

Deletion of the cassiicolin-encoding gene Cas1 from Corynespora cassiicola causes a loss of virulence on rubber tree

Sébastien Ribeiro, Dinh Minh Tran, Marine Deon, André Clément-Demange, Dominique Garcia, Mouman Soumahoro, Aurélien Masson, Valérie Pujade-Renaud

▶ To cite this version:

Sébastien Ribeiro, Dinh Minh Tran, Marine Deon, André Clément-Demange, Dominique Garcia, et al.. Deletion of the cassiicolin-encoding gene Cas1 from Corynespora cassiicola causes a loss of virulence on rubber tree. 12th Congress of the International Plant Molecular Biology, IPMB 2018., Aug 2018, Montpellier, France. 1 p. hal-02089525

HAL Id: hal-02089525

https://hal.science/hal-02089525

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Deletion of the cassiicolin-encoding gene *Cas1* from *Corynespora cassiicola* causes a loss of virulence on rubber tree

<u>Sébastien Ribeiro</u>^{1,2,3}, Dinh Minh Tran^{2,3,4}, Marine Déon¹, André Clément-Demange^{2,3}, Dominique Garcia^{2,3}, Mouman Soumahoro ⁵, Aurélien Masson⁶, Valérie Pujade-Renaud^{1,2,3}

¹Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France ²AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier, France ³CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France

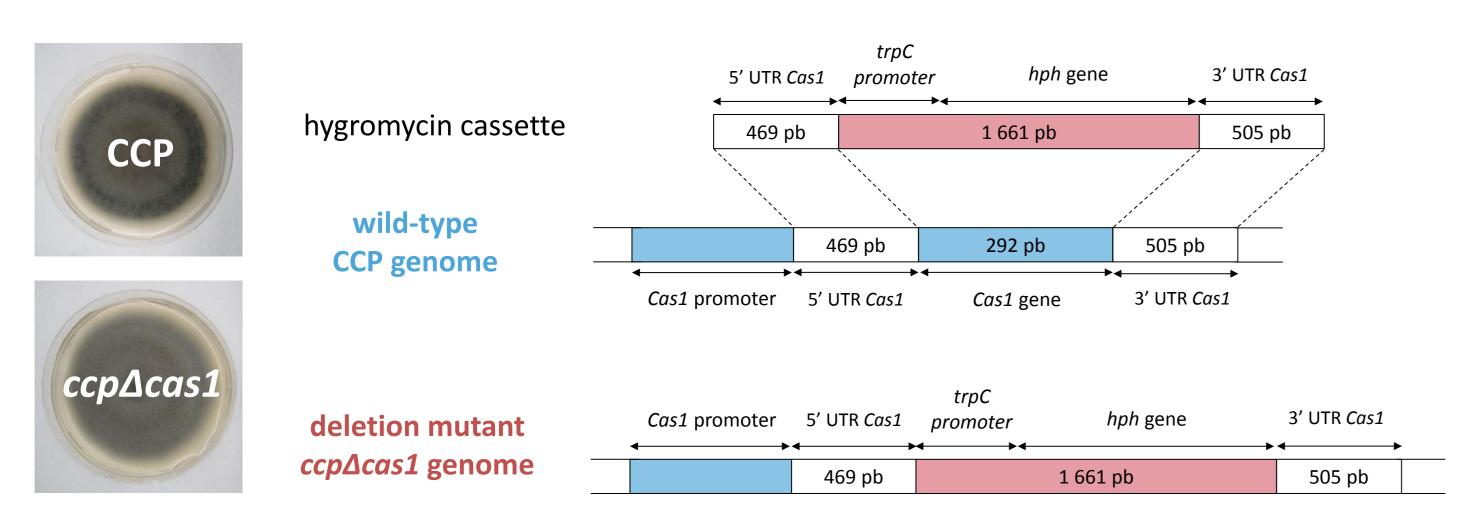
⁴Rubber Research Institute of Vietnam, Ho Chi Minh City, Vietnam

⁵Société Africaine de Plantations d'Hévéa, 01 BP 1322 Abidjan 01, Côte d'Ivoire

⁶Société des Caoutchoucs de Grand-Béréby, Grand Béréby, Côte d'Ivoire

Background

Rubber tree (*Hevea brasiliensis*) is an economically important tropical tree that provides natural rubber. In Asia and Africa, it is affected by the Corynespora Leaf Fall (CLF) disease caused by the necrotrophic fungus Corynespora cassiicola. On the most susceptible rubber clones, *C. cassiicola* can cause massive defoliation leading to yield losses. Some pathogenic strains secrete a small protein toxin, the cassiicolin^{1,2,3}, which is transcriptionally up-regulated during early stages of the disease⁴. Seven isoforms were identified and used to classify the various strains into toxin classes⁵. Strains belonging to toxin class Cas1 were the most aggressive on tested rubber clones⁵. However, strains without cassiicolin gene (toxin class Cas0) may also produce toxic exudates⁶, suggesting the existence of effectors other than cassiicolin.


susceptible clone tolerant clone

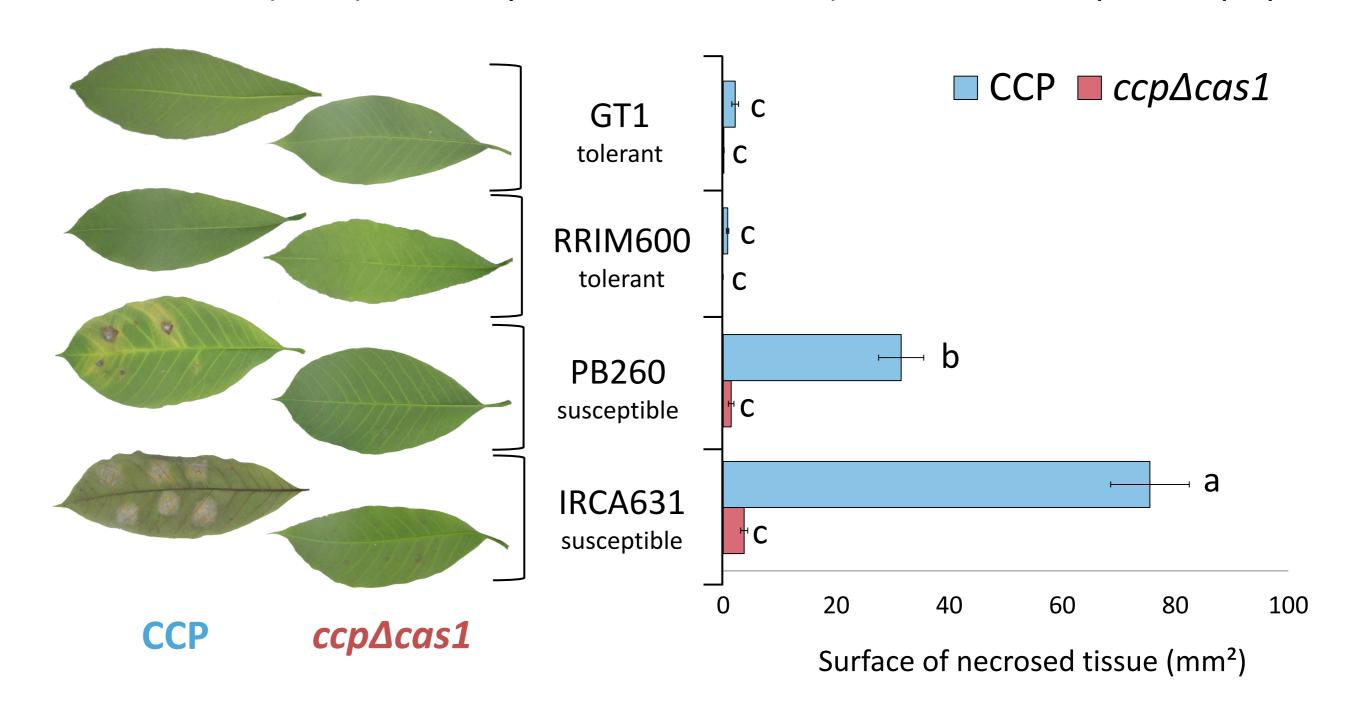
Objective

To determine the importance of cassiicolin Cas1 for the virulence of *C. cassiicola* strain CCP, comparatively to others putative effectors, by comparing the wild-type strain and the same strain deleted for the cassiicolin-encoding gene *Cas1*, in interaction with rubber tree.

Construction of the *Cas1* gene deletion mutant

Deletion mutant was obtained by replacing the *Cas1* gene from the highly aggressive strain CCP with a hygromycin-resistance cassette by homologous recombination. The deletion mutant was named $ccp\Delta cas1$.

Physiological analyses of CCP and ccp∆cas1


The growth rate, conidia production and percentage of germination were compared in vitro between CCP and $ccp\Delta cas1$ strains.

Strain	Growth rate (mm/day)	Conidiation (conidia/µl)	Germination (%)				
ССР	4.13 ± 0.16a	413 ± 77a	71.75 ± 9a				
ccp∆cas1	4.29 ± 0.08a	479.5 ± 42a	69.75 ± 6a				

Result 1: Deletion of the *Cas1* gene did not modify major physiological functions in the CCP strain.

Virulence of the ccp∆cas1 strain

CCP and $ccp\Delta cas1$ strains were compared for their virulence on four rubber clones (still attached to the plant), by analyzing the extent of symptoms as the mean surface of necrotic tissue (mm²), nine days after inoculation (200 conidia/drop, 6 drops per leaf).

Result 2: Without cassiicolin Cas1, the CCP strain is avirulent on susceptible clones, except for a few pinpoint symptoms.

QTL associated with sensitivity of rubber tree to cassiicolin Cas1

QTL detection was conducted on the PB260 x RRIM600 family for the response to purified cassiicoline Cas1, to culture of isolates carrying or not a Cas1 gene (including CCP and $Ccp\Delta cas1$) and to blank treatments (culture medium and water). The response was quantified by conductivity measurement of the induced electrolyte leakage⁶.

Treatment	g2- 26	g3- 11	g4- 95	g4- 32	g5- 73	g6- 26	g9- 62	•	g12- 53	g13- 102	•	g16- 11	g16- 77	g18- 87
Purified cassiicolin Cas1		-	17	-	-	-	-	-	-	-	-	-	-	-
CCP - Cas1	12	-	13	-	14	-	-	_	-	-	-	_	-	-
ccp∆cas1 - Cas0	-	_	-	-	-	-	-	_	_	-	-	_	-	-
CCi501 - Cas1	16	-	19	-	-	-	-	_	-	-	-	_	-	-
CNig404 - Cas1	20	-	12	-	-	-	-	_	-	-	-	_	-	-
CCi434 - Cas0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CCi403 - Cas0	-	-	-	-	-	-	-	_	-	_	-	_	-	-
CIND3 - Cas0	-	_	-	-	-	-	-	11	_	-	-	_	11	-
CLN16 - Cas0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTHA3 - Cas0	-	-	-	-	-	-	-	_	-	-	_	_	-	-
Culture medium (blank)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Water (blank)	-	-	-	-	-	-	-	-	-	_	-	_	-	_

Toxin class (Cas1 or Cas0) is indicated for each isolate.

QTL are named by the number of the linkage group (g) on which they are located, and their position. Numbers represent the percentage of explained phenotypic variance.

Result 3: At least two QTL (in yellow) were detected with the purified cassiicolin and with Cas1 culture filtrates, but none with $ccp\Delta cas1$.

Conclusion

Cassiicolin Cas1 is the major virulence factor involved in the compatible interaction between CCP and susceptible rubber clones. It could be a good candidate for effector-based selection.

REFERENCES

- 1. Breton, F. (2000) Journal of Natural Rubber Research 3, 115–128.
- 2. **BARTHE, P. (2007)** Journal of Molecular Biology 367, 89–1013.
- 3. DE LAMOTTE, F. (2007) Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 849, 357–362.
- 4. **DÉON, M. (2012a)** Plant science : an international journal of experimental plant biology 185–186, 227–237.
- 5. **Déon, M. (2014)** Fungal Biology 118, 32–47.
- 6. **Tran, D.M. (2016**) PLOS ONE 11, e0162807. Public Library of Science.