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 43 

Abstract 44 

Soil and water bioengineering is a technology that encourages scientists and practitioners to combine 45 

their knowledge and skills in the management of ecosystems with a common goal to maximize benefits 46 

to both man and the natural environment. It involves techniques that use plants as living building 47 

materials, for: (i) natural hazard control (e.g., soil erosion, torrential floods and landslides) and 48 

(ii) ecological restoration or nature-based re-introduction of species on degraded lands, river 49 

embankments, and disturbed environments. For a bioengineering project to be successful, engineers 50 

are required to highlight all the potential benefits and ecosystem services by documenting the 51 

technical, ecological, economic and social values. The novel approaches used by bioengineers raise 52 

questions for researchers and necessitate innovation from practitioners to design bioengineering 53 

concepts and techniques. Our objective in this paper, therefore, is to highlight the practice and research 54 

needs in soil and water bioengineering for reconciling natural hazard control and ecological restoration. 55 

Firstly, we review the definition and development of bioengineering technology, while stressing issues 56 

concerning the design, implementation, and monitoring of bioengineering actions. Secondly, we 57 

highlight the need to reconcile natural hazard control and ecological restoration by posing novel 58 

practice and research questions. 59 

 60 

Keywords 61 

Benefits; Biodiversity; Ecological engineering; Ecosystem services; Erosion; Vegetation 62 
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1. Development and issues in soil and water bioengineering 63 

1.1. Definition, applications and benefits of soil and water bioengineering 64 

Soil and water bioengineering combines the implementation of techniques using plants as living 65 

building materials, through knowledge of their mechanical and/or biological properties (Figure 1) 66 

(Barker et al., 2004; Stokes et al. 2004). Bioengineering is a well-recognized component of ecological 67 

engineering, itself defined as “the design of sustainable systems, consistent with ecological principles, 68 

which integrate human society with its natural environment for the benefit of both” (Mitsch and 69 

Jørgensen, 2003; Mitsch, 2012). Bioengineering is used to: (i) control natural hazards (e.g., Norris et 70 

al., 2008; Dhital et al., 2013), (ii) restore or reintroduce plant and animal species onto degraded lands 71 

and disturbed environments (e.g., Li et al., 2006; Rauch et al., 2014), and (iii) increase soil, air and 72 

water quality (e.g.,Pretty et al., 2003; Woolsey et al., 2007). 73 

Natural hazards such as soil erosion, torrential floods, and landslides, are phenomena that have 74 

severe consequences globally (Poesen et al., 2003; Smith and Katz, 2013; Poesen, 2017). The use of 75 

vegetation for protecting against natural hazards and attaining economic and/or social goals is typical 76 

of traditional forest and hydraulic engineering programs in Europe, such as the ‘Restauration des 77 

terrains en montagne’ (RTM) in France (Vallauri et al., 2002), ‘Wildbach und Lawinen Verbauung’ 78 

(WLV) in Germany and Austria, or ‘Sistemazioni Idraulico-Forestali’ (SIF) in Italy (Bresci and Preti, 79 

2010; Bischetti et al., 2014). Today, the control of these types of hazards using herbaceous and woody 80 

vegetation through bioengineering remains a major challenge in areas where technical, 81 

socioeconomic, and ecological issues are confounding factors that can hinder success (Phillips et al., 82 

2013; Dhital and Tang, 2015). Bioengineering in areas that are difficult to access, e.g. torrential 83 

catchments, riverbanks and lakes, as well as on disturbed lands, such as agricultural zones, road and 84 

rail embankments, ski slopes, mines, quarries and in urban areas (Lin et al., 2006), requires 85 

understanding of the interdependency of hydrological, ecological, and biophysical processes 86 
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underway at the site. Bioengineering solutions should provide a combination of the benefits of 87 

immediate hazard control, comprising techniques such as (Figure 1): (i)brush layers (that provide 88 

deep-seated protection), (ii) drain fascines or live pole drains (which drain excess water to allow 89 

vegetation establishment), (iii) vegetated crib walls (that immediately protect stream banks), (iv) 90 

brush mattresses (providing roughness from establishment against flow), and the long-term 91 

stabilization due to plant reinforcement effects. As with any stabilization technique, there is a stress 92 

(or load) transfer between the soil and the structure, but, in contrast to other solutions, this initial 93 

response is modified by the evolving role of the living material used in the bioengineering structure 94 

(Preti and Giadrossich, 2009; Graf and Frei, 2013; Yildiz et al., 2015, 2018; Tardio and Mickovski, 95 

2016). This latter feature must be reflected in the bioengineering work design methodologies. 96 

Ecological restoration encompasses all actions for repairing degraded lands, with the aim of 97 

reestablishing both form and function to attain autonomous and stable ecosystems (Clewell and 98 

Aronson, 2013). Ecological engineering in general and bioengineering in particular, can be employed 99 

for the restoration of a degraded environment (Mitsch and Jørgensen, 2004). Actions can include: (i) 100 

rehabilitating degraded land, which requires techniques aimed at recovering the natural succession of 101 

the ecosystem, especially by installing pioneer vegetation and enhancing its development; and (ii) 102 

monitoring and maintaining the rehabilitated land, thereby guiding the natural dynamics of the 103 

degraded systems so that they recover with a structural and functional autonomy (Aronson et al., 104 

1993). A significant advantage of bioengineering actions is the incorporation of vegetation 105 

establishment and succession processes into the design stage. Therefore, the need for further 106 

intervention or maintenance is reduced and a long-term solution is provided. Bioengineering could 107 

also make restoration faster in the sense that, if the path of plant succession is known, it is possible to 108 

establish vegetation at the most advanced stage which will be compatible with the soil and 109 

microclimatic conditions of the site. Moreover, considering the energy balance of any civil 110 

engineering construction, a benefit from using soil bioengineering techniques is that although we 111 

need energy for its construction, we "save" energy with the development of the plant biomass. Finally 112 
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these actions not only include ecological restoration, but also water and soil quality restoration or 113 

depollution (e.g., Wang et al., 2008). 114 

Soil and water bioengineering is an emerging discipline globally, with regulatory frameworks 115 

(including the European Water Framework Directive or more recently the European Green 116 

Infrastructure Strategy) introducing the need to implement “soft” techniques for natural hazard 117 

control instead of “hard” techniques (engineered concrete and steel structures such as check dams), 118 

in the pursuit of restoring degraded environments or preventing further degradation during new 119 

construction. Prioritizing soil and water bioengineering techniques is now highly encouraged in the 120 

European Community and in many countries worldwide, often promoted through various incentives 121 

(e.g., European Commission, 2013). The International Union for the Conservation of Nature (IUCN) is 122 

proactively endorsing the use of Nature-based solutions for disaster risk reduction (EcoDRR), and 123 

includes soil bioengineering as a technique for protecting against natural hazards (Furuta et al., 2016; 124 

Renaud et al., 2016). Questioning practitioners and scientists about their experience, successes, and 125 

failures will allow a better understanding of the multiple benefits and services that natural habitats and 126 

human populations derive from bioengineering actions (Table 1).  127 

1.2. An interactive process between researchers and practitioners 128 

Soil and water bioengineering implies an interface between the researcher and the practitioner, i.e. 129 

between the improved knowledge base and its application (Stokes et al., 2013, 2014; Mitsch, 2014). 130 

The questions raised are increasingly complex and many practitioners are now involved in research 131 

projects, improving dialogue and mediation between different stakeholders. Bioengineering projects 132 

could also benefit from more multi- and inter-disciplinary approaches, as well as from a better 133 

understanding of practical issues experienced by practitioners (e.g., choice of materials, costs, 134 

insurance, health and safety, and management of human resources).  135 

For those working in the field of bioengineering, a specific framework is required at three levels:  136 
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(i) questions: identification of the technical, socio-economic, and ecological problems, evaluated by 137 

the practitioners. Researchers and practitioners should then work together to solve specific 138 

objectives. 139 

(ii) applied research: translation of the technical, socioeconomic, and ecological concerns into 140 

scientific questions, and increase of knowledge by observations and experiments. Soil and water 141 

bioengineering can be implemented based on relevant knowledge from several scientific 142 

domains, especially geosciences (e.g., geomorphology and soil science), ecology (e.g., 143 

restoration ecology, landscape ecology, and plant sciences), engineering (e.g., fluvial hydraulics, 144 

civil and geotechnical engineering), sociology (e.g. community engagement and social 145 

acceptability of the methods and tools proposed; legitimate design approach), and economics 146 

(e.g. project financial management, carbon accounting) (Petrone and Preti, 2010; Stock and 147 

Burton, 2011). 148 

(iii) management in bioengineering: as soil and water bioengineering is consistent with policies 149 

aimed at encouraging “soft” solutions, in particular by including environmental concerns into 150 

standard technical practices such as civil engineering, it is essential that current and improved 151 

knowledge is included at the work design stage. For example, features such as natural wood 152 

deterioration rates (Barré et al., 2017; Tardio and Mickovski, 2016), plant development and 153 

successional trajectories (Walker et al., 2009; Gonzalez-Ollauri and Mickovski, 2017a), must be 154 

incorporated into the routines and protocols of bioengineering projects. Research results should 155 

then be used to develop methods and tools to assist management, conceptualization and action. 156 

Adaptation of these tools needs to be performed in collaboration with practitioners, while the 157 

knowledge transfer and learning should occur in training courses at every educational level 158 

(Mitsch, 2014; Mickovski et al., 2018). The application of knowledge to real cases using newly 159 

gained expertise should be verified. Long term monitoring programs, with accurate benchmark 160 

data, are also required to compare similar case studies and establish databases on the successes 161 
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and failures of various techniques and plant material used (Tardío-Cerrillo and García-Rodriguez, 162 

2016; Perez et al., 2017; Tardio et al., 2017). Such considerations should improve practitioners’ 163 

understanding of recent knowledge in ecology and geosciences, as well as increasing scientists’ 164 

understanding of practical needs in soil and water bioengineering. 165 

For soil and water bioengineering, all the above features are essential and, for a project to be 166 

successful, close interactions between stakeholders and bioengineers are necessary. Improved 167 

communication and interaction between the stakeholders will allow bioengineering interventions to 168 

both become more effective over time and take advantage of the accumulated experience within the 169 

sector. 170 

 171 

2. Natural hazard control and/or ecological restoration? 172 

Depending on the precise objective of a project, the choice of the bioengineering intervention and 173 

the desired long-term strategy can vary considerably. For example, soil or streambed erosion can 174 

cause different types of damage: (i) loss of topsoil, organic matter and nutrients, which lowers soil 175 

quality and hence crop yields and, in turn, threatens agricultural activities (e.g., Jin et al., 2008); it can 176 

also cause imminent risk of structural failure of roads, bridges, and railway lines (e.g. Mickovski, 177 

2014); (ii) topographic changes (terrain deformation) in the case of gully channel development, 178 

landslide triggering and suffusion risk phenomena (e.g. Poesen et al., 2003); (iii) biodiversity loss, 179 

which affects vegetation and animal habitats (Mkanda, 2002); (iv) silting of reservoirs, as a 180 

consequence of soil erosion and sediment transport, compromising the functioning of these 181 

structures (e.g. Schleiss et al., 2016) and (v) increased floods, caused by sediment deposition in river 182 

channels (e.g. Steiger et al., 2001). Strategies to control soil erosion rates will vary depending on the 183 

type of problem requiring action. For example, if reducing the sediment yield in rivers and reservoirs 184 

is the final objective, then the only intervention required is sediment control. Hence, it may be 185 
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possible to allow hillslope erosion to take place, but to aim at trapping and retaining sediment before 186 

it reaches the river channel (Rey, 2009). If riverbed erosion causes lateral displacement and bank 187 

failures, and impacts nearby infrastructure, the main objective is to protect facilities with highly 188 

specialized and adapted bioengineering solutions, e.g. based on geotechnical preliminary 189 

investigations during design and monitoring stage (Peklo, 2015). However, if soil and biodiversity 190 

conservation are the final objectives, then both erosion control and ecological restoration are 191 

required to prevent soil particles from being detached and removed (Petrone and Preti, 2010).  192 

The current challenge when using bioengineering techniques is to define rules that satisfy a set of 193 

diverse functions and benefits, particularly those that reconcile natural hazard control and ecological 194 

restoration (Figure 2). This approach requires innovation from the practitioners, and also raises new 195 

questions for scientists, as part of an interactive process that necessitates the designing and testing of 196 

bioengineering actions that reconcile the competing demands of both natural hazard control and 197 

ecological restoration. As soil and fluvial bioengineering operates on complex systems (ecosystems) 198 

intrinsic adaptive management strategies and feedback loops are necessary to ensure that the 199 

project and the intervention is well informed. 200 

 201 

3. From practice to research needs 202 

One of the currently pressing challenges is to define bioengineering actions for a range of different 203 

situations. Although techniques are well described (e.g., Schiechtl and Stern, 1996, 1997; Gray and 204 

Sotir, 1996; Zeh, 2007; Florineth, 2007; Hacker and Johanssen, 2012; EFIB, 2015), quantitative 205 

recommendations on how and which materials to use in specific situations are lacking, especially 206 

when the objective is to reconcile natural hazard mitigation and ecological restoration. To overcome 207 

this knowledge gap, scientists should heed practitioners’ needs through discussions during projects, 208 
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conferences or training, and conduct research at different spatial scales, with specific objectives in 209 

mind (Figure 3).  210 

3.1. Selection of plant species 211 

Numerous studies have already dealt with the performance of specific species in protecting against 212 

different hazards (e.g. plant species potential to control gully erosion rates in a Mediterranean 213 

ecosystem; De Baets et al. 2009), in a specific climate (Gonzalez-Ollauri and Mickovski, 2016), 214 

environment or topographic location (Bochet et al. 2009). Furthermore, an open access plant species 215 

database has recently been developed by Perez et al. (2017), allowing users to access the database or 216 

add information about species suitable for controlling erosion and shallow landslides in different 217 

climates. Traditionally, a limited number of plant species has been used for this purpose, although 218 

there are countless species available that could perform equally well, many of which have not yet 219 

been tested for suitability (Preti and Petrone, 2013; Perez et al., 2017). In general, although using 220 

pioneering species in soil bioengineering projects is sometimes necessary to initiate the successional 221 

processes that will maintain vegetation on the site, native species should be preferred over exotic 222 

species and ecological succession trajectories should be included in the bioengineering intervention 223 

design (Clemente et al., 2016; Xiao et al., 2017). 224 

When choosing which species to use on a site, and considering ecological restoration principles, the 225 

local and regional environmental conditions need to be considered carefully, so that an optimal and 226 

sustainable system is created (Mickovski and van Beek, 2006). For the successful creation of a 227 

bioengineering system, the initial phase is of major importance. For the last 30 years, practitioners 228 

and scientists have been studying the installation phase, by e.g. examining the relationship between 229 

the richness of pioneer species and soil aggregate stability (Pohl et al., 2012), or the efficacy of using 230 

mycorrhizal inoculations to improve plant growth and soil structure on eroded soil (Powell, 1980; 231 

Yildiz et al., 2015; Bast et al., 2016; Demenois et al., 2017). These studies concluded that the key to 232 
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fully understanding ecological processes at eroded sites requires similar long-term experiments in the 233 

field. 234 

Species adapted for hazard protection are not necessarily those used for ecological restoration. One 235 

of the most difficult questions a manager can ask is: is it better to use only one or a few species that 236 

can efficiently mitigate a specific hazard, or should a diverse range of species, sometimes less 237 

efficient, be used? Promoting species diversity is generally recommended in ecological restoration 238 

projects, but could an increased diversity result in less effective hazard control? Investigating this 239 

problem, Erktan et al. (2013) showed that a morphological diversity of plant species used in 240 

vegetation barriers did not increase sediment retention in eroded marly gully floors in the French 241 

Southern Alps, compared to monospecific barriers (Figure 4). Such a consideration of plant 242 

biodiversity is a critical issue, as it generally corresponds to a more ecologically stable system (Preti 243 

and Petrone, 2013). A stable and healthy planting system would be less vulnerable to abiotic (e.g., 244 

flooding, storms, snow loading and landslides) and biotic stress (e.g., pathogens and grazing). A 245 

diversity of plant species would also enable a manager to “cover all options”; for example in the case 246 

of a particular species becoming susceptible to abiotic/biotic factors, the loss of one species would be 247 

less likely to compromise the aims of the project. Referring to the study of Erktan et al. (2013), Rey 248 

and Labonne (2015) suggested using only one species to build brush layers and mats in eroded gully 249 

floors, but to use different species between structures along the gully floor, thus reconciling natural 250 

hazard mitigation with improved biodiversity. 251 

3.2. Selection of bioengineering structures 252 

The choice of the appropriate structure to use in a bioengineering project largely depends on the 253 

objective. When considering natural hazard control, the first principle to follow is to use structures 254 

and plants that have sufficient mechanical resistance to withstand gravitational or hydrological forces 255 

linked to the hazard process. Firstly, although technical drawings describing structures and their 256 

mechanical resistance exist in guidelines, we do not necessarily know their origins and performance 257 
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or reliability for the myriad of field situations likely to be encountered (Schaff et al., 2013). With the 258 

exception of gravitational structures (e.g. crib walls and fascines), whose design procedures are well 259 

established, and apart from a few cases (e.g. brushlayers and riverbank protection, Bischetti et al., 260 

2010), most bioengineering techniques have not yet been sufficiently studied. At the individual plant 261 

scale, it is not well known to which topographic (e.g. Bochet et al. 2009, Nadal Romero et al., 2014) 262 

and hydrological forces plants resist before failing, and which plant traits are important for 263 

mechanical resistance (Burylo et al., 2014), therefore this topic needs significantly more attention 264 

from the scientific community. Questions also remain concerning the types of hazard and their 265 

different return periods depending on geographic situation and climate, especially under extreme 266 

climates such as in tropical countries. This knowledge gap calls for large-scale experiments taking into 267 

consideration all the variables and elements to which the structures are subjected (Schwarz et al., 268 

2012). Secondly, it should be kept in mind that certain plant species or conditions may destabilize a 269 

structure. For example, along river embankments, vegetated crib walls (Figure 1D) can act as a slope 270 

buttress or slope break when placed on an eroding embankment to mitigate gully erosion processes 271 

(Florineth, 2007). Vegetated crib walls help protect the shoreline and promote revegetation because 272 

plants are incorporated within the structure and root growth stabilizes soil (Stangl, 2007). Although 273 

some long-term observations have demonstrated that root development and tree stem growth did 274 

not adversely affect the structure of vegetated crib walls (K. Peklo, unpublished data), practitioners 275 

may hesitate to choose this type of structure because of the way that vegetation interacts with the 276 

structure over time.  277 

There is a need to assess more precisely the interrelationships between inert and living materials in 278 

bioengineering structures. Questions remain, in particular with regard to wooden structures, where 279 

wood decay has to be assessed over time, as vegetation grows and develops around the structure 280 

(Barré et al., 2017). Although the role of plants in stabilizing slopes over the long-term is crucial, the 281 

growth dynamics of plants used in bioengineering structures are basically unknown and more 282 

research is needed to address this gap. Questions particularly arise with regard to the desirable 283 
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biodegradation of wooden structures. When inert structures are used to enhance vegetation 284 

development, for example certain small-scale wooden structures, their initial rigidity has to allow the 285 

triggering of new natural processes such as an improved resilience, an improved ecological 286 

functioning, and vegetation succession processes, before these inert structures disappear (Stokes et 287 

al., 2014). The initial rigidity achieved by means of the inert elements used in the bioengineering 288 

intervention must exist long enough so that plants are capable of developing their reinforcing effect. 289 

This evolution must be reflected well at the design stage related to a predefined construction aim. 290 

Deterioration models of the material used in the work (such as wood) must also be included in the 291 

design (Tardio and Mickovski, 2016). All these considerations call for research to evaluate the level 292 

and speed of decay of wooden structures, as well as the dynamics of vegetation within 293 

bioengineering structures, in relation to the development and diversification of vegetation and to the 294 

desired stage of natural hazard mitigation (Barré et al., 2017).  295 

Finally, a maintenance schedule of the living material used in bioengineering structures may be 296 

required. These maintenance tasks are usually needed to avoid vegetation becoming too heavy, 297 

resulting in the overturning of the bioengineering structure. On riverbanks, this maintenance should 298 

also aim at keeping vegetation flexible enough to avoid excessive hydraulic resistance, which can 299 

cause an increase of water levels, and to reduce stem and branch breakage, which produce debris 300 

obstructing bridges and narrow sections of the river (EFIB, 2015). 301 

3.3. Design of bioengineering structures 302 

To improve the adoption of bioengineering methods by a wider community, new tools (e.g. soil-303 

vegetation interaction models, technological frameworks, enhanced methodological approaches and 304 

guidelines) must be developed for use in the design of bioengineering structures. In particular, it is 305 

necessary to know how to use living plants to attain the expected objectives, and to predict the 306 

spatial-temporal development of the installed bioengineering structure, while considering the climate 307 

and ecological conditions of the site. During the pre-design phase, the designer must be able to 308 
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decide if the bioengineering techniques are feasible or must be used in combination with other 309 

conventional techniques (so called ‘mixed’ techniques), in order to improve the resistance of the 310 

structure and resilience of the system. Finally, a global, long-term vision of the project at all spatial 311 

scales, from local to catchment, is needed.  312 

Improved knowledge is required to design bioengineering structures and optimize their performance 313 

in terms of hazard mitigation while enhancing plant diversity. For example, where is it most effective 314 

to install a structure at a site? How many plants or cuttings should be used within a structure? 315 

Particular attention should be paid to improving our understanding of the efficiency of different plant 316 

species and their traits, depending on the final goal of the intervention (Burylo et al., 2014). To design 317 

technical solutions, the bioengineer can sometimes use physical scale models. This approach is often 318 

not feasible, as plant effects on e.g. slope stability or erosion control and the impact of vegetation on 319 

discharge capacity cannot be downscaled appropriately at reasonable laboratory scales such as 1:30 320 

to 1:40 (Wilson et al., 2006). Prototype scale (1:1) tests remain a viable solution for scientists and 321 

practitioners, but are often not feasible because of time, space, and cost (Schwarz et al., 2012). 322 

Therefore, most engineers use readily available numerical geotechnical models that include the 323 

effects of vegetation. Different types of models have been implemented over the years to predict 324 

landslide risk (see Stokes et al.,2014; Gonzalez-Ollauri and Mickovski, 2017b), many of which 325 

calculate a global Factor of Safety (FoS) at the slope level, but are not suitable for calculating the 326 

efficacy of individual bioengineering structures. Several uncertainties exist in model parameters, 327 

which can be overcome by using a probabilistic approach to e.g. synchronize the mechanical behavior 328 

of roots and soil throughout the development of the shear surface (Tardio and Mickovski, 2015). 329 

Further information on the hydrological effects of root water uptake is also required, particularly for 330 

herbs, shrubs and trees (Chirico et al., 2013; Tron et al., 2014; Arnone et al., 2016; Kim et al., 2017). 331 

Upscaling to the catchment level is still a significant challenge, partially because of a lack of suitable 332 

data to either parameterize or validate models, but also because of a lack of understanding of 333 

biophysical processes at different scales. However, Rossi et al. (2017) demonstrate that the physical 334 
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landslide model LAPSUS_LS is suitable for calculating the effects of vegetation on slope stability at the 335 

catchment level. Nevertheless, parallel studies should investigate how soil hydrological and physical 336 

processes at the slope level are altered over a larger scale and vice versa (Bogaard and Greco, 2015). 337 

3.4. Reconciling qualitative experience and quantitative engineering 338 

Statutory constraints related to building structures used for natural hazard control require quantitative 339 

engineering methodology, whereas bioengineering often, but not always, comprises more qualitative 340 

experience. Thus there is a need to develop research that will reconcile these qualitative and 341 

quantitative issues for natural hazard control, but also for ecosystem restoration. Methods for 342 

identifying precise performance thresholds for bioengineering installations at local scales could be very 343 

helpful. Questions to ask include: (i) is a stepwise strategy necessary and therefore an initial plant 344 

protection plan needed? (ii) what is the most efficient spatial distribution of bioengineering structures 345 

and plants for hazard control with regard to the physical forces to which they are subjected? (iii) what is 346 

the necessary, but adequate, rate of vegetation cover to control a given natural hazard, while 347 

considering also ecological processes at this spatial level? Answers to these questions are strongly 348 

related to the objectives, which will be different in the case of natural hazard mitigation or ecological 349 

restoration. A need also expressed by practitioners is to define appropriate indicators that allow 350 

managers to determine the thresholds of efficiency when reconciling natural hazard control and 351 

ecological restoration. Finally, the need for case study analysis in terms of bioengineering work 352 

performance has been suggested as a useful tool for proposing improvements at the design, 353 

construction, and monitoring stages. 354 

One further crucial issue determining the success of a bioengineering project is to know if bioengineers 355 

can have the financial freedom to create the "best" solution to each problem (EFIB, 2014). For example, 356 

for a project in which ecological restoration is required and when significant financial means can be 357 

used to implement optimal actions, such actions are able to achieve effective restoration, and enable 358 

the damaged ecosystem to recover its original condition. But when constraints are imposed in 359 
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budgeting and financing bioengineering projects, such as in underdeveloped countries, it is necessary to 360 

minimize interventions. In this later case, complete ‘restoration’ is not economically possible. Therefore, 361 

recovering the ecosystem to a state before degradation is not the final objective, but reaching a specific 362 

ecosystem objective in line with the current technical, socio-economic and ecological problems, such as 363 

controlling a specific natural hazard, becomes the main aim (Rey, 2009). This situation also calls for 364 

reconciling possible qualitative issues linked to the definition of precise objectives of a bioengineering 365 

project, and quantitative engineering, corresponding to the design of the bioengineering structures and 366 

the related financial means. 367 

3.5. Defining actions at the catchment and landscape scales 368 

Soil and water bioengineering techniques are usually targeted to discrete locations, whereas their 369 

design often needs to be considered at the catchment and landscape scales (Bifulco et al., 2015). The 370 

variables with the greatest influence on a bioengineering structure’s final design are usually 371 

structural, hydraulic or related to plant characteristics, especially when natural hazard mitigation is 372 

the main objective. Using bioengineering for natural hazard mitigation at the catchment scale, 373 

especially with regard to water and sediment transport, implies taking into account the connectivity 374 

between slopes and the river or gully channel, and between upstream and downstream parts of the 375 

catchment. For example with respect to flood reduction, a key objective can be to reduce runoff and 376 

particularly to interrupt the fine sediment connectivity between various parts of the catchment (e.g. 377 

Verstraeten et al., 2006; Borselli et al. 2008; Rey and Burylo, 2014; Mekonnen et al. 2015). The spatial 378 

distribution of control measures such as planted areas also needs to be considered at the wider 379 

catchment scale, as does the climatic regime. In some cases it will be possible to provide a level of 380 

control for more frequent climatic events that generate sediment. Nevertheless, designing structures 381 

or bioengineering solutions to deal with extreme, infrequent or high magnitude events remains 382 

problematic. 383 
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The need to define strategies for bioengineering at the catchment and landscape scales is well 384 

illustrated in the framework of Green infrastructure (GI), interconnected networks of natural or semi-385 

natural sites able to provide environmental, social, and economic benefits to human populations 386 

(known as ecosystem services). Soil bioengineering can play a fundamental role in creating networks 387 

because their capability is to bridge natural and man-made environments. It allows the restoration of 388 

ecosystems and is an effective tool in the implementation of GI (EFIB, 2014). Although GI is included 389 

in several EU and International Agencies programs and policies (e.g. EU 2020 Biodiversity Strategy, 390 

Natura 2000, UNEP-DHI 2014 Green Infrastructure Guide for Water Management), the use of soil 391 

bioengineering techniques is generally implicit. The success in implementing a GI strategy strongly 392 

depends on the achievements of bioengineers. Soil bioengineering techniques, by including 393 

vegetation as an intrinsic component of installations, are able to provide several functions, such as 394 

slope and riverbank stabilization and protection from soil erosion, as well as habitat for animals, 395 

microclimate regulation and recreational use (Table 1, Stokes et al., 2014). Therefore, design of 396 

bioengineering structures can be thought for allowing them to provide both slope stabilization and 397 

ecological restoration (Figure 5).  398 

The Blue infrastructures (BI) framework is also a good illustration of the complex questions facing 399 

bioengineers. Worldwide, two contrary eco-geomorphological management practices co-exist for 400 

rivers. In some catchments, aggradation of the river channel occurs, a phenomenon caused by 401 

excessive fine sediment in the river. Habitats for fish reproduction may be damaged, flood risks 402 

increase, and hydroelectric reservoirs can fill with sediment (Rey, 2009). In contrast, other catchments 403 

suffer from a lack of bed load in the river. As a consequence, groundwater levels can decrease and 404 

river beds incise, causing damage such as bridge destabilization (Liébault et al., 2005). Vegetation 405 

cover in the surrounding landscape is an important factor controlling the erosion responsible for 406 

sediment yield in rivers. In case of bedload excess, eroding slopes and riverbanks are controlled 407 

through bioengineering measures and revegetation efforts, considered as restoration actions on 408 

degraded land (e.g., Vallauri et al., 2002). Conversely, where a deficit of bedload exists, slope erosion 409 
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can be reactivated by destroying the vegetation on highly erodible soils. Sometimes, both situations 410 

co-exist within the river’s catchment, but generally in different parts and at different times, as stated 411 

by Liébault et al. (2005) who recorded both aggradation followed by degradation in the same 412 

catchment pre-reforestation and post-reforestation. Thus the influence of vegetation on a river’s 413 

sediment production, especially in mountainous areas, is often difficult to understand.  414 

Another situation showing the difficulty in reconciling natural hazard mitigation and ecological 415 

restoration is the management of dams on rivers. These structures often have a role in managing 416 

floods and many have been constructed over a century ago in different countries (e.g, Vallauri et al., 417 

2002 on French experience). However, today these structures are blamed for representing obstacles 418 

to aquatic fauna, and programs for removing them are developed, calling into question the impact of 419 

this kind of action on the river’s stability. One solution consists in replacing dams with rough rock 420 

ramps with integrated fishway (Figure 6). All these examples call for more discussion between 421 

scientists and practitioners, as well as a better assessment of current knowledge. There is an urgent 422 

need to consider new research strategies and to determine whether ecological restoration actions 423 

should be carried out on areas where natural hazards occur, with different ecological and socio-424 

economic issues calling for different solutions in the management of these hazards. 425 

4. Conclusion 426 

In the sections above, we highlighted the practice and research needs in soil and water bioengineering 427 

through a critical review of the definition and development of bioengineering technology, while 428 

stressing the issues about the design, implementation, and monitoring of bioengineering actions. Based 429 

on the critical analysis presented above, we conclude that there is a need to reconcile natural hazard 430 

control and ecological restoration by posing new applied research questions aimed at meeting this 431 

purpose. More importantly, there is a need to define sound techniques that reconcile natural hazard 432 

control and ecological restoration. The key considerations helping succeeding bioengineering actions in 433 
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the future can be summarized as: (i) considering a multidisciplinary approach for soil and water 434 

bioengineering projects, (ii) establishing practical guidelines and tools for designing bioengineering 435 

structures, (iii) implementing monitoring stages in bioengineering projects, (iv) transmitting 436 

knowledge and know-how on soil and water bioengineering, (v) analyzing existing bioengineering 437 

works in terms of their performance, successes and failures, and (vi) continuing to identify the needs 438 

of the bioengineering professional sector. 439 
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Table 1: Illustration of some ecosystem services provided by grass buffer strips, grassed waterways, 687 

and small flood retention ponds (bioengineering techniques) installed to reduce soil erosion rates 688 

by water and muddy floods in the loess belt of Belgium (based on Vandaele (2010) and various 689 

unpublished data). 690 

 691 

* Maintenance and improvement of soil ecosystem services: e.g. food, fiber, fuel and other biomass 692 

production; environmental interactions such as water filtering, carbon storage (e.g., due to the 693 

change of cropland to grassland) and nutrient cycling (e.g. N and P), transformation of substances, 694 

biological habitat for soil micro-organisms, fauna and gene pool; archive of our past (artefacts and 695 

indicators of environmental change). 696 

* Maintenance and improvement of hydrological systems: e.g. on site water infiltration, retention 697 

and storage, flow energy dissipation, off site flood control through reduced peak flow discharge and 698 

reduced sediment overloads. 699 

* Increase of biodiversity: e.g. vegetation (such as properly managed species-rich grasses, herbs and 700 

multiple cover crops), providing food and habitats for spiders, insects (e.g. bees, ground beetles, 701 

Ichneumonidae, ladybirds that are important for pollination and pest control), birds (such as skylarks, 702 

partridges and birds of prey), mammals as well as amphibians (in ecologically designed flood 703 

retention pools). 704 

* Increase of ecological connectivity facilitating circulation of fauna in landscapes dominated by 705 

crops. Creation of ecological corridors for various kinds of animals, including potentially slow moving 706 

earth or water-bound species. Increase of genetic exchanges between distant populations of the 707 

same species. 708 
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* Adsorption of pollutants transported by runoff and wind (dust), hence cleaner surface water, 709 

groundwater and air 710 

* Reduction of negative off-site effects such as sediment deposits on cropland, infrastructure and 711 

private property, psychological stress to inhabitants that were frequently affected by muddy floods. 712 

* Enhanced quality of landscapes predominantly consisting of cropland through the installation of 713 

green corridors (grass buffer strips, grassed waterways and cover crops) and blue measures (such as 714 

flood retention ponds), which lead to an improved recreational attractiveness. 715 

716 
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Figure 1. Examples of bioengineering structures and installations worldwide. A. Palissades (France) 717 

(photo: F. Rey); B. Grass buffer strips (Belgium) (photo: J. Poesen); C. Green steel structure and log 718 

branch/dormant cuttings after completion (France) (photo: K. Peklo); D. Prefabricated wooden 719 

structure (Italy) (photo: F. Preti); E. Modified brush layers (Canada) (photo: D. Polster); F. Sowings 720 

with straw mats and vegetated bench (Portugal) (photo C. Bifulco); G. Mixed check dam (Canary 721 

Islands) (photo: G. Tardio); H. Planting with willow cuttings and coconut tissue (Switzerland) (photo: 722 

G. De Cesare); I. Brushlayer, straw and wattle (Canada) (photo: P. Raymond); J. Vegetated crib wall 723 

(Austria) (photo: H.P. Rauch); K. Hydroseeding (Scotland) (photo: S. Mickovski); L. River modeling 724 

(Austria) (photo: F. Florineth). 725 

 726 

 727 

 728 

 729 

 730 
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 732 
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 735 

 736 
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 737 

Figure 2: Which bioengineering structures to use to restore this degraded stream while protecting the 738 

railway against floods? (photo: F. Rey) 739 

 740 

  741 
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Figure 3: Questions arising from practitioners showing how research objectives should be defined 742 

throughout the life of a bioengineering intervention, and the consequences for the ecological 743 

trajectory of a bioengineering structure. Such an approach would lead to improved natural hazard 744 

control and ecological restoration of a degraded site (Burylo and Rey, unpublished) 745 

 746 

  747 
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Figure 4: Biodiversity can have a negative effect on sediment trapping performance of vegetation 748 

barriers, as monospecific barriers involving one very performant species are more efficient than 749 

plurispecific ones including more or less efficient species (photo: F. Rey) 750 

 751 

 752 

  753 
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Figure 5: Design of bioengineering structures along riverbanks can be thought for allowing them to 754 

provide both slope stabilization and ecological restoration (photo: K. Peklo) 755 

 756 

  757 
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Figure 6: Rough rock ramp with integrated fishway, providing positive action for both riverbed 758 

stabilization and fish movement (photo: K. Peklo) 759 
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