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Abstract

These tips provide a quick and concentrated guide for beginners in the analysis
of network data.

Introduction

Nowadays, networks are widely used in Biology, Bioinformatics, Ecology, Neuroscience
or Epidemiology to represent interaction data [1]. A network contains a set of entities
(the nodes or vertices) that are connected by edges (or links) depicting some interactions
or relationships. These relationships may be either directly observed or deduced from
raw data. The first case encompasses protein-protein interaction (PPI) networks where
interactions between two proteins are experimentally assessed or plant-pollinator
interactions that are directly observed in the field. Gene regulatory networks
reconstructed from gene expression data, co-occurrence networks inferred from species
abundances or animal social contact networks deduced from GPS tracks are some
examples of the second case. New kinds of networks are still emerging (for instance,
cell-cell similarity networks [2], Hi-C networks and image similarity networks [3]).

Networks are very attractive objects and many methods have been developed by
network experts to analyze their structure. However, biological networks are often
analyzed by non-specialists and it may be difficult for them to navigate through the
plethora of concepts and available methods. In this paper, we propose the subsequent
list of quick tips to avoid common pitfalls and enhance the analysis of network data by
biologists.

Tip 1: Formulate questions first, use networks later

Network theory is well established and truly powerful but it cannot be used as a
“black-box”. Building a network should not be considered as an end in itself. We
recommend to (i) establish a list of scientific questions and hypotheses before
manipulating the data and then (ii) evaluate if these questions naturally translate into a
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series of network analyses – rather than making network analyses first and checking
whether they raise questions after. Indeed, it is generally immediate to represent/model
the data with a network, but much trickier to translate a question into a network-based
analysis.

To this end, it is important to go further the network formalism and embrace the
network viewpoint. It relies on a cornerstone idea that makes the strength but also the
complexity of network modelling: any potential interaction is considered within its
context taking into account the other interactions that occur (or not). In particular, it
assumes that any interaction between the pair of vertices (A,B) has to be analyzed
respectively to the other pairs (A,C) and (B,C). For instance, the importance of a
particular edge between two genes will be differently assessed if the target gene is or is
not a hub (i.e., regulated by many genes). This viewpoint does not consider interactions
as independent objects and is thus the exact opposite of examining the set of
interactions one by one.

Finally, it is obviously recommended to check whether your questions and data
actually fit the network viewpoint before performing any analysis. Let us consider, for
instance, a correlation matrix: it can be viewed as a correlation network (one edge per
correlation value, see next Tip) but it would be more natural to use network-free
methods that can naturally be applied on a complete correlation matrix (e.g.,
hierarchical clustering or principal component analysis).

Tip 2: Categorize your network data correctly

To grab the cutting-edge concepts and methods in the networks field, learning the
appropriate vocabulary from graph theory is a prerequisite. In particular, it is important
to categorize your network properly to be sure you apply suitable methods. Different
network categories for different data lead to different approaches: don’t put a square
peg in a round hole!

Links can be directed (from a source to a target), possibly including self-loops (e.g., a
protein interacting with itself or cannibalism in food webs). Ignoring this information
–for the sake of simplicity– would actually betray the original data. When dealing with
edges embedding a value (a weight), we strongly advise you to avoid transforming the
network into a binary one using any ad-hoc threshold value because (i) it clears a
significant part of the available information and (ii) methods handling weighted
networks are usually available. If you do it, just do it as an exploratory step (for
instance, to facilitate a first visualization step - see Tip 4), otherwise it will certainly
bias your analysis (see [4] for an example with ecological networks). Furthermore, the
data analyst must be very cautious since, in the literature, weights can be considered as
intensity-based (the greater the weight, the stronger the edge is) as well as
distance-based (the smaller the weight, the closer the nodes are).

Additional information on the nodes is often available. Nodes can belong to different
categories and edges can be allowed only between nodes of the same category
(bi/tri/multi-partite networks; e.g., nodes as hosts/parasites or as plant/fungus/seed
dispersers). Here, the expected number of edges that is used in many statistical
approaches (see Tip 5) is clearly different than in the general case. Also, nodes can have
spatial positions/coordinates (e.g. nodes as habitat patches or farms in 2D, brain area
in 3D) and be more likely to interact when being close to each other. It is highly
recommended to select methods (or methods’ extensions) that explicitly handle such
properties, either to understand if they truly contribute to organize the network, or to
look for some remaining structure, once accounted for their effect [5]. If the analysis
does not include such covariates in some way, it is still feasible to use them a posteriori
in the interpretation of results [6] – but there is a risk that you simply rediscover this
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information, for instance the categorical or geographical structure of the nodes.

Tip 3: Choose with care an analysis tool

A range of swiss-army-knife software is dedicated to network analysis. It is therefore a
waste of time trying to use unspecific tools with a do-it-yourself approach: don’t
reinvent the wheel! [7] These software tools belong to two distinct categories that have
pros/cons: graphical user interface (mouse-based navigation) and software packages
(command line interface or programming). The first category is mainly dedicated to
powerful and interactive visualization (see Tip 4). It includes the two major open source
software tools Gephi and Cytoscape, both supported by an active community. They
also offer the computation of some network metrics (see Tip 5). The second category is
dominated by the two leading general-purpose network packages NetworkX and igraph,
but there exist plenty of more specific packages (for instance statnet or bipartite in
R). Browser-based visualization tools recently emerged as an intermediate category,
including a collection of javascript libraries (Sigma.js, for instance). Finally, there
exist a limited set of common network file formats (e.g. adjacency list in the format
source target) that you should adopt from the very beginning to be able to easily
switch between these tools.

Meanwhile, we strongly suggest that you learn programming and scripting your
analysis to enhance reproducibility. First, the aforementioned packages are highly
versatile and they include the most recent state-of-the-art techniques to perform a
complete analysis on any category of networks. Since their use demands much more
computing skills, we highly recommend the reading of papers in the “10 simple rules”
collection ( [7] for instance). Moreover, scripting your analysis will guarantee the
reproducibility [8], one of the emerging concepts of this decade in Science. By no way
you can bypass it. On another perspective, reproducibility is also convenient: it takes
just the snap of a finger to re-run the complete analysis on a modified version of your
raw data, on different datasets or with others colleagues interested in the modelling
approach.

Tip 4: Be aware that network visualization is useful
but possibly misleading

As already said, networks take their origin in their ability to represent interaction data
with a mathematical object (a graph) that can be represented from different angles.
Indeed, networks can be visualized in two dimensions, nodes being spread in the plane
and edges drawn with the objective to achieve the most aesthetic design. Meanwhile,
this apparently simple task is in fact a very hard combinatorial problem. An active
research community proposed a series of heuristics (often called layout) aiming at
obtaining a nice network view in a reasonable time, despite the growing size of available
networks. The aforementioned tools (see Tip 3) embed a wide range of easy-to-use
layouts.

However, special care is required to not over-interpret visualization. A layout does
not only provide a nice representation of a network, it makes it optimal for a given set
of objectives (e.g., maximizing attractions between neighbors) that you often ignore. As
a consequence, what you see with your eyes is biased – most often aesthetic, but biased.
When visualizing a network, always keep in mind that the position of a node in such a
display is not part of the data, but results from an algorithm. To this respect, the
distance between two nodes should not be interpreted as an intrinsic measure of
proximity as another display algorithm would result in a –possibly very– different
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distance (see Figure 1). In summary, visualization must remain a tool to find a track for
further network analysis but only in rare cases (mostly when your network is very small)
it can provide relevant conclusions.

In a more anecdotal way, we also advise to consider visualizing the adjacency matrix
as a heatmap (a colored matrix). It allows to represent the edges’ presence or weight
(colored cells) and their absence (blank matrix cells). This is particularly relevant when
a reordering method is applied to sort the matrix rows/columns in an informative
manner (e.g., ordering by increasing value of a metric or according to some clustering
results; see Tips 5 and 6 and also Figure 2 a).
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Fig 1. Same synthetic network vizualized with the package igraph with five different
algorithms: a) random layout, b) Fruchterman and Reingold layout, c) Kamada and
Kawai layout, d) Davidson and Harel layout and e) degree-sorted circle layout.

Tip 5: Avoid blind use of metrics, learn formulas in-
stead

Describing a network, beside visualizing it, usually requires to compute appropriate
summary statistics and the beginner will immediately find the path to a series of
network metrics: one number per node or edge (fine-scale metrics; e.g., degree) or one
number for the whole network (coarse-scale metrics; e.g., connectance or modularity).
Metrics have proliferated and it can be challenging to separate the wheat from the chaff.
Consequently, it is strongly advised to take time to read carefully the mathematical
definition of the metrics you have on hand (see also Tip 9): the deeper the
understanding, the easier the interpretation is. For instance, reading the definition of
the widely-used betweenness centrality, you can understand it is based on shortest paths.
If you intend to use this centrality measure, it is therefore necessary to check if the
shortest path is a relevant concept associated to a process under interest (such as energy
fluxes in food webs) or if it is more questionable (paths in functional brain networks [9]
or paths in contact networks when information or disease diffusion is not under
study [10]).

Special care is also required when analysing directed and/or weighted networks with
extensions of metrics to this case. For instance, the formula of the weighted degree
accounts for two effects (how many neighbors and how large the weights are) that are
impossible to disentangle (a similar objection can be raised for the weighted path [11]):
a weighted degree of 2 can correspond to a single edge of weight 2 or four edges of
weights 0.5. Lastly, coarse grain metrics are often used to compare networks (networks
from different data or conditions, or simulated networks as mentioned in Tip 7). Again,
only their mathematical formulation can confirm that these numbers can be compared
when, for instance, network size or density is varying (as mentioned in [12] for brain
networks).

Alternatively, one could be tempted to compute all the available metrics and try to
pull a rabbit out of the hat. This approach has a clear interest – it helps understanding
how metrics are correlated – but it is not hypothesis-driven as recommended in Tip 1.
We prefer suggesting an incremental approach where you select a metric related to a
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particular hypothesis, and continue with another metric unless you have the answer to
your fundamental questions on the data.

Tip 6: Choose the clustering method you need, not
the one you know

With the data avalanche arising this decade, it is more and more frequent to investigate
large networks. Luckily, we can bet that vertices in your network can be aggregated into
clusters because they tend to be connected in a similar way. In other words, we can
simplify the complexity by identifying the network meso-scale structure (i.e. zooming
out the network).

This idea is often understood as finding the modular structure of a network (i.e.
dense clusters of nodes poorly connected with others). Community detection
methods [13] are therefore suitable to these situations where the network is de facto
modular. Notably, they also have the advantage of being highly computationally
efficient. However, it is frequent that your network has a non-modular structure ( [14],
Figure 2 a) – for instance genes that are hubs connected to other peripheral genes –
while the detection methods always give a solution (Figure 2 b). This is the reason why
a series of alternative methods propose to infer the unknown structure that is actually
present -not necessarily a modular structure (quoting Betzel and colleagues, nodes can
be involved in a “diversity of meso-scale architecture” [15]). Methods based on the
stochastic block model are a valuable option ( [14,16], Figure 2 c), recently used in
Biology [15,17]. They have the advantage of explicitly (and therefore correctly)
modelling edge directions and weights by means of different statistical distributions [18].
Another current approach consists in performing a clustering on node characteristics: it
includes motifs-based approaches [19] and a wide range of innovative node’s embedding
techniques ( [20], Figure 2 c) including deep learning perspectives [21].

a) b)

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

● ●●
●

●
●

●

●●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

● ●

●
●

●
●

●

●

●

●● ● ●
●

●

●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

c)

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

● ●●
●

●
●

●

●●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

● ●

●
●

●
●

●

●

●

●● ● ●
●

●

●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

Fig 2. When a network is not fully modular, the community detection can fail to
capture the actual network structure. This figure illustrates this on a network simulated
with three clusters of 50 nodes linked by a mixture of assortative (i.e. module-like) and
dis-assortative patterns. a) Adjacency matrix represented with black cells showing
edges’ presence and with a column/row ordering consistent with the three clusters.
Nodes of cluster 1 (first 50 rows/columns) are not connected between themselves but
connected with those of cluster 2 (next 50 lines/columns). Nodes of cluster 2 are slightly
connected between themselves, whereas cluster 3 (50 last rows/columns) forms a
module. b-c) Network visualized with cluster 1 on top-left, cluster 2 on bottom and
cluster 3 on the left. Nodes’ color is given by the clusters retrieved by b) the community
detection method Louvain [22] c) the stochastic block model parameters estimated by
the CRAN R package blockmodels, as well as the node’s embedding method
node2vec [23] (followed by k-means clustering).
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Tip 7: Don’t choose the easy way when simulating
networks

Simulating networks consists in drawing “realistic” networks, which can then be
compared with the observed one. Simulated networks are supposed to display typical
properties arising from a null model. The rationale is then to focus on the differences
between the observed network and the simulated ones to highlight interesting,
significant features of the observed one.

Many random graph models (e.g., Erdös-Renyi, small-world, scale-free, SBM,
Exponential Random Graph, configuration model) exist and can be used as null models,
but we recommend not to use them as “black-boxes”. Indeed, in many situations, the
analyst is aware of a series of properties that should be displayed by the network:
imbalanced degree distribution, different nodes’ roles associated with available side
information, forbidden interactions, etc. Such expected properties must be encoded in
the simulation process, otherwise they will emerge and be detected as significant effects,
bringing no new insight for the problem at hand. The simulation process must therefore
preserve all the data properties except those to be addressed. For instance, when
assessing whether the number of feed-forward loops is unexpected in a given
transcription network, the simulation procedure must rely on fixed number of nodes and
degrees whereas the number of these loops remains free.

Lastly, when the network under study is not directly observed but built from raw
data interpretation, it is often relevant to simulate the whole construction process.
Consider the case of contact networks inferred from trajectories/movement data: one
can either simulate trajectories keeping some properties of the original data and then
build a contact network, or directly simulate a “realistic” contact network. The former
approach will intrinsically account for the uncertainties and biases induced by the
construction steps, which are likely to be overlooked by the later approach. Hence,
assuming a significant effect is revealed by the later approach, it can be related to a
truly atypical property of the network under study, but it can also result from a bias in
the construction process.

Tip 8: Reconsider the data to build multiple network
layers

A network is classically the result of some data aggregation. For instance, interactions
can be recorded during a large period of time, by snapshots (rounds of data collection)
or continuously (continuous data acquisition) and aggregated into a single network. On
the other hand, interactions can be observed at different spatial locations but ultimately
gathered in a single dataset. Finally, different kind of interactions may be observed but,
for the sake of simplicity, they are considered as equivalent and modelled by a single
edge type. It is now time to dis-aggregate your network and obtain multiple networks
layers (e.g. networks in time or space, multiple types of edges). Indeed, working with
multilayer networks is no more off the beaten track and represents a unique opportunity
to tackle new questions [24]. You are strongly urged to keep in mind (and on hand) the
different layers of data (time, space, type,...) and consider networks composed by
multiple layers.

Among multilayer networks, we suggest you keep up-to-date at least on the following
instances. A network is called dynamic when it gathers a time series of networks (i.e.
different snapshots, the nodes’ list possibly varying in time). There already exist
extensions of the concepts developed in Tips 5,6 to this case - in particular dynamic
community detection [25]. If the edges are observed continuously (appear and disappear
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continuously with time), this flow of edges is called a temporal network [26]. When
networks are observed at different spatial locations, the concept of metanetwork has
emerged in particular in Ecology [27]. Finally, when different layers correspond to
different interaction types, a multiplex network is built: between any two nodes, there
possibly exists more than one edge - one per interaction type at most (often represented
with different colors; see for instance trophic and non-trophic interactions between
species in [17]).

Tip 9: Dive into the network literature, beyond your
discipline

Network science has emerged “at the dawn of the 21st century”, as mentioned by one of
the pioneers Albert-László Barabási (http://networksciencebook.com). It now
involves a hyper-active community of researchers from different domains such as
Physics, Statistics, Computer Science or Social Science. As a result, a massive literature
on networks exists – and it is challenging for biologists to dive into it. Indeed, we are
not used to explore the bibliography outside our research domain. However, without
any doubt you will highly benefit from a round trip in this literature, provided that you
make the effort to learn the appropriate vocabulary in the field. Reviews [13] and
reference books [24,28] are obviously good entry-points for developing your network
skills. For instance, the reader can find thousands of articles dedicated to the network
clustering problem, dealing with different particular settings. This quantity of
knowledge must be a source of inspiration. Lastly, why would you not experience
attending one of the complex networks’ conferences (e.g. NetSci conference series)?

Conclusion

The 9 tips presented here must be a way for the data analyst to get a foot in the door of
network data analysis. These tips are not exclusive and we are aware of other
network-based questions that deserve a special interest, including diffusion on networks
for instance. Still, the network non-specialist must be confident in his ability to learn,
step by step, the network concepts and methods with a productive effect on his
scientific questions.
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17. S. Kéfi, V. Miele, E. A. Wieters, S. A. Navarrete, and E. L. Berlow, “How
Structured Is the Entangled Bank? The Surprisingly Simple Organization of
Multiplex Ecological Networks Leads to Increased Persistence and Resilience,”
PLoS Biol., vol. 14, no. 8, p. e1002527, 2016.

18. M. Mariadassou, S. Robin, C. Vacher, et al., “Uncovering latent structure in
valued graphs: a variational approach,” The Annals of Applied Statistics, vol. 4,
no. 2, pp. 715–742, 2010.

19. D. B. Stouffer, M. Sales-Pardo, M. I. Sirer, and J. Bascompte, “Evolutionary
conservation of species’ roles in food webs,” Science, vol. 335, no. 6075,
pp. 1489–1492, 2012.

8



20. P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and
performance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

21. W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:
Methods and applications,” IEEE Data Engineering Bulletin, 2017.

22. V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of Statistical Mechanics : Theory and
Experiment, 2008.

23. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 855–864, ACM, 2016.

24. G. Bianconi, Multilayer Networks: Structure and Function. Oxford university
press, 2018.

25. G. Rossetti and R. Cazabet, “Community discovery in dynamic networks: a
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 2, p. 35, 2018.

26. P. Holme, “Modern temporal network theory: a colloquium,” The European
Physical Journal B, vol. 88, no. 9, p. 234, 2015.

27. M. Ohlmann, V. Miele, S. Dray, L. Chalmandrier, L. O’Connor, and W. Thuiller,
“Diversity indices for ecological networks: a unifying framework using Hill
numbers,” Ecology letters, 2019.

28. M. Newman, Networks. Oxford university press, 2018.

9


	Formulate questions first, use networks later
	Categorize your network data correctly
	Choose with care an analysis tool
	Be aware that network visualization is useful but possibly misleading
	Avoid blind use of metrics, learn formulas instead
	Choose the clustering method you need, not the one you know
	Don't choose the easy way when simulating networks
	Reconsider the data to build multiple network layers
	Dive into the network literature, beyond your discipline

