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1  | INTRODUC TION

In recent decades Earth's rapidly changing climate, driven by anthropo‐
genic greenhouse gas emissions, has affected species distributions and 
phenology, ecological communities and ecosystem processes, effects 
that are increasingly being observed globally (Allen et al., 2010; Doney 
et al., 2012; Franklin, Serra‐Diaz, Syphard, & Regan, 2016; Parmesan, 
2006; Walther et al., 2002). Pleistocene shifts in species ranges during 
glacial–interglacial transitions reveal large‐scale biome shifts and no‐
analog species assemblages (MacDonald et al., 2008; Nolan et al., 2018; 
Williams & Jackson, 2007); the pace of current anthropogenic warm‐
ing outstrips past changes in the Earth system and climate, however, 
leading to new climate novelties and ecological communities (Ordonez, 
Williams, & Svenning, 2016). Global scientific consensus now empha‐
sizes that global warming should be kept to 1.5°C to avoid catastrophic 
changes in ecosystems and the services they provide to people (IPCC, 
2018), and climate change threats to biodiversity are being prioritized 
in international policy response (Ferrier et al., 2016).

Conservation biogeography addresses the impacts of global 
change on the distribution of species, communities and ecosystems 
with implications for large‐scale conservation assessment and plan‐
ning (Franklin, 2016; Richardson & Whittaker, 2010). Species distri‐
bution models—statistical models associating the spatial distribution 
of species with climate and other environmental factors (Franklin, 
2010a)—have been used to project the impacts of climate change 
for large numbers of species, across taxonomic groups, at large spa‐
tial scales. Furthermore, they have been used to assess protected 
area network effectiveness under a fast warming climate (Araújo, 

Alagador, Cabeza, Nogués‐Bravo, & Thuiller, 2011). Models based on 
spatial‐statistical correlation are a “first approximation” of species’ ex‐
posure risk to climate change—the magnitude of change in conditions 
experienced by a species sensu Dawson, Jackson, House, Prentice, & 
Mace (2011)—but even such magnitude of change can be misleading 
to prioritize conservation efforts (Sofaer, Jarnevich, & Flather, 2018).

There have been calls for a more comprehensive approach to 
risk assessment and projections (Franklin, 2010b; Guisan & Thuiller, 
2005), and consequently, other data and methodologies are increas‐
ingly being brought to bear on this important problem, including 
disturbance and management scenarios in range change projections 
(Serra‐Diaz, Scheller, Syphard, & Franklin, 2015), accounting for real‐
istic dispersal (Aben et al., 2016; Bocedi et al., 2014; Engler, Hordijk, 
& Guisan, 2012) and incorporating important processes not explic‐
itly addressed in SDMs such as biotic interactions (Hof, Jansson, & 
Nilsson, 2012), the adaptive capacity of organisms (Bush et al., 2016) 
or more generally eco‐evolutionary dynamics (Legrand et al., 2017). 
In summary, there is a clear need to improve our forecasting capacity 
of climate change (Urban et al., 2016).

In the context of the persistent lack of widespread biodiversity 
data, with shortfalls ranging from species discoveries, lack of known 
ranges and shortage of abundance data (Hortal et al., 2015), it is not 
surprising that SDMs are still a dominant tool in conservation bio‐
geography, but we argue that their use under climate change needs 
to explore further dimensions of conservation biogeography, be‐
yond range change projections. The group of papers featured in this 
Special Issue portray a wide range of different approaches to study 
climate change from a conservation biogeography perspective. They 
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explore key aspects of climate change and conservation, both de‐
tecting climate change‐driven biodiversity change in key biogeo‐
graphical hotspots, and projecting climate change impacts in the 
future in ways that move beyond static, range‐wide, single‐spe‐
cies approaches. These projections incorporate biotic interactions, 
community models, physiologically constrained models and experi‐
mental data. They disentangle the effects of multiple global change 
drivers and inform conservation policy and management. We high‐
light key findings from the Special Issue, grouped by these themes, 
in the following sections.

2  | DETEC TION–AT TRIBUTION MAT TERS 
FOR CONSERVATION BIOGEOGR APHY

Ongoing monitoring and reporting of current biodiversity shifts 
in biodiversity hotspots is needed, as sensitivity and adaptive ca‐
pacity of species could offset the exposure to climate change pre‐
dicted by species distribution models (Dawson et al., 2011). The 
first group of papers uses multiple lines of evidence to detect bio‐
diversity change attributable to climate change within bird (Flesch, 
2019) and moth (Cheng et al., 2019) communities, highlighting the 
value of long‐term monitoring. Flesch (2019) detected changes 
in bird communities in isolated mountain ranges in arid northern 
Mexico using extensive historical and modern survey data and 
was able to attribute community change to climate, land use and 
landscape configuration—changes that depended on species traits. 
Cheng et al. (2019) used 15 years of monitoring data for geometrid 
moths in a lowland tropical ecosystem (Hong Kong) with Bayesian 
occupancy modelling, detecting an upward elevation shift in the 
moth community consistent with changes in temperature, but pos‐
sibly also influenced by indirect climate effects on biotic interac‐
tions (distributions of host plants and avian predators).

At the species level, dedicated sampling along longitudinal sites 
can help determine species’ early warning signs of decline. In this issue, 
Matías, Abdelaziz, Godoy, and Gómez‐Aparicio (2019) shows how dif‐
ferent biotic and abiotic factors can shift within the tree species Quercus 
suber—an economically important tree species in the Iberian Peninsula. 
Understanding such demography variations to detect within‐species’ 
decline may better help connect conservation biogeography with local 
management applications. Additionally, these authors found not only 
climate but also pathogen abundance to determine the demographic 
structure the species. In a more connected world, such new pathogens 
may increase their importance and will be crucial to determining con‐
servation potential (Millar & Stephenson, 2015; Roy et al., 2017).

3  | PROJEC TING SPECIES DISTRIBUTION 
AND ABUNDANCE BE YOND SINGLE SDM 
R ANGE SHIF TS

Three papers explore different ways of projecting climate change on 
species distributions to inform conservation biogeography, beyond 

projecting suitability‐derived SDM outputs for species. Braz, Lorini, 
and Vale (2019) propose a method for distribution modelling of para‐
patric species, combining SDMs and niche overlap analysis to deter‐
mine biotic and abiotic components of parapatry. They found that 
climate change may affect distribution but not parapatry of Brazilian 
marmoset monkeys. Incorporating ad hoc biotic interactions via 
niche equivalency analysis may be a promising way to project climate 
changes and biotic interactions for numerous species, where other ap‐
proaches would be limited by computational constraints.

Caddy‐Retalic et al. (2019) applied community composition ap‐
proaches to analyse plant and ant assemblages in South Australia 
based on ordination techniques. Projections under climate change 
highlighted a higher sensitivity of ant versus plant assemblages and a 
substantial decoupling of these communities under climate change. 
Benedetti, Ayata, Irisson, Adloff, and Guilhaumon (2019) explored 
the interface between traditional species‐centred conservation bio‐
geography and functional biogeography. They compared whether 
potential shifts in species richness in copepods under climate change 
equated to shifts in functional diversity and found that sensitive spe‐
cies were functionally redundant.

As part of a long‐standing call for mechanistically informed un‐
derstanding and prediction of species distributions, two papers in 
this issue explore physiological constraints for climate change pro‐
jections. Wilson, Skinner, and Lotze (2019) compared physiological 
and correlative species distribution models for intertidal organisms. 
They found that projections of SDMs agreed with physiologically 
informed thresholds. Casties, Clemmesen, and Briski (2019) used a 
common‐garden experiment analysing temperature and salinity to 
get at gammarid species tolerances in order to assess potential inva‐
sion success in the Baltic sea.

Temporal dynamics affect population trends, identify corridors 
and project range shifts. This may have a strong bearing on the tem‐
poral scale at which species vulnerability plays out during the 21st 
century (e.g., mid vs. end of the century differences, Serra‐Diaz et 
al., 2014). Incorporating the effects of interannual variability and 
extreme events are important for predicting current species ranges 
(Early & Sax, 2011; Zimmermann et al., 2009), but to what extent 
these effects on species abundances persist, and whether correla‐
tive models are able to predict these effects are still subject to fur‐
ther scrutiny. Two studies in this Special Issue shed light on these 
key questions. Maxwell et al. (2019) reviewed 519 studies and re‐
ported 60% in which extreme weather events influenced population 
dynamics for more than one year, and in 38% of the studies species 
and ecosystems showed no recovery from previous extreme‐event 
conditions. In another study, Becker et al. (2019) showed that mod‐
els built using data collected over multiple decades are able to fore‐
cast abundance and distribution of cetacean species in the California 
Current ecosystems for a novel extremely warm year of 2014.

Two papers illustrate how important it is to consider multiple global 
change drivers spatially when forecasting future scenarios for conser‐
vation biogeography—namely the interactions of climate change and 
land‐use change (e.g., Conlisk et al., 2013; Franklin, Regan, & Syphard, 
2014). The case study by Di Febbraro et al. (2019), using circuit theory 
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methods to address range connectivity, shows that while four alien 
squirrel species introduced in Europe are projected to expand their 
ranges under climate change, a reduction in invasion risk is projected 
when land‐use change projections are also considered as a result of 
loss of suitable habitat and dispersal corridors. In their study of over 
1,500 plant species in the South American Cerrado, Velazco, Villalobos, 
Galvão, and De Marco Júnior (2019) were able to project where the 
separate and combined effects of climate and land‐use change are 
most likely to affect this biome by the end of the century.

4  | OUTPUTS E XPLORING POLICY, 
MANAGEMENT AND PL ANNING

Models of species distributions have been used extensively to assess 
the effectiveness of conservation areas. Climate change is expected 
to cause significant shifts in biogeographical barriers and move‐
ment of species. Beyond elevation shifts in mountain ranges, there is 
mounting evidence that melting of Arctic sea ice will cause dramatic 
exchanges in birds and mammals (McKeon et al., 2016), and fish in‐
terchanges (Wisz et al., 2015). This is likely to shape communities 
and hence conservation prioritization and conservation planning in a 
rapidly warming climate.

Projections of such climate change caused redistribution and the 
new assemblages arising from it may redefine protected area corridor 
networks. Coarse‐filter (Carroll, Parks, Dobrowski, & Roberts, 2018) 
and fine‐filter approaches (Lawler, Ruesch, Olden, & McRae, 2013) 
have been used to assess current and potential future species redistri‐
butions, but how these corridors and shifting species’ ranges translate 
into conservation strategies needs to take into account political en‐
tities. Montesino Pouzols et al. (2014) showed, in a global protected 
area analysis, how noncoordinated efforts in spatial conservation 
planning (national level) would at best cover 70% of the species and 
ecoregions protected if an international coordinated effort would be 
in place. In this issue, Thornton and Branch (2019) performed range 
analysis across countries in different geographical directions and com‐
pared that to the asymmetries in country‐level conservation status. 
They analysed conservation listing of transboundary mammals in the 
Americas, and found that for 850 species with poleward transnational 
range limits, 26% had different conservation status among countries. 
Velazco et al. (2019) showcased the importance of coordinated trans‐
boundary efforts for Cerrado biodiversity. In their projections of 1,553 
plant species, they found a future potential loss within the protected 
areas of Bolivia, Brazil and Paraguay, underscoring the inadequacy of 
the current network of protected areas in a rapidly changing world.

5  | NE W OPPORTUNITIES FOR CLIMATE 
CHANGE RESE ARCH IN CONSERVATION 
BIOGEOGR APHY

In summary, following calls to move beyond static species distribu‐
tion modelling in order to forecast global change threats to global 

biodiversity (Franklin, 2010b; Guisan & Thuiller, 2005; Urban et al., 
2016), researchers, including those featured in the Special Issue, have 
worked to fill the gap, applying new methods, data and experiments.

Detection of range shifts and attribution to climate change re‐
mains a critical challenge and this important objective relies on 
carefully curated long‐term data or historical surveys (e.g., Freeman, 
Scholer, Ruiz‐Gutierrez, & Fitzpatrick, 2018; Kuhn & Gégout, 2019; 
Yalcin & Leroux, 2018). Data documenting observed changes are 
being aggregated into big data compilations (e.g., biodiversity time 
series (Dornelas et al., 2018)), and information is being improved to 
better inform conservation prioritization. Country species checklists 
are starting to gain momentum due to more institutional collaboration 
around the world. Examples are recently published tree species lists or 
large‐scale aggregation of occurrence data either by institutions (e.g., 
GBIF http://www.gbif.org or Atlas of Living Australia http://www.ala.
org.au/ among others, the list could be long) or by research teams (e.g., 
DRYFLOR, http://www.dryflor.info/; Serra‐Diaz, Enquist, Maitner, 
Merow, & Svenning, 2017), world checklists (http://www.theplant‐
list.org/), or the well‐known world protected area databases (https://
www.protectedplanet.net/c/world‐database‐on‐protected‐areas). 
This growing world of data infrastructure nonetheless requires im‐
provements and maintenance over time. Thus, data generation and 
curation in conservation biogeography—data science—needs further 
development in conservation biogeography including standardized 
protocols for models, data version controls and procedures for, for 
example, occurrence data cleaning and quality assessment (Franklin, 
Serra‐Diaz, Syphard, & Regan, 2017 and references therein).

New approaches in conservation biogeography are still needed 
to forecast range shifts, and resulting conservation and restoration 
decisions. New methods that can address biodiversity response to 
global change at the community level include joint species distri‐
butions models (Pollock et al., 2014) that can generate projections 
for a large number of species. A coupled modelling approach has 
been used to inform traditional niche models with regard to pop‐
ulation processes (Franklin et al., 2014; Zurell et al., 2016). New 
tools for incorporating demographic effects directly into projected 
range dynamics are being developed (e.g., Evans, Merow, Record, 
McMahon, & Enquist, 2016; Merow et al., 2014; Pironon et al., 
2018). Furthermore, simulation models can dynamically account for 
the synergistic effects of climate change and land‐use change or dis‐
turbances (Bocedi et al., 2014; Boulangeat et al., 2014). Species com‐
position may swiftly change after a disturbance event and humans 
play a key role in shaping disturbance regimes (Syphard et al., 2007) 
with consequences for species conservation (Regan et al., 2012). 
The overall effect of disturbances, however, still requires further 
scrutiny. For instance, Liang, Duveneck, Gustafson, Serra‐Diaz, and 
Thompson (2018) predicted little effect of disturbances on range 
edge shifts in NE United States forests while Serra‐Diaz et al. (2018) 
projected rapid conifer decline due to climate–fire interactions in 
western United State forests. Finally, niche and network approaches 
could be important for predicting ensembles of species under cli‐
mate change (Godoy, Bartomeus, Rohr, & Saavedra, 2018), providing 
new avenues for research in conservation biogeography.

http://www.gbif.org
http://www.ala.org.au/
http://www.ala.org.au/
http://www.dryflor.info/
http://www.theplantlist.org/
http://www.theplantlist.org/
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https://www.protectedplanet.net/c/world-database-on-protected-areas
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Experiments have not been used extensively in conservation 
biogeography in a changing climate albeit have proven to be infor‐
mative. Considering intraspecific variation may be key to assess‐
ing real extinction outcomes from climate change (Benito Garzón, 
Alía, Robson, & Zavala, 2011). For instance, trait‐based models of 
tree performance based on experiments (provenance trials) resulted 
in robust forecasts of climate change impacts on a species under 
nonanalog conditions (Chakraborty, Schueler, Lexer, & Wang, 2019). 
Trait‐based approaches are increasingly being used as a lens for 
viewing the dynamics of ecological communities in a mechanistic 
way (Violle, Reich, Pacala, Enquist, & Kattge, 2014), including under 
climate change (e.g., Anderegg, 2015; Santini et al., 2016; Sunday 
et al., 2015). Model inter‐comparison (e.g., mechanistic vs. correla‐
tive) may help disentangle biotic versus abiotic constraints (Keenan, 
Serra‐Diaz, Lloret, Ninyerola, & Sabate, 2011) and could be com‐
bined to produce better ecological forecasting (Talluto et al., 2016). 
All in all, these new models and modelling approaches provide a way 
forward for projecting climate change opportunities and vulnerabil‐
ities in a context of rapid climate shifts and extinction rates, where 
models assuming equilibrium of species distributions with climate 
may not provide suitable answers for short‐term (e.g., 20–30 years) 
dynamics.

Understanding the spatial context in which conservation takes 
place may benefit from further developments (Ackerly et al., 2010). 
In the last decade, several indices have been developed to under‐
stand and prioritize regions of rapid biodiversity change. Metrics 
like climate velocity (Burrows et al., 2014; Loarie et al., 2009), biotic 
velocities (Carroll, Lawler, Roberts, & Hamann, 2015), bioclimatic 
velocities (Serra‐Diaz et al., 2014) or novel climates (Ordonez et al., 
2016), and comparison among those (Comte & Grenouillet, 2015), 
are used to integrate spatial and temporal dimensions of climate 
change for one or several species. Developing new methods and 
metrics that easily capture dimensions of range shifts important to 
conservation is still a priority. For instance, Dobrowski and Parks 
(2016) pointed out that existing metrics may underestimate vulner‐
ability in some regions because they do not account for dispersal 
routes. Additionally, given the availability of new high‐resolution cli‐
mate products and methods for microclimate estimation (Kearney & 
Porter, 2017), identifying migration routes and (micro)refugia under 
climate change may now be possible (Dobrowski, 2011). Spatial pre‐
diction of these small‐scale opportunities for conservation is also a 
research opportunity for conservation biogeography, as they could 
buffer climate change effects on biodiversity loss, and can affect 
spatial conservation planning (Hannah et al., 2014; Keppel et al., 
2015; Lenoir, Hattab, & Pierre, 2017). Likewise, it has been acknowl‐
edged that vegetation structure—notably canopy cover—could also 
reduce the impact of climate change as canopies tend to reduce the 
realized temperature of organisms understory (Frey et al., 2016), 
and accounting for this in distribution models has been proposed 
(Lembrechts, Nijs, & Lenoir, 2018).

New avenues of research are needed to guide ecosystem man‐
agement, inform conservation policy and design nature‐based 
solutions to global change. Proposed mitigation measures to 

reduce net carbon emissions and offset global warming, such as 
crop biofuels and solar geoengineering themselves may have con‐
sequences for ecosystems processes and species range dynamics, 
recently also addressed through model‐based forecasting (Dagon 
& Schrag, 2019; Hof et al., 2018; Trisos et al., 2018). Similarly, new 
approaches of nature‐based solutions to biodiversity conservation 
consider interesting strategies such as trophic rewilding—the re‐
introduction of species to promote self‐regulation of biodiverse 
ecosystems (Svenning et al., 2016). However, how widely these 
new strategies can actually be implemented under future climate 
change should be further explored. A recent example Jarvie and 
Svenning (2018) showed that trophic rewilding is a viable approach 
under climate change, as 17‐large‐bodied candidates for tro‐
phic rewilding would be retained under different climate change 
scenarios.

Conservation biogeography under climate change has benefited 
largely from our capacity to project in space and time distribution of 
taxa. As new data, methods and conservation approaches arise, wid‐
ening the horizons of the field implies pushing the limits of what now 
have become models with developed standards (Araújo et al., 2019), 
and consider how other less‐used techniques such as experiments 
and biophysical model or ecological network approaches can better 
inform conservation over space and time. Grounding our research 
questions to respond to policy and management needs will be key to 
continue making conservation biogeography a transformative field 
in the Anthropocene.
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