Supporting Information

Tuning the Pr Valence State to Design High Oxygen Mobility, Redox and Transport Properties in the CeO₂-ZrO₂-PrO_x Phase Diagram

Vincent Frizon^{,,+, Θ}, Jean-Marc Bassat^{,+}, Michael Pollet^{,+}, Etienne Durand^{,+}, Julien Hernandez^{\$}, Karine Pajot[¥], Philippe Vernoux^{Θ} and Alain Demourgues^{*,+}

- ^{,+} : CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. Albert Schweitzer, 33608 Pessac, France
- \$: SOLVAY, RIC, 52 rue de la Haie Coq, 93308 Aubervilliers Cedex, France
- ¥: 78943 Vélizy-Villacoublay
- Θ: IRCELYON, 2 avenue Albert Einstein, F-69626, Villeurbanne Cedex, France

* : Corresponding author

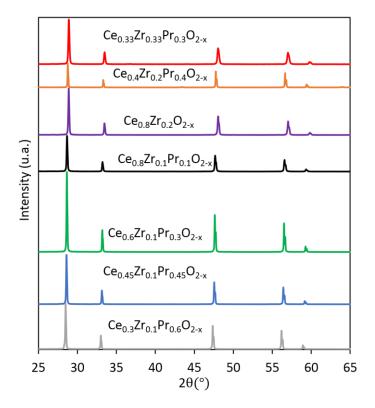
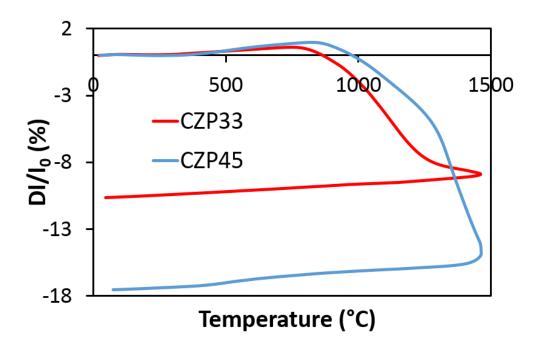
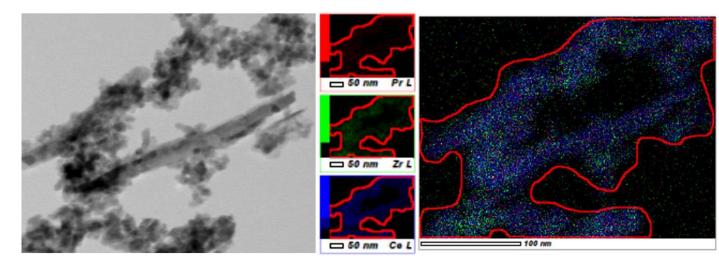
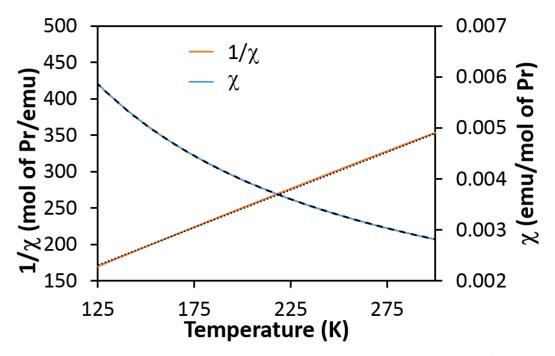
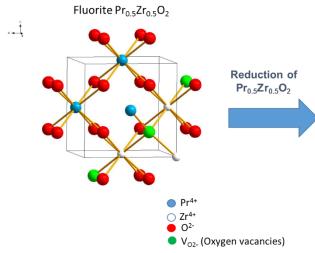


Figure S1: Powder XRD patterns of Ce_{1-x-y}Zr_xPr_yO_{2-z} annealed at 1400°C under air.


Figure S2: Thermal expansion behavior of CZP33 ($Ce_{0.33}Zr_{0.33}Pr_{0.33}O_{2-x}$) and CZP45 ($Ce_{0.45}Zr_{0.1}Pr_{0.45}O_{2-x}$) complex oxides (pellets from powders annealed at T=700°C under air) from room temperature to T= 1400°C under air.

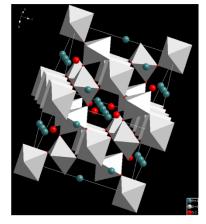
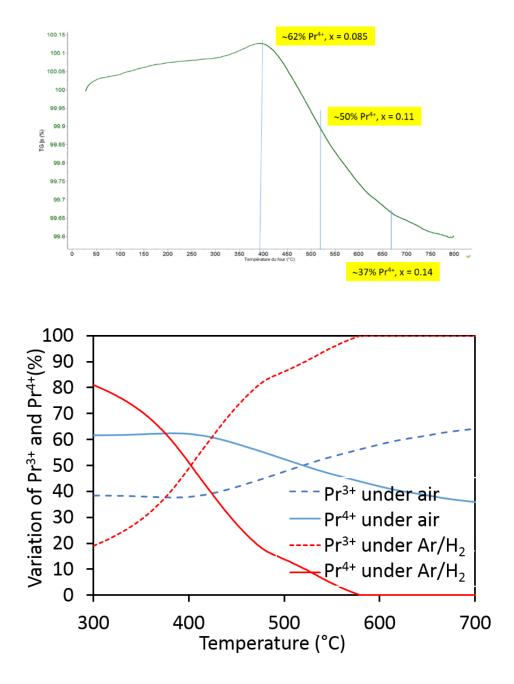
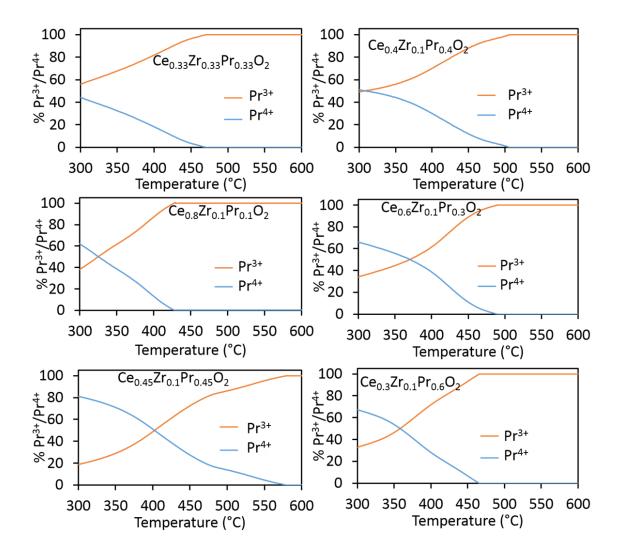
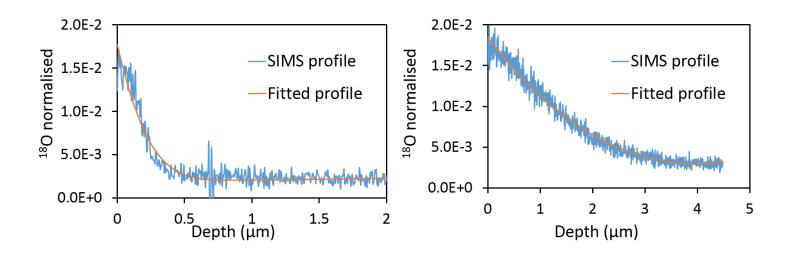

Figure S3: STEM light field image (left) analysis and EDX elementary analyses of CZP10 complex oxide (right, "three colors" images obtained by addition of the three elementary cartographies).

Figure S4: Temperature dependence of the magnetic susceptibility χ and the inverse $1/\chi$ for the Ce_{0.45}Zr_{0.1}Pr_{0.45}O_{2-z} compound annealed at 700°C under air (experiments and fittings with the Curie-Weiss law).


Pyrochlore $Pr_2Zr_2O_7$ (Fd-3m), Pr/Zr ordered in 16d/16c site


 $V_{\rm O2\-}$ (oxygen vacancies) located in 8a site (1/8, 1/8, 1/8)

lons	sites	x/a	y/b	z/c
Pr ³⁺	16d	1/2	1/2	1/2
Zr4+	16c	0	0	0
0-2	8b	3/8	3/8	3/8
0-2	48f	0.3354(5)	1/8	1/8


Figure S5: Oxygen vacancies ordering in $Pr_2Zr_2O_7$ Pyrochlore-type structure and deduced oxygen vacancy environment (V_{O2} - Zr_3Pr site) in the related Fluorite-type network.

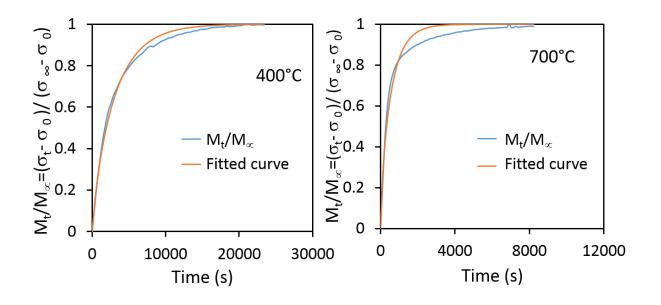

Figure S6: TGA under air (speed rate : 5° C/min) of Ce_{0.45}Zr_{0.1}Pr_{0.45}O_{2-x} pellet (sintered under air at 1400°C) and estimation of Pr⁴⁺/Pr³⁺ molar concentration evolution versus temperature under air and Ar/H₂.

Figure S7: Estimation from TGA measurements under Ar/H_2 of Pr^{4+}/Pr^{3+} molar concentration evolution versus temperature.

Figure S8: Normalized oxygen concentration profiles recorded on dense pellets with CZ (left) and CZP10 (right) composition, after a preliminary ¹⁸O exchange performed at T=400°C during 1h.

Figure S9.: Electronic conductivity relaxation profiles (experiments and fittings), recorded on CZP45 complex oxide and performed at 400°C and 700°C.

Table S1: Initial Pr^{4+} rates, $\Delta m/m$, deduced ΔO exchanged oxygen and final TR^{4+}/TR^{3+} molar contents after reduction (TGA, Ar/5% H₂, or H₂/TPR, Ar/1%H₂) of complex oxides $Ce_{1-x-y}Zr_xPr_yO_{2-z}$ (see table 1 for oxides formulae) annealed at T = 700 °C under air.

Initial		TGA					H ₂ -TPR				
Oxide Pr ⁴⁺ /Pr ³⁺ ratio	T range (°C)	Δm/m (%)	ΔΟ	Pr ⁴⁺ /Pr ³⁺	Ce ⁴⁺ /Ce ³⁺	H ₂ consumption (μmol H ₂ /g)	ΔΟ	Pr ⁴⁺ /Pr ³⁺	Ce ⁴⁺ /Ce ³⁺		
		320-470	-0.6	0.06	10/90	100/0	497	0.07	0/100	94/6	
CZP33 44/56	470-700	-0.9	0.08	0/100	60/40	497	0.07	0/100	94/6		
	700-900	-0.4	0.04	0/100	37/63			-			
		380-500	-0.4	0.04	-	90/10	497	0.08		80/20	
CZ -	500-700	-0.8	0.09	-	69/31	497	0.08	-	80/20		
	700-900	-0.6	0.06	-	53/47						
	305-490	-0.9	0.09	3/97	100/0						
CZP40	CZP40 51/49	490-700	-0.6	0.06	0/100	73/27					
		700-900	-0.4	0.04	0/100	56/44					
		310-460	-0.4	0.04	0/100	99/1	345	0.06	0/100	92/8	
CZP10	CZP10 62/38	460-700	-1.0	0.1	0/100	73/27					
		700-900	-0.6	0.06	0/100	57/43			-		
	CZP30 66/34	305-490	-0.9	0.1	1/99	100/0					
CZP30		490-700	-0.8	0.08	0/100	73/27	-				
	700-900	-0.5	0.05	0/100	56/44						
CZP45 81/19	300-520	-1.5	0.16	11/89	100/0	1007	0.17	4/96	100/0		
	520-700	-0.5	0.05	0/100	88/13						
		700-900	-0.4	0.04	0/100	72/29			-		
CZDC0 CZ (22	290-430	-1.6	0.16	14/86	100/0						
	430-540	-0.9	0.09	0/100	69/31]					
CZP60	CZP60 67/33	540-700	-0.3	0.03	0/100	52/48			-		
		700-900	-0.3	0.03	0/100	30/70					

CZP33	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
0 Pr	1.23	4.95	7.4	4.95	1.23
1 Pr	4.95	14.8	14.8	4.95	-
2 Pr	7.4	14.8	7.4	-	-
3 Pr	4.95	4.95	-	-	-
4 Pr	1.23	-	-	-	-
CZ	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
	0.16	2.56	15.36	40.96	40.96
CZP40	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
0 Pr	0.16	1.28	3.84	5.12	2.56
1 Pr	1.28	7.68	15.36	10.24	-
2 Pr	3.84	15.36	15.36	-	-
3 Pr	5.12	10.24	-	-	-
4 Pr	2.56	-	-	-	-
CZP10	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
0 Pr	0.01	0.3	3.8	20.45	40.95
1 Pr	0.3	0.94	7.65	20.45	-
2 Pr	0.06	0.94	3.8	-	-
3 Pr	0.04	0.3	-	-	-
4 Pr	0.01	-	-	-	-
CZP30	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
0 Pr	0.01	0.24	2.16	8.64	12.96
1 Pr	0.12	2.16	12.96	25.92	-
2 Pr	0.54	6.48	19.44	-	-
3 Pr	1.08	6.48	-	-	-
4 Pr	0.81	-	-	-	-
CZP45	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
0 Pr	0.01	0.19	1.2	3.65	4.1
1 Pr	0.19	2.43	10.94	16.4	-
2 Pr	1.2	10.94	24.6	-	-
3 Pr	3.65	16.4	-	-	-
4 Pr	4.1	-	-	-	-
CZP60	0 Ce	1 Ce	2 Ce	3 Ce	4 Ce
021 00	0.04	0.12	0.5	1.08	0.81
0 Pr	0.01	0.12	0.5		
	0.01 0.24	2.16	6.48	6.48	-
0 Pr					-
0 Pr 1 Pr	0.24	2.16	6.48		- -

Table S2: Probabilities for various local O environments in CZP complex oxides deduced from multinomial law calculation (see table 1 for oxides formulae).