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Let (X i ) i≥1 be a sequence of strong-mixing random variables with common unknown absolutely continuous distribution function F subject to random left truncation. Let F -1 (p) denote the pth (p ∈]0, 1[) quantile function of the marginal distribution function of the X i 's which is estimated by the sample quantile F -1 n (p). In this paper, we derive the strong consistency and a strong representation for F -1 n (p), the quantile function of the Lynden-Bell estimator of F for strongmixing processes.

Introduction

Consider a sequence of random variables (rv's) X 1 , X 2 , . . . , X N , which may not be mutually independent, with common unknown distribution function (df) F with continuous density f . These rv's are regarded as the lifetimes of the items under study. Among the various forms in which incomplete data appear, right censoring and left truncation are two common ones. Left truncation may occur if the time origin of the lifetime precedes the time origin of the study. Only the subjects that fail after the start of the study are to be followed, otherwise they are truncated. This model arises in various fields, e.g., astronomy, economy, and medical studies (see, e.g., [START_REF] Woodroofe | Estimating a distribution function with truncated data[END_REF]). Let T 1 , T 2 , . . . , T N be a sequence of independent and identically distributed (iid) truncation rv's with continuous df G; they are also assumed to be independent of the X i 's. In the left truncation model (X i , T i ) is observed only when X i ≥ T i (otherwise neither X i nor T i are observed). Let (X 1 , T 1 ), . . . , (X n , T n ) be the actually observed sample (i.e., X i ≥ T i ) and put γ := P(T 1 ≤ X 1 ) > 0, where P is the absolute probability (related to the Nsample). Note that n itself is a rv and that γ can be estimated by n/N (although this estimator cannot be calculated since N is unknown). For any df W we denote the left and right endpoints of its support by a W = inf{x : W (x) > 0} and b W = sup{x : W (x) < 1}, respectively. As discussed by [START_REF] Woodroofe | Estimating a distribution function with truncated data[END_REF], we assume that a G ≤ a F and b G ≤ b F , in order to ensure the identifiability of the model. Furthermore, we will require the (slightly) stronger condition a G < a F (see Remark 1). Finally, without loss of generality, we put a F = 0 and then suppose the X i 's positive.

Define

(1) C(x) = P T 1 ≤ x ≤ X 1 | T 1 ≤ X 1 = P(T 1 ≤ x ≤ X 1 ) = γ -1 G(x)(1-F (x)),
where

P(•) = P(• | n)
is the conditional probability (related to the n-sample) and consider the empirical estimate

(2) C n (x) = 1 n n i=1 1 {Ti≤x≤Xi} ,
where 1 {•} is the indicator function.

Then the product-limit (PL) estimator F n of F was obtained by Lynden-Bell (1971), [START_REF] Cai | Asymptotic properties of Kaplan-Meier estimator for censored dependent data[END_REF] F n (x) = 1 -

X i ≤x 1 - r n (X i ) nC n (X i ) ,
where r n (x) = #{j ≤ n, X j = x} and is the product over pairwise distinct X i 's. The almost sure convergence of this estimator was given by [START_REF] Woodroofe | Estimating a distribution function with truncated data[END_REF], [START_REF] Wang | Asymptotic properties of the productlimit estimate under random truncation[END_REF], [START_REF] Gu | Functional laws of the iterated logarithm for the productlimit estimator of a distribution function under random censorship or truncation[END_REF], [START_REF] Keiding | Random truncation models and Markov processes[END_REF], and Lai and Ying (1991) under various models. Strong representations of F n as a mean of some rv's with rate were stated by [START_REF] Chao | Some representations of the nonparametric maximum likelihood estimators with truncated data[END_REF], [START_REF] Stute | Almost sure representation of the product-limit estimator for truncated data[END_REF], [START_REF] Gijbels | Strong representations of survival function estimator for truncated and censored data with applications[END_REF], [START_REF] Zhou | A note on the TJW product-limit estimator for truncated and censored data[END_REF], [START_REF] Zhou | Strong representation of the product-limit estimator for the left truncated and right censored data[END_REF], and [START_REF] Tse | Strong Gaussian approximations in the random truncation model[END_REF] in the iid framework. Note that some of these papers consider data that are both truncated and censored.

The cumulative hazard function Λ(x) is defined by

(4) Λ(x) = x 0 dF (u) 1 -F (u) . Let (5) F * (x) = P X 1 ≤ x | T 1 ≤ X 1 = P(X 1 ≤ x) = γ -1 x 0 G(u) dF (u)
be the df of the observed lifetimes. Its empirical estimator is given by ( 6)

F * n (x) = 1 n n i=1 1 {X i ≤x} .
The density of F * is given by

f * (x) = γ -1 G(x)f (x).
On the other hand, the df of the observed T i 's is given by

G * (x) = P T 1 ≤ x | T 1 ≤ X 1 = P(T 1 ≤ x) = γ -1 +∞ 0 G(x ∧ u) dF (u)
and is estimated by

G * n (x) = 1 n n i=1 1 {T i ≤x} .
It then follows from ( 1) and ( 2) that ( 7)

C(x) = G * (x) -F * (x -) and C n (x) = G * n (x) -F * n (x -).
Finally (1), (4), and (5) give

Λ(x) = x 0 dF * (u) C(u) .
Hence, a natural estimator of Λ is given by

Λ n (x) = x 0 dF * n (u) C n (u) = n i=1 1 {X i ≤x} nC n (X i ) ,
which is the usual so-called Nelson-Aalen estimator of Λ. Moreover, Λ n is the cumulative hazard function of the PL estimator F n defined in (3). Now, for 0 < p < 1, the pth quantile of F (t) is defined by

(8) F -1 (p) = inf x ∈ R : F (x) ≥ p}
and its sample estimator is given by ( 9)

F -1 n (p) = inf x ∈ R : F n (x) ≥ p .
In this paper we consider the strong-mixing dependence, which amounts to a form of asymptotic independence between the past and the future as shows its definition. Definition 1. Let {Z i ; i ≥ 1} denote a sequence of stationary rv's and consider the family of σ-fields F l j := σ{Z i ; j ≤ i ≤ l}. Given a positive integer , set for all fixed k ≥ 1, [START_REF] Keiding | Random truncation models and Markov processes[END_REF] α(

) = sup |P(A ∩ B) -P(A)P(B)| : A ∈ F k 1 , B ∈ F ∞ k+ .
The sequence of rv's is said to be α-mixing (strongly mixing) if the mixing coefficients satisfy [START_REF] Lai | Estimating a distribution function with truncated and censored data[END_REF] lim →∞ α( ) = 0.

Among various mixing conditions used in the literature, α-mixing is reasonably weak and has many practical applications. In particular, the stationary autoregressive-moving average (ARMA) processes, which are widely applied in time series analysis, are α-mixing with an exponential decreasing rate.

Sun and Zhou (2001) obtained strong representations for both the PL and the Nelson-Aalen estimators in the case of truncated dependent data. Gűrler, Stute and Wang (1993) obtained weak and strong representations in the iid case for the quantile function F -1 n . As our aim is to generalize their results to the dependent case, we emphasize here the main differences from the iid case: first, we have to deal with the problem of ties which can happen in the α-mixing case with a nonzero probability (although we prove in Lemma 1 that there are not "too many" of them). Then, since Bennett's inequality cannot be used, we recall a large deviation result due to Bosq (Lemma 4). Finally, the strong approximation results which are available for the α-mixing case are not as precise as in the iid case (the remainder term rate is n -1/2 log -ζ n whereas it is almost n -1 for iid data), therefore our rate for the quantile does not achieve the classical Bahadur's rate (with magnitude of almost n -3/4 ). Anyway it is enough if we want to derive practical results such as asymptotic normality (see Theorem 2).

In this paper, the assumptions and results will be formulated with respect to the actually observed sample (of size n), that is using the probability P. In the following section we give the assumptions under which we state our results. The proofs are given in the last section. The convergence of F -1 n (p) to F -1 (p) is established in Proposition 2, whereas Theorem 1 states the representation results.

Assumptions and Main Results

Our main assumption is the following. H. (X i ) i≥1 is a sequence of stationary α-mixing rv's with mixing coefficient

α( ) = O(e -log 1+ν )
for some ν > 0. Now in order to state our representation results for the quantile estimator we define [START_REF] Lynden-Bell | A method of allowing for known observational selection in small samples applied to 3CR quasars[END_REF] ξ(x, t, y) =

1 {x≤y} C(x) - y 0 1 {t≤u≤x} C 2 (u) dF * (u). Then ξ(X 1 , T 1 , •) is a centered process with covariance function Cov ξ(X 1 , T 1 , x), ξ(X 1 , T 1 , y) = x∧y 0 dF * (u) C 2 (u) . Proposition 1 (Theorem 1 in Sun and Zhou (2001)). Let 0 ≤ b < b F . Under H we have (13) Λ n (x) -Λ(x) = 1 n n i=1 ξ(X i , T i , x) + R n1 (x)
and

(14) F n (x) -F (x) = (1 -F (x)) 1 n n i=1 ξ(X i , T i , x) + R n2 (x),
where

sup 0≤x≤b |R ni (x)| = O(n -1/2 (log n) -ζ ) a.s. for i = 1, 2
for some ζ > 0.

Remark 1. Sun and Zhou (2001) consider the rate α ( ) = O( -ω ) for some ω > 3, which is a whisker milder than ours. Needless to say, their representation result is valid in our case. Moreover, their ζ depends on ω. Since our α( ) is o( -ω ) for any ω > 0, in our case ζ is "universal" (even if the "exact" rate may depend on ν). Note finally that the previous result is stated in the case a G < a F , whereas if a G = a F , the remainder term is uniformly bounded only on intervals of the form [a, b] for a > 0.

Corollary 1. Under H, we have for 0 ≤ b < b F (15) sup 0≤x≤b | F n (x) -F (x)| = O(η n ) a.s.,
where

η n = n -1/2 (log log n) 1/2 . Proposition 2. Under H, if F -1 (p) is the unique solution of F (x) = p, then F -1 n (p) n→∞ -→ F -1 (p) a.s.
The following theorem is our main result.

Theorem 1. Assume F is Lipschitz continuous. Let 0 < p < 1 and (F -1 ) (p) = f (F -1 (p)) > 0.
Then, under H we have the representations

F -1 n (p) -F -1 (p) = p -F n (F -1 (p)) f (F -1 (p)) + R n3 (p) = - 1 -p f (F -1 (p)) • 1 n n i=1 ξ(X i , T i , F -1 (p)) + R n4 (p),
where

(16) R ni (p) = o(η n ) a.s. for i = 3, 4.
In addition, if F is twice continuously differentiable at F -1 (p), then

(17) R ni (p) = O n -1/2 (log n) -ζ a.s for i = 3, 4,
for some ζ > 0.

Finally, if F is continuously (resp., twice continuously) differentiable on [F -1 (p 0 ) -ρ, F -1 (p 1 ) + ρ] for some ρ > 0 and 0 < p 0 ≤ p 1 < 1 such that f = F is bounded away from zero there, the error bounds (16) (resp., [START_REF] Tse | Strong Gaussian approximations in the random truncation model[END_REF]) hold uniformly in p 0 ≤ p ≤ p 1 . Now we give a consequence of the strong representation of the quantile function. It is clear that the sequence {ξ(X i , T i , F -1 (p))} (where ξ is defined in [START_REF] Lynden-Bell | A method of allowing for known observational selection in small samples applied to 3CR quasars[END_REF]) is formed of stationary α-mixing bounded random variables. Applying Theorem 1 and Theorem 18.5.4 in Ibragimov and Linnik (1971) we have Theorem 2. Under the assumptions of Theorem 1, we have

√ n F -1 n (p) -F -1 (p) D -→ N (0, Σ),
where

Σ 2 = (1 -p) 2 {f [F -1 (p)]} 2 Var{ξ(X 1 , T 1 , F -1 (p))} + 2 ∞ j=2 cov{ξ(X 1 , T 1 , F -1 (p)), ξ(X j , T j , F -1 (p))} , with Var(ξ(X 1 , T 1 , F -1 (p)) = F -1 (p) 0 F * (du) C 2 (u) and D -→ denoting convergence in dis- tribution.

Proofs

In what follows, K 1 , K 2 , . . . denote universal positive constants.

Proof of Corollary 1. From Proposition 1 we have [START_REF] Cai | Uniform strong estimation under α-mixing, with rates[END_REF] (which is a law of iterated logarithm) to (A11) in Sun and Zhou (2001) we get [START_REF] Wang | Asymptotic properties of the productlimit estimate under random truncation[END_REF] sup

F n (x) -F (x) = (1 -F (x))( Λ n (x) -Λ(x)) + O(n -1/2 (log n) -ζ ) on 0 ≤ x ≤ b < b F . Applying Theorem 3.2 in
x∈[0,b] Λ n (x) -Λ(x) = O (η n ) a.s.
which then gives [START_REF] Stute | Almost sure representation of the product-limit estimator for truncated data[END_REF].

Proof of Proposition 2. Let ε > 0. Since F -1 (p) is the unique solution of F (x) = p, we have

F (F -1 (p) -ε) < p < F (F -1 (p) + ε).
By Corollary 1 we have

F n (F -1 (p) -ε) n→∞ -→ F (F -1 (p) -ε) a.s. and F n (F -1 (p) + ε) n→∞ -→ F (F -1 (p) + ε) a.s. Then P F m (F -1 (p) -ε) < p < F m (F -1 (p) + ε), ∀m ≥ n n→∞ -→ 1.
Now, for any df W , we have

W (x) ≥ p ⇐⇒ x ≥ W -1 (p). Therefore P F -1 (p) -ε < F -1 m (p) ≤ F -1 (p) + ε, ∀m ≥ n n→∞ -→ 1, that is P sup m≥n | F -1 m (p) -F -1 (p)| > ε n→∞ -→ 0,
which permits us to conclude.

To prove Theorem 1, we will need some lemmas. The first lemma deals with ties in the α-mixing case.

Lemma 1. Under H we have

sup x∈[0,b] n i=1 1 {Xi=x} = o(n κ ) a.s.
for any κ > 0.

Proof. Let κ > 0 and consider

E κ = {sup x∈[0,b] n i=1 1 {X i =x} ≥ n κ }. Put [0, b] = u n -1 l=0 A l , where A l = lb un ; (l+1)b
un and the number u n of elements A l will be precised below. We have

E κ ⊂ n j=1 k≥j+n κ {X j = X k }, which implies (19) P(E κ ) ≤ n j=1 k≥j+n κ P(X j = X k ).
Furthermore, we have

{X j = X k } ⊂ un-1 l=0 X j ∈ A l and X k ∈ A l . Then, for k ≥ j + n κ , P(X j = X k ) ≤ u n -1 l=0 P {X j ∈ A l } ∩ {X k ∈ A l } ≤ u n -1 l=0 {P(X 1 ∈ A l )} 2 + α(n κ ) ≤ b sup [0,b] f * u n 2 u n + α(n κ )u n .
The last term achieves its minimum at u n = b sup [0,b] f * / α(n κ ) (we take the integer part), which gives

P(X j = X k ) ≤ 2b sup [0,b] f * • α(n κ ).
Now [START_REF] Woodroofe | Estimating a distribution function with truncated data[END_REF] yields

P(E κ ) ≤ 2b sup [0,b] f * • n 2 α(n κ ) = O n 2 exp{-1 2 κ 1+ν log 1+ν n} .
The latter being the general term of a convergent series, Borel-Cantelli's lemma permits us to conclude.

The next lemma deals with the behavior of the difference between F n F -1 n (p) and p. Lemma 2. Let 0 < p 0 ≤ p 1 < 1. Under H we have [START_REF] Zhou | A note on the TJW product-limit estimator for truncated and censored data[END_REF] sup

p 0 ≤p≤p 1 | F n ( F -1 n (p)) -p| = O(n -1/2 (log n) -ζ ) a.s. Proof. Let x = F -1 n (p)
. Using ( 14) we get sup

p 0 ≤p≤p 1 | F n ( F -1 n (p)) -p| ≤ sup F -1 n (p 0 )≤x≤ F -1 n (p 1 ) | F n (x) -F n (x -)| ≤ sup F -1 n (p 0 )≤x≤ F -1 n (p 1 ) 1 n n i=1 ξ (X i , T i , x) - 1 n n i=1 ξ(X i , T i , x -) + sup F -1 n (p 0 )≤x≤ F -1 n (p 1 ) (R n2 (x)), where R n2 (x) = |R n2 (x) -R n2 (x -)|, so that (21) sup 
F -1 n (p0)≤x≤ F -1 n (p1) (R n2 (x)) = O(n -1/2 (log n) -ζ ) a.s.
On the other hand, since F * is absolutely continuous, we get from ( 12)

1 n n i=1 ξ(X i , T i , x) - 1 n n i=1 ξ(X i , T i , x -) (22) = 1 n n i=1 1 {X i ≤x} -1 {X i <x} C(X i ) = 1 nC(x) n i=1 1 {Xi=x} .

Now from Proposition 2, for n large enough we have inf

F -1 n (p 0 )≤x≤ F -1
n (p 1 ) C(x) > 0 a.s. This with Lemma 1 (with κ = 1/4) and ( 22) give sup

F -1 n (p0)≤x≤ F -1 n (p1) 1 n n i=1 ξ(X i , T i , x) - 1 n n i=1 ξ(X i , T i , x -) = o(n -3/4 ) a.s.
which, combined with [START_REF] Zhou | Strong representation of the product-limit estimator for the left truncated and right censored data[END_REF] gives [START_REF] Zhou | A note on the TJW product-limit estimator for truncated and censored data[END_REF].

Lemma 3. Let 0 < p 0 ≤ p 1 < 1. Under H, assuming that F = f is bounded away from zero on [F -1 (p 0 ) -ρ, F -1 (p 1 ) + ρ] for some ρ > 0, we have (23) sup p0≤p≤p1 | F -1 n (p) -F -1 (p)| = O(η n ) a.s.
Proof. From ( 15) and Proposition 2, using the Taylor expansion in a neighborhood of F -1 (p), we have, for n large enough

F n ( F -1 n (p)) = F ( F -1 n (p)) + R n5 (p) = F (F -1 (p)) + [ F -1 n (p) -F -1 (p)]f (ϑ n (p)) + R n5 (p)
for some ϑ n (p) between F -1 (p) and

F -1 n (p), where R n5 (p) = O(η n ) a.s. uniformly in p 0 ≤ p ≤ p 1 .
Hence

F -1 n (p) -F -1 (p) = F n ( F -1 n (p)) -p f (ϑ n (p)) - R n5 (p) f (ϑ n (p)) .
Now, by Proposition 2 we have for n large enough

ϑ n (p) ∈ [F -1 (p 0 )-ρ, F -1 (p 1
)+ρ] a.s. Since f is bounded away from zero over this interval we get by Lemma 2

sup p0≤p≤p1 | F -1 n (p) -F -1 (p)| = O n -1/2 (log n) -ζ + O(η n ) a.s.
= O η n a.s.

We now introduce the following lemma, which is adapted from a result by Bosq (1998).

Lemma 4. Let (Z i ) i∈N * be a sequence of stationary strongly mixing centered rv's such that sup i≥1 |Z i | ≤ d. Then, for each integer q ∈ [1; n/2], for each ε > 0 

P 1 n n i=1 Z i > ε ≤ 4 exp - ε 2 q 8 8q 2 σ 2 (q) n 2 + εd 2 -1 +22 1+ 4d ε 1/2 qα n 2q , where σ 2 (q) = K 1 n q E(Z 2 
σ 2 0 (q) = max 0≤j≤2q-1 E jn 2q + 1 - jn 2q Z [ jn 2q +1] + Z [ jn 2q +2] + . . . + Z [ (j+1)n 2q ] + (j + 1) n 2q -(j + 1) n 2q Z [(j+1) n 2q ]+1
2 instead of σ 2 (q). Since (Z i ) is stationary, we can take j = 0. Then, we have

σ 2 0 (q) ≤ n 2q E[Z 2 1 ] + 2 [n/2q] j=2 n 2q + 1 -j |E(Z 1 Z j )|.
Now, Theorem 17.2.3 in [START_REF] Ibragimov | Independent and Stationary Processes for Random Variables[END_REF] gives

|E(Z 1 Z j )| ≤ 2α(j) 1/2 E(Z 2 1 ).
Then

σ 2 0 (q) ≤ n 2q E(Z 2 1 ) 1 + 2 [n/2q] j=2 α(j) 1/2 ≤ n 2q E(Z 2 1 ){1 + 2S} := σ 2 (q),
where S is the sum of the series, which gives the result. 

F n (t) -F (t) -F n (s) + F (s) = O(n -1/2 (log n) -ζ ) a.s.
for some ζ > 0.

Proof. We first show the statement for Λ n -Λ before considering

F n -F . Let s, t ∈ [0, b] such that |t -s| ≤ K 2 η n .
In view of (6) we have from ( 12) and ( 13)

Λ n (t) -Λ(t) -Λ n (s) + Λ(s) = ]s,t] d[F * n (u) -F * (u)] C(u) (25) - ]s,t] C n (u) -C(u) C 2 (u) dF * (u) + O(n -1/2 (log n) -ζ ) := I 1 + I 2 + O(n -1/2 (log n) -ζ )
with a uniform remainder term for |t -s| ≤ K 2 η n . We now show that uniformly in |t -s| ≤ K 2 η n both integrals are of the stated order. First, we have

|I 2 | ≤ sup 0≤x≤b C n (x) -C(x) C 2 (x) ]s,t] dF * (u) ≤ sup 0≤x≤b C n (x) -C(x) C 2 (x) • K 3 η n .
Applying Theorem 3.2 in Cai and Roussas (1992) to [START_REF] Gu | Functional laws of the iterated logarithm for the productlimit estimator of a distribution function under random censorship or truncation[END_REF] gives

sup 0≤x≤b C n (x) -C(x) C 2 (x) = O(η n ) a.s.
and then (26)

I 2 = O(n -1 log log n) a.s. Now in order to estimate I 1 put (27) δ n = K 0 n -β
with 5/8 < β < 3/4 and consider the grid

x n,j = jδ n , j = 0, 1, . . . , k n = b δ n , x n,k n +1 = b.
Then, for any y ∈ [0, b) there exists j such that x n,j ≤ y < x n,j+1 . Using easy notation, we put y := x n,j and y := x n,j+1 . Since C is nonnegative and F is Lipschitz continuous, we can write (28)

I 1 ≤ ]s, t ] d[F * n (u) -F * (u)] C(u) + O(δ n ) := µ n + O(δ n ).
Now each µ n can be written as a mean of α-mixing rv's, that is,

µ n = n -1 n i=1 Y i , where 
Y i = ]s, t ] d[1 {X i ≤u} -F * (u)] C(u) = 1 {s≤X i ≤t} C(X i ) - ]s, t ] dF * (u) C(u) .
We have Now q 2 n σ 2 (q n )/n 2 is of order n β-5/4 (log log n) 1/2 and is therefore asymptotically larger than dδ n /2. Then, for n large enough If F is twice differentiable at F -1 (p), the o( F -1 n (p) -F -1 (p)) term in (33) is in fact an O ( F -1 n (p) -F -1 (p)) 2 . The remainder term in (34) is then O(n -1/2 (log n) -ζ ). Finally, since the bounds leading to (33) are already uniform in p 0 ≤ p ≤ p 1 , we only have to note that the error bounds in the Taylor expansion also hold uniformly under the stated regularity assumptions on which completes the proof for R n3 . Now using ( 14) with x = F -1 (p), we get the same representation for R n4 (p) as in (34). Therefore the results proved for R n3 extend to R n4 .

|Y i | ≤ ]s, t ] d[1 {Xi≤u} -F * (u)] C(u) (29) ≤ 1 inf x∈[0,b] C(x) 1 + (K 2 η n + 2δ n ) sup [0,b] f * ≤ K 4 inf x∈[0,b] C(x) =: d.

Lemma 5 .

 5 Let K 2 > 0 and 0 ≤ b < b F . Under H, we have (24) sup |t-s|≤K 2 η n , 0≤s,t≤b

II 1 ≤

 1 4 exp -K 6 n 3/2-2β √ log log n = o(n -5/2 ). that is (34) R n3 (p) = F n ( F -1 n (p)) -p f (F -1 (p)) + o F -1 n (p) -F -1 (p) + O 1 √ n(log n) ζ a.s.Since f (F -1 (p)) > 0 we get, using Lemmas 2 and 3, R n3 (p) = o(η n ) a.s.

  1 ), α(•) is the mixing coefficient, and [•] is the integer part. Proof. The same result is stated in Theorem 1.3 (2) in Bosq (1998) with

  Now we apply Lemma 4 to Z i = Y i with ε = δ n , d given in (29), and q = q n := [n 1/4+β ], where β is the same as in (27):

						Var(d1 {X i ≤u} )
						]s, t ]	C 2 (u)
	(30)	≤ dF P ]s, t ] dF * (u) C 2 (u) ≤ 1 inf 0≤x≤b (C 2 (x)) ]s, t ] 1 n n i=1 Y i > δ n ≤ 4 exp -δ 2 n q n 8 8q 2 n σ 2 (q n ) n 2 + dδ n 2	-1
		+ 22q n 1 +	4d δ n	1/2	α	n 2q

It is easy to see that E[Y

i ] = 0. Moreover, Var(Y i ) = Var ]s, t ] d[1 {X i ≤u} -F * (u)] C(u) ≤ * (u) ≤ K 5 η n

by the Lipschitz property. n := II 1 + II 2 .
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On the other hand, (32)

). Now we come back to (28). Since the number of such µ n is 

The result established for the oscillation modulus of Λ n -Λ (when |t-s| ≤ K 2 η n ) is then easily extended to F n -F , since F is Lipchitz continuous and using [START_REF] Wang | Asymptotic properties of the productlimit estimate under random truncation[END_REF].

Proof of Theorem 2. From Lemmas 3 and 5 we have, for n large enough

Then the Taylor expansion in a neighborhood of F -1 (p) gives

Now the first representation of Theorem 1 gives