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Let (X;);>1 be a sequence of strong-mixing random variables with common unknown absolutely
continuous distribution function F subject to random left truncation. Let F'~1(p) denote the pth
(p €]0,1[) quantile function of the marginal distribution function of the X;’s which is estimated
by the sample quantile ﬁ{l(p)‘ In this paper, we derive the strong consistency and a strong
representation for I*A“; L(p), the quantile function of the Lynden-Bell estimator of F for strong-
mixing processes.

Key words: quantile function, strong-mixing, Lynden-Bell estimator, truncated data, strong
representation, strong consistency.

1. Introduction

Consider a sequence of random variables (rv’s) Xi,Xa, ... , Xy, which may not
be mutually independent, with common unknown distribution function (df) F' with
continuous density f. These rv’s are regarded as the lifetimes of the items under
study. Among the various forms in which incomplete data appear, right censoring
and left truncation are two common ones. Left truncation may occur if the time
origin of the lifetime precedes the time origin of the study. Only the subjects that
fail after the start of the study are to be followed, otherwise they are truncated.
This model arises in various fields, e.g., astronomy, economy, and medical studies
(see, e.g., Woodroofe (1985)). Let Ty, Ts,...,Tx be a sequence of independent

(©2005 by Allerton Press, Inc. Authorization to photocopy individual items for internal or
personal use, or the internal or personal use of specific clients, is granted by Allerton Press, Inc.
for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional
Reporting Service, provided that the base fee of $50.00 per copy is paid directly to CCC, 222
Rosewood Drive, Danvers, MA 01923.

1



2 M. Lemdani, E. Ould-Said, and N. Poulin

and identically distributed (iid) truncation rv’s with continuous df G; they are also
assumed to be independent of the X;’s. In the left truncation model (X;, T;) is
observed only when X; > T, (otherwise neither X; nor T; are observed). Let
(X1,T1),...,(Xn,T,) be the actually observed sample (i.e., X; > T;) and put
v := P(T; < X;) > 0, where P is the absolute probability (related to the N-
sample). Note that n itself is a rv and that + can be estimated by n/N (although
this estimator cannot be calculated since N is unknown). For any df W we de-
note the left and right endpoints of its support by ay = inf{z : W(z) > 0} and
by = sup{z: W(x) < 1}, respectively. As discussed by Woodroofe (1985), we
assume that ag < ap and bg < bp, in order to ensure the identifiability of the
model. Furthermore, we will require the (slightly) stronger condition ag < ar (see
Remark 1). Finally, without loss of generality, we put ar = 0 and then suppose
the X;’s positive.
Define

where P(-) = P(- | n) is the conditional probability (related to the n-sample) and
consider the empirical estimate

1 n
(2) Cn(z) = ; Lini<e<xi}s

where 1p, s the indicator function.

Then the product-limit (PL) estimator F,, of F was obtained by Lynden-Bell
(1971),

(3) Fu@) =1-[ (1 - 712:?;))>

X<z

where 1, () = #{j <n, X; = } and [[’ is the product over pairwise distinct X;’s.
The almost sure convergence of this estimator was given by Woodroofe (1985),
Wang, Jewell and Tsai (1986), Gu and Lai (1990), Keiding and Gill (1990), and
Lai and Ying (1991) under various models. Strong representations of F, as a mean
of some rv’s with rate were stated by Chao and Lo (1988), Stute (1993), Gijbels
and Wang (1993), Zhou (1996), Zhou and Yip (1999), and Tse (2000) in the iid
framework. Note that some of these papers consider data that are both truncated
and censored.
The cumulative hazard function A(z) is defined by

(4) Az) = /0 %.
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be the df of the observed lifetimes. Its empirical estimator is given by
. IRS
(6) Fy(z) = ﬁzl{ngz]w
i=1

The density of F™* is given by

f(2) =y7'G(2) f(2).
On the other hand, the df of the observed T;’s is given by

G'(2)=P(T1 <z |T1 <Xy) =Py <2)=~"" O+oo G(z Au)dF (u)
and is estimated by .
Gile) = Stz
It then follows from (1) and (2) that
(7) Clx)=G"(z) — F*(z7) and Cn(z) =G (z) — F)(z7).

Finally (1), (4), and (5) give

T dF*(u)
o Clu)’

Alx) =

Hence, a natural estimator of A is given by

< TdFy(u) - Lxi<a)
An = 2 = = )
(@) > nCh (X;)

0 On (u) i=1

which is the usual so-called Nelson—Aalen estimator of A. Moreover, /A\n is the
cumulative hazard function of the PL estimator F,, defined in (3).
Now, for 0 < p < 1, the pth quantile of F'(¢) is defined by

(8) F~Y(p) = inf {z € R: F(z) > p}
and its sample estimator is given by

9) ﬁ_l(p):inf{xeR:ﬁn(m)Zp}.

n

In this paper we consider the strong-mixing dependence, which amounts to a form
of asymptotic independence between the past and the future as shows its definition.

Definition 1. Let {Z;; i > 1} denote a sequence of stationary rv’s and consider
the family of o-fields .7-']1» :=o0{Z;; § <i<1}. Given a positive integer ¢, set for all
fixed kK > 1,

(10) a(f) = sup {|[P(AN B) —P(A)P(B)| : A€ Ff, B € F3,}.
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The sequence of rv’s is said to be a-mixing (strongly mixing) if the mixing coeffi-
cients satisfy

(11) lim «(f) = 0.

{— 00

Among various mixing conditions used in the literature, a-mixing is reason-
ably weak and has many practical applications. In particular, the stationary
autoregressive-moving average (ARMA) processes, which are widely applied in time
series analysis, are a-mixing with an exponential decreasing rate.

Sun and Zhou (2001) obtained strong representations for both the PL and the
Nelson—Aalen estimators in the case of truncated dependent data. Giirler, Stute
and Wang (1993) obtained weak and strong representations in the iid case for the
quantile function ﬁ; 1. As our aim is to generalize their results to the dependent
case, we emphasize here the main differences from the iid case: first, we have to deal
with the problem of ties which can happen in the a-mixing case with a nonzero
probability (although we prove in Lemma 1 that there are not “too many” of
them). Then, since Bennett’s inequality cannot be used, we recall a large deviation
result due to Bosq (Lemma 4). Finally, the strong approximation results which are
available for the a-mixing case are not as precise as in the iid case (the remainder
term rate is n~/2log™¢ n whereas it is almost n~" for iid data), therefore our rate
for the quantile does not achieve the classical Bahadur’s rate (with magnitude of
almost n—3/ 4). Anyway it is enough if we want to derive practical results such as
asymptotic normality (see Theorem 2).

In this paper, the assumptions and results will be formulated with respect to the
actually observed sample (of size n), that is using the probability P. In the following
section we give the assumptions under which we state our results. The proofs are
given in the last section. The convergence of F\; L(p) to F~1(p) is established in
Proposition 2, whereas Theorem 1 states the representation results.

2. Assumptions and Main Results
Our main assumption is the following.
H. (X;);>1 is a sequence of stationary c-mixing rv’s with mixing coefficient

14+v Vi

all) = O(e7log 774

for some v > 0.

Now in order to state our representation results for the quantile estimator we
define

1 ¥1
{z<y} {t<u<z} *

— —==—dF .
C(x) /0 C?%(u) dF” (u)

Then &£(X7,T7,-) is a centered process with covariance function

(12) €($7t7y) =

N AF* (u)

Cov (f(Xl,Th.’L‘),f(Xth,y)) :/0 CQ(U) ’
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Proposition 1 (Theorem 1 in Sun and Zhou (2001)). Let 0 < b < bg. Under
H we have

(13) Ruf@) M) =+ _Zn;m, Tiy2) + R ()

and

(0 R) = P = (= FEL Y60 T) 4 Rua),
where

sup |Rpi(z)| = O(n~2(logn)™%) a.s. for i=1,2
0<z<b

for some ( > 0.

Remark 1. Sun and Zhou (2001) consider the rate o/(¢) = O(¢~%) for some
w > 3, which is a whisker milder than ours. Needless to say, their representation
result is valid in our case. Moreover, their ¢ depends on w. Since our «(¢) is o(¢~%)
for any w > 0, in our case ¢ is “universal” (even if the “exact” rate may depend
on v). Note finally that the previous result is stated in the case ag < ap, whereas
if ag = ap, the remainder term is uniformly bounded only on intervals of the form
[a,b] for a > 0.

Corollary 1. Under H, we have for 0 < b < bp

(15) sup [Fy(z) ~ F(@) =0(,) as.

where n, = n~'?(loglogn)/?.

Proposition 2. Under H, if F~1(p) is the unique solution of F(x) = p, then

EMp) =% F7'(p) as.

The following theorem is our main result.

Theorem 1. Assume F is Lipschitz continuous. Let 0 < p <1 and (F~')(p) =
f(F~Y(p)) > 0. Then, under H we have the representations

So1 1 _p— ﬁn(Fil(p))

___1-p ISt xop pe
— f(FY(p)) n;f(XuTuF () + Rna(p),

+ Rn3 (p)

(16) Ryni(p) =o(nn) a.s. for i=34.
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In addition, if F is twice continuously differentiable at F~1(p), then
(17) R,:(p) = O(n_l/z(logn)_g) a.s for i=34,

for some ¢ > 0.

Finally, if F is continuously (resp., twice continuously) differentiable on
[F~Y(po) — p, F~(p1) + p] for some p >0 and 0 < py < p1 < 1 such that f = F’
is bounded away from zero there, the error bounds (16) (resp., (17)) hold uniformly
mpo<p=pr

Now we give a consequence of the strong representation of the quantile function.
It is clear that the sequence {&(X;,T;, F~(p))} (where £ is defined in (12)) is
formed of stationary a-mixing bounded random variables. Applying Theorem 1
and Theorem 18.5.4 in Ibragimov and Linnik (1971) we have

Theorem 2. Under the assumptions of Theorem 1, we have
_ _ D
\/E(Fnl(p)_F 1(]7))—7./\/(0,2),

where

N2
n2 — M{Var{f(X1,T1,F_1(P))}

+2 3 con{(X0, T1, F 4 (0), 60X, T3, F ()},
j=2

with Var(&(Xy, Ty, F~1(p)) = fFil(p) P ng 2, denoting convergence in dis-

0 C2(w)
tribution.
3. Proofs
In what follows, K1, Ko, ... denote universal positive constants.

Proof of Corollary 1. From Proposition 1 we have
Fo(x) = F(z) = (1= F(x))(An(2) = A(2)) + O(n™"/*(logn) ™)

on 0 <z <b<bp. Applying Theorem 3.2 in Cai and Roussas (1992) (which is a
law of iterated logarithm) to (A11l) in Sun and Zhou (2001) we get

(18) sup |An(z) — Alz)| = O (n,) a.s.
z€10,b]

which then gives (15). O

Proof of Proposition 2. Let ¢ > 0. Since F~!(p) is the unique solution of
F(z) = p, we have

F(F'(p)—¢e)<p<F(F'(p)+e).
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By Corollary 1 we have
E (F Yp)—e) "= F(FY(p)—¢) as.

and

f n—00

Fy(F7Hp) +¢) == F(F ™' (p) +¢) as.

Then ~ R
P{En(F(p) — €) < p < Fn(F~2(p) + ), Vi = n} "= 1.

Now, for any df W, we have
W(z)>p <= x>W p).

Therefore

n—oo

P(F ' (p) —e < F'(p) < F7'(p) +¢, ¥m > n) "= 1,

that is R
P(sup |F,,'(p) — F'(p)| > ) =30,

m>n
which permits us to conclude. [

To prove Theorem 1, we will need some lemmas. The first lemma deals with ties
in the a-mixing case.

Lemma 1. Under H we have

sup ZI{XFQC} =o(n") a.s.
z€[0,b] 1

for any k > 0.
Proof. Let k > 0 and consider E, = {sup,cjp >oimg 1{x,=2} > n"*}. Put
[0,0] = un =1 Ay, where A; = {&' M} and the number u,, of elements A; will

=0 Uy’ Unp,

be precised below. We have ’

E, C U U {Xj = Xk}a
j=1 k>j+ns
which implies

n

(19) P(E) <> > P(X;=Xp).
k>j+n~

j=1
Furthermore, we have

Up—1
{Xj = Xk} C U {Xj €A and X, € Al}.
=0
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Then, for k > j 4+ n”,

Up—1
P(X; =X;) < Y P({X; € A} n{X) € A})
=0
Up—1 *x72
< 3 [{P(X1 € 4D+ a(n®)] < [bswf”]f} Un + (Yt
1=0 n

The last term achieves its minimum at u, = bsupjy; f*/y/a(n”) (we take the
integer part), which gives

P(X; = Xi) < 26?515 [T Va(ns).

Now (19) yields
P(E,) < 2bsup f* - n*\/a(n®) = O(n® exp{—1x'T" log' ™t n}).

[0,b]

The latter being the general term of a convergent series, Borel-Cantelli’s lemma
permits us to conclude. [

n

The next lemma deals with the behavior of the difference between F, (13 *1(p)>
and p.

Lemma 2. Let 0 < pg < p1 < 1. Under H we have

(20) sup  |Fu(F (p) — pl = O(n~"?(logn)~¢)  a.s.

Po<p<p1

Proof. Let x = F-1(p). Using (14) we get

sup | En(F () —pl < sup |F (@) — F(27)
Po<p<p1 =1 (po)<z<Fr(p1)
1 & 1 &
< — I T e
S nZ §(XiThw) = = > 6(Xi T
By Y (po)<z<Fy (p1) i=1 i=1

T s (Rig),
F ' (po)Se<Fy " (p1)
where R} ,(z) = |Rp2(x) — Rp2(x7)|, so that
(21) sup (Rl o(x)) = O(n"?(ogn)) a.s.

Fy M (po)<a<F; '(p1)

On the other hand, since F* is absolutely continuous, we get from (12)

n

LS (X Tor) Zg X, Ty o™ ‘

i=1

1 < 1{X <z} — 1{X } 1 ~

i <T i <T
— E i= : = 1oy —0n.
n < C(X;) )‘ nC(x) ;:1: {Xi=z}

i=1

(22)
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Now from Proposition 2, for n large enough we have infﬁ—l(po)<z<f‘l(p1) C(z) >0
a.s. This with Lemma 1 (with k = 1/4) and (22) give o

sup
T (po)<e<Fy ' (p1)

Z§ X, T;,x) — Z{ (X, T x™ )’ zo(n_3/4) a.s.

i=1
which, combined with (21) gives (20). O

Lemma 3. Let 0 < pg < p1 < 1. Under H, assuming that F' = f is bounded
away from zero on [F~Y(po) — p, F~Y(p1) + p] for some p > 0, we have

(23) sup [F,, '(p) — F~'(p)l = O(n)  a.s.

Po<p<p1

Proof. From (15) and Proposition 2, using the Taylor expansion in a neighbor-
hood of F~(p), we have, for n large enough

~

Fo(F; (p) = F(F () + Rus(p)
= F(F~Y(p) + [E; 1 (p) — F(0)]f (0n(p) + Rus(p)

for some ¥y, (p) between F~1(p) and F7!(p), where Rys5(p) = O(1,) a.s. uniformly
in py <p<pi.
Hence o
R @) -p  Rus)
FOP)  f@alp)
[F™

Now, by Proposition 2 we have for n large enough 9,,(p) € Ypo)—p, F~(p1)+p)
a.s. Since f is bounded away from zero over this interval we get by Lemma 2

sup |F\;1(p) — F_l(p)\ = O(n_1/2(logn)_<) +O0(n,) as.

Po<p<p1

= O(nn) a.s. O

We now introduce the following lemma, which is adapted from a result by Bosq
(1998).

Lemma 4. Let (Z;);en+ be a sequence of stationary strongly mizing centered
rv’s such that sup;>, |Z;| < d. Then, for each integer q € [1;n/2], for each e >0

(s Sz >¢) < o - qu[W+ﬂ_1)+22(1+4j)1/2a<{;q}>,

i=1
where 02(q) = KlgE(Z%), a(-) is the mizing coefficient, and [-] is the integer part.

Proof. The same result is stated in Theorem 1.3 (2) in Bosq (1998) with
20y _ jn Y, |
o6(q) = O<er_rg>;1E{ ( {2q} +1- 2q)Z[J22+1] + Zpgn

2
. n . n
+ ...+ Z[(j-;;)n] + <[(] + 1)2q:| - (.7 + 1)2q>Z[(j+1);§]+1}
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instead of o%(q). Since (Z;) is stationary, we can take j = 0. Then, we have

o2(q) < [2} Zl+2[7§:q <[ }—i—l—j)ﬂE(Zl -

Now, Theorem 17.2.3 in Ibragimov and Linnik (1981) gives
[E(Z12;)| < 2a(4)'*E(27).

Then
B < || B2 {1”% i} < 2 BE L+ 25) = )

where S is the sum of the series, which gives the result. O

Lemma 5. Let Ko >0 and 0 < b < bg. Under H, we have

(24) sup F,.(t) - F(t) — ‘ _ 1/2 (log n)_g) s,
[t—s|<K2mn,0<s,t<b

for some ¢ > 0.

Proof. We first show the statement for A, — A before considering F, — F. Let
s,t € [0,b] such that |t — s| < Kan,. In view of (6) we have from (12) and (13)

(25) An(t) = A(t) — Ap(s) + A(s) = /] . d[F;(zg (;)F*(u)]

_/ Cn(“)(—)c()dp*( ) +O(n~(logn)~¢)
]s.1] u
=1, + I, + O(n~"/?(logn)~¢)

with a uniform remainder term for |t — s| < K31,,. We now show that uniformly in
|t — s| < Kan, both integrals are of the stated order. First, we have

/ dF*(u) < sup
J5.4] 0<a<b

Applying Theorem 3.2 in Cai and Roussas (1992) to (7) gives

Co(z) — C(2)
C2()

Co(z) — C(x)
C2()

|Io] < sup - K31)p,.

0<z<b

Cy(z) — C(x)
C*(x)

sup
0<z<b

=0(n,) as.

and then

(26) I, = O(n tloglogn) a.s.
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Now in order to estimate I; put
(27) 6 = Kon™"
with 5/8 < 8 < 3/4 and consider the grid

b
Tn,j = ]5117 ] = 0717' .. 7kn = |:(S:|’ Tnkp+1 = b.

Then, for any y € [0,b) there exists j such that =, ; < y < x, j+1. Using easy
notation, we put Y =T and 7 := Tp,j+1-
Since C' is nonnegative and F' is Lipschitz continuous, we can write

(28) I < /] . d[F;(%(;)F*(“)] +O0(8,) = pin + O(8,).

Now each y,, can be written as a mean of a-mixing rv’s, that is, u, =n='> 1 | Y,
where

v — A ix,cuy = F* ()] Tpsexich _/ dF*(u)
s C(u) C(X:) 1s,7] Clu)
We have
d[1ix,<uy — F*(u)] ‘
29 'Y; S / i
(29) Y4 ) Cl)
1 Ky
<— 1+ (Kon, +20,)sup | < ———MM——— =:d.
infep0, C(x) [ (Kan ) [O’Ef } infep0,6 C(x)

It is easy to see that E[Y;] = 0. Moreover,

dF* (u) 1 /
< < - dF*(u) < Ksn,
—/]S,ﬂ C%u) = Whozams (@) Jyy 5 W () = Ko

by the Lipschitz property.
Now we apply Lemma 4 to Z; = Y; with e = d,,, d given in (29), and ¢ = ¢, :=
[n'/4+8], where 3 is the same as in (27):

n 2 2 2 -1
ZY; > 5n> < 4exp{ _ 5nQn |:8qn0— (qn) + d(s’ﬂ:| }
i=1

(30) ]P’<Tll

8 n? 2

4d 1/2
+922¢,, (1 + 5) a([;;D = I + I,

Now ¢202(g,)/n? is of order n~%/*(loglogn)/?

larger than dd,,/2. Then, for n large enough

and is therefore asymptotically

n3/2-28 5/
31 I <4 —Kg———7 = o),
(31) b= exp{ 6 log 1ogn} ofn )
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On the other hand,
(32)  II, < Kqn!/*¥3072 exp{ —(3/4—B)"*"(log n)”"} = o(n5/?).
Now we come back to (28). Since the number of such p,, is

("7%) = ot = 06,7 = o)

(30)—(32) in conjunction with Borel-Cantelli’s Lemma (since 23 —5/2 < —1) imply
max || < 6, as.,

which added to (25), (26), and (28) allows us to conclude for the upper bound of

the oscillation modulus of A, — A. The lower bound can be derived similarly by

considering in (28) 5 and t instead of s and ¢, respectively.

Now we come back to ﬁn—F. From Sun and Zhou (2001), we have for 0 < s,¢t < b
and |t — s| < Kany,

The result established for the oscillation modulus of A,, — A (when |t —s| < Kan,,) is
then easily extended to F,, — F, since F' is Lipchitz continuous and using (18). O

Proof of Theorem 2. From Lemmas 3 and 5 we have, for n large enough
Fu(Fy (p) = Fu(F7H(p)

Fu(E (p) = F(E (9) = Fu(F 7 (9) + F(F(p))

+ F(F; () — F(F~'(p))

— F(F (p) - F(F () + O(M)

~

Then the Taylor expansion in a neighborhood of F~1(p) gives

(33)  Fu(E N (p)) — Fu(F~(p)) = F(F " (0))(F (0) — F~1(p))

Now the first representation of Theorem 1 gives

~

Fo(B71 (D)) — Fu(F~Y () = p — Fu(F~Y(0) + F(F~ () Rua(p)



that is

(34) Rus(p) =

Strong Representation of the Quantile Function 13

~

ity +elE )~ P )+ ) ws

Since f(F~(p)) > 0 we get, using Lemmas 2 and 3,

R,3(p) =o(n,) a.s.

If F is twice differentiable at F~(p), the o(F;7(p) — F~1(p)) term in (33) is in fact
an O((ﬁn_l(p) — F~1(p))?). The remainder term in (34) is then O(n=/?(logn)~¢).
Finally, since the bounds leading to (33) are already uniform in pg < p < py, we
only have to note that the error bounds in the Taylor expansion also hold uniformly
under the stated regularity assumptions on F' which completes the proof for R,3.
Now using (14) with z = F~1(p), we get the same representation for R,4(p) as

in (34).

Therefore the results proved for R,3 extend to R,4. O
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