distribution of LDM, suggesting that ice might have been formerly present at latitudes lower than 50°N.

Degradation and modification of the LDM results in textured terrain (from 36°N-43°N to 79°N), scalloped terrain (46°N-57°N), gullies (32°N-53°N) and small-scale polygons (51°N-74°N). These landforms provide evidence for ice loss and thermal contraction between 32°N and 79°N in Acidalia Planitia, and overlap spatially with LDM from about40°N-44°N to 78°N.

Based on models of WEH soil content and the lack of SHARAD detections, Acidalia Planitia appears to have less ice in the uppermost tens of meters than Arcadia or Utopia Planitiae.

This finding suggests either past or current differences among the main basins in the northern lowlands with respect to climatic conditions.

In the south of the mapping area, a suite of landforms (km-scale polygons, large and pitted mounds, and the so-called thumbprint terrain), is possibly related to the existence of originally volatile-rich, fine-grained sediment and its later subsurface remobilization and outgassing.

The origin of small, irregular-shaped pits with raised rims on mostly, equator-facing slopes in the southernmost portion of the strip is enigmatic. They form a spatial continuum with the landforms that are possibly related to sediment reworking, but are likely much younger.

Whatever their exact formation mechanism, they are likely the result of an energetic release of volatiles (H2O, CO2, CH4), rather than impact-, volcanism-, or wind-related processes.

A forthcoming synthesis of the three studied strips across Acidalia, Utopia, and Arcadia Planitiae, which are thought to be representative of the whole northern lowlands, will enable identifying key locations to link the investigated areas. Moreover, we suggest that the grid mapping technique will be a useful tool to constrain the large-scale distribution of small-scale hazards (e.g., aeolian landforms) and features with high scientific potential (e.g., mineral filling veins, fractures) at landing sites for future planetary missions.

Zanetti, M., Hiesinger, H., Reiss, D., Hauber, E., and Neukum, G. (2010). Distribution and evolution of scalloped terrain in the southern hemisphere, Mars. Icarus, 206, 691-706. [START_REF] Plescia | Cinder cones of Isidis and Elysium[END_REF][START_REF] Grizzaffi | Isidis basin: Site of ancient volatile-rich debris layer[END_REF], Lokwood et al., 1992[START_REF] Davis | Curvilinear ridges in Isidis Planitia, Mars -The result of mud volcanism?[END_REF][START_REF] Bridges | Selection of the landing site in Isidis Planitia of Mars probe Beagle 2[END_REF][START_REF] Bruno | Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes[END_REF], Farrand et al., 2005, Ghent et [START_REF] Kreslavsky | Kilometer-scale roughness of Mars'surface: Results from MOLA data analysis[END_REF]. [START_REF] Wilson | Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data[END_REF]. et al., 1978[START_REF] Frigge | Some implementations of the boxplot[END_REF]. We show the specific values in the Supplementary Information (SI 2). 
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 11 Latitude Dependent Mantle (LDM) Based on our grid-mapping, local LDM deposits first appear polewards already at latitudes slightly north of 40°N, where it is still gradational with the bedrock. LDM is unambiguously present further north from 44°N to 78°N, and dominates the Acidalia Colles region and north of that (Figure 13/a). 4/a) and textured terrain (Figure 4/b) almost completely overlap in the whole mapping area, hence they strongly and positively correlate with each other. The textured terrain has ambiguous occurrences at 36°N, is present between 43°N and 79°N, and dominates between 45°N and 77°N, similarly to the occurrences of LDM (Figure 13/b). LDM and textured terrain cover a relatively broad elevation range, including partly the Acidalia

  3.1.4. Scalloped Terrain In Acidalia Planitia, scalloped terrain can only be found within a limited latitude range between 46°N and 57°N, and is mostly concentrated in the Acidalia Colles region (48°-53°N) (Figure 5/b and Figure 13/d). All observed isolated scalloped depressions in Acidalia Planitia are characterized by a diameter of <100m, and are less prominent features than in Utopia

  Many individual pits in a pit chain seem to have formed more or less simultaneously, based on the observation that ridges separating the pits do not indicate a superposition of one pit on top of another one (Figure9/a). On the other hand, smaller pits may occasionally be nested in larger ones, suggesting that separate episodes of pit formation may have occurred. The pits appear to be relatively shallow and have raised rims, which partly consist of boulder-sized blocks (Figure8/a and 9/b). The floors of some pits are partly covered by aeolian bedforms (Figure 8/b and 9/b). No evidence of fluvial activity or runoff, e.g., erosional channels, can be observed in association with the pits. However, some small low albedo features may be dark slope streaks or potential recurrent slope lineae (RSL) (Figure 9/b). Pits are concentrated between 24°N-36°N (Figure 13/f) and their occurrence does not overlap with LDM, but it does coincide with the lower boundary of the textured terrain around 36°N, which suggests a possible relation to past extent of LDM and thus volatiles. Pits are located from ~-3800 m to ~-4100 m, frequently between ~ -3900 and ~-4000 m, and overlap with the elevation outliers of textured terrain (Figure 14). 3.1.7. Large-scale Viscous Flow Features (VFF) VFF in Acidalia Planitia are located between 36°N and 53°N (Figure 13/g) and concentrated on the hilly area around the Acidalia Colles (Figure 4/b and Figure 10) and north from that.South from the Acidalia Colles region VFF occur predominantly in craters. About 82% of VFF are concentrated within this region between elevations of -4528m and -4927m and 50% of VFF are confined between -4633 m and -4842 m (Figure14). VFF are present on slopes between 1° and 6°, which is not surprising as by definition their formation requires elevation differences (Figure14). The Acidalia Colles hills are not only covered by VFF, but LDM and textured terrain occur here as well. The detachment of ice-rich material from the hills results in the exposure of bedrock or the occurrence of very thin mantling deposit in these places, suggesting ice-deformation and ice-mass movement processes (Figure4/b). It seems likely that VFF are covered by LDM or thick LDM forms the VFF in this region, which we will discuss in detail in Section 4. 3.1.8. Km-scale Polygons Localized occurrences of giant polygons are present from 30°N poleward, but most form two separate populations from 35°N to 48°N and from 54°N to 63°N, respectively, and dominate between 38°N-39°N and 54°N-62°N (Figure 13/h). The southern population is partly subdued by LDM and textured terrain, whereas the northern population is completely covered by LDM.

  59°N and further polewards (Figure 13/i). LPMs are spatially associated with the km-scale polygons and Small Pitted Mounds (SPM), as LPM appear within the giant polygons (Figure 11/a). The extent of LPM is restricted to the Vastitas Borealis Formation, and LPM do not occur in the topographically elevated region of the Acidalia Colles region. With respect to their elevation, they occur from ~-4800m to ~-4500m and typically on slopes of less than <1.5° (Figure 14). There is a gradational, morphological transition zone from (south to north) TPT to LPMs at around 38°N. Around 39°N and northward, only LPM without TPT can be observed. The morphology of LPM also varies from the southern dome-type mounds to the northern pie-type population at 48°N (Figure 11/b). Small Pitted Mounds (SPM) appear with the dometype LPM, but SPM cannot be observed with the pie-type LPM. The pie-type mounds are associated with the southern extent of the LDM and textured terrain. Noticeably, LPM are overlain by LDM and textured terrain, suggesting that there is a significant mantle coating on the mounds from 44°N polewards. The distribution of LPM in our mapping is in agreement with results obtained by Oehler and Allen (2010) and Skinner (2012). 3.1.10. Small Pitted Mounds (SPM) SPM are located between 34°N and 48°N, and completely overlap with areas where dometype LPM and partly the TPT occur (Figure 13/j). SPM features can occur isolated and randomly distributed or in closely-spaced clusters (Figure 11/a). They appear to be spatially associated with the larger sized mounds (LPM and TPT). 3.1.11. Thumbprint Terrain (TPT) TPT occurs in various morphologies between 30°N-39°N close to the distal end of the outflow channels, and is dominant from 33°N to 39°N (Figure 13/k). Topographically, it occurs between ~-4000m and ~-4400m and mostly on slopes of <1.5° (Figure 14). Curvilinear, ridgelike features with hardly recognizable individual cones are present at around 30°N (Figure 12/a). Individual cones appear at 33°N in clusters or solitarily, and ridge-like features connect the single cones (Figure 12/b), though further north in the strip those ridges disappear between the mounds. TPT shows a morphological transition zone with the LPM around 38°N.

3. 1 .

 1 12. Massive Ice Massive ice is commonly related to the extent of the northern polar cap between 77°N-84°N (Figure 13/l). 3.1.13. Bedrock Bedrock is exposed in every grid cell from 20°N up to 53°N (Figure 13/m) (Figure 7-9, 12), and between 48°N and 53°N it appears exposed by the detachment of ice-rich material from the hills and plateaus in Acidalia Colles (Figure 4/b). The transition between bedrock and LDM

  topography decreases along the swath from ~ -2000m (south) to ~ -6000m (north) (Figure 2/a). Surface roughness at a 9.2km baseline-scale generally decreases from the south to the north, and is high in the far south related to the highlands and bedrock material up to 32°N, as well as in the Acidalia Colles region that is characterized by isolated plateaus and hills. A low roughness (smoothing of topography) is characteristic over the majority of the area, north and south from that region (Figure 2/b).

  /b). We mapped those reflectors as dark blue and light blue, respectively (Figure15/a). South of the known surface ice deposits, SHARAD does not detect unambiguously ground surface reflectors in the swath. This is likely because the top and bottom of any subsurface ice is too close to the surface. SHARAD has a vertical resolution of ~15m. SHARAD data show subsurface interfaces at lower latitudes in the strip. These likely represent a combination of boundaries between lava flows, ejecta blankets, and sedimentary rocks, where the material is rather rocky than icy. Multiple subsurface signals related to rocks were considered high confidence detections (red), whereas those with weaker signals were considered low confidence detections that could be correlated (purple) or not correlated (yellow) with subsurface detections (Figure15/a).Based on the distribution of landforms we defined four specific landform assemblages (or landform provinces): (1) 'Geologically recent' polar cap (massive ice) which superposes the mantle material (LA1); (2) Ice-related landforms, such as LDM, textured terrain, small-scale polygons, scalloped terrain, large-scale VFF, and gullies, which have an overlapping distribution (LA2); (3) Surface features possibly related to water and subsurface sediment mobilization (LA3) (km-scale polygons, LPM, SPM, TPT) ; (4) Irregularly-shaped pits. In the following, we examine in further detail the LA2 (Section 4.2) and the pits (4) (Section 4.3). LA2

  (LDM) extends from 40°N-44°N to 78°N and overlaps with the textured terrain almost everywhere in the Acidalia Planitia mapping strip. Its distribution appears independent of geological boundaries as mapped by Tanaka et al. (2014) (Figure 13/a and b

  /h), and the LPM occur more or less in the same area as the southern part of the km-scale polygons (Figure 13/i). Small pitted mounds (SPM) approximately overlap with LPM, but their extent reaches a bit more southward than the latter (Figure 13/j). Thumbprint terrain (TPT) in turn overlaps with the southernmost extent of LPM and with a large part of the region containing SPM (Figure 13/k). Taken together, there is a successively more (average) southward extent from km-scale polygons, LPM, SPM, and TPT (Figure 13/h-k), which are all located in, almost flat-lying, very smooth terrain (Figure 2; see also Figure 9 in Campbell et al.

  the dichotomy boundary between the southern highlands and the northern lowlands (approximately 24°N to 34°N; Figure 13/f). The landscape is characterized by relatively smooth plains (Figure 2/b), and no traces of the LDM and its degraded varieties are observed at such southern latitudes. Although the pits are partly filled by aeolian bedforms, indicating

  et al., 2003, Head et al., 2006a[START_REF] Head | Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation[END_REF], van Gasselt et al., 2010[START_REF] Hubbard | Glacier-like forms on Mars[END_REF] Creep of mixture of ice and debris Km-

Figure 1 :

 1 Figure 1: Overview map of the three main basins of the northern lowlands: Acidalia (this study), Utopia and Arcadia Planitiae.

Figure 2 :

 2 Figure 2: Acidalia wide area maps in Lambertian Conformal Conic projection with the grid strip. (a) Topography derived from MOLA DEM, (b) Roughness composite map derived from

Figure 3 :

 3 Figure 3: Schematic illustration of the grid mapping technique. (a) Global view of the complete mapping strip. (b) Exemplary result of the landform mapping. (c) Detail of the mapping results underlain with image data. Each square has a size of 20 x 20 km. Legend is on the upper right.

Figure 4 :

 4 Figure 4: Latitude Dependent Mantle (LDM) vs. textured terrain. (a) Smoothened, subdued topography by LDM from 40°-44°N to 78°N. (P17_007612_2447_XN_64N024W). (b) Patches of textured terrain on Acidalia Colles region between 36° -43°N and 79°N. Detachment of mantle material and/or Viscous Flow Features (VFF) is common at the inflexion point of the slope (B19_016895_2251_XN_45N024W).

Figure 5 :

 5 Figure 5: Degradation features related to the LDM. (a) Small-scale polygons on inter-crater plains and on crater floors from 51°N to 74°N. (P17_007770_2478_XN_67N019W) (b) Scalloped terrain is confined to the Acidalia Colles region between 46°N and 57°N and positively correlated with the distribution of VFF and LDM (P19_008535_2289_XN_48N024W). The surrounding area shows textured terrain.

Figure 6 :

 6 Figure 6: Gullies are located between 32°N and 53°N. (a) Gullies on Acidalia Colles region with pronounced head, channel and apron structures incised in LDM. (D02_028156_2256_XI_45N022W) (b) Gullies on crater wall with similar details like in subset "a". The crater floor is characterized by "intact" LDM and textured terrain, which indicate the dissection of LDM. (B16_015906_2317_XN_51N025W)

Figure 8 .

 8 Figure 8. Pits with irregular plan view shapes and raised rims on equator-facing scarps between 24°N-36°N. (a) Pits with irregular plan view shapes and raised rims containing numerous boulder-sized blocks (see inset). A pit with a continuous concentric raised rim is marked "CR" (for details see text). (b) Pits occur only where the orientation of the scarp is eastwest (marked by white arrows), and do not occur where it is SW-NE (black arrows), suggesting that insolation may control pit formation. Note aeolian bedforms in pits. Both images are details of HiRISE image ESP_026521_2130, centered at 32.942°N/ 336.766°E.

Figure 9 .

 9 Figure 9. Pit chains along topographic ridge. (a) Pits with circular to irregular plan view shapes are larger and more densely spaced on equator-facing (sunlit) slope than on pole-facing slope. The thin ridges separating individual pits are more or less rectilinear (white arrows), suggesting that the pits formed simultaneously. (b) Enlarged part of a. Boulders are numerous and appear to be concentrated at rims. The two insets show dark slope streaks or potential recurrent slope lineae (RSL). Detail of HiRISE image ESP_026521_2130 at 30.959° N/ 339.402°E.

Figure 10 :

 10 Figure 10: Large-scale Viscous Flow Features (VFF) between 36°N-53°N. (a) VFF inside a crater. (b) Crater with CCF, covered by LDM and textured terrain (B17_016407_2186_XI_38N021W).

Figure 11 :

 11 Figure 11: Possible water-related sedimentary structures predating the LDM. (a) Km-scale polygon troughs (from 35°N to 48°N and from 54°N to 63°N) occur with high-albedo dometype Large Pitted Mounds (LPM) (38°N-54°N) and clustered Small Pitted Mounds (SPM) (34°N and 48°N) (B19_017185_2220_XN_42N021W). (b) Pie-type LPM (48°N-54°N) (F03_036806_2280_XN_48N019W).

Figure 12 :

 12 Figure 12: Possible water-related aggradational structures pre-dating LDM. Thumbprint terrain (TPT) is located between 30°N-39°N in the southern Acidalia Planitia. Morphology of TPT varies from the south to the north. (a) Curvilinear, ridge-like feature with hardly recognizable cones around 30°N (B16_016051_2121_XN_32N020W). (b) Single TPT cones (D16_033536_2134_XN_33N023W) partly connected with ridge-like features around 33°N, but ridges are less prominent as in image subset (a).

Figure 13 :

 13 Figure 13: Grid-mapping results of landform distribution with MOLA hillshade background from latitude 20° to 84° N. 0 -no occurrence, 1 -landform present, 2 -landform dominant, P -possible occurrence, N -no data. (a) Latitude Dependent Mantle (LDM), (b) Textured Terrain, (c) Small-scale Polygons, (d) Scalloped Terrain, (e) Gullies, (f) Pits, (g) Viscous Flow Features (VFF), (h) Km-scale polygons, (i) Large Pitted Mounds (LPM), (j) Small Pitted Mounds (SPM), (k) Thumbprint Terrain (TPT), (l) Massive ice, (m) Bedrock, (n) Geology: Noachis Terra unit (Nn), Crater (AHc) and Crater floor (AHcf) units, ChrysePlanitia 1 (HNCc1) and 2 (HCc2) units,Nepenthes Mensae (HNn), Vastitas Borealis Formation interior (ABvi) and marginal (ABvm) units[START_REF] Tanaka | Geologic Map of Mars[END_REF], (o) Mappers: CO -Csilla Orgel, EH -Ernst Hauber, AJ -Andreas Johnsson, DR -Dennis Reiss.

Figure 14 :

 14 Figure 14: Range of occurrence of landforms in relation to their (a) mean latitude, (b) elevation, (c) slope, and (d) WEH in Acidalia Planitia[START_REF] Wilson | Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data[END_REF]. Five values are used

  Five values are used to display the distribution: the first three are in the interquartile range (IQR) or box, which is composed of the upper (Q3) and lower (Q1) quartiles, and the median (Q2) (red line). The box © 2018 American Geophysical Union. All rights reserved.defines the cells where the landform occurs in the 25-75% IQR in a normal distribution, meaning that it contains 50% of the population. The fourth element is the whisker below (Q1-1.5*IQR) and above (Q3+1.5*IQR) the box, this represents the 9-91% quartiles, including 82% of the populations. The fifth value shows the outliers which fall below or above the whiskers and are distant points from observations observation (red cross) (McGill

Figure 15 :

 15 Figure 15: SHAllow RADar observations along the Acidalia Planitia swath. a, SHARAD subsurface detections with MOLA hillshade background from latitude 20° to 84°N. Dark blue -NPLD, Light blue -near the NPLD, Red -high confidence detections, Purple -low confidence detections, Yellow -not correlated to subsurface detection, Black -no data. The white line shows the location of the radargram. b, Subsurface detection of ice near the NPLD (white arrows) (3703-02). The upper image is the radargram, the simulation is in the middle, the bottom image is MOLA DEM.

Table 1 .

 1 Landform classes used in the geomorphological grid mapping. See Figure 4-11 for image examples of each landform.

	#	Name	Brief description	Reference	Putative origin
	1	Latitude	Deposits that mantle the	Kreslavsky and Head,	Formation related to ice and dust
		Dependent	underlying terrain, resulting	2002a, Mustard et al.,	precipitation from the atmosphere.
		Mantle	in a smoothed-looking	2001; Kostama et al.	
		(LDM)	topography	2006	
	2	Textured	Pits and knobs, basketball-,	Mangold, 2005, Kostama	Dissection/modification features of the LDM
		Terrain	brain terrain, wrinkled	et al., 2006, Levy et al.,	
			pattern	2009b	
	3	Small-scale	Orthogonal polygon	Seibert and Kargel,	Potential origin related to sand-wedge
		Polygon	networks that are tens to	2001, Mangold, 2005,	polygons, or sublimation-type polygons
			hundred meter in size on	Marchant and Head,	
			inter-crater plains and on	2007, Levy et al., 2009a,	
			crater floors	2010, Soare et al., 2014a	
	4	Scalloped	Isolated or coalesced	Costard and Kargel,	Degradation of subsurface ice
		Terrain	shallow, rimless depressions	1995; Morgenstern et al.	
			exhibiting steeper poleward-	2007; Soare et al. 2008,	
			facing scarps	2011; Lefort et al. 2009,	
				2010; Ulrich et al. 2010;	
				Zanetti et al., 2010;	
				Séjourné et al. 2011,	
				Dundas et al., 2015a	
	5	Gullies	Erosional landform, young	Malin and Edgett, 2000;	Origin debated; indicative either of liquid
			age (10 5 to 10 6 yrs), length	Costard et al., 2002;	water/debris flows or of dry mass wasting
			up to a few kilometers,	Christensen, 2003;	processes involving CO2 frost/ice.
			characterized by a head	Treiman 2003, Bridges	
			alcove, incised channel and	and Lackner 2006;	
			debris apron	Dickson et al., 2007;	
				Heldmann et al. 2007;	
				Pelletier et al., 2008;	
				Kneissl et al. 2010;	
				Canzler 2014; Decker	
				2015; Harrison et al.,	
				2015; Dundas et al.,	
				2015b	
	6	Pits	50-150 m in diameter		Raised rims might indicate "explosive"
			shallow pits with raised,		mechanism, rather than sublimation
			wavy rims, occur on equator-		
			facing slopes in craters and		
			on ridges		
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