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Abstract

We consider fractional hedonic games, a subclass of coalition formation games that
can be succinctly modeled by means of a graph in which nodes represent agents and edge
weights the degree of preference of the corresponding endpoints. The happiness or utility
of an agent for being in a coalition is the average value she ascribes to its members. We
adopt Nash stable outcomes as the target solution concept; that is we focus on states in
which no agent can improve her utility by unilaterally changing her own group. We provide
existence, efficiency and complexity results for games played on both general and specific
graph topologies. As to the efficiency results, we mainly study the quality of the best Nash
stable outcome and refer to the ratio between the social welfare of an optimal coalition
structure and the one of such an equilibrium as to the price of stability. In this respect, we
remark that a best Nash stable outcome has a natural meaning of stability, since it is the
optimal solution among the ones which can be accepted by selfish agents. We provide upper
and lower bounds on the price of stability for different topologies, both in case of weighted
and unweighted edges. Beside the results for general graphs, we give refined bounds for
various specific cases, such as triangle-free, bipartite graphs and tree graphs. For these
families, we also show how to efficiently compute Nash stable outcomes with provable good
social welfare.

c©2018 AI Access Foundation. All rights reserved.
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1. Introduction

In many economical, social and political situations, individuals carry out activities in groups
rather than by themselves. In these scenarios, understanding the “happiness” of each mem-
ber becomes of crucial importance. As an example, the utility of an individual in a group
sharing a resource depends both on the consumption level of the resource and on the iden-
tity of the members in the group. Similarly, the utility for a party belonging to a political
coalition depends both on the party trait and on the identity of its members. Not sur-
prisingly, the optimization problem of partitioning agents into coalitions so as to maximize
the social welfare is a major research challenge in AI and it has been extensively investi-
gated in the field of multi-agent systems under the name of Coalition Structure Generation
(CSG). Several works characterize the computational complexity of finding optimal solu-
tions, providing efficient algorithms, hardness results and suitable approximations under
different assumptions or variants of the problem (Aziz & de Keijzer, 2011; Bachrach, Kohli,
Kolmogorov, & Zadimoghaddam, 2013; Bansal, Blum, & Chawla, 2004; Deng & Papadim-
itriou, 1994; Ohta, Conitzer, Ichimura, Sakurai, Iwasaki, & Yokoo, 2009; Rahwan, Michalak,
Wooldridge, & Jennings, 2012; Ueda, Iwasaki, Yokoo, Silaghi, Hirayama, & Matsui, 2010;
Voice, Polukarov, & Jennings, 2012). A recent survey of the different approaches in this
setting is also available (Rahwan, Michalak, Wooldridge, & Jennings, 2015).

Hedonic games, introduced by Dreze and Greenberg (1980), describe the dependence
of an agent’s utility (or payoff) on the identity of the members of her group. They are
games in which agents have preferences over the set of all possible agent coalition structures
(outcomes). In particular, the utility of each agent only depends on the composition of the
coalition she belongs to, without any form of externality, that is, without caring about the
structure of the other coalitions. A significant stream of research (Bogomolnaia & Jackson,
2002; Banerjee, Konishi, & Sönmez, 2001; Elkind, Fanelli, & Flammini, 2016; Elkind &
Wooldridge, 2009; Gairing & Savani, 2010) characterize the existence and the properties
of several notions of stability in hedonic games, such as individual stability, contractual
individual stability, Nash stability, core, strict core, and others. In this paper we focus on
Nash stability and on the stronger notion of k-Strong Nash stability. A coalition structure
is Nash stable if no agent can improve her utility by unilaterally changing her own coalition.
Moreover, it is k-Strong Nash stable if no subset of at most k agents can cooperatively
deviate so as to induce a benefit to all of its members. There are also examples of studies
on Nash stability in hedonic games, in which self-organized coalition structures are obtained
from the decisions taken by independent and selfish agents (Bloch & Diamantoudi, 2011;
Feldman, Lewin-Eytan, & Naor, 2012; Gairing & Savani, 2010).

In this work, we consider the class of (symmetric) fractional hedonic games introduced
by Aziz, Brandt, and Harrenstein (2014). These games are modeled by an undirected
graph in which nodes represent agents and edge weights the happiness of the corresponding
endpoints for belonging to the same coalition. The utility that agent i gets when belonging
to coalition C is given by the total weight of the edges incident to i having the other endpoint
in C (the total happiness of i in C), divided by the cardinality of C, i.e., the number of
its nodes. The social welfare of a coalition structure is the sum of all the agents’ utilities.
Given that the utility of an agent is not simply defined as her total happiness, but as its
ratio with the coalition size, fractional hedonic games can model several natural behavioral
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dynamics in social environments. In particular, when defined on undirected unweighted
bipartite graphs, they suitably represent a basic economic scenario in which each agent can
be considered as a buyer or a seller. There are only edges connecting buyers and sellers and
every agent sees the others of the same type as market competitors. In a situation of free
movement, each agent prefers to be situated in a group (market) with a small number of
competitors: Each buyer wants to be in a group with many sellers and few other buyers,
thus maximizing their ratio, in order to decrease the price of the good. On the other hand, a
seller wants to be situated in a group maximizing the number of buyers against the number
of sellers, in order to be able to increase the price of the good and gain a higher profit. This
scenario is referred to as Bakers and Millers (Aziz et al., 2014) and can be generalized to
situations in which there are more than two types of agents by means of k-partite graphs.

1.1 Our Contribution

We investigate the class of fractional hedonic games under Nash stability. Unlike the core,
in this setting, every agent cannot coordinate with the others in order to understand if she
can improve her utility. Therefore, this notion of stability can be better suited in settings
in which it is not possible to assume the ability of coordination. We also consider k-strong
Nash stable outcomes, which differ from the core stable ones. In fact, while on the one
hand an outcome is core stable if no group of agents can get an advantage in forming a
new coalition by itself, on the other hand an outcome is k-strong Nash stable if no set of k
agents can benefit of a deviation possibly leading them also in different coalitions (and not
necessarily in the new one formed by all of them). We investigate Nash stability in fractional
hedonic games with the aim of characterizing the existence, efficiency and computability of
stable outcomes. Our results are described in detail in the following subsections.

1.1.1 Existence

We first focus on the existence of Nash stable coalition structures. We show that, while in
presence of negative weights Nash stable outcomes are not guaranteed to exist (Observation
2), with non-negative ones the basic coalition structure in which all agents belong to the
same coalition (grand coalition) is stable (Observation 3). Thus, in the sequel we restrict
to the case of non-negative edge weights. We also show that k-Strong Nash stable coalition
structure are not guaranteed to exist even for unweighted graphs and k = 2 (Theorem 2).
These results are summarized in Table 1.

Nash stable 2–strong Nash stable
coalition structures coalition structures

unweighted
always exists (Observation 3)

may not exist (Theorem 2)non-negative weights
general weights may not exist (Observation 2)

Table 1: Results on the existence of Nash stable coalition structures.
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Bilò, Fanelli, Flammini, Monaco, & Moscardelli

1.1.2 Efficiency

We then evaluate the performance of Nash stable outcomes by means of the widely used
notions of price of anarchy (Koutsoupias & Papadimitriou, 2009) and price of stability
(Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, & Roughgarden, 2008). The price of
anarchy measures in a pessimistic way the efficiency loss of Nash stable outcomes. It is
the worse-case ratio between the social welfare of an optimal coalition structure and the
one of a Nash stable coalition structure. We give an upper bound of O(n) on the price of
anarchy for weighted graphs (Theorem 3) and show that it is asymptotically tight even for
unweighted paths (Theorem 4). These results are summarized in Table 2.

lower bound upper bound

path, unweighted
Ω(n) (Theorem 4) n− 1 (Theorem 3)

general topology, weighted

Table 2: Results on the Price of Anarchy.

We then turn our attention to the price of stability, that is the best-case ratio between the
social welfare of an optimal coalition structure and the one of a Nash stable solution. A best
Nash stable outcome has a natural meaning of stability, since it is an optimal solution among
the ones that can be accepted by selfish agents. In fact, in many networking applications and
multi-agent systems, agents are never completely unrestricted; rather, they interact with
an underlying protocol that essentially proposes a collective solution to all participants,
each of whom can either accept or defect. As a result, it is in the interest of the protocol
designer to seek for a best outcome at equilibrium. In fact, this can naturally be viewed as
the optimum, subject to the constraint that the solution has to be stable, that is with no
agent having an incentive to unilaterally deviate once it is offered. We first prove a lower
bound of Ω(n) on the price of stability, holding even for weighted stars (Theorem 5), that
asymptotically matches the general upper bound on the price of anarchy given in Theorem
3. Further interesting results can be achieved for unweighted graphs. In such a setting, we
show a lower bound of 2 for general graphs (Theorem 6). Moreover we prove an interesting
property: if a graph admits a 2-Strong Nash stable coalition structure, then its price of
stability is at most 4 (Theorem 7). Even if 2-Strong Nash stable outcomes are not always
guaranteed to exist (Theorem 2), such a property can be exploited to prove a constant upper
bound on the price of stability for specific graphs. Finally, we consider particular topologies,
such as triangle-free, bipartite and tree graphs. In particular, for triangle-free graphs we
prove an upper bound of 18

7 on the price of stability (Theorem 8), and for bipartite graphs

an upper bound of 6(3 − 2
√

2) ≈ 1.0294 (Theorem 10) and a lower bound of 400
399 ≈ 1.0025

(Theorem 11); finally, for trees we prove that any optimal coalition structure is Nash stable,
i.e., the price of stability is 1 (Theorem 12). These results are summarized in Table 3.

1.1.3 Computation

As to the computation of Nash stable coalition structures, we first show that the class of
fractional hedonic games does not possess the finite improvement path property, even when
considering best-response dynamics. Namely, such dynamics might have infinite length,
even for unweighted bipartite graphs (Theorem 13). This implies that a Nash stable out-
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lower bound upper bound

star, weighted
Ω(n) (Theorem 5)

n− 1 (Theorem 3)
general topology, weighted

general topology, unweighted
2 (Theorem 6)

(main open problem)

triangle free, unweighted
1.0025 (Theorem 11)

18/7 (Theorem 8)
bipartite, unweighted 1.0294 (Theorem 10)

trees, unweighted 1 (Theorem 12)

Table 3: Results on the Price of Stability.

come cannot be reached by independent selfish agents, unless some kind of coordination or
centralized control is enforced. Moreover, we prove that the problems of computing a best
Nash stable coalition structure and an optimal one (not necessarily stable) are NP-hard
(Theorem 14). On the positive side, we design a polynomial time algorithm which returns
a stable outcome approximating the social welfare of the optimal coalition structure by
a factor of 18

7 (Theorem 15) for unweighted triangle-free graphs and by a factor of 2 for
unweighted bipartite graphs (Theorem 16). For unweighted trees, we design a polynomial
time algorithm computing an optimal coalition structure that is also Nash stable (Theorem
17). These results are summarized in Table 4.

complexity approximation convergence

general topology, NP-hard
open problem

no (Theorem 13)
weighted and unweighted (Theorem 14)
triangle free, unweighted

open problem
18/7 (Theorem 8)

bipartite, unweighted 2 (Theorem 16)

trees, unweighted P (Theorem 17) 1 (Theorem 17) open problem

Table 4: Results on the computation of Nash stable coalition structures. The complexity
column refers to the hardness of computing best-quality Nash stable and optimal
(non necessarily stable) coalition structures. The convergence column refers to the
convergence of best–response dynamics.

1.2 Related Work

Before discussing related work concerning hedonic games, we describe the state-of-art of the
more general Coalition Structure Generation (CSG) problem. Concerning the general CSG,
dynamic programming is one of the several approaches used to solve the problem. To date,
one of the most efficient dynamic programming algorithm has been proposed by Rahwan
and Jennings (2008), and returns an optimal solution in time O(3n). A number of anytime
algorithms (i.e., algorithms returning solutions of monotonically improving quality at any
time during the execution), as well as heuristics (with no guarantee on the quality of the
returned solution) have been developed for CSG (Rahwan et al., 2012; Rahwan, Ramchurn,
Jennings, & Giovannucci, 2009; Sandholm, Larson, Andersson, Shehory, & Tohmé, 1999);
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Bilò, Fanelli, Flammini, Monaco, & Moscardelli

also greedy algorithms have been developed (Shehory & Kraus, 1998). In CSG, since the
number of possible coalitions and coalition structures is exponential, the mere specification
of the input with all the corresponding values is already intractable. Therefore, researchers
have focused on suitable subclasses allowing succinct descriptions. A widely studied setting,
introduced by Deng and Papadimitriou (1994) and also studied in other works (Voice et al.,
2012), is the one in which the agents are nodes of a graph, and the value of a coalition
is the sum of the weights of the edges between its coalition members. Notice that the
optimal coalition structure in this setting corresponds to the one of the additively hedonic
games described in more detail below. Bachrach et al. (2013) show that finding an optimal
solution is hard even for planar graphs. They also provided algorithms with constant factor
approximations for planar, minor-free and bounded degree graphs.

Aziz and de Keijzer (2011) show that when the number of agent types is bounded by
a constant (two agents have the same type if they are strategically equivalent) or in many
cases in which the game is represented compactly on combinatorial domains, the problem
becomes polynomially solvable. Alternative approaches to deal with specific valuations
consist in defining a set of rules modeling in a concise way a value function, in order to
efficiently solve the CSG problem by applying constraint optimization techniques (Ohta
et al., 2009), or assuming that the value of a coalition is given by an optimal solution of a
distributed constraint optimization problem among the agents of a coalition (Ueda et al.,
2010). The online version of the CSG problem has been recently considered by Flammini,
Monaco, Moscardelli, Shalom, and Zaks (2018).

Bachrach, Meir, Jung, and Kohli (2010) consider the variant of the coalitional skill
games, where the value of a coalition depends on the tasks its members can achieve. They
provide hardness results, showing that also in restricted versions computing the optimal
coalition structure is difficult. On the positive side, they also provide a polynomial time
algorithm for specific instances with a bounded number of tasks.

Bansal et al. (2004) focus on the following related problem: given a complete graph
where each edge is labeled with ”+” or ”−”, finding a coalition structure that maximizes
the number of ”+” edges within coalitions, plus the number of ”−” edges between coalitions
(equivalently, minimizes the number of disagreements: the number of ”−” edges inside
coalitions plus the number of ”+” edges between coalitions). These two problems are
equivalent at optimality and are shown to be both NP-hard. Regarding approximation
results, the authors provide a constant factor approximation for minimizing disagreements,
and a PTAS for the related maximization problem.

Hedonic games, where each agent has a complete and transitive preference relation
over all possible coalitions she can belong to without any form of externality, have been
first formalized by Dreze and Greenberg (1980), who analyze them under a cooperative
perspective. The hardness of computing the core, Nash stable set and individually stable
solutions under several assumptions is shown by Ballester (2004).

Additively separable hedonic games constitute a natural class of hedonic games, that can
be succinctly represented by means of a preference graph of the agents. In these games,
each agent has a value for any other one, and her utility for being in a coalition is simply
the sum of the values she assigns to its members. Properties guaranteeing the existence of
core allocations (a core is a coalition structure in which no group of agents has an incentive
to form a different coalition) are studied by Banerjee et al. (2001), while Bogomolnaia
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and Jackson (2002), besides the core, consider other forms of stability, such as Nash and
individual stability. Olsen (2009) proves that the problem of deciding whether a Nash
stable outcome exists is NP-complete, as well as the one of deciding the existence of a non-
trivial (different from the grand coalition) Nash stable outcome in case of non-negative and
symmetric preferences. Bloch and Diamantoudi (2011) investigate non-cooperative coalition
formation and identify conditions for the existence of stable outcomes. In a similar way,
Apt and Witzel (2009) study how certain proposed rules can transform coalition structures
into other ones with specific stability properties. Aziz, Brandt, and Seedig (2011) provide a
polynomial time algorithm for determining contractually individually stable solutions and
show the hardness of determining whether the core or the strict core are not empty, as well
as verifying whether the grand coalition is contractually strict core stable or Pareto optimal.

Fractional hedonic games, another natural and succinctly representable class of hedo-
nic games by means of preference graphs, are introduced by Aziz et al. (2014) from the
cooperative perspective. They prove that the core can be empty for general graphs and
that it is not empty in some classes of undirected unweighted graphs (that is, graphs with
degree at most 2, multipartite complete graphs, bipartite graphs admitting a perfect match-
ing and regular bipartite graphs). Brandl, Brandt, and Strobel (2015) study the existence
of either the core and individually stable coalition structures and the computational com-
plexity of the related existence decision problems. Moreover, they show that the problem
of understanding whether fractional hedonic games admit Nash stable coalition structures
is NP-complete. However, if all weights are non-negative (this setting is called social frac-
tional hedonic games in Peters & Elkind, 2015), the grand coalition is trivially a Nash stable
coalition structure, that is, a Nash stable coalition structure always exists. In this paper
we show that, even in the unweighted case (i.e., a special case of non-negative weights), the
problems of computing a best Nash stable coalition structure and an optimal solution (non
necessarily Nash stable) are NP-hard.

Olsen (2012) investigates computational issues and the existence of Nash stable out-
comes in the variant of fractional hedonic games in which the utility of agent i in coalition
C is defined as the total happiness of i in C divided by |C| − 1, that is, the agent herself is
not accounted to the population of the coalition structure. Monaco, Moscardelli, and Velaj
(2018) consider strong equilibria and core stable outcomes in this setting. Although the
difference between the two utility functions might seem “almost” negligible, the sets of Nash
stable outcomes they induce on the same graphs can be quite different. In Section 6 we will
discuss in detail the relationship between our model and the Olsen’s variant. Aziz, Gaspers,
Gudmundsson, Mestre, and Täubig (2015) investigate the computational complexity prob-
lem of computing welfare maximizing partitions, according to several notions of welfare,
providing harness and approximation results.

Other classes of hedonic games are studied in the literature. In particular, Peters (2016)
considers “graphical” hedonic games where agents form the vertices of an undirected graph,
and each agent’s utility function only depends on the actions taken by her neighbors (with
general value functions). It is proven that, when agent graphs have bounded treewidth and
bounded degree, the problem of finding Nash stable outcomes can be efficiently solved. This
result is similar to the one shown in this paper for trees (Theorem 17), but for the special
case in which the maximum degree of the tree is bounded by a constant. Peters and Elkind
(2015) consider several classes of hedonic games and identify simple conditions that are
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sufficient for the problem of checking whether a given game admits a stable outcome to be
computationally hard. Feldman et al. (2012) characterize Nash stable coalition structures in
some interesting subclasses of hedonic games. It is worth noticing that their model is quite
different from the one considered in this paper: they do not have an underlying graph, but
players lie in a metric space with a distance function modeling their distance or “similarity”.
Finally, Nash stable coalition structures are also considered in social distance games (Balliu,
Flammini, Melideo, & Olivetti, 2017a), where the utility of an agent depends on the average
inverse distance from the other agents belonging to her coalition.

Regarding the efficiency of stable solutions, Kaklamanis, Kanellopoulos, and Papaioan-
nou (2016) (in a follow-up paper of our extended abstracts, Bilò, Fanelli, Flammini, Monaco,
& Moscardelli, 2014, 2015, originating this full version), show that the price of stability of
fractional hedonic games is at least 1 +

√
6/2 ≈ 2.224 for general unweighted graphs, and 1

for unweighted graphs of girth at least 5. They further prove that the price of stability is 1
for the variant of Olsen (2012), still for general unweighted graphs. Feldman et al. (2012)
investigate some interesting subclasses of hedonic games (however, as aforementioned, their
model is quite different from the one considered in this paper) and provide bounds on the
efficiency loss of Nash stable outcomes.

Other stability notions in coalition forming games, such as Pareto stability, have also
been investigated (Aziz, Brandt, & Harrenstein, 2013; Balliu, Flammini, & Olivetti, 2017b;
Elkind et al., 2016). Concerning these stability notions, Elkind et al. (2016) study the
price of Pareto optimality, that is the ratio between the social welfare in a social welfare-
maximizing outcome of the game and the one in a worst Pareto optimal solution. They
provide lower and upper bounds on the price of Pareto optimality for both additively sep-
arable and fractional hedonic games. Moreover, Balliu et al. (2017b) analyze the price of
Pareto optimality also in social distance games and provide corresponding bounds.

From a different perspective, strategyproof mechanisms for additively separable hedonic
games and fractional hedonic games have been proposed by Flammini, Monaco, and Zhang
(2017).

As a concluding remark, most of the literature on multi-agent coalition formation focuses
on settings where utilities do not depend on agents who are not in the coalition. Rahwan
et al. (2012) consider the coalition structure generation problem for games with externalities,
in which the formation of a coalition could influence the formation of other ones. Moreover,
Zick, Markakis, and Elkind (2014) study cooperative games in the setting in which coalitions
do not constitute a partition of agents, but may also overlap.

1.3 Paper Organization

The paper is organized as follows. In Section 2, we formally define fractional hedonic games.
The technical contributions of the paper are then presented in Sections 3, 4 and 5, which
address, respectively, existence, performance and computability of Nash stable coalition
structures. Finally, in Section 6, we summarize our results, compare our model with the
one studied by Olsen (2012) and provide some interesting open problems.
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2. Preliminaries

In this section, we recall some background definitions and notation from graph theory and
present the model of fractional hedonic games.

For an integer k > 0, denote with [k] the set {1, . . . , k}.

2.1 Graph Theory Background

For an undirected edge-weighted graph G = (N,E,w), denote with n = |N | the number of
its nodes. Given an edge {u, v} ∈ E, we use wu,v as a shorthand for its weight w({u, v}).
Say that G is unweighted if wu,v = 1 for each {u, v} ∈ E. Given a set of edges X ⊆ E,
denote with W (X) =

∑
{u,v}∈X wu,v the total weight of edges in X.

For a subset of nodes S ⊆ N , the subgraph of G induced by S is the graph GS =
(S,ES , wS) such that ES = {{u, v} ∈ E : u, v ∈ S} and wS is the restriction of w to edges
in ES . The diameter of S, denoted as d(S), is the diameter of GS , that is, the maximum
distance in GS between any pair of nodes in S. Denote with Nu(S) = {v ∈ S : {u, v} ∈ E}
the neighborhood of u in GS and with Eu(S) = {{u, v} ∈ E : v ∈ S} the set of edges
incident to u in GS .

For an integer k ≥ 2, a star graph (from now on, simply, a star) of order k is a tree with
k nodes and k− 1 leaves. Given a star S, denote with ord(S) its order, with `(S) the set of
its leaves (so that ord(S) = |`(S)|+ 1), and with c(S) its center, that is, its unique non-leaf
node. For a star S with ord(S) = 2, the center is arbitrarily chosen between the two nodes.

A vertex cover of G is a subset of nodes V C ⊆ N such that each edge in E is incident to
at least a node in V C. A minimum vertex cover is a vertex cover of minimum cardinality.
An independent set of G is a subset of nodes IS ⊆ N such that, for every pair of nodes
u, v ∈ IS, {u, v} /∈ E. It is obvious that, if V C is a vertex cover of G, then N \ V C is an
independent set of G.

As usual in graph theory, we denote by Kn the complete graph with n vertices, and
by Kn,m the complete bipartite graph in which the two partitions have n and m vertices,
respectively.

Finally, we recall the following fundamental theorem showing that a triangle-free graph
has at most n2/4 edges.

Theorem 1 (Turán, 1941). Let G be a (Kr+1)-free graph. Then, E(G) ≤
(
1− 1

r

)
n2

2 .

2.2 Fractional Hedonic Games

Given an undirected edge-weighted graph G = (N,E,w), the fractional hedonic game in-
duced by G, denoted as G(G), is a game in which each node u ∈ N is associated with a
selfish agent/player. For this reason, we identify each player with her corresponding node in
N . Each agent chooses to join a certain coalition among n candidate ones: the strategy of
player i is an integer j ∈ [n], meaning that player i is selecting the jth candidate coalition.
Hence, a strategy profile of the game naturally induces a coalition structure (or outcome)
C = {C1, C2, . . . , Cn}, where, for each i ∈ [n], Ci is the set of players choosing the ith
coalition.

We would like to notice that our notation slightly differs from the standard one, usually
exploited in the literature for defining hedonic games, in which a game is given by a tuple
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(N,%1, . . . ,%n) where %i is a complete and transitive relation representing player i’s pref-
erences over Ni = {S ⊆ N : S 3 i}. Under this standard notation, a possible strategy for
a player i ∈ [n] would be given by a set belonging to Ni. We have opted for our notation
because in this way all possible strategies (the candidate clusters) are always available to
players, where in the standard model only sets in which the other players are currently
joining the same cluster could be selected in a given state.

Denote by C(u) the coalition chosen by player u in C. Observe that C defines a partition
of the set of agents/nodes into n coalitions, i.e.,

⋃
i∈[n]Ci = N and Ci ∩ Cj = ∅ for any

i, j ∈ [n] with i 6= j. Moreover, since the number of candidate coalitions is equal to the
number of agents, some coalition may be empty. Hence, we denote with |C| the number of
non-empty coalitions in C.

A star coalition structure C is an outcome such that, for each i ∈ [n] such that
Ci 6= ∅, graph GCi is a star. Given a star coalition structure C, denote with c(C) =⋃
i∈[n]:Ci 6=∅{c(GCi)} the set of centers of all stars in C.

Coalitions Ci and Cj are adjacent if there exist u ∈ Ci and v ∈ Cj such that {u, v} ∈ E.
Say that u is a member of Ci if u ∈ Ci. The payoff (or utility) that agent u achieves in
the strategy profile σ, is the overall weight of the edges incident to node u in the coalition
chosen by u divided by the number of its nodes; formally,

pu(σ) =
W (Eu(C(u)))

|C(u)|
.

Each agent chooses the coalition to belong to with the aim of maximizing her payoff.
We observe that, if G admits an isolated vertex u, then player u becomes a dummy

player in G(G) since her payoff is always equal to zero in any possible outcome. For this
reason and without loss of generality, we restrict our attention to only those games played
on a graph with no isolated vertices.

2.3 Better and Best-Response Dynamics

Given a coalition structure C, a player u ∈ N and a coalition Ci ∈ C, denote with

(C−u, Ci) = C \ {C(u), Ci} ∪ {C(u) \ {u}, Ci ∪ {u}}

the coalition structure obtained from C when player u changes her strategy/coalition from
C(u) to Ci. Strategy Ci is an improving deviation for agent u in C if pu((C−u, Ci)) > pu(C);
moreover, it is a best-response for agent u in C if pu((C−u, Ci)) = maxj∈[n] pu((C−u, Cj)).
Denote with NID(C) the set of agents possessing an improving deviation in C. We say that
agent u is stable in C if u /∈ NID(C). In order to avoid cluttered notation, in the following
we will write pu(C−u, Ci) instead of pu((C−u, Ci)).

A better-response dynamics is a sequence of improving deviations, while a best-response
dynamics is a better-response dynamics in which each improving deviation is also a best-
response. A game has the finite improvement path property if it does not admit a better-
response dynamics of infinite length.

2.4 Nash Stable Coalition Structures

We shall focus on the following concepts of stable outcomes in fractional hedonic games.
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Definition 1. A coalition structure C is Nash stable if NID(C) = ∅, that is, if all agents
are stable in C.

We denote with NE(G(G)) the set of Nash stable coalition structures of G(G). Clearly, a
game possessing the finite improvement path property always admits a Nash stable coalition
structure.

Definition 2. A coalition structure C is k-Strongly Nash stable if, for each coalition
structure C′ obtained from C when at most k agents jointly change their strategies (not
necessarily selecting the same candidate coalition), pu(C) ≥ pu(C′) for some u belonging to
the set of deviating agents, that is, after the joint collective deviation, there always exists
an agent in the set of deviators who does not improve her utility.

By definition, a 1-Strongly Nash stable coalition structure is also Nash stable and,
for each k > 1, each k-Strongly Nash stable coalition structure is also (k − 1)-Strongly
Nash stable. A Strongly Nash stable coalition structure is an n-Strongly Nash stable
coalition structure; that is, a coalition structure which is resilient to the joint deviation
of any possible subset of agents. We denote with SNEk(G(G)) the set of k-Strongly Nash
stable coalition structures of G(G). By definition, SNE1(G(G)) = NE(G(G)).

2.5 Price of Anarchy and Price of Stability

Define the social welfare SW(C) of a coalition structure C as the sum of the agents’ pay-
offs, so that SW(C) =

∑
u∈N pu(C). We slightly overload the notation by denoting with

SW(Ci) =
∑

u∈Ci
pu(C) the contribution of coalition Ci ∈ C to the social welfare of C;

thus, SW(C) =
∑

i∈[n] SW(Ci).

It is easy to see that the following property, providing a simple formula for computing
the social welfare of a given coalition structure, holds:

Property 1. For a coalition C, SW(C) = 2W (EC)
|C| .

In particular, for games played on unweighted graphs, Property 1 states that the con-
tribution of each coalition to the social welfare of a coalition structure is given by twice the
number of intra-coalition edges divided by the cardinality of the coalition. Moreover, if GCi

is an unweighted (non-empty) tree, SW(Ci) = 2(|Ci|−1)
|Ci| .

Given a game G(G), an optimal coalition structure, also called social optimum, is a
coalition structure maximizing the social welfare. We denote with C∗ a social optimum for
G(G). A coalition structure C is connected if GCi is connected, for every i ∈ [n]. It is easy
to see that a social optimum is always connected.

Definition 3. For an integer k ∈ [n], let G(G) be a fractional hedonic game such that
SNEk(G(G)) 6= ∅. The k-strong price of anarchy of G(G), denoted as PoAk(G(G)), is the
worst-case ratio between the social welfare of a social optimum and the social welfare of a
k-Strongly Nash stable coalition structure, that is, PoAk(G(G)) = maxC∈SNEk(G(G))

SW(C∗)
SW(C) .

The k-strong price of stability of G(G), denoted as PoSk(G(G)), is the best-case ratio
between the social welfare of a social optimum and the social welfare of a k-Strongly Nash
stable coalition structure, that is, PoSk(G(G)) = minC∈SNEk(G(G))

SW(C∗)
SW(C) .
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Figure 1: A graph with negative edge weights yielding a fractional hedonic game with no
Nash stable coalition structures.

We simply use the terms price of anarchy and price of stability, and remove the subscript
k from the notation, when k = 1. Note that, since for each game G(G) and index k ≥ 1,
SNEk(G(G)) ⊆ SNE1(G(G)), we can claim the following observation:

Observation 1. For any graph G and index k ≥ 1, PoS(G(G)) ≤ PoAk(G(G)).

3. Existence of Nash Stable Coalition Structures

In this section, we show results related to the existence of k-Strongly Nash stable coalition
structures.

Observation 2 tells us that Nash stable coalition structures are not guaranteed to exist if
negative edge weights are allowed (recall that a 1-Strongly Nash stable coalition structure is,
by definition, a Nash stable coalition structure). On the other hand, if the edge weights are
restricted to be non-negative, the existence of k-Strongly Nash stable coalition structures
is guaranteed only for k = 1, as stated by Observation 3 and Theorem 2.

Observation 2. There exists a graph G containing edges with negative weights such that
NE(G(G)) = ∅.

Proof. Consider the graph depicted in Figure 1 and fix a Nash stable coalition structure C.
It is easy to see that, for −M small enough, C(x1) 6= C(x3) since, otherwise, px1(C) < 0
and x1 would be better off by deviating to an empty cluster. By contrast, C(x4) = C(x2),
since, otherwise, px4(C) = 0 and x4 would be better off by deviating to C(x2). Now, if
C(x2) = {x2, x4}, then px1(C) = 0 and x1 would be better off by deviating to C(x2). If
C(x2) ⊃ {x2, x4}, then, since C(x1) 6= C(x3), it must be |C(x2)| = 3 and there exists a
coalition Ci containing exactly one between the two agents x1 and x3. It follows that x2

would be better off by deviating to coalition Ci, as px2(C) = 11/3 < px2(C−x2 , Ci) =
5. Since all possibilities for C(x2) have been considered and each of them leads to a
contradiction, it follows that a Nash stable coalition structure cannot exist.

For a fixed graph G, denote with Ĉ a coalition structure for G(G) in which all agents
choose the same coalition (basic stable outcome). It is easy to see that a basic stable outcome
is Nash stable.
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Observation 3. For any weighted graph G with non-negative edge weights, Ĉ ∈ NE(G(G)).

Proof. Since G has non-negative edge weights, it follows that pu(Ĉ) ≥ 0 for each u ∈ N . If
an agent deviates to a different (empty) coalition, she gets a payoff equal to zero. Hence,
Ĉ is a Nash stable coalition structure.

In order to complete the picture, the next theorem, whose proof is deferred to Ap-
pendix A, shows that k-Strongly Nash stable coalition structures are not guaranteed to
exist for k > 1, even for games played on unweighted graphs.

Theorem 2. There exists an unweighted graph G such that SNE2(G(G)) = ∅.

4. Efficiency of Nash Stable Coalition Structures

In this section, we focus on the efficiency of Nash stable coalition structures. We start
by showing a useful lemma relating the social welfare of social optimum for G(G) to the
cardinality of a minimum vertex cover for G, when G is unweighted.

Lemma 1. For an unweighted graph G = (N,E) denote with V C a minimum vertex cover

for G. Then, SW(C∗)
|V C| < 2.

Proof. Define V C = N \ V C. Fix a social optimum C∗ for game G(G) and let C∗i be a

coalition of C∗. Partition the nodes of C∗i in two sets: XV C
i = C∗i ∩V C and XV C

i = C∗i ∩V C.
We distinguish between two cases:

• XV C
i = ∅; it follows that C∗i ⊆ V C. Therefore, since V C is an independent set for G,

SW(C∗i ) = 0.

• XV C
i 6= ∅; in this case the total number of edges in C∗i is at most |XV C

i | · |XV C
i | +

1
2 |X

V C
i |2.

By Property 1, it follows that the contribution of coalition C∗i to SW(C∗) is

SW(C∗i ) ≤ 2
|XV C

i | · |XV C
i |+ 1

2 |X
V C
i |2

|XV C
i |+ |XV C

i |
= 2|XV C

i |
|XV C

i |+ 1
2 |X

V C
i |

|XV C
i |+ |XV C

i |
.

Dividing by |XV C
i | we obtain

SW(C∗i )

|XV C
i | ≤ 2

|XV C
i |+ 1

2
|XV C

i |
|XV C

i |+|XV C
i |

< 2.

By summing over all indices i ∈ [n], we obtain

SW(C∗)

|V C|
=

∑
i∈[n]:XV C

i 6=∅ SW(C∗i )

|V C|
=

∑
i∈[n]:XV C

i 6=∅ SW(C∗i )∑
i∈[n]:XV C

i 6=∅ |XV C
i |

≤ max
i∈[n]:XV C

i 6=∅

SW(C∗i )

|XV C
i |

< 2.

We now characterize the efficiency of Nash stable coalition structures in fractional he-
donic games played on general graphs with non-negative edge weights. In the next two
theorems, we show that the price of anarchy is upper bounded by n−1 and that this bound
is asymptotically tight even for games played on unweighted trees.
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Theorem 3. For any weighted graph with non-negative edge weights G, PoA(G(G)) ≤ n−1.

Proof. Fix a weighted graph with non-negative edge weights G = (V,E,w) and, for any
u ∈ N , define Wu = maxv∈N{wu,v}. For any Nash stable coalition structure C and agent
u ∈ N , pu(C) ≥ Wu

n , which implies SW(C) ≥ 1
n

∑
u∈N Wu. On the other hand, a social

optimum C∗ satisfies pu(C∗) ≤ n−1
n Wu for any u ∈ N , so that SW(C∗) ≤ n−1

n

∑
u∈N Wu.

Hence, it follows that PoA(G(G)) ≤ n− 1.

Theorem 4. For any integer n ≥ 2, there exists an unweighted path Gn such that
PoA(G(Gn)) = Ω(n).

Proof. Let Gn = (Nn, En) be the unweighted graph defined as follows: Nn = {vi : i ∈ [n]}
and En = {{vi, vi+1} : i ∈ [n − 1]}, that is, Gn is an n-node simple path. When n
is even, then, since Gn admits a perfect matching, SW(C∗) ≥ n

2 , while, when n is odd,

SW(C∗) ≥ n−1
2 + 1

3 . On the other hand, SW(Ĉ) = 2(n−1)
n for any value of n. Hence, the

claim follows.

So far, we have obtained asymptotically matching bounds for the price of anarchy: On
the one hand, the upper bound holds for any weighted graph and, on the other hand, the
lower bound holds for an unweighted graph with a very basic topology (i.e., a path).

In the remainder of this section we focus on the price of stability of fractional hedonic
games. In particular, we first show that it can grow asymptotically with the number of
agents, even for games played on weighted stars. This result, together with the upper
bound of n − 1 for the price of anarchy given in Theorem 3, asymptotically characterizes
the price of stability for games played on general graphs with non-negative edge weights.

Theorem 5. For any integer n ≥ 2, there exists a weighted star Gn such that PoS(G(Gn)) =
Ω(n).

Proof. Let Gn = (Nn, En, wn) be the weighted graph defined as follows: Nn = {vi : i ∈ [n]},
En = {{vi, vn} : i ∈ [n − 1]}, wi,n = 1 for each i ∈ [n − 2], and wn−1,n = W >> n, that

is, Gn is a star of order n centered at vn. Note that, for every value of n, Ĉ is the unique
Nash stable coalition structure of G(Gn) and SW(Ĉ) = 2(W+n−2)

n . On the other hand, since
the coalition structure in which only vn−1 and vn are in the same coalition yields a social
welfare of W , it follows that PoS(G(Gn)) ≥ 2Wn

2(W+n−2) = Ω(n) for a sufficiently high value
of W .

This negative result rules out the chance of obtaining good bounds even on the price
of stability for games played on weighted graphs. Thus, in the following, we shall focus on
determining better bounds to the price of stability of games played on unweighted graphs.
In Theorem 6, we give a lower bound of 2 to the price of stability.

Theorem 6. For any ε > 0, there exists an unweighted graph Gε such that PoS(G(Gε)) >
2− ε.

Proof. For any positive integer h, define the unweighted graph Gh = (Nh, Eh) as follows:
Nh = Xh ∪ Yh, with Xh = {x1, . . . , xh+2}, Yh = {y1, . . . , yh}, and Eh = {{xi, xj} : i, j ∈
[h+ 2], i 6= j} ∪ {{xi, yi} : i ∈ [h]}. Intuitively, Gh has 2h+ 2 nodes, where the h+ 2 nodes
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x1 y1
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Figure 2: The unweighted graph G3 exploited in the proof of Theorem 6.

in Xh form a clique and each of the h nodes in Yh is a leaf node. For each i ∈ [h], xi is the
partner node of leaf node yi. Finally, nodes xh+1 and xh+2 are the special nodes. See Figure
2 for an example of Gh with h = 3.

Our aim is to show that, for each value of h, NE(G(Gh)) = {Ĉ}, that is, G(Gh) has
a unique Nash stable coalition structure. We prove this claim by showing a sequence of
properties that have to be satisfied by any Nash stable coalition structure for G(Gh). The
first of these properties is quite intuitive and states that, in any Nash stable coalition
structure for G(Gh), each leaf node has to be in the same coalition of its partner node.

Property 2. For any C ∈ NE(G(Gh)) and i ∈ [h], C(xi) = C(yi).

In order to prove Property 2, assume, for the sake of contradiction, that there exists
a Nash stable coalition structure C such that C(xi) 6= C(yi) for some i ∈ [h]. Then,
pyi(C) = 0, while pyi(C−yi ,C(xi)) > 0 which contradict the fact that C is a Nash stable
coalition structure.

We continue by showing that, in any Nash stable coalition structure of G(Gh), the two
special nodes have to be in the same coalition.

Property 3. For any C ∈ NE(G(Gh)), C(xh+1) = C(xh+2).

In order to prove Property 3, assume, for the sake of contradiction, that there exists
a Nash stable coalition structure C such that C(xh+1) 6= C(xh+2), that is, there are two
different coalitions Ci and Cj in C such that xh+1 ∈ Ci and xh+2 ∈ Cj . For each k ∈ [n],
define nk = |Ck∩Xh|, hence, by Property 2, it follows that |Ci| = 2ni−1 and |Cj | = 2nj−1.
Thus, pxh+1

(C) = ni−1
2ni−1 < 1

2 , while pxh+1
(C−xh+1

, Cj) =
nj

2nj
= 1

2 , thus contradicting the

hypothesis that C is a Nash stable coalition structure.

We can now proceed to show that Ĉ is the unique Nash stable coalition structure for
G(Gh). Assume, for the sake of contradiction, that there exists another Nash stable coalition
structure C 6= Ĉ for G(Gh). By Properties 2 and 3, there must exist an index i ∈ [h], such
that C(xi) 6= C(xh+1). By Properties 1 and 2 and by the fact that C(xi) does not contain

any special node, pxi(C) = |C(xi)|
2|C(xi)| = 1

2 . By Properties 1 and 2 and by the fact that C(xh+1)
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Bilò, Fanelli, Flammini, Monaco, & Moscardelli

contains both special nodes, pxi(C−xi ,C(xh+1)) =
|C(xh+1)|+2

2(|C(xh+1)|+1) >
1
2 , thus contradicting the

hypothesis that C is a Nash stable coalition structure. Hence, Ĉ is the unique Nash stable
coalition structure for G(Gh).

Clearly, SW(Ĉ) = (h+1)(h+2)+2h
2(h+1) < h+4

2 . Moreover, SW(C∗) ≥ h+ 1, since Gh admits a

perfect matching. Hence, for each positive integer h, PoS(G(Gh)) ≥ 2−Θ(1/h). By taking
the limit for h going to infinity, the claim follows.

Determining better upper bounds on the price of stability in the setting of unweighted
graphs remains a challenging task. To this aim, in Theorem 7, we show a constant upper
bound on the price of stability for all games admitting 2-Strongly Nash stable coalition
structures. Anyway, 2-Strongly Nash stable coalition structures are not always guaranteed
to exist, as stated by Theorem 2.

Theorem 7. For any unweighted graph G such that NSC2(G(G)) 6= ∅, PoS(G(G)) ≤ 4.

Proof. We show that, under the hypothesis of the theorem, PoA2(G(G)) ≤ 4 which, by
Observation 1, yields the claim. To this aim, fix a 2-Strongly Nash stable coalition structure
C and let N− = {u ∈ N : pu(C) < 1

2} be the set of agents getting a payoff strictly smaller
than 1

2 in C and N+ = N \ N−. We show that N− is an independent set of G. Assume,
by way of contradiction, that there exists an edge {u, v} ∈ E such that u, v ∈ N−. In this
case, u and v can jointly deviate to a new coalition and obtain both a payoff of 1

2 , thus
contradicting the fact that C ∈ NSC2(G(G)). Hence, we get that N+ is a vertex cover of

G. By using Lemma 1, we obtain SW(C∗) < 2|N+| which, together with SW(C) ≥ |N+|
2 ,

yields the claim.

In order to attack the problem of understanding the exact value of the price of stability
for games played on general (unweighted) graphs, in the following subsections we focus on
some specific graph topologies:

• In Subsection 4.1, we show that, if we deal with triangle-free graphs, the upper bound
to the price of stability becomes constant. This means that removing cycles of length
3 is sufficient to obtain a constant upper bound.

• In Subsection 4.2, we show that, for the interesting case of bipartite graphs1, the price
of stability is very close to 1. A lower bound greater than 1 complements the result,
showing that bipartite graphs are not sufficient in order to guarantee the stability of
some social optimum.

• Finally, in Subsection 4.3, it is shown that there exists a social optimum in trees that
is also Nash stable, i.e., the price of stability is 1 for games played on acyclic graphs.

4.1 Unweighted Triangle-free Graphs

In this subsection, we focus on games played on triangle-free unweighted graphs and provide
an algorithm computing a Nash stable coalition structure approximating the optimal social

1. Recall that, as outlined in the Introduction, bipartite graphs are a very interesting class of graphs in the
context of social sciences.
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welfare up to 18/7 ≈ 2.5724, thus proving an upper bound on the price of stability for games
played on this graph topology. This upper bound is complemented by the lower bound of
Theorem 11 presented in Subsection 4.2, holding for the restricted case of bipartite graphs
and showing that the price of stability is strictly greater than 1.

Recall that, for a star coalition structure C, c(C) =
⋃
i∈[n]:Ci 6=∅{c(GCi)} denotes the set

of centers of all stars in C.

Given an unweighted triangle-free graph, Algorithm 1, described below, outputs a Nash
stable coalition structure for G(G) as follows. It first computes a maximum matching M for
G. Then, with the for-cycle at Lines 5–10, it creates |M | coalitions by assigning each pair
of nodes corresponding to an edge of M to a different coalition. All nodes processed during
this phase are included in the set of nodes denoted as Covered. Then, with the for-cycle at
Lines 11–14, the algorithm assigns each node u /∈ Covered to a coalition containing a node
v ∈ Covered such that {u, v} ∈ E. We shall show in Lemma 2 that this type of assignment
can be always carried out so that, at the end of Line 14, C forms a star coalition structure for
G(G). Finally, the while-cycle at Lines 17-21 defines a better-response dynamics 〈(Ck)k≥0〉
starting from C0 = C in which, for each k ≥ 0, the node with the minimum payoff among
those possessing an improving deviation in Ck and not belonging to c(Ck) is allowed to
change her strategic choice. In Lemma 3, we shall show that Ck is a star coalition structure
for each k ≥ 0 so that set c(Ck) is always well-defined, while in Theorem 9 we shall prove
that the dynamics converges to a Nash stable coalition structure.

The main result of this subsection is given by the following theorem.

Theorem 8. For any unweighted triangle-free graph G, PoS(G(G)) ≤ 18
7 .

We prove Theorem 8 by estimating the performance guarantee of the coalition structure
output by Algorithm 1. Therefore, we first need to show that Algorithm 1 returns a Nash
stable coalition structure. To prove this claim, we make use of the following two lemmas,
whose proofs are in Appendix B: Lemma 2 shows that the family of subsets of nodes C
computed at the end of Line 14 is a star coalition structure for G(G), while Lemma 3
shows that, for each coalition structure Ck, generated by the better-response dynamics
implemented by Lines 17–21 of Algorithm 1, Ck is also a star coalition structure for G(G).

Lemma 2. The family of subsets of nodes C computed at the end of Line 14 of Algorithm
1 is a star coalition structure for G(G).

Lemma 3. For each k ≥ 0, Ck is a star coalition structure for G(G).

We are now ready to prove that Algorithm 1 outputs a Nash stable coalition structure.

Theorem 9. Given an unweighted triangle-free graph G, Algorithm 1 computes a Nash
stable coalition structure C̃ for G(G).

Proof. By Lemma 3, we know that, for each k ≥ 0, Ck is a star coalition structure for G(G).

First of all, we show that the better-response dynamics generated by the while-cycle at
lines 17–21 of Algorithm 1 terminates after a finite number of iterations (later on, within the
proof of Theorem 15, we shall even show that the number of iterations is even polynomial in
the dimensions of G(G)). Towards this end, it is not difficult to see that, as for each k ≥ 0
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Algorithm 1

1: C = (C1, . . . , Cn) with Ci = ∅ for each i ∈ [n]
2: Compute a maximum matching M for G
3: i← 1
4: Covered← ∅
5: for each {u, v} ∈M do
6: C(u)← Ci
7: C(v)← Ci
8: Covered← Covered ∪ {u, v}
9: i← i+ 1

10: end for
11: for each u /∈ Covered do
12: Choose v ∈ Covered such that {u, v} ∈ E
13: C(u)← C(v)
14: end for
15: k ← 0
16: Ck ← C
17: while NID(Ck) \ c(Ck) 6= ∅ do
18: u = arg minv∈NID(Ck)\c(Ck){pv(Ck)}
19: Ck+1 ← (Ck

−u, Cj) with strategy Cj being an improving deviation for u in Ck

20: k ← k + 1
21: end while
22: C̃← Ck

23: return C̃

Ck is a star coalition structure for G(G), the vector obtained by listing all players’ payoffs
in non-decreasing order always increases lexicographically after each improving deviation.

Now, since at the end of the while-cycle each agent u /∈ c(C̃) is stable in C̃ by definition,
in order to show that C̃ is Nash stable, we only need to consider agents belonging to
c(C̃). To this aim, assume, by way of contradiction, that there exists an agent u ∈ c(C̃)
who can perform an improving deviation by migrating to a coalition C̃i, that is, such that
pu(C̃) < pu(C̃−u, C̃i).

We have pu(C̃) = |C̃(u)|−1

|C̃(u)|
. Two cases may occur:

1. {u, c(G
C̃i

)} ∈ E. Since G is triangle-free, Eu(C̃i ∪ {u}) = {u, c(G
C̃i

)} which implies

pu(C̃−u, C̃i) =
1

|C̃i|+ 1
<
|C̃(u)| − 1

|C̃(u)|
= pu(C̃),

where the inequality follows from |C̃i|, |C̃(u)| ≥ 2. This contradicts the assumption
that u can perform an improving deviation by migrating to C̃i.

2. {u, c(G
C̃i

)} /∈ E. Let 1 ≤ j ≤ |C̃i| − 1 be the number of nodes in C̃i which are

adjacent to u in G, so that pu(C̃−u, C̃i) = j

|C̃i|+1
. Note that it cannot be j = 0,
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because otherwise it would follow pu(C̃−u, C̃i) = 0, thus immediately contradicting
pu(C̃) < pu(C̃−u, C̃i). If |C̃(u)| ≥ |C̃i|, then

pu(C̃−u, C̃i) =
j

|C̃i|+ 1
≤ |C̃i| − 1

|C̃i|+ 1
≤ |C̃(u)| − 1

|C̃(u)|+ 1
<
|C̃(u)| − 1

|C̃(u)|
= pu(C̃),

while, if |C̃(u)| = |C̃i| − 1, then

pu(C̃−u, C̃i) =
j

|C̃i|+ 1
≤ |C̃i| − 1

|C̃i|+ 1
=

|C̃(u)|
|C̃(u)|+ 2

≤ |C̃(u)| − 1

|C̃(u)|
= pu(C̃),

where the last inequality follows from |C̃(u)| ≥ 2. In both cases, we obtain a contra-
diction to the assumption that u can perform an improving deviation by migrating to
C̃i.

For the leftover case of |C̃(u)| < |C̃i| − 1, let z be a node of C̃i which is adja-
cent to u (such a node always exists since j ≥ 1). Since z 6= c(G

C̃j
), we have

pz(C̃) = 1

|C̃i|
and pz(C̃−z, C̃(u)) ≥ 1

|C̃(u)|+1
. Since |C̃(u)| + 1 < |C̃i|, it follows that

pz(C̃−z, C̃(u)) > pz(C̃) which contradicts the fact that z /∈ c(C̃) does not possess any
improving deviation in C̃.

We now show the approximation guarantee provided by C̃.

Proof of Theorem 8. In order to prove the claim, we will show that SW(C∗) ≤ 18
7 ·

SW(C̃).

Let g : N → R>0 be a function such that, for each i ∈ [n],

∑
u∈C̃i

g(u) =
∑
u∈C̃i

pu(C̃) = SW(C̃i) =
2|`(G

C̃i)
|

|`(G
C̃i)
|+ 1

,

that is, g arbitrarily redistributes the social welfare of each star in C̃ among its members.
By the property of g, we get

SW(C∗)

SW(C̃)
=

∑
C∈C∗

SW(C)∑
u∈N

g(u)
=

∑
C∈C∗

SW(C)∑
C∈C∗

∑
u∈C

g(u)
≤ max

C∈C∗
SW(C)∑
u∈C

g(u)
.

Now, fix a coalition C ∈ C∗ and denote with fi (resp. ci) the number of nodes in C which
are leaves (resp. centers) of some star of order i in C̃. Set f i =

∑
j≥i fi and ci =

∑
j≥i ci.

Since there are no isolated vertices in G, we have

SW(C) =
2|E(C)|

f2 + c2 + f3 + c3 + f4 + c4

.
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Moreover, we can upper bound the number of edges in C as follows:

|E(C)| ≤ (c2 + c3 + c4)2

4
+ (f2 + f3 + f4)(c3 + c4) + (f2 + f3)c2 + f2f3 +

f2
2

4
,

where the first term, accounting for edges between pairs of centers, comes from Theorem 1
and the fact that G is triangle-free, the second and third terms, accounting for edges between
centers and leaves, come from the fact that in C̃ there are no edges between centers of stars
of order 2 and leaves of stars of order at least 4 (otherwise C̃ would not be Nash stable),
and the last two terms, accounting for edges between pairs of leaves, come from the fact
that in C̃ there can be edges only between leaves of stars of order 2 and stars of order 3 or
between pairs of leaves of stars of order 2 and, in this latter case, we again exploit the fact
that G is triangle-free in conjunction with Theorem 1.

Let us define the following redistributing function g.

g(u) =



1/2 if ord(G
C̃(u)

) = 2,

7/9 if ord(G
C̃(u)

) = 3 and u = c(G
C̃(u)

),

5/18 if ord(G
C̃(u)

) = 3 and u ∈ `(G
C̃(u)

),
2`(G

C̃(u)
)

`(G
C̃(u)

)+1 if ord(G
C̃(u)

) ≥ 4 and u = c(G
C̃(u)

),

0 otherwise.

We obtain ∑
u∈C

g(u) ≥ 3

2
c4 +

7

9
c3 +

5

18
f3 +

1

2
(c2 + f2).

Putting all together, we get

SW(C)∑
u∈C

g(u)
≤ (c2 + c3 + c4)2 + 4(f2 + f3 + f4)(c3 + c4) + 4(f2 + f3)c2 + 4f2f3 + f2

2(
f2 + c2 + f3 + c3 + f4 + c4

) (
3c4 + 14

9 c3 + 5
9f3 + c2 + f2

)
≤ 18

7
,

where the last inequality follows from the fact that, for each monomial a in the numerator,
there exists a correspondent (unique) monomial a′ in the denominator such that a/a′ ≤
18/7.

4.2 Unweighted Bipartite Graphs

In this subsection, we focus on games played on unweighted bipartite graphs and derive
an upper bound on the price of stability that is close to 1. We complement this result by
showing that an upper bound of 1 is not possible.

4.2.1 Upper Bound

Given a generic, but fixed, coalition C∗ ∈ C∗, denote with with V ∗ = {v∗1, . . . , v∗p} a
minimum vertex cover for C∗.
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Definition 4. A fractional assignment of leaves (to stars centered at V ∗) is a function
f : C∗ \ V ∗ × [p]→ R>0 such that

1.
∑

i∈[p]:{u,v∗i }∈E
f(u, i) = 1 for each u ∈ C∗ \ V ∗,

2.
∑

u∈C∗\V ∗:{u,v∗i }∈E
f(u, i) > 0 for each i ∈ [p].

We denote with F(V ∗) the set of all fractional assignments of leaves. Next lemma shows
that this set is always non-empty.

Lemma 4. For any minimum vertex cover V ∗ of C∗, F(V ∗) 6= ∅.

Proof. The claim directly follows from the proof of Königs’s Theorem according to which,
given a minimum vertex cover V ∗, it is possible to match every node v∗i ∈ V ∗ to a dis-
tinguished node v(i) ∈ C∗ \ V ∗ such that {i, v(i)} ∈ E. Define U(V ∗) =

⋃
i∈[p]{v(i)} and

U(V ∗) = C∗ \ (V ∗ ∪ U(V ∗)). For each node u ∈ U(V ∗) let s(u) be a generic node in V ∗

such that {u, s(u)} ∈ E (clearly, s(u) always exists because V ∗ is a vertex cover). Now
let f : C∗ \ V ∗ × [p] → R>0 be the function such that, for each i ∈ [p] and u ∈ U(V ∗),
f(u, i) = 1 if and only if u = v(i) and, for each i ∈ [p] and u ∈ U(V ∗), f(u, i) = 1 if and
only if v∗i = s(u). It is easy to check that f is a fractional assignment of leaves to stars
centered at V ∗.

Definition 5. The fractional star coalition structure (of C∗ centered at V ∗) induced by f

is a collection of p stars Sf = (Sf1 , . . . , S
f
p ) such that, for each i ∈ [p], c(Sfi ) = v∗i and

`(Sfi ) = {u ∈ C∗ \ V ∗ : f(u, i) > 0}, where f(u, i) measures the fractional portion of u

which is meant to belong to Sfi . Denote xi =
∑

u∈`(Sf
i )
f(u, i).

We observe that, for each i ∈ [p], Sfi is indeed a star since, by the definition of vertex
cover, the set of nodes C∗ \ V ∗ is an independent set of C∗ and, by property 2 in the

definition of fractional assignments of leaves, the order of Sfi is at least two. Hence, because
of Lemma 4, it follows that the set of fractional star coalition structures induced by the set
of fractional assignments of leaves F(V ∗) is non-empty. The social welfare of a fractional

star coalition structure Sf is defined as SW(Sf ) =
∑

i∈[p] SW(Sfi ), where SW(Sfi ) = 2xi
xi+1 .

Fix a fractional star coalition structure of maximum social welfare Sf
∗
. Let H = {xi :

i ∈ [p]} and h = |H|. We partition the stars of Sf
∗

into h sets A1, . . . , Ah in such a way

that Sf
∗

i ∈ Aj if and only if xi is the jth highest value in H. For each i ∈ [h], define

Li =
⋃
Sf∗
j ∈Ai

`(Sf
∗

j ) as the set of leaves of all stars belonging to Ai and Ki =
⋃
Sf∗
j ∈Ai

{v∗j }
as the set of centers of all stars belonging to Ai and denote with li = |Li| and with ki = |Ki|.
Observe that, by definition, the sets Kis are pairwise disjoint, while it is possible that two
different sets Li and Lj share some nodes. Anyway, we will show in the sequel that this is
not possible.

First of all, we show in the following lemma, whose proof is in Appendix C, that partition
(A1, . . . , Ah) is such that, for each i ∈ [h], there are no edges connecting a leaf in Li to a
center in Kj for each j > i..

Lemma 5. Fix an edge {u, v} ∈ E(C∗) with u ∈ Li for some i ∈ [h − 1]. Then, v /∈⋃
j∈[h]\[i]Kj.
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As a consequence of Lemma 5, we obtain that the sets Lis are pairwise disjoint.

Lemma 6. For each i, j ∈ [h] with i 6= j, Li ∩ Lj = ∅.

Proof. Assume, by way of contradiction, that there exist two indices i, j ∈ [h], with i < j,
and a node u such that u ∈ Li ∩ Lj . As u ∈ Lj , there exists a star in Aj whose center
v ∈ Kj satisfies {u, v} ∈ E(C∗). Clearly, by definition, {u, v} ∈ E(C∗). But, since u ∈ Li,
v ∈ Kj and i < j, we derive a contradiction to Lemma 5.

Now we can exploit Lemma 6 to achieve the following additional property satisfied by
the partition (A1, . . . , Ah).

Lemma 7. For each i ∈ [h], xi = li
ki

.

Proof. Fix an index i ∈ [h]. By construction, for each Sf
∗

j ∈ Ai,
∑

u∈`(Sf∗
j )

f∗(u, j) = xi.

Hence, by summing over all stars belonging to Ai, we obtain∑
Sf∗
j ∈Ai

∑
u∈`(Sf∗

j )

f∗(u, j) = kixi. (1)

Moreover, because of Lemma 6 and property 1 of fractional assignments of leaves,∑
Sf∗
j ∈Ai

∑
u∈`(Sf∗

j )

f∗(u, j) = li. (2)

By combining equations (1) and (2), we obtain the claim.

Next lemma, whose proof is in Appendix C, shows how to suitably round Sf
∗

so as to
obtain a star coalition structure for C∗ of high social welfare.

Lemma 8. For each i ∈ [h], there exists star coalition structure S = (S1, . . . , Ski) centered

at Ki of the set of nodes Ki ∪ Li such that
∑

j∈[ki]
SW(Sj) = 2

(
zibxic
bxic+1 + (ki−zi)dxie

dxie+1

)
with

zibxic+ (ki − zi)dxie = li for some 0 ≤ zi ≤ ki.

By the arbitrariness of C∗, we can conclude that there exists a star coalition structure

S∗ such that SW(S∗) =
∑

i∈[h] 2
(
zibxic
bxic+1 + (ki−zi)dxie

dxie+1

)
with zibxic + (ki − zi)dxie = li for

some 0 ≤ zi ≤ ki. Anyway, S∗ may not be a Nash stable coalition structure. Next lemma,
whose proof is in Appendix C, shows how to obtain a Nash stable coalition structure from
S∗ without worsening its social welfare.

Lemma 9. There exists a Nash stable coalition structure C such that SW(C) ≥ SW(S∗).

After having lower bounded the social welfare of a best possible Nash stable coalition
structure, we now exploit the properties of the partition (A1, . . . , Ah) to obtain an upper
bound on the social welfare of C∗. First, we show an upper bound on the number of edges
in C∗, for any C∗ ∈ C∗.

For each i ∈ [h], define k≤i =
∑

j∈[i] kj .

336



Nash Stable Outcomes in Fractional Hedonic Games

Lemma 10. |E(C∗)| ≤
∑

i∈[h] lik≤i.

Proof. First note that, because of the fact that C∗ \ V ∗ forms an independent set of C∗,
there cannot be an edge in E(C∗) connecting two nodes belonging to

⋃
i∈[h] Li. Moreover,

by Lemma 5, we also know that, for any i ∈ [h − 1], there cannot be an edge in E(C∗)
connecting a node in Li to a node in

⋃
j∈[h]\[i]Kj . Hence, each edge {u, v} ∈ E(C∗) can be

of one of the following two types:

1. u, v ∈
⋃
i∈[h]Ki,

2. u ∈ Ki and v ∈ Lj for some i, j ∈ [h] with j ≥ i.

Let us denote with E1 (resp. E2) the set of edges of type 1 (resp. 2). Clearly, by the above
observations, we have |E(C∗)| = |E1|+ |E2|.

Consider now an edge {v∗q , v∗r} ∈ E1 and assume Sf
∗

q ∈ Ai and Sf
∗

r ∈ Aj with i ≤ j.
Since G is triangle-free, the existence of edge {u, v} ∈ E(C∗) implies the non-existence of

the |`(Sf
∗

r )| ≥ 1 edges of type 2 which can be obtained by connecting u to each node in

`(Sf
∗

r ). By repeating this reasoning for all the edges in E1, we obtain that |E1| + |E2|
is upper bounded by the maximum number of edges which can potentially belong to E2

when assuming E1 = ∅. Hence, by the definition of E2, we obtain |E(C∗)| ≤ |E1|+ |E2| ≤∑
i∈[h] lik≤i.

In order to achieve our desired upper bound, we need the following technical lemma,
whose proof is in Appendix C.

Lemma 11. Given that li
ki
≥ li+1

ki+1
for any i ∈ [h− 1],∑
i∈[h] lik≤i∑

i∈[h](ki + li)
≤
∑
i∈[h]

kili
ki + li

.

As a direct consequence of Lemmas 10 and 11, we obtain the following corollary.

Corollary 1. For each C∗ ∈ C∗, SW(C∗) ≤ 2li
xi+1 .

Proof. Fix a coalition C∗ ∈ C∗. By Lemmas 10 and 11, it follows that SW(C∗) ≤∑
i∈[h]

kili
ki+li

. The claim follows by dividing both the numerator and the denominator of
each term in the summation by ki and by applying Lemma 7.

We can now conclude by showing the following upper bound on the price of stability of
games played on unweighted bipartite graphs.

Theorem 10. For any unweighted bipartite graph G, PoS(G(G)) ≤ 6(3− 2
√

2) ≈ 1.0294.

Proof. Fix a bipartite graph G. By Lemma 9 and Corollary 1, it follows that

PoS(G(G)) ≤

∑
i∈[h]

li
xi + 1∑

i∈[h]

(
zibxic
bxic+ 1

+
(ki − zi)dxie
dxie+ 1

) ,
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where zibxic+ (ki − zi)dxie = li for some integer 0 ≤ zi ≤ ki. Hence, we obtain

PoS(G(G)) ≤

∑
i∈[h]

(
zibxic
xi + 1

+
(ki − zi)dxie

xi + 1

)
∑
i∈[h]

(
zibxic
bxic+ 1

+
(ki − zi)dxie
dxie+ 1

) , (3)

where zibxic+ (ki− zi)dxie = li for some integer 0 ≤ zi ≤ ki. Note that the contribution of
each term of the summation is maximized when xi is not an integer. So assume that, for each
i ∈ [h], bxic = αi and dxie = αi + 1 for some integer αi ≥ 1. From zibxic+ (ki − zi)dxie =
li = kixi, we obtain zi = ki(αi + 1− xi). By using this equality in (3), we get

PoS(G(G)) ≤

∑
i∈[h]

αi(αi + 1− xi) + (αi + 1)(xi − αi)
xi + 1∑

i∈[h]

(
αi(αi + 1− xi)

αi + 1
+

(αi + 1)(xi − αi)
αi + 2

) , (4)

where, for each i ∈ [h], αi is a positive integer and xi is a rational number such that
αi < xi < αi + 1. By using a standard averaging argument in (4), we obtain

PoS(G(G)) ≤ max
i∈[h]

αi(αi + 1− xi) + (αi + 1)(xi − αi)
xi + 1

αi(αi + 1− xi)
αi + 1

+
(αi + 1)(xi − αi)

αi + 2

= max
i∈[h]

xi(αi + 1)(αi + 2)

(xi + 1)(xi + α2
i + αi)

.

The last quantity is maximized for xi =
√
αi(αi + 1) and αi = 1 which yields the claim.

4.2.2 Lower Bound

In the following we show that, in general, the price of stability of fractional hedonic games
played on unweighted bipartite graphs is strictly greater than 1, i.e., there are games for
which no optimal coalition structure is Nash stable.

Before proving this result, we need the following technical lemma.

Lemma 12. Let Ci and Cj be two coalitions such that GCi := Kai,bi, GCj := Kaj ,bj and
GCi∪Cj := Kai+aj ,bi+bj are complete bipartite graphs. Then SW(Ci∪Cj) ≥ SW(Ci)+SW(Cj)
with equality holding if and only if aibj = ajbi.

Proof. We have, SW(Ci) = 2aibi
ai+bi

, SW(Cj) =
2ajbj
aj+bj

and SW(Ci ∪Cj) =
2(ai+aj)(bi+bj)
ai+aj+bi+bj

. Since

ai, aj , bi, bj > 0, inequality
2(ai+aj)(bi+bj)
ai+aj+bi+bj

≥ 2aibi
ai+bi

+
2ajbj
aj+bj

is equivalent to (biaj − aibj)2 ≥ 0

which yields the claim.

We are now ready to prove the lower bound result.
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y1

y4

y2

y3

y5

y6

y7

z1

x

z2

Figure 3: An unweighted bipartite graph yielding a fractional hedonic game with price of
stability strictly greater than 1.0025.

Theorem 11. There exists an unweighted bipartite graph G such that PoS(G(G)) = 400
399 >

1.0025.

Proof. Let G be the unweighted bipartite graph depicted in Figure 3. Set Y1 = {yi : i ∈ [3]}
and Y = {yi : i ∈ [7]}. Define C∗ such that C∗1 = Y and C∗2 = {x, z1, z2}. Observe
that SW(C∗) = 100

21 and that C∗ is not Nash stable since agent x improves by deviating

to coalition C∗1 . Denote with C̃ := (C∗−x, C
∗
1 ) the coalition structure obtained after this

deviation. It is easy to see that C̃ is Nash stable and SW(C̃) = 19
4 . We shall prove that

C∗ is the unique social optimum for G(G) and that C̃ is the Nash stable coalition structure
with maximum social welfare in G(G). This will imply PoS(G(G)) ≥ 400

399 .
Fix a coalition structure C. Depending on which agents belong to C(x), we can distin-

guish among three cases:

• C(x) ∩ {z1, z2} = ∅. Observe that, in this case, in order to maximize SW(C), there
must be a coalition Ci ∈ C such that Ci = {z1, z2}. For the remaining nodes, since
Y ∪ {x} induces a complete bipartite graph, by Lemma 12, we have that SW(C) is
maximized when there exists a coalition Cj ∈ C such that Cj = Y ∪{x}, i.e., C = C̃.
Thus, in this case, the maximum social welfare that can be obtained by any coalition
structure C is not higher than SW(C̃).

• C(x) ∩ Y = ∅. Observe that, in order to maximize SW(C), there must be a coalition
Ci ∈ C such that Ci = {x, z1, z2}. For the remaining nodes, since Y induces a
complete bipartite graph, by Lemma 12, we have that SW(C) is maximized when
there exists a coalition Cj ∈ C such that Cj = Y , i.e., C = C∗. Thus, in this case,
the maximum social welfare that can be obtained by any coalition structure C is not
higher than SW(C∗) = 100

21 . It is important to note that C∗ is the unique coalition
structure achieving a social welfare of 100

21 . Consider, to this aim, any splitting of the
nodes in Y into two or more coalitions. Only the three cases given in Figure 4 are
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possible and in all of them the social welfare is always smaller than SW(C̃). Hence,
it also follows that, in this case, any Nash stable coalition structure achieves a social
welfare not higher than SW(C̃).

y1

y4

y2

y3

y5

y6

y7

z1

x

z2

y1

y4

y2

y3

y5

y6

y7

z1

x

z2

y1

y4

y2

y3

y5

y6

y7

z1

x

z2

Figure 4: The three different coalition structures that may be possible when C(x) ∩ Y = ∅
and Y is split into at least two coalitions.

• C(x) ⊃ {yi, zj} for some i ∈ [7] and j ∈ [2]. Observe that, in order to maximize
SW(C), it must be i ∈ [3] and j = 1 which also implies z2 ∈ C(x). Since G is
symmetric with respect to Y1, we can assume without loss of generality that C(x) ⊃
{x, y1, z1, z2}. Denote A := C(x) \ {x, y1, z1, z2}. Since all the nodes not belonging
to C(x) induce a complete bipartite graph, by Lemma 12, we have that SW(C) is
maximized when there exists a coalition Ci ∈ C such that Ci = N \ C(x), so that
|Ci| = 6−|A|. If |A| = 0, which implies Ci = Y \{y1}, we have SW(C) = SW(C(x))+
SW(Ci) = 3

2 + 8
3 < SW(C̃). Hence, assume |A| > 0. Since both A and Ci induce

a triangle-free graph, it follows from Turán’s Theorem (Theorem 1) that C(x) has
at most |A|2/4 + |A| + 3 edges and Ci has at most (6 − |A|)2/4 edges. Hence, we

get SW(C) = SW(C(x)) + SW(Ci) ≤ 2(|A|2/4+|A|+3)
|A|+4 + 2((6−|A|)2/4)

6−|A| = 6(|A|+5)
|A|+4 which

is smaller than SW(C̃) for any |A| > 0. Thus, also in this case, the maximum social
welfare that can be obtained by any coalition structure C is not higher than SW(C̃).

Hence, since we have proved that C∗ is the unique social optimum for G(G) and that C̃
is the Nash stable coalition structure with maximum social welfare in G(G), the theorem
follows.
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4.3 Unweighted Trees

In this subsection, we focus on fractional hedonic games played on unweighted trees. We
first show that any social optimum is made of small coalitions of diameter 1 or 2, and then
we show that the price of stability is equal to 1.

Lemma 13. Let G = (N,E) be an unweighted tree, with |N | ≥ 2. For any social optimum
C∗ for G(G), it holds that GC∗i is a tree, |C∗i | ≥ 2 and d(C∗i ) ∈ {1, 2}, for every i ∈ [n].

Proof. Since G is a tree and C∗ is connected, we have that GC∗i is a tree, for every i ∈ [n].

We observe that in C∗ there cannot exist any coalition C∗i containing only one agent.
Suppose that |C∗i | = 1. Then, since |N | ≥ 2, there must exist some non-empty coalition C∗j
adjacent to C∗i . Let qj = |C∗j | ≥ 1. By merging C∗i and C∗j we increase the social welfare

by
2qj
qj+1 −

2(qj−1)
qj

> 0, contradicting the optimality of C∗. Hence, each coalition C∗i in C∗

induces a tree containing at least two agents, and its contribution to the social welfare is
2(|C∗i |−1)
|C∗i |

.

Now let us assume that there exists a coalition C∗i having diameter strictly larger than
2. Then there must exist two adjacent agents in GC∗i , say u and v, having both degree in
GC∗i at least equal to 2. The existence of such agents guarantees that the coalition C∗i can
be split into two coalitions, containing agents u and v respectively, and each with diameter
at least 1, and thus at least two agents. Formally, let C∗i,u and C∗i,v be two coalitions such
that u ∈ C∗i,u, v ∈ C∗i,v and C∗i,u

⋃
C∗i,v = C∗i . Moreover let qu = |C∗i,u| and qv = |C∗i,v|. We

know that qu, qv ≥ 2. The contribution of C∗i to the social welfare is SW(C∗i ) = 2(qu+qv−1)
qu+qv

.
If we split C∗i into the two coalitions C∗i,u and C∗i,v, we obtain a new coalition structure
whose social welfare increases by

∆ = SW(C∗i,u) + SW(C∗i,v)− SW(C∗i ) =
2(qu − 1)

qu
+

2(qv − 1)

qv
− 2(qu + qv − 1)

qu + qv
.

It is easy to see that ∆ > 0 for every qu, qv ≥ 1. In fact,

∆ = 2

(
1− 1

qu
− 1

qv
+

1

qu + qv

)
≥ 2

qu + qv
> 0,

because
(

1
qu

+ 1
qv

)
≤ 1.

We are now ready to prove the main result of this subsection, concerning the price of
stability of games played on unweighted trees.

Theorem 12. Let G = (N,E) be an unweighted tree with |N | ≥ 2. Any social optimum
C∗ for G(G) is Nash stable, i.e., PoS(G(G)) = 1.

Proof. From Lemma 13 we know that each coalition in C∗ induces a tree with at least two
agents and diameter 1 or 2. Notice also that, since G is acyclic, an agent u is adjacent
to a single agent belonging to any coalition C∗j adjacent to C∗(u). This implies that by

deviating to C∗j , u would obtain a payoff of 1
|C∗j |+1 .
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Let us first observe that every agent u with al least two adjacent agents in C∗(u), i.e.,

with |Nu(C∗(u))| ≥ 2, is stable. In fact pu(C∗) = |Nu(C∗(u))|
|Nu(C∗(u))|+1 ≥ 2/3, whereas the payoff

she would get after deviating to any other coalition C∗j is at most 1
|C∗j |+1 ≤ 1/3.

Let us now consider the agents having only one adjacent agent in the same coalition.
Let u be such that |Nu(C∗(u))| = 1 and qi = |C∗(u)| ≥ 2. If qi = 2 then u is stable. In
fact pu(C∗) = 1/2, whereas the payoff she would get after deviating to any other coalition
C∗j is at most 1

|C∗j |+1 ≤ 1/3. If qi ≥ 3, let us assume that u wants to deviate to coalition

C∗j . Let qj = |C∗j | ≥ 2. The payoff of u before the deviation is 1
qi

, whereas her payoff after

the deviation is 1
qj+1 . Thus, in order for it to be an improving deviation, it must hold that

qj ≤ qi − 2. But the change in the social welfare is

∆ = SW(C∗(u), C∗j )− SW(C∗)

=
(
SW(C(u) \ {u}) + SW(C∗j ∪ {u})

)
−
(
SW(C(u)) + SW(C∗j )

)
=

(
SW(C∗j ∪ {u})− SW(C∗j )

)
−
(
SW(C(u))− SW(C(u) \ {u})

)
=

((
2− 2

qj + 1

)
−
(

2− 2

qj

))
−
((

2− 2

qi

)
−
(

2− 2

qi − 1

))
= 2

( 1

qj(qj + 1)
− 1

qi(qi − 1)

)
≥ 2

qi − 1

( 1

(qi − 2)
− 1

qi

)
(5)

> 0, (6)

where (5) holds because qj ≤ qi − 2, and (6) because qi ≥ 3. This contradicts the fact that
C∗ is a social optimum.

5. Computation

In this section, we focus on the efficient computation of Nash stable coalition structures
with good performance guarantees. After having provided some negative results for games
played on general graph topologies, in subsections 5.1, 5.2 and 5.3, we focus on the special
cases of games played on unweighted triangle free graphs, unweighted bipartite graphs and
unweighted trees, respectively.

We start by showing that the class of fractional hedonic games does not possess the
finite improvement path property, even considering best-response dynamics. In particular,
we show that there may exist best-response dynamics of infinite length even in games
played on unweighted bipartite graphs. This means that a Nash stable coalition structure
may not be computed by a best-response dynamics and, in particular, it cannot be reached
by independent agents unless some kind of centralized control is enforced in the game.

Theorem 13. There exists a fractional hedonic game played on an unweighted bipartite
graph admitting a best-response dynamics of infinite length.

Proof. Let G be the unweighted bipartite graph depicted in Figure 5 and define

σ = {{x0, . . . , x5, a1, . . . , a5}, {z1, . . . , z21}, {y0, . . . , y5, b1, . . . , b5}}.
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x1 x2

x0 y0

x3 x4 x5 y1 y2 y3 y4 y5

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

z11

z10

z1

z12

z21

…
…

…
…

Figure 5: A bipartite graph yielding a fractional hedonic game not converging to a Nash
stable coalition structure even under a best-response dynamics.

We consider the best-response dynamics starting from σ in which a subset of 12 agents are
processed cyclically according to the following ordering:

〈x0, y0, x1, . . . , x5, y1, . . . , y5, x0, y0, x1, . . . , x5, y1, . . . , y5〉.

It is easy to see that the first 12 best-responses consist in joining coalition C2, while, in
the last 12 ones, each node goes back to the coalition originally occupied in σ, thus creating
a best-response dynamics of infinite length.

The last result raises the question of the existence of efficient algorithms computing
Nash stable coalition structures with high social welfare. To this aim, we denote with
COMPUTE BEST STABLE(G(G)) the problem of computing a Nash stable coalition struc-
ture of maximum welfare and with COMPUTE OPT(G(G)) the problem of computing a
social optimum of a given game G(G). In Theorem 14, whose proof is in Appendix D, we
prove the intractability of these problems.

Theorem 14. Both problems COMPUTE BEST STABLE(G(G)) and COMPUTE OPT(G(G))
are NP-hard.

Given the negative nature of the two results that we proved so far for games played on
general graphs, in the next three subsections, we restrict to special graph topologies, i.e.,
unweighted triangle-free graphs, unweighted bipartite graphs and unweighted trees.

5.1 Unweighted Triangle-Free Graphs

We have already proved in Section 4 an upper bound of 18
7 on the price of stability for

games played on unweighted triangle free graphs. Since the proof of Theorem 8 is con-
structive, i.e., it shows that the coalition structure returned by Algorithm 1 is Nash stable
and approximates the social optimum by a factor at most equal to 18

7 , in order to show
that it is possible to efficiently compute a coalition structure with the same approximation
guarantee, it suffices to prove that Algorithm 1 terminates in polynomial time.
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Theorem 15. Given a triangle free unweighted graph G, Algorithm 1 computes in polyno-
mial time a Nash stable coalition structure C̃ for G(G) such that SW(C∗) ≤ 18

7 · SW(C̃).

Proof. Given Theorem 8, we only need to show that Algorithm 1 terminates in polyno-
mial time. It is immediate to see that, since each line of Algorithm 1 can be executed in
polynomial time, we only need to prove that the better-response dynamics implemented
by the while-cycle at Lines 17–21 terminates after a polynomial number of iterations. To
this aim, given a star coalition structure C, denote with Φ(C) =

∑
u/∈c(C) pu(C). Observe

that, since pu(C) ≤ 1/2 for each u /∈ c(C), it follows that Φ(C) ≤ |N \ c(C)|/2. Moreover,
c(Ck) = c(Ck+1) for each k ≥ 0.

Consider a coalition structure Ck+1 = (Ck
−u, C

k
j ). Since i is an improving deviation for

agent u in Ck, it holds that pu(Ck
−u, C

k
j ) > pu(Ck). Moreover since u /∈ c(Ck) and, by

Lemma 3, Ck is a star coalition structure, this inequality becomes 1
|Ck

j |+1
> 1
|Ck(u)| which

implies |Ck(u)| ≥ |Ckj |+ 2.

We now prove that Φ(Ck+1) − Φ(Ck) ≥ Ω
(

1
|N\c(C0)|3

)
, i.e., function Φ increases by a

factor of Ω
(

1
|N\c(C0)|3

)
at each improving deviation. Observe that agent u’s deviation only

affects the payoffs of the agents in Ck(u) and Ckj . Thus we have:

Φ(Ck+1)− Φ(Ck) =
|Ck(u)| − 2

|Ck(u)| − 1
+
|Ckj |
|Ckj |+ 1

− |C
k(u)| − 1

|Ck(u)|
−
|Ckj | − 1

|Ckj |

=
1

|Ck(u)|
+

1

|Ckj |
− 1

|Ck(u)| − 1
− 1

|Ckj |+ 1

=
1

(|Ckj |)(|Ckj |+ 1)
− 1

(|Ck(u)|)(|Ck(u)| − 1)

≥ 1

(|Ckj |)(|Ckj |+ 1)
− 1

(|Ckj |+ 2)(|Ckj |+ 1)
(7)

=
2

|Ckj |+ 2
· 1

(|Ckj |)(|Ckj |+ 1)

= Ω

(
1

|N \ c(C0)|3

)
,

where all the denominators are strictly greater than zero since both Ckj and Ck(u) are

stars, and inequality (7) holds since |Ck(u)| ≥ |Ckj |+ 2.

5.2 Unweighted Biparite Graphs

In Theorem 13, we have already proved that even best-response dynamics may not con-
verge to Nash stable coalition structures in games defined by unweighted bipartite graphs.
Moreover, even though we have shown that these games have a very low price of stability,
by Theorem 4 we know that there are Nash stable coalition structures that might have a
very low social welfare. Therefore, finding an efficient Nash stable coalition structures for
games played on this restricted graph topology is an interesting and non-trivial task.
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In this subsection, we show how that the Nash stable coalition structure C̃ returned by
Algorithm 1 has a social welfare of at least one-half that of an optimal coalition structure.

Theorem 16. Given an unweighted bipartite graph G, Algorithm 1 computes in polynomial
time a Nash stable coalition structure C̃ for G(G) such that SW(C∗) ≤ 2 · SW(C̃).

Proof. Fix an unweighted bipartite graph G. Since G is also triangle-free, it follows from
Theorem 9 and Theorem 15 that Algorithm 1 computes in polynomial time a Nash stable
coalition structure C̃ for G(G). Thus, we are just left to show the approximation guarantee.
As we have already discussed in the proof of Lemma 3, for each k ≥ 0, |Ck| = |M | which
implies |C̃| = |M |. Since, for each non empty coalition C̃ ∈ C̃, SW(C̃) ≥ 1, it follows that
SW(C̃) ≥ |M |. By Kon̈ıg’s Theorem, stating that the size of a maximum matching in a
bipartite graph equals that of a minimum vertex cover, it follows that, denoted by V C a
minimum vertex cover for G, SW(C̃) ≥ |V C|. The claim then follows by applying Lemma
1.

5.3 Unweighted Trees

In this subsection, we focus on games played on unweighted trees. We show that the social
optimum can be computed in polynomial time. In order to prove this result, we will also
exploit the property proved in Lemma 13, stating that the social optimum is made of small
coalitions of diameter 1 or 2.

A rooted tree is a tree in which there is a distinguished node called root. Let G = (N,E)
be a tree and let r ∈ N be the root. For every u ∈ N , Ancestorsr(G, u) denotes the set of
the ancestors of u, that is the set of all nodes, except u, along the unique path connecting
u to r. The level of u is the length of the path (number of edges) connecting u to r
and it is denoted as Levelr(G, u). The level of the root is 0. If v ∈ Ancestorsr(G, u) and
{u, v} ∈ E then v is the parent of u, denoted as Parentr(G, u). Descendantsr(G, u) denotes
the set of the descendants of u, that is the set of all nodes of which u is an ancestor. If
v ∈ Descendantsr(G, u) and {u, v} ∈ E then v is a child of u. The set of all children of u
is denoted as Childrenr(G, u). A node who does not have any child is called a leaf. The
set of all leaves of the tree is denoted as Leavesr(G). The height of the rooted tree is the
maximum length of a path connecting r and any node, and it is denoted as Heightr(G).

Given a game G(G), where G = (N,E), a labeling function, or simply a labeling, is any
function of the type N 7→ {Internal,External}, assigning a label in the set {Internal,External}
to each agent in N . Let f be a labeling, if f(u) = Internal, we say u is an internal agent, if
f(u) = External we say u is an external agent.

Definition 6. Given a game G(G), where G = (N,E), we say that a labeling function
f : N 7→ {Internal,External} is compatible with a connected coalition structure C, if f
satisfies the following properties:

• For every Ci ∈ C such that |Ci| = 1, the only agent in Ci is an internal agent.
Formally, if Ci = {u}, then f(u) = Internal;

• For every Ci ∈ C such that |Ci| = 2, exactly one agent is internal and the other one
is external. Formally, let Ci = {u, v}, then either f(u) = Internal and f(v) = External
or f(u) = External and f(v) = Internal;
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• For every Ci ∈ C such that |Ci| ≥ 3, only the agents with a single neighbor in the
same coalition are external, while the remaining ones are internal. Formally, for every
u ∈ Ci, f(u) = External if Nu(C(u)) = 1, and f(u) = Internal otherwise.

In the next remark, we summarize some properties of the labeling functions deriving
from the above definition, which result to be useful in the proof of Lemma 14.

Remark 1. Given a game G(G), where G = (N,E), let f : N 7→ {Internal,External} be a
labeling function compatible with a connected coalition structure C for G(G), the following
properties hold:

1. In a coalition there cannot exist two adjacent agents who are both external, i.e., if
{u, v} ∈ E, u, v ∈ Ci and f(u) = External then f(v) = Internal;

2. If the subgraph induced by a coalition is a tree with diameter at most 2, then in such a
coalition there is exactly one internal agent, i.e., if GCi is a tree such that d(Ci) ≤ 2,
then ∃u ∈ Ci : f(u) = Internal, and ∀v ∈ Ci \ {u}, f(v) = External.

Definition 7. Given a game G(G), where G = (N,E), we say that a labeling f : N 7→
{Internal,External} is optimal for G(G), if there exists a social optimum C∗ for G(G) such
that f is compatible with C∗.

Next lemma, whose proof is in Appendix E, characterizes the optimal labeling functions.

Lemma 14. Given a game G(G), where G = (N,E) is a tree, for any root r ∈ N ,

f(u) =

{
Internal if ∃ v ∈ Childrenr(G, u) : f(v) = External
External otherwise

is an optimal labeling function for G(G).

Algorithm 2 Social optimum

1: procedure OptCS(G = (N,E)) // G is a tree
2: Fix a root s ∈ N
3: Compute an optimal labeling g : N 7→ {Internal,External} of G rooted at s
4: for each x ∈ N : g(x) = Internal do
5: C(x) = {x} // Initialize the coalition of each internal agent to {x}
6: end for
7: if g(s) = Internal then
8: OptCS Int(s)
9: else

10: for each x ∈ Childrens(G, s) do // Each x is an internal agent
11: OptCS Int(x)
12: end for
13: OptCS Ext(s)
14: end if
15: end procedure

In the next Theorem, we use the optimal labeling defined in Lemma 14 to compute a
social optimum.
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Theorem 17. Let G = (N,E) be a tree. Algorithm 2 returns a social optimum for G(G)
in polynomial time.

Let us start by describing Algorithm 2. By fixing a root s ∈ N , the algorithm starts by
computing an optimal labeling function g with respect the root s, as described by Lemma
14. The labeling function can be efficiently computed by performing a postorder traversal of
the rooted tree. We know that a social optimum has a coalition for each internal agent. This
suggests that the social optimum is obtained by carefully deciding, for each internal agent
x, which of the external agents adjacent to x are in the same coalition with x. For every
internal agent x, we let C(x) denote the coalition currently constructed by the algorithm
for x; this coalition is initialized to {x}, [line 5]. Subsequently, we construct the coalition
structure C according to whether s has been labeled Internal or External, [line 7− 14], and
this task is performed by the two sub-procedures OptCS Int and OptCS Ext.
Throughout the remainder of this section, we will assume that the labeling g and the root s
are the ones computed and fixed by OptCS, respectively. Moreover, for ease of exposition,
in the reminder of this section, for every agent x, we define T sx = Descendantss(G, x)∪ {x}.

Let us now describe Procedure OptCS Int. It takes as input an internal agent u and
returns the optimal coalition structure for the game G(GT s

u
), as stated by Lemma 17. Let us

now show how OptCS Int works. The procedure starts by initializing C(u) to the set of
children of u which are external agents, that is S1 = {x ∈ Childrens(G, u) : g(x) = External},
[line 3]. Let S2 be the agents in S1 having children, i.e., S2 = {v1, v2 . . . , vk} = {x ∈ S1 :
Childrens(G, x) 6= ∅}, k ≥ 0. The set of children of vi is denoted as Wi = {Childrens(G, vi)},
for i ∈ [1, k], [line 5]. Notice that, by the definition of the optimal labeling g, all agents in
Wi are internal. Every agent in S1 \ S2 necessarily belongs to the same coalition of u in
any social optimum. Instead, in the social optimum, an agent vi ∈ S2 could potentially join
the same coalition of one of his children in Wi. Therefore, OptCS Int iteratively weeds
out from C(u) part of the agents in S2, [lines 6-25]. In particular, after recursively running
OptCS Int on each game G(GT s

x
), for every x ∈ Wi and i ∈ [1, k], [lines 7-11], for every

set Wi we pick the agent that, in the coalition structure C returned by the recursive call of
OptCS Int, belongs to the smallest coalition, and we denote it by w∗i ∈ arg minx∈Wi |C(x)|,
[line 12]. We assume that such selected agents are ordered by the size of the coalition they
belong to, i.e., |C(wi)| ≤ |C(wi+1)| for each i ∈ [1, (k − 1)], [line 14]. The decision of
whether vi must be removed from C(u) merely depends on the size of the coalition C(wi).
In fact, the algorithm goes through the agents in S2 from v1 to vk and, at each step i of the
while loop, [lines 17−21], it removes vi from her current coalition C(u), if the size of C(u)
is strictly larger than the size of C(wi), and adds it to Q. The last step consists in running
the procedure Order on wi and vi, for every vi in Q, [lines 22 − 24]. As we will prove
later, the call of Order allows to compute the social optimum for the game G(GT s

wi
∪vi),

starting from the social optimum for G(GT s
wi

), previously computed by the recursive call of
OptCS Int on wi. In order to show how Order works, we need to introduce the notion
of alternating pair and alternating path.

Definition 8. Given any coalition structure C = {C(x)}x:g(x)=Internal, an alternating
pair with respect to C starting at x0 is a sequence of agents 〈x0, y0, x1, y1〉, such that
{(x0, y0), (y0, x1), (x1, y1)} ⊆ E, y0 ∈ Childrens(G, x0), x1 ∈ Childrens(G, y0), y1 ∈
Childrens(G, x1), y0 ∈ C(x0), y1 ∈ C(x1) finally g(x0) = g(x1) = Internal and g(y0) =
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1: procedure OptCS Int(u ∈ N) // u is an internal agent
2: Let S1 = {x ∈ Childrens(G, u) : g(x) = External}
3: C(u) = S1 // Initialize the coalition of u with all the external children of u
4: Let S2 = {v1, v2 . . . , vk} = {x ∈ S1 : Childrens(G, x) 6= ∅}
5: Let Wi = Childrens(G, vi) for each i ∈ [1, k] // The agents in Wi are internal
6: if S2 6= ∅ then
7: for i = 1 . . . k do
8: for each x ∈Wi do
9: // Compute the social optimum for the subgame

10: OptCS Int(x)
11: end for
12: Let w∗i ∈ arg minx∈Wi |C(x)|
13: end for
14: Let us assume that |C(w∗j )| ≤ |C(w∗j+1)| for each j ∈ [1, (k − 1)]
15: i = 1
16: Q = ∅
17: while (|C(u)| ≥ |C(w∗i )|+ 1) ∧ (i ≤ k) do
18: C(u) = C(u) \ {vi}
19: Q = Q ∪ {vi}
20: i = i+ 1
21: end while
22: for every vj ∈ Q do
23: OptCS Ext(vj)
24: end for
25: end if
26: end procedure

g(y1) = External. We say that the alternating pair is ordered if |C(x0)| ≤ |C(x1)|.
An alternating path with respect to C starting at x0 is a sequence of agents
〈x0, y0, x1, y1, . . . , xp, yp〉, such that, 〈xi, yi, xi+1, yi+1〉 is an alternating pair, for every
i ∈ [0, p] and p ≥ 1 (we say that C(xp) is reached by an alternating path from x0). We say
that the alternating path is ordered if all alternating pairs composing it are ordered.

Given as input an internal agent x and an external agent y, with x ∈ Childrens(G, y),
the goal of Order is to put y in the same coalition of x and check whether there exists
an non-ordered alternating pair 〈x0, y0, x1, y1〉 with x0 = x; if so, it breaks this pair by
removing y0 from his current coalition and applying recursively the procedure to x1 and y0

(notice that, in the next call of Order, y0 will be added to the coalition of x1). Notice
that, after the execution of Order only one coalition increases its size by one unit.

The proof of Theorem 17 directly follows from Lemmas 15, 17 and 16, whose proofs are
in Appendix E.

For the ease of exposition, for any coalition structure C and any agents x, v such that
v 6∈ C(x) and {x, v} ∈ E, define ∆(C, x, v) = SW(C(x)∪{v})−SW(C(x)) > 0, that is, the
increase in the social welfare of the coalition of x due to the insertion of v.
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1: procedure OptCS Ext(v ∈ N) // v is an external agent
2: Let w ∈ arg minx∈Childrens(G,v) |C(x)|
3: Order(w, v)
4: end procedure

1: procedure Order(x ∈ N , y ∈ N) // g(x) = Internal, g(y) = External and x ∈
Childrens(G, y)

2: C(x) = C(x) ∪ {y}
3: if there exists an alternating pair 〈x0, y0, x1, y1〉, with x0 = x and (|C(x0)| ≥
|C(x1)|+ 1) then

4: C(x0) = C(x0) \ {y0}
5: Order(x1, y0)
6: end if
7: end procedure

Lemma 15. Let C∗ = {C∗(x)}x∈T s
u :g(x)=Internal be the coalition structure at the end of the

execution of OptCS Int on input u. For every internal agent x0 ∈ T su , every alternating
path 〈x0, y0, x1, y1, . . . , xp, yp〉 with respect to C∗ is ordered.

Lemma 16. Given that an optimal solution for all children of v has been already computed,
the call of OptCS Ext on input v (v being an external agent) returns a social optimum for
G(GT s

v
) in polynomial time. Moreover, let w the agent selected at line 2 of OptCS Ext; it

holds that Opt(G(GT s
v
)) = Opt(G(GT s

w
)) + ∆(C′, w, v).

Lemma 17. If g(u) = Internal, OptCS Int returns social optimum for G(GT s
u
) in polyno-

mial time in the size of the game.

6. Conclusions

We have studied fractional hedonic games and have provided quite negative results for games
played on general graphs and positive results for games played on unweighted triangle-
free graphs, unweighted bipartite graphs and unweighted trees. In particular, the latter
results include the existence of polynomial time algorithms computing Nash stable coalition
structures with provable good performances.

Olsen (2012) investigates computational issues and the existence of Nash stable outcomes
in a variant of (symmetric) fractional hedonic games in which, with respect to the model
considered in this paper, the utility function of an agent is defined as the ratio between the
utility of the agent in the coalition and the cardinality of the coalition minus 1, that is,
without considering the contribution of the agent herself to the population of the coalition
structure. Let us call full-rank utility function the one we consider in this paper and almost
full-rank utility function the one considered by Olsen. Although the difference between the
two functions might seem “almost” negligible, the sets of Nash stable outcomes they induce
in games played on a same graph are usually quite different. In fact, while for the almost
full-rank utility function considered by Olsen it is shown that in any non-star graph with
at least four nodes there always exists a Nash stable coalition structure differing from the

349
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basic one, when adopting the full-rank one, there exist plenty of non-trivial graphs with an
arbitrary number of nodes possessing just one Nash stable coalition structure (obviously
being the basic one)2. The main reason behind this difference is the fact that the almost
full-rank utility function is robust with respect to coalitions which are cliques, whereas the
full-rank one is not. In fact, according to the almost full-rank utility function, all the agents
in a coalition being a clique gets a utility equal to 1 independently of the cardinality of
the coalition. When using the full-rank utility function, instead, the utility that each agent
gets when being in a clique is strictly less than 1 and increases towards 1 as the cardinality
of the clique increases. This implies that, while a partition into cliques is Nash stable for
the almost full-rank utility function, this is not the case for the full-rank one; for instance,
to break the stability of a partition into cliques, it suffices that there exists an agent being
part of a clique of cardinality h who, by joining another clique of cardinality k ≥ h, creates
a coalition which is also a clique.

We stress that many of the results given in this paper can be extended also to the almost
full-rank utility function as follows. Observations 2 and 3, that is the non-existence of Nash
stable coalition structure when considering graphs with negative weights and the existence
of the basic Nash stable coalition structure in the case of non-negative weights, extend
directly with the same proofs. Theorems 3, 4 and 5 which asymptotically characterize the
price of anarchy in any case and the price of stability in the weighted case keep holding
with the same bounds by readapting mutatis mutandis the relative proofs. Finally, but
more importantly, the positive results concerning the upper bounds on the price of stability
and the existence of polynomial time algorithms for computing good Nash stable coalition
structures in unweighted triangle-free graphs, unweighted bipartite graphs and unweighted
trees (in particular, the results of Theorems 8, 9, 10, 12, 15, 16, 17) keep holding thanks
to the following lemma, because they exploit partitions into stars for providing Nash stable
coalition structures.

Lemma 18. For any given unweighted graph G, any Nash stable coalition structure for
the full-rank utility function which is a partition into stars of G is also Nash stable for the
almost full-rank one.

Proof. Fix an unweighted graph G and a Nash stable coalition structure C for the game
G(G) defined by the full-rank utility function which is a partition into stars of G. Consider
a generic agent u belonging to a generic coalition Ci being a star of order k, with k ≥ 2.
We show that, for any coalition Cj in C being a star of order h, with h ≥ 2, if u does not
improve when joining Cj under the full-rank utility function, then u does not improve when
joining Cj also under the almost full-rank utility function.

Assume first that u is the center of Ci, then her utility in C under the almost full-rank
utility function is 1 which is the maximum utility achievable under this model, so u can
never improve her situation by migrating to a different coalition. Hence, assume that u is
a leaf of Cj , then her utility in C is 1/k under the full-rank utility function and 1/(k − 1)
under the almost full-rank utility function. By deviating to Cj , u gets a utility of αj/(h+1)
under the full-rank utility function and of αj/h under the almost full-rank utility function,
where αj is the number of edges connecting u with nodes in Cj . Then, we need to show

2. One such a graph can be found in the proof of Theorem 6.
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that the following implication holds:

1

k
≥ αj
h+ 1

⇒ 1

k − 1
≥ αj

h
. (8)

Note that implication (8) trivially holds when αj = 0. So assume that αj ≥ 1. By
rearranging the terms, implication (8) can be rewritten as (recall that k ≥ 2):

kαj ≤ h+ 1⇒ kαj ≤ h+ αj

which holds under the assumption αj ≥ 1.
Thus, by the arbitrariness of u, Ci and Cj in follows that C is a Nash stable coalition

structures also under the almost full-rank utility model.

It is important to note that a symmetric version of the above lemma does not hold.
This justifies the preference we accorded to the full-rank utility function in this paper with
respect to the almost full-rank one which has been also addressed in the literature.

There are several open problems that still need to be addressed, as outlined in Tables
3 and 4. For instance, some of the provided upper and lower bounds are not tight, so
there are some gaps that need to be closed. Among them, the major one is that requiring
the determination significant upper bound to the price of stability for general unweighted
graphs. Another interesting research direction would be considering directed graphs where
the weight of a directed arc (u, v) denotes the value agent u has for agent v.
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Appendix A. Proofs from Section 3

A.1 Proof of Theorem 2

Proof. We say that two nodes u, v ∈ N form a critical pair for a coalition structure C,
if {u, v} ∈ E and max{pu(C), pv(C)} < 1

2 . Clearly, any coalition structure possessing a
critical pair cannot be a 2-Strongly Nash stable coalition structure, since both agents can
improve their utility by simultaneously deviating to the same empty coalition.

Consider the unweighted graph G = (N,E) depicted in Figure 6. Fix a Nash stable
coalition structure C. By the topology of G, the following four properties hold:

Property 4. Each non-empty coalition of C contains at least two nodes.

To prove Property 4, assume, by way of contradiction, that |Ci| = 1 for some i ∈ [n].
Let us denote with u the unique agent choosing coalition Ci. It follows that pu(C) = 0.
Since G is connected, there exists a coalition Cj 6= Ci such that pu(C−u, Cj) > 0, thus
contradicting the fact that C is a Nash stable coalition structure.
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x1 x2

v0

v1 v2

y1

z1

y2

z2

Figure 6: A graph yielding a fractional hedonic game with no 2-Strongly Nash stable coali-
tion structures.

Property 5. In C, there always exists a coalition containing the set of nodes {x1, x2, v0}.

To prove Property 5, assume, by way of contradiction, that C(xi) 6= C(v0) for some
i ∈ [2]. Then, it follows that pxi(C) = 0, while pxi(C−xi ,C(v0)) > 0, thus contradicting
the fact that C is a Nash stable coalition structure.

Property 6. C is such that |C(v0)| > |Ci| for each i ∈ [n].

To prove Property 6, assume, by way of contradiction, that |C(v0)| ≤ |Ci| for some
Ci 6= C(v0). Since v0 is connected with every other vertex in G, we obtain pv0(C) =
|C(v0)|−1
|C(v0)| < |Ci|

|Ci|+1 = pv0(C−v0 , Ci), thus contradicting the hypothesis that C is a Nash
stable coalition structure.

Property 7. For any index i ∈ [2], if C(zi) 6= C(v0), then there exists a coalition in C
containing the set of nodes {yi, zi}.

To prove Property 7, assume, by way of contradiction, that there exists an index
i ∈ [2] such that C(zi) 6= C(v0) and C(yi) 6= C(zi). Then, it follows that pzi(C) =
0 < pzi(C−zi ,C(v0)), thus contradicting the hypothesis that C is a Nash stable coalition
structure.

Since a 2-Strongly Nash stable coalition structure is also Nash stable by definition, it
follows that any 2-Strongly Nash stable coalition structure needs to satisfy the above four
properties. Since |N | = 9, it comes from Property 4 that a 2-Strongly Nash stable coalition
structure can have at most 4 non-empty coalitions. We show that G(G) cannot have 2-
Strongly Nash equilibria by considering all possible coalition structures having at most 4
non-empty coalitions and satisfying the above four properties. (In the remainder of this
proof, we will define a certain coalition structure by only listing its non-empty coalitions in
decreasing order of cardinality, so that C(v0) = C1, because of Property 6).
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Case 1: Coalition structures with 1 non-empty coalition. In such a case, the only
candidate coalition structure is Ĉ which cannot be a 2-Strongly Nash stable coalition struc-
ture since it contains the critical pair formed by nodes v1 and v2.

Case 2: Coalition structures with 4 non-empty coalitions. By Properties 4 and 6, we
can assume without loss of generality that C is such that |C1| = 3 and |Ci| = 2 for 2 ≤ i ≤ 4.
By Properties 5 and 7, it follows that there exists a unique candidate coalition structure
C = {{x1, x2, v0}, {y1, z1}, {y2, z2}, {v1, v2}} with 4 non-empty coalitions. Anyway, C is not
even Nash stable since y2 can improve her payoff by deviating to C4.

Case 3: Coalition structures with 3 non-empty coalitions. By Properties 4 and 6, it
follows that only two cases for C are possible: the one in which |C1| = 5 and |C2| = |C3| = 2
or the one in which |C1| = 4, |C2| = 3 and |C3| = 2.

Let us start with the first case. To this aim note that, since the set of nodes S =
{v1, v2, y2} induces a clique in G, there cannot be a Nash stable coalition structure in which
two nodes of S are in the same coalition C 6= C1 because the agent corresponding to the node
of S not belonging to C, call it u, can always improve her utility by deviating to C (u gets 2/3
when deviating to C and there are no coalitions in which u can get at least 2/3). Using this
argument and Property 7, it follows that only two candidate coalition structures, namely,
C1 = {{x1, x2, v0, v1, v2}, {y1, z1}, {y2, z2}} and C2{{x1, x2, v0, v2, z1}, {v1, y1}, {y2, z2}} are
possible. C1 is not a 2-Strongly Nash stable coalition structure since it contains the critical
pair formed by nodes v1 and v2, while C2 is not even Nash stable since z1 can improve by
deviating to C2.

For the second case, since |C1| = 4 and {x1, x2, v0} ⊂ C1, we have to distinguish among
four subcases depending on which is the fourth node in C1 (in fact, note that, by Property
7, none of the nodes yi cannot belong to C1). We stress that, also in this case, there cannot
exist a Nash stable coalition structure in which two nodes of S are in coalition C3. Because
of these observations, the following six candidate coalition structures

C1 = {{x1, x2, v0, v1}, {v2, y2, z2}, {y1, z1}},C2 = {{x1, x2, v0, v2}, {v1, y2, z2}, {y1, z1}},

C3 = {{x1, x2, v0, v2}, {v1, y1, z1}, {y2, z2}},C4 = {{x1, x2, v0, z1}, {v1, v2, y1}, {y2, z2}},
C5 = {{x1, x2, v0, z1}, {v2, y2, z2}, {v1, y1}},C6 = {{x1, x2, v0, z2}, {v1, v2, y2}, {y1, z1}}

are possible. In C1, v1 can improve by deviating to C3, in C2, v2 can improve by deviating
to C2, in C3, v2 can improve by deviating to C3, in C4, the pair of nodes {v0, z1} can
improve by deviating to C2, in C5, z1 can improve by deviating to C3 and, in C6, the pair
of nodes {v0, z2} can improve by deviating to C2. So, no 2-Strongly Nash stable coalition
structures may exist in this case as well.

Case 4: Coalition structures with 2 non-empty coalitions. Because of Property 6,
it follows that only three cases for C are possible: the one in which |C1| = 7 and |C2| = 2,
the one in which |C1| = 6 and |C2| = 3 and the one in which |C1| = 5 and |C2| = 4.

For the first case, by Property 4, six candidate coalition structures are possible, namely
C1, . . . ,C6, respectively defined by the following choices for C2:

C2 ∈ {{v1, v2}, {v1, y1}, {v2, y2}, {v1, y2}, {y1, z1}, {y2, z2}}.

353
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In C1, y2 can improve by deviating to C2, in C2, v2 can improve by deviating to C2, in C3,
v1 can improve by deviating to C2, in C4, v2 can improve by deviating to C2, while in both
C5 and C6, nodes v1 and v2 form a critical pair.

For the second case, by Property 4, five candidate coalition structures are possible,
namely C1, . . . ,C5, respectively defined by the following choices for C2:

C2 ∈ {{v1, v2, y1}, {v1, v2, y2}, {v1, y1, z1}, {v1, y2, z2}, {v2, y2, z2}}.

In C1, z1 can improve by deviating to C2, in C2, z2 can improve by deviating to C2, in both
C3 and C4, v1 can improve by deviating to C1, while in C5, v1 can improve by deviating
to C2.

For the third case, by Property 4, seven candidate coalition structures are possible,
namely C1, . . . ,C7, respectively defined by the following choices for C2:

C2 ∈ {{v1, v2, y1, y2}, {v1, v2, y1, z1}, {v1, v2, y2, z2}, {v1, y1, y2, z1}}∪

∪{{v1, y1, y2, z2}, {v1, y1, y2, z1}, {y1, y2, z1, z2}}.

In C1, y1 can improve by deviating to C1, in C2, v2 can improve by deviating to C1, in C3,
nodes y1 and z1 form a critical pair, in C4, y2 can improve by deviating to C1, in C5, y1

can improve by deviating to C1, while in both C6 and C7, nodes y1 and z1 form a critical
pair.

Appendix B. Proofs from Subsection 4.1

B.1 Proof of Lemma 2

Proof. First, observe that after Line 10, there are |M | non-empty coalitions each containing
a pair of nodes corresponding to an edge of M . Since the set Covered in never changed
after Line 10 and no node is removed from a coalition during the for-cycle at Lines 11–14,
it follows that, during the execution of Lines 12 and 13, for each non-empty coalition Ci,
exactly two nodes of Ci belong to Covered.

To prove the claim, we need to show that (i) Line 12 of Algorithm 1 can always be
performed and (ii) at the end of Line 13, coalition C(v) is a star.

To show the first part, fix a node u /∈ Covered. Since G has no isolated nodes, there
exists v ∈ N such that {u, v} ∈ E. If v /∈ Covered, then M ∪ {u, v} is a matching for G,
thus contradicting the optimality of M . Hence, it must be v ∈ Covered which implies that
Line 12 can be performed.

To show the second part, since after Line 10 all coalitions in C are stars, assume that
there is an iteration of the for-cycle at Lines 11–14 such that C(v) is a star and C(v)∪ {u}
is not. This implies that |C(v)| ≥ 3 and that v ∈ `(GC(v)). Observe that, since the two
nodes of C(v) belonging to Covered are c(GC(v)) and v, {c(GC(v)), v} ∈ M . Now choose
a node x ∈ C(v) \ {c(GC(v)), v} which exists since |C(v)| ≥ 3. Clearly, {c(GC(v)), x} ∈ E
since C(v) is a star centered at c(GC(v)). Nodes u, x /∈ Covered, so they are not incident
to any edge of M . It follows that M \ {c(GC(v)), v} ∪ {u, v} ∪ {c(GC(v)), x)} is a matching
for G, thus contradicting the optimality of M .
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B.2 Proof of Lemma 3

Proof. The proof is by induction on k. Clearly, for k = 0, the claim follows from Lemma
2. Assume, by way of contradiction, that there exists an index k ≥ 0 such that Ck is a
star coalition structure for G(G), while Ck+1 is not. This implies that there exists a node
u = arg minv∈NID(Ck)\c(Ck){pv(Ck)} with an improving deviation to coalition Ckj leading

from Ck to Ck+1 = (Ck
−u, C

k
j ) such that either Ck(u) \ {u} or Ckj ∪ {u} is not a star.

Assume first that Ck(u) \ {u} is not a star. This implies |Ck(u)| = 2 so that pu(Ck) =
1/2. We distinguish between two cases. If {u, c(GCk

j
)} ∈ E, then, since G is triangle-

free, pu(Ck+1) = 1
|Ck

j |+1
≤ 1

3 since |Ckj | ≥ 2, thus contradicting pu(Ck) < pu(Ck+1). If

{u, c(GCk
j
)} /∈ E, then there must exist a node z ∈ Ckj , with z 6= c(GCk

j
), such that {u, z} ∈

E. Since G is triangle-free, pu(Ck+1) ≤ |C
k
j |−1

|Ck
j |+1

. By pu(Ck) < pu(Ck+1), we derive |Ckj | ≥ 4

which implies pz(C
k) ≤ 1

4 . By {u, z} ∈ E, we derive pz(C
k
−z,C

k(u)) = 1/3 > pz(C
k) which

implies z ∈ NID(Ck) \ c(Ck). Since pu(Ck) = 1/2 and pz(C
k) ≤ 1

4 , we get a contradiction
to u = minv∈NID(Ck)\c(Ck){pv(Ck)}.

Assume now that Ckj ∪ {u} is not a star. This implies that |Ckj | ≥ 3 and that there
exists a node v ∈ `(GCk

j
) such that {u, v} ∈ E. Moreover, we have already proved that

Ck(u) \ {u} has to be a star which implies |Ck(u)| ≥ 3. Let C′ be the coalition structure
obtained from Ck by removing u from Ck(u), v from Ckj and then placing both of them in

an empty coalition C ′. By |Ck(u)| ≥ 3 and u 6= c(GCk(u)), it follows that Ck(u) \ {u} is

a star; by |Ckj | ≥ 3 and v ∈ `(GCk
j
), it follows that Ckj \ {v} is a star; and by {u, v} ∈ E,

it follows that C ′ is a star. So, C′ is a star coalition structure for G(G) with |C′| > |Ck|.
Now observe that, since a center never leaves her coalition and a node never deviates to
an empty coalition, |M | = |Ck| for each k ≥ 0. Moreover, a star coalition structure C for
G(G) induces in a natural way a matching M(C) for G such that |M(C)| = |C|. Thus,
having constructed a star coalition structure C′ for G(G) such that |C′| > |Ck|, we get a
contradiction to the optimality of M .

Appendix C. Proofs from Subsection 4.2

C.1 Proof of Lemma 5

Proof. Assume, by way of contradiction, that there exists an edge {u, v} ∈ E(C∗) such that

u ∈ Li and v ∈ Kj with j > i. Let Sf
∗

q be a star such that Sf
∗

q ∈ Ai and u ∈ `(Sf
∗

q ) and

let Sf
∗

r be the star such that Sf
∗

r ∈ Aj and u = c(Sf
∗

r ). Hence, the function f ′ obtained
from f∗ by moving an arbitrarily small quantity ε > 0 from f∗(u, q) to f∗(u, r) belongs to
F(V ∗). We obtain

SW(Sf
∗
)− SW(Sf

′
)

=
2xi
xi + 1

+
2xj
xj + 1

− 2(xi − ε)
xi + 1− ε

− 2(xj + ε)

xj + 1 + ε

= 2ε

(
1

(xi + 1)(xi + 1− ε)
− 1

(xj + 1)(xj + 1 + ε)

)
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< 0,

where the last inequality comes from xi > xj and the arbitrariness of ε. We have derived
SW(Sf

∗
) < SW(Sf

′
) thus contradicting the optimality of Sf

∗
.

C.2 Proof of Lemma 8

Proof. In order to show the claim, we resort on a reduction argument to the flow circulation
problem in which, given a directed network, every node u has a demand d(u) and each edge
e = {u, v} a lower bound l(u, v) and upper bound c(u, v) on the amount of flow that must
circulate along it. A circulation is a flow assignment to the edges satisfying the edges bounds
and such that for every node u the total amount of flow entering u minus the total amount
leaving u is equal to d(u). In other words, a node with negative demand is injecting new
flow in the network, while one with positive demand is consuming flow.

Given a set of fractional stars Ai, let us create an instance of the flow circulation problem
as follows: G̃ = (Ṽ , Ẽ), with Ṽ = Ki ∪ Li ∪ {s, t} and Ẽ = E(Ki ∪ Li) ∪ {{s, u} : u ∈
Ki} ∪ {{u, t} : u ∈ Li}; node demands are d(s) = −li, d(t) = li, and d(u) = 0 for all the
remaining nodes u ∈ Ki ∪Li; finally, the lower and upper bounds on the allowed flow along
the edges are l(s, u) = bxic and c(s, u) = dxie for each {s, u} ∈ Ẽ, and l(u, v) = 0 and
c(u, v) = 1 for all the remaining edges {u, v} ∈ Ẽ.

Consider then the following circulation of flow f : f(s, u) = xi for each edge {s, u} ∈ Ẽ,
f(u, v) is equal to the value of the fractional assignment Ai associated to edge {u, v} ∈
E(Ki ∪ Li), and finally f(u, v) = 1 for every {u, v} ∈ Ẽ.

Then, since all demands and lower and upper bounds on the flow of the edges are
integers, and f is a feasible circulation, there is also a feasible circulation f ′ for G̃ that is
integer-valued. By construction, f ′ induces a star coalition structure Sf

′
centered at Ki of

the set of nodes Ki ∪ Li. Moreover, by the edge constraints, every star must have order
either bxic+ 1 or dxie+ 1.

Now let zi, with 0 ≤ zi ≤ ki, be the number of stars in Sf
′

having order equal to bxic+1.

It follows that zibxic+ (ki − zi)dxie = li and
∑

j∈[ki]
SW(Sj) = 2

(
zibxic
bxic+1 + (ki−zi)dxie

dxie+1

)
.

C.3 Proof of Lemma 9

Proof. Assume that S∗ is not Nash stable, otherwise we are done. We obtain C by manipu-
lating S∗ as follows. Whenever there exist two stars S, S′ ∈ S∗ such that |`(S)| > |`(S′)|+1
and {c(S′), u} ∈ E for some u ∈ `(S), remove u from S and add it to S′. It is easy to see
that the total social welfare increases. Similarly, whenever there exist two stars S, S′ ∈ S∗

such that |`(S)| ≥ 2, |`(S′)| ≥ 2 and {u, v} ∈ E for some u ∈ `(S) and v ∈ `(S′), remove
u from S, v from S′ and create a new star formed by edge {u, v}. Again, the total social
welfare increases. Finally, whenever there exist two stars S, S′ ∈ S∗ such that |`(S)| = 1,
|`(S′)| ≥ 3 and {u, v} ∈ E for some u ∈ `(S) and v ∈ `(S′), remove v from S′ and add it
to S. Again, the total social welfare increases. Denote with C the star coalition structure
obtained at the end of this process. Clearly, SW(C) ≥ SW(S∗). We now show that C is
Nash stable.

Let u be an agent who possesses an improving deviation in C by migrating to a coalition
C (inducing a star) and let i = |`(GC(u))| and j = |`(GC)|. Assume u = c(GC(u)). From
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the one hand, pu(C) = i
i+1 . From the other hand, since G is triangle-free, pu(C−u, C) ≤

j
j+2 ≤

i+1
i+3 , where the last inequality follows from the construction of C. It follows that such

an improving deviation is not possible. So, assume u ∈ `(GC(u)). We have pu(C) = 1
i+1 . If

{u, v} ∈ E for some v ∈ `(GC), then, by the construction of C, it must be i = 1∧ j = 1, or
i = 1 ∧ j = 2, or i = 2 ∧ j = 1. It is easy to see that, in all of these three cases, such an
improving deviation is not possible and this concludes the proof.

C.4 Proof of Lemma 11

Proof. We prove the claim by induction on h.
For h = 1, the base of the induction is trivially verified.
As to the inductive step, by assuming true the claim for h = n, we prove that it also

holds for h = n+ 1.

∑
i∈[n+1]

lik≤i∑
i∈[n+1]

(ki + li)
=

∑
i∈[n]

lik≤i∑
i∈[n+1]

(ki + li)
+

ln+1k≤n+1∑
i∈[n+1]

(ki + li)

≤

∑
i∈[n]

lik≤i∑
i∈[n]

(ki + li)
+

ln+1k≤n+1∑
i∈[n+1]

(ki + li)

≤
∑
i∈[n]

kili
ki + li

+
kn+1ln+1

kn+1 + ln+1
(9)

=
∑

i∈[n+1]

kili
ki + li

.

Notice that, by the inductive hypothesis,
∑

i∈[n] lik≤i∑
i∈[n](ki+li)

≤
∑

i∈[n]
kili
ki+li

; therefore, in order

to prove inequality (9), it remains to show that
ln+1k≤n+1∑
i∈[n+1](ki+li)

≤ kn+1ln+1

kn+1+ln+1
, that is equivalent

to
k≤n+1∑

i∈[n+1]

(ki + li)
≤ kn+1

kn+1 + ln+1
.

Since li
ki
≥ li+1

ki+1
for any i ∈ [n], ki

li+ki
≤ ki+1

ki+1+li+1
for any i ∈ [n]. Thus, kn+1

kn+1+ln+1
≥

ki+1

ki+1+li+1
for any i ∈ [n]. Let α = kn+1

kn+1+ln+1
; we have

k≤n+1∑
i∈[n+1]

(ki + li)
=

∑
i∈[n+1]

ki∑
i∈[n+1]

(ki + li)
≤

∑
i∈[n+1]

α(ki + li)∑
i∈[n+1]

(ki + li)
= α =

kn+1

kn+1 + ln+1
.
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Figure 7: (a) Coalitions corresponding to a set belonging to the exact 3-cover. (b) Coalition
corresponding to a set not belonging to the exact 3-cover.

Appendix D. Proofs from Section 5

D.1 Proof of Theorem 14

Proof. We prove the claim by exploiting a reduction from the Exact 3-Cover problem which
is well known to be NP-hard (Garey & Johnson, 1990). In this problem, we are given a
universe X = [3p] of 3p elements and a collection B = {B1 . . . , Bm} of m subsets of X such
that |Bj | = 3 for any 1 ≤ j ≤ m and

⋃m
j=1Bj = X. The objective is to find a collection of

p subsets F = {Bi1 , . . . , Bip} ⊆ B such that
⋃p
j=1Bij = X.

Given an instance (X,B) of Exact 3-Cover, we can construct an undirected graph
G in the following way. G has node set N = N1 ∪ N2 and edge set E = E1 ∪
E2, where N1 = {aj , bj , cj , dj | j = 1, . . . ,m}, N2 = {yj | j = 1, . . . , 3p},
E1 = {{aj , bj}, {aj , cj}, {aj , dj}, {bj , cj}, {bj , dj}, {cj , dj} | j = 1, . . . ,m} and E2 =
{{yi, aj}, {yi, bj} | i ∈ Bj}.

In other words, for each subset in B there is a clique of 4 nodes whose nodes belong to
N1 and whose edges belong to E1, and for each element in X there is a node belonging to
N2; E2 contains edges connecting a node yi of N2 to nodes aj and bj in N1 if and only if
i ∈ Bj . Note that G is connected and unweighted.

In the following, we show that there exists an exact 3-cover for (X,B) if and only if
the social optimum of G(G) has social welfare at least 19

5 p+ 3(m− p), and that if an exact
3-cover exists, a Nash stable coalition structure of social welfare 19

5 p+ 3(m− p) also exists,
thus proving the claim.

If there exists an exact 3-cover for (X,B), then there exists a coalition structure of social
welfare equal to 19

5 p+ 3(m− p). In fact, let Bi∗1 , . . . , Bi∗p be the exact 3-cover; consider the
coalition structure composed by the following m non-empty sets: For each k = 1, . . . , p,
add the two coalitions {ci∗k , di∗k} (of type A) and {yj |j ∈ Bi∗k} ∪ {ai∗k , bi∗k} (of type B) of

total social welfare 19
5 (see Figure 7(a)); furthermore, for any j in [m] \ {i∗1, . . . , i∗p}, add the

coalition composed by nodes aj , bk, cj , dj (of type C), inducing a clique and having social
welfare equal to 3 (see Figure 7(b)). It can be easily verified that this coalition structure is
Nash stable:
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• nodes c and d in a coalition of type A are stable because their payoff is 1
2 and by

joining the coalition of type B corresponding to the same set Bi their payoff would
become 1

3 .

• nodes a and b in a coalition of type B are stable because their payoff is 4
5 and by

joining the coalition of type A corresponding to the same set Bi their payoff would
become 2

3 .

• nodes y in a coalition of type B are stable because their payoff is 2
5 and by join-

ing the coalition of type C corresponding to another set Bi containing the element
corresponding to node y, their payoff would remain equal to 2

5 .

• nodes c and d in a coalition of type C are clearly stable.

• nodes a and b in a coalition of type C are stable because their payoff is 3
4 and by

joining the coalition of type B corresponding to another set Bi their payoff would be
at most 1

3 .

Conversely, if no exact 3-cover exists, then the social optimum has a social welfare
strictly smaller than 19

5 p+ 3(m− p). Given a coalition structure C, we say that C assigns
element j (j = 1, . . . , 3p) to set Bi (i = 1, . . . ,m) if C(yj) = C(ai) or C(yj) = C(bi) (or
both). In the following, we exploit the following property:

Property 8. Given any coalition structure C, there exists another coalition structure C′

such that SW(C′) ≥ SW(C) and, for any j = 1, . . . , 3p, C′ assigns element j only to one
set Bi.

Given Property 8, we can focus on the class of coalition structures assigning each el-
ement to a unique set. Therefore, given any coalition structure C in this class, we have
to distinguish among four cases, depending on the number k (k = 0, 1, 2, 3) of elements C
assigns to a set Bi. Consider a generic set Bi and its associated nodes ai, bi, ci, di. It can
be easily checked by a case analysis that the highest possible social welfare relative to the
coalitions containing ai, bi, ci, di and the nodes corresponding to the elements C assigns to
Bi is as follows:

• if k = 0, the highest possible social welfare is 3 and is obtained by considering a unique
coalition containing all the four nodes (see Figure 8(a));

• if k = 1, letting yj be the element assigned by C to Bi, the highest possible social
welfare is 16

5 and is obtained by considering a unique coalition containing all the five
nodes (see Figure 8(b));

• if k = 2, letting yj1 and yj2 be the elements assigned by C to Bi, the highest possi-
ble social welfare is 7

2 and is obtained by considering the two coalitions {ci, di} and
{ai, bi, yj1 , yj2} (see Figure 8(c));

• if k = 3, letting yj1 , yj2 and yj3 be the elements assigned by C to Bi, the highest
possible social welfare is 19

5 and is obtained by considering the two coalitions {ci, di}
and {ai, bi, yj1 , yj2 , yj3} (see Figure 8(d)).
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ci di

ai bi

yj1 yj2 yj3

ci di
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ai bi

yj

yj1 yj2
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ai bi

(c) (d)

Figure 8: Coalition structures with the highest possible social welfare for (a) k = 0; (b)
k = 1; (c) k = 2; (d) k = 3.

For each i = 1, . . . ,m, we rearrange the social welfare of the above coalition structure
configurations such that 3 is always accounted to the nodes ai, bi, ci, di and the surplus is
equally shared among the nodes in N2 that C assigns to Bi. Therefore, if k = 1 and yj ∈ N2

is the element assigned by C to Bi, we account 16
5 − 3 = 1

5 to yj ; if k = 2 and yj1 , yj2 ∈ N2

are the elements assigned by C to Bi, we account
7
2
−3

2 = 1
4 to yj1 and yj2 ; if k = 3 and

yj1 , yj2 , yj3 ∈ N2 are the elements assigned by C to Bi, we account
19
5
−3

3 = 4
15 to yj1 , yj2

and yj3 . Notice that, since 4
15 >

1
4 >

1
5 , a coalition structure with social welfare equal to

3p · 4
15 + 3m = 19

5 p + 3(m − p) can be obtained if and only if 4
15 is accounted to all nodes

in N2; therefore, also recalling Property 8, this would imply that an exact 3-cover exists: a
contradiction.

In order to complete the proof, we have to prove Property 8. Consider a coalition
structure C; first of all, we can assume that each coalition in C is connected, otherwise
it could be split into two or more coalitions with a higher total social welfare. Consider
also a set Bi with its corresponding nodes {ai, bi, ci, di} ∈ N1. Let us assume that there
exists a coalition C ∈ C containing both (at least) a node in {ai, bi, ci, di} and (at least)
a node in {aj , bj , cj , dj |j 6= i}. We show that C can be transformed into a new coalition
structure C′ so that SW(C′) ≥ SW(C) and C′(u) 6= C′(v) for any u ∈ {ai, bi, ci, di} and
v ∈ {aj , bj , cj , dj |j 6= i}. Since a coalition can contain nodes corresponding to two different
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sets Bi and Bj only if (at least) an element to be covered is assigned both to Bi and Bj ,
such a process can be iterated until Property 8 holds.

Let yi1 , yi2 , yi3 be the nodes in N2 such that i1, i2, i3 ∈ Bi. Roughly speaking, the idea
is that of reducing coalition C so that all nodes in {ai, bi, ci, di} ∩ C are removed from C,
whilst all other nodes of C (including those in {yi1 , yi2 , yi3} ∩C) remain in C; therefore, C
is replaced by C ′ = C \{ai, bi, ci, di} and C′ = C\{C}∪{C ′}. Furthermore, a new coalition
C ′′ = {ai, bi, ci, di} is added to C′. We aim at proving that SW(C′) ≥ SW(C).

Actually, the transformation of C into C′ does not take place as described above in all
cases. In the following, we refer to the one above described as the standard transformation.

We have to distinguish between two disjoint cases:

• If C(ai) = C(bi) = C, we apply the standard transformation of C into C′. Since

|C ′| ≤ |C|, SW(C)− SW(C ′) = 2|EC |
|C| −

2|EC′ |
|C′| ≤

2(|EC |−|EC′ |)
|C| . Moreover, SW(C ′′) = 3.

Let α = |{ci, di}∩C| and β = |{yi1 , yi2 , yi3}∩C|; then, |EC |− |EC′ | = (α+1)(α+2)
2 +2β

and |C| ≥ α+ β + 3 (because, by the choice of C, at least one node not belonging to
{ai, bi, ci, di, yi1 , yi2 , yi3} has to belong to C).

Notice that, if α > 0, SW(C′)−SW(C) = SW(C ′)+SW(C ′′)−SW(C) = 3+SW(C ′)−
SW(C). If α = 0 we have to take into account that also another coalition {ci, di} with
social welfare 1 could belong to C and has to be removed in order to obtain coalition
C ′′ ∈ C′; therefore, SW(C′)−SW(C) = SW(C ′)+SW(C ′′)−(SW({ci, di})+SW(C)) =
2 + SW(C ′)− SW(C).

Therefore, if α > 0 we have to verify that

3 ≥ (α+ 1)(α+ 2) + 4β

α+ β + 3
,

and if α = 0 we have to verify that

2 ≥ 2 + 4β

β + 3
. (10)

The above inequalities are verified for all values of 0 ≤ α ≤ 2 and 1 ≤ β ≤ 3, but the
combination α = 0 and β = 3.

In this case, if |C| ≥ 7, i.e., there exist at least 2 nodes in C not belonging to
{ai, bi, ci, di, yi1 , yi2 , yi3}, the denominator at the right-hand side of 10 becomes 7 and
the equation is verified for β = 3. It remains to deal with the case in which α = 0,
β = 3 and |C| = 6 (see Figure 9(a)). Notice that in this case it is not possible that
all the three nodes yi1 , yi2 , yi3 have an edge toward node x because we can assume
that in the Exact 3 Cover instance Bi 6= Bj for i 6= j; therefore, there must exist a
node, say yi1 not adjacent to node x, and SW(C) ≤ 3. In this case, we do not apply
the standard transformation: as shown in Figure 9(b), we split C in two coalitions of
total social welfare 5

2 + 1 > 3.

• If C(ai) 6= C(bi) and only one of them, say without loss of generality C(ai) = C,
we have to extend the standard transformation by taking into account also coalition
C̄ = C(bi).
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Figure 9: The new coalition structure C′ in the case of α = 0, β = 3 and |C| = 6.

In particular, C is replaced by C ′ = C \ {ai, bi, ci, di}, C̄ by C̄ ′ = C̄ \ {ai, bi, ci, di}.
Furthermore, a new coalition C ′′ = {ai, bi, ci, di} is added to C′.

Analogously to the previous case, SW(C) − SW(C ′) ≤ 2(|EC |−|EC′ |)
|C| and SW(C̄) −

SW(C̄ ′) ≤ 2(|EC̄ |−|EC̄′ |)
|C̄| . Moreover, SW(C ′′) = 3.

Let α = |{ci, di}∩C|, β = |{yi1 , yi2 , yi3}∩C|, ᾱ = |{ci, di}∩C̄| and β̄ = |{yi1 , yi2 , yi3}∩
C̄|; then, |EC |−|EC′ | = α(α+1)

2 +β, |EC̄ |−|EC̄′ | =
ᾱ(ᾱ+1)

2 +β̄, |C| ≥ α+β+2 (because,
by the choice of C, at least one node not belonging to {ai, bi, ci, di, yi1 , yi2 , yi3} has to
belong to C) and |C̄| ≥ ᾱ+ β̄ + 1. Notice that, since a coalition structure is given by
a partition of nodes into sets, α+ ᾱ ≤ 2 and β + β̄ ≤ 3.

Notice that, if α+ᾱ > 0, SW(C′)−SW(C) = SW(C ′)+SW(C̄ ′)+SW(C ′′)−(SW(C)+
SW(C̄)) = 3 + (SW(C ′) − SW(C)) + (SW(C̄ ′) − SW(C̄)). If α + ᾱ = 0 we have
to take into account that also another coalition {ci, di} with social welfare 1 could
belong to C and has to be removed in order to obtain coalition C ′′ ∈ C′; therefore,
SW(C′)−SW(C) = SW(C ′)+SW(C̄ ′)+SW(C ′′)−(SW({ci, di})+SW(C)+SW(C̄)) =
2 + (SW(C ′)− SW(C)) + (SW(C̄ ′)− SW(C̄)).

Therefore, if α+ ᾱ > 0 we have to verify that

3 ≥ α(α+ 1) + 2β

α+ β + 2
+
ᾱ(ᾱ+ 1) + 2β̄

ᾱ+ β̄ + 1
, (11)

and if α+ ᾱ = 0 we have to verify that

2 ≥ 2β

β + 2
+

2β̄

β̄ + 1
.

The above inequalities are verified for all values of 0 ≤ α ≤ 2, 0 ≤ ᾱ ≤ 2, 1 ≤ β ≤ 3
and 0 ≤ β̄ ≤ 3 with constraints α+ ᾱ ≤ 2 and β + β̄ ≤ 3, but the combination α = 0,
ᾱ = 2, β = 3 and β̄ = 0.

In this case, if |C| ≥ 6, i.e., there exist at least 2 nodes in C not belonging to
{ai, bi, ci, di, yi1 , yi2 , yi3}, the first denominator at the right side of 11 becomes 6 and
the equation is verified for α = 0, ᾱ = 2, β = 3 and β̄ = 0: 3 ≥ 6

6 + 6
3 .
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Figure 10: The new coalition structure C′ in the case of α = 0, β = 3 and |C| = 6.

It remains to deal with the case in which α = 0, ᾱ = 2, β = 3, β̄ = 0 and |C| = 5
(see Figure 10(a)). Notice that in this case it is not possible that all the three nodes
yi1 , yi2 , yi3 have an edge toward node x because we can assume that in the Exact
3-Cover instance Bi 6= Bj for i 6= j; therefore, there must exist a node, say yi3 , not
adjacent to node x, and, clearly, at least a node, say yi1 , being adjacent to node x; it
follows that SW(C) ≤ 2 and SW(C̄) = 2. In this case, we apply the transformation
shown in Figure 10(b): we obtain two coalitions of total social welfare 1 + 16

5 > 4.

Appendix E. Proofs from Subsection 5.3

E.1 Proof of Lemma 14

Proof. Let C∗ be a social optimum and g be a labeling compatible with C∗. Let us first
notice that, by Remark 1, if there is a coalition C∗i = {u, v} with only two agents, then
there is another labeling g′ compatible with C∗ obtained from g by swapping the labels of
the two agents in C∗i , that is g′(u) = g(v), g′(v) = g(u) and g′(w) = g(w) for every w 6= u, v.
For this reason, among all the functions compatible with C∗, we take into account only the
one that, for each coalition having only two agents, labels as External the agent closer to the
root r. We refer to such a function as super-compatible (with respect to r) which is formally
defined as follows: g is super-compatible with C∗ (with respect to r) if g is compatible
with C∗ and for every C∗i = {ui, vi}, with ui = Parentr(G, vi) we have g(ui) = Internal,
g(vi) = External.

Let g be a labeling which is super-compatible with an optimal coalition structure C∗.
We want to show that g is equivalent to f ; if not then there exists another labeling function
ḡ which is super-compatible with a different optimal coalition structure C̄∗ and is equivalent
to f . The proof is by induction on the level of the tree rooted at r. In the reminder of this
proof we frequently make use of Remark 1, and the property from Lemma 13 stating that
every coalition of a social optimum contains at least two agents.

Let u ∈ Leavesr(G). We have f(u) = External. Let us assume g(u) = Internal. As
consequence of Lemma 13, |C∗(u)| ≥ 2, thus v = Parentr(G, u) ∈ C∗(u). From Remark
1, since u in an internal agent, no other internal agent can be a member of C∗(u), thus
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g(v) = External. Moreover from Remark 1, any additional agent in C∗(u) beside u and v
should be an external agent not adjacent to v, hence v is the only external agent in C∗(u),
i.e., C∗(u) = {u, v}. This contradicts that g is super-compatible with C∗.

For the inductive step, let us assume that g is equivalent to f on every agent at a level
strictly larger than l, and let us prove that g(u) = f(u) for every agent u at level l. Let u
be such that Levelr(G, u) = l.

Case 1. If ∀x ∈ Childrenr(G, u) we have f(x) = Internal, then f(u) = External. By
way of contradiction, let us assume g(u) = Internal. From Remark 1, since u in an internal
agent, no other internal agent can be a member of C∗(u), thus no children of u is in
C∗(u). Applying the same argument of the base of the induction, let v = Parentr(G, u),
C∗(u) = {u, v} and g(v) = External. Thus a contradiction.

Case 2. If ∀x ∈ Childrenr(G, u) we have f(x) = External, then f(u) = Internal. By
way of contradiction, let us assume g(u) = External. From Remark 1, since u is an external
agent, no other external agent which is adjacent to u can be a member of C∗(u), thus no
children of u is in C∗(u). From Lemma 13, |C∗(u)| ≥ 2, thus v = Parentr(G, u) ∈ C∗(u).
By Remark 1, since u in an external agent, it must be g(v) = Internal. Let us distinguish
two subcases:

(a) C∗(u) = {u, v};

(b) |C∗(u)| ≥ 3, thus ∃w ∈ C∗(u), w 6= u, v.

Fix x ∈ Childrenr(G, u). Let us first observe that |C∗(x)| ≥ 3. In fact, from Lemma
13, |C∗(x)| ≥ 2, thus ∃y ∈ Childrenr(G, x) such that y ∈ C∗(x). By Remark 1 and
the induction hypothesis, since x in an external agent, it must be g(y) = Internal.
Since g is super-compatible with C∗, there must exist z ∈ Childrenr(G, y) such that
z ∈ C∗(y) = C∗(x).
For (a), we define C̄∗ to be the coalition structure obtained from C∗ by replacing C∗(u)
and C∗(x) with {v, u, x} and C∗(x) \ {x}, and we choose ḡ such that ḡ(s) = g(s) for every
s 6= u, v, ḡ(u) = Internal, ḡ(v) = External. It is easy to verify that SW(C̄∗) ≥ SW(C∗)
and ḡ is super-compatible with C̄∗. In particular, if SW(C̄∗) = SW(C∗), we have found
an alternative social optimum C̄∗ and an alternative labeling ḡ which is super-compatible
with C̄∗ and equivalent to f ; if SW(C̄∗) > SW(C∗), it is contradicted that C∗ is the social
optimum.
For (b), first of all notice that, by Remark 1, w ∈ Childrenr(G, v) because g(u) = External;
we define C̄∗ to be the coalition structure obtained from C∗ by replacing C∗(u) and
C∗(x) with the three coalitions {v, w}, {u, x} and C∗(x) \ {x}. It is easy to verify that
SW(C̄∗) > SW(C∗): this contradicts that C∗ is the social optimum.

Case 3. If ∃x1, x2 ∈ Childrenr(G, u) such that f(x1) = External, f(x2) = Internal,
then f(u) = Internal. By way of contradiction, let us assume g(u) = External. Differently
from the previous case in which all the children of u are external agents, x2 may be a
member of C∗(u). If for any x ∈ Childrenr(G, u) such that f(x) = Internal (including x2)
it holds that x /∈ C∗(u), then it is possible to apply the same arguments as for Case 2.
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Conversely, if x2 ∈ C∗(u), it holds that (i) by Remark 1 x1 6∈ C∗(u) and (ii) since from
the hypothesis g is super-compatible with C∗, there must exist y2 ∈ Childrenr(G, x2) such
that y2 ∈ C∗(x2) = C∗(u). Let y1 ∈ Childrenr(G, x1); notice that, again by Remark 1
and by the induction hypothesis, since f(x1) = g(x1) = External, it holds that f(y1) =
g(y1) = Internal. Moreover, since g is super-compatible with C∗, there must exist at least
a node z ∈ Childrenr(G, y1) and therefore |C∗(x)| ≥ 3. In this case we define C̄∗ to be
the coalition structure obtained from C∗ by replacing C∗(u) and C∗(x1) with the three
coalitions {u, x1}, C∗(x)\{x} and C∗(u)\{u}. It is easy to verify that SW(C̄∗) > SW(C∗).
This again contradicts that C∗ is the social optimum.

E.2 Proof of Lemma 15

Proof. Let us prove the claim by induction on the height of the subtree GT s
u

rooted at u.
If the height of the tree is 1, the claim trivially holds since the subtree has no alternating
path.

Let us assume that the lemma holds for any value of the height strictly smaller than
l ≥ 2, and let us show that it works also when the height is equal to l. Hence, let us assume
that the tree GT s

u
rooted at u has height equal to l. Let C′ = {C′(x)}x:g(x)=Internal be the

coalition structure at the end of line 16. By the inductive hypothesis, we have that for
every internal agent x ∈ T sw∗i , for i ∈ [1, k], every alternating path with respect to C′ and
starting at x is ordered. Notice that the size of the coalitions of the internal agents in T sw∗i
could be changed only by the call of OptCS Ext, [line 23]. Let C′′ = {C′′(x)}x:g(x)=Internal

be the coalition structure at the end of line 23, right after the call of OptCS Ext. After
the execution of OptCS Ext only one coalition changes its size (by increasing it by one
unit); let C′′(z), with z ∈ T sw∗i being internal, be this coalition, i.e., |C′′(z)| = |C′(z)| + 1.
From the condition of the if statement at line 3 in procedure Order, it follows that every
alternating pair (with respect to C′′) starting at z is ordered. Finally, we only need to show
that |C(u)| ≤ |C(w∗i )|, for every i ∈ [1, k]. But this is guaranteed by the condition of the
while loop, [line 17], and the fact that the coalitions |C(w∗i )|, for i ∈ [1, k], are ordered
according to size in non-decreasing way.

E.3 Proof of Lemma 16

Proof. Define Childrens(G, v) = {w1, . . . , wk} (notice that all these nodes are internal);
notice that when procedure OptCS Ext is called with parameter v, the social optimum
for every subgame G(GT s

wj
) (j = 1, . . . , k) has been already computed (at lines 10-12 of

Algorithm 2 or at lines 8-11 of Procedure OptCS Int); let C′ = {C′(x)}x:g(x)=Internal be the
snapshot of this social optimum. Then, w ∈ arg minwj∈Childrens(G,v) |C′(wj)|. Furthermore,
let C′j = {C′(x)}x∈T s

wj
:g(x)=Internal (for every j = 1, . . . , k).

Let Opt(G(GT s
v
)) be the social welfare of any social optimum for G(GT s

v
). For every

j ∈ [k], let Xj be the set {v} ∪ T swj
, and let H(j) = Opt(G(GXj )) + Opt(G(GT s

v \Xj
)). It

is easy to see that Opt(G(GT s
v
)) = maxj∈[k]H(j). Since T sv \ Xj can be partitioned into

disjoint sets, we have that Opt(G(GT s
v \Xj

)) =
∑

j′∈[k]∧(j′ 6=j) Opt(G(GT s
wj′

)).
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We now focus on the computation of Opt(G(GXj )). Notice that the social optimum for
G(GXj ) has a social welfare at most equal to the one of the coalition structure obtained by
adding one more agent to one of the coalitions of smallest size in C′j .

Procedure Order reassigns the agents to the coalitions in C′j in such a way that only
the size of one of the smallest coalitions, among the ones reachable by an alternating path
from wj , is increased by one unit. In fact, by applying Lemma 15 to C′j , we know that
for every internal agent x ∈ T swj

, every alternating path with respect to C′j and starting at
x is ordered. Let C′′ = {C′′(x)}x:g(x)=Internal be the coalition structure right after the call
of Order. After the execution of Order only one coalition increases its size by one unit;
let C′′(z), with z ∈ T swj

being internal, be this coalition, i.e., |C′′(z)| = |C′(z)| + 1. From
the definition of Order and Lemma 15, z is an agent reachable by an alternating path
from wj and |C′(z)| = |C′(wj)|, that is, C′(z) is one of the smallest coalition among all
the ones reachable from wj by an alternating path. It is worth noticing that, by procedure
Order, even if node vj is added to the coalition centered at wj , the assignment of nodes
to coalitions is rearranged so that the increase of one unit of cardinality concerns another
coalition (coalition C′(z), say by adding to it node y). Therefore, we obtain that

Opt(G(GXj ))−Opt(G(GT s
wj

)) = SW(C′(z) ∪ {y})− SW(C′(z))

= SW(C′(wj) ∪ {v})− SW(C′(wj)) (12)

= ∆(C′, wj , v), (13)

where equality 12 holds because |C′(z)| = |C′(wj)|.
For any other coalition in C′j not reachable by an alternating path from wj , given that

g is an optimal labeling, it is clearly not possible to rearrange the assignment of agents to
coalitions such that the increase of one unit of cardinality transfers to this coalition. We
can conclude that C′′ contains the social optimum for G(GXj ).

By equality 13 it follows that the index j maximizing ∆(C′, wj , v) also maximizes H,
i.e., arg maxj∈[k]H(j) = arg maxj∈[k] ∆(C′, wj , v). The claim follows because the w selected
at line 2 of OptCS Ext belongs to arg minx∈Childrens(G,v) |C(x)|, and thus also belongs to
arg maxx∈Childrens(G,v) ∆(C′, x, v).

We conclude the proof by observing that OptCS Ext runs in a number of steps which
is polynomial in the number of agents.

E.4 Proof of Lemma 17

Proof. Let us prove the claim by induction on the height of the tree GT s
u

rooted at u. If
the height of the tree is 1, the procedure sets C(u) equal to {u} ∪ S1, which is obviously
the social optimum. Let us assume that OptCS Int computes the social optimum of any
game induced by a subtree with height strictly smaller than l ≥ 2, and let us show that it
works also when the height is equal to l. Hence, let us assume that the tree GT s

u
rooted

at u has height equal to l. Let C′ = {C′(x)}x:g(x)=Internal be the snapshot of the coalition
structure obtained at the end of line 16 (before the beginning of the while loop). Notice
that, by the inductive hypothesis, C′i is the social optimum for the subgame G(GT s

w∗
i

).

Let Opt(G(GT s
u
)) be the social welfare of any social optimum for G(GT s

u
). For every P ⊆ S2,

let YP = T su \ (C′(u) \ P ). Notice that YP can be partitioned into disjoint sets, i.e., YP =
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⋃
vj∈P T

s
vj . For every P ⊆ S2, we define F(P ) = SW(C′(u)\P )+Opt(G(GYP )). Since YP can

be partitioned into disjoint sets, we trivially get that Opt(G(GYP )) =
∑

vj∈P Opt(G(GT s
vj

)).

It is easy to see that computing the social optimum for G(GT s
u
) consists in identifying a

subset P of S2 maximizing F(P ), i.e., Opt(G(GT s
u
)) = maxP⊆S2 F(P ). The while loop,

[lines 17 − 21], is devoted to the computation of such subset; it iteratively constructs
the set Q as the set of the first h elements of S2 satisfying the condition at line 17, i.e.,
Q = {v1, v2, . . . , vh}. From the condition of the while loop, we deduce that h is such that,
if Q ⊂ S2, for every vj with j > h, |C′(w∗j )| > |C′(u) \ Q| − 1. Hence, the social welfare
of the coalition structure returned by OptCS Int for G(GT s

u
) is F(Q) = SW(C′(u) \Q) +

Opt(G(GYQ)). Before proving thatQ ∈ arg maxP⊆S2 F(P ), we need to show how to compute
the social optimum for G(GYP ), for every P ⊆ S2. Such coalition structure is obtained by
the union of the social optima for the subgames G(GT s

vj
), for every vj ∈ P . The social

optimum for G(GT s
vj

) can be computed by running the procedure OptCS Ext on input vj ,

as claimed by Lemma 16.

It remains to show that Q ∈ arg maxP⊆S2 F(P ). Recall that Q = {v1, v2, . . . , vh} and,
if Q ⊂ S2, for every vj with j > h, it holds that |C′(w∗j )| > |C′(u) \ Q| − 1. By way of
contradiction, let us assume that Q is not optimal, i.e., there is a subset R such that F(R) >
F(Q). If there exists an index j ≥ 1 such that vj 6∈ R and vj+1 ∈ R, let R′ = R \ {vj+1} ∪
{vj}. Notice that, since |R′| = |R|, SW(C′(u) \ R′) − SW(C′(u) \ R) = 0. Moreover, by
Lemma 16, we know that Opt(G(GYR′ ))−Opt(G(GYR)) = ∆(C′, w∗j , vj)−∆(C′, w∗j+1, vj+1).
The two equalities imply that F(R′) − F(R) = ∆(C′, w∗j , vj) − ∆(C′, w∗j+1, vj+1). Since
|C′(w∗j+1)| ≥ |C′(w∗j )|, it holds that ∆(C′, w∗j , vj) − ∆(C′, w∗j+1, vj+1) ≥ 0, from which
F(R′) ≥ F(R). We can therefore assume that R contains agents vj with consecutive indices,
i.e., let R = {v1, v2, . . . , vh′}. If h′ > h, let R′ = R\{vh′}. By applying Lemma 16, we obtain
that Opt(G(GYR′ )) − Opt(G(GYR)) = −∆(C′, w∗h′ , vh′). Moreover, since h′ > h, we have
|C′(u) \R′| < |C′(w∗h′)|+ 1, from which SW(C′(u) \R′)− SW(C′(u) \R) > ∆(C′, w∗h′ , vh′).
Hence, we obtain that F(R′) > F(R). Finally, let us assume that h′ < h. Let R′ =
R ∪ {vh′+1}. By applying Lemma 16, we obtain that Opt(G(GYR′ )) − Opt(G(GYR)) =
∆(C′, w∗h′+1, vh′+1). Moreover, since h′ < h, we have |C′(u)\R| ≥ |C′(w∗h′)|+1, from which
SW(C′(u)\R)−SW(C′(u)\R′) < ∆(C′, w∗h′+1, vh′+1). Hence, we obtain that F(R′) > F(R).
We get a contradiction.
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Bilò, Fanelli, Flammini, Monaco, & Moscardelli

Monaco, G., Moscardelli, L., & Velaj, Y. (2018). Stable outcomes in modified fractional
hedonic games. In Proceedings of the 2018 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018.
To appear.

Ohta, N., Conitzer, V., Ichimura, R., Sakurai, Y., Iwasaki, A., & Yokoo, M. (2009). Coali-
tion structure generation utilizing compact characteristic function representations.
In Principles and Practice of Constraint Programming - CP 2009, 15th International
Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009, Proceedings, pp. 623–
638.

Olsen, M. (2009). Nash stability in additively separable hedonic games and community
structures. Theory Comput. Syst., 45 (4), 917–925.

Olsen, M. (2012). On defining and computing communities. In Eighteenth Computing: The
Australasian Theory Symposium, CATS 2012, Melbourne, Australia, January 2012,
pp. 97–102.

Peters, D. (2016). Graphical hedonic games of bounded treewidth. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pp. 586–593.

Peters, D., & Elkind, E. (2015). Simple causes of complexity in hedonic games. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 617–623.

Rahwan, T., & Jennings, N. R. (2008). An improved dynamic programming algorithm for
coalition structure generation. In 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008,
Volume 3, pp. 1417–1420.

Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2012). Anytime coalition
structure generation in multi-agent systems with positive or negative externalities.
Artif. Intell., 186, 95–122.

Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure
generation: A survey. Artif. Intell., 229, 139–174.

Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime
algorithm for optimal coalition structure generation. J. Artif. Intell. Res., 34, 521–
567.

Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition
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