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Temporal relation algebra for audiovisual content analysis

Zein Al Abidin Ibrahim1
& Isabelle Ferrane2

& Philippe Joly2

Abstract

The context of this work is to characterize the content and the structure of audiovisual 
documents by analysing the temporal relationships between basic events resulted from 
differ-ent segmentations of the same document. For this objective, we need to represent and 
reason about time. We propose a parametric representation of temporal relation between 
segments (points or intervals) in which the parameters are used to characterize the 
relationship between two non-convex intervals corresponding to two segmentations in the 
video analysis domain. The relationship is represented by a co-occurrences matrix noted as 
Temporal Relation Matrix (TRM). Each document is represented by a set of TRMs 
computed between each couple of segmentations of the same document using different 
features. The TRMs are analysed later to detect semantic events, highlight clues about the 
video content structure or to classify documents based on their types. For higher-level 
semantic events and documents’ structure, we needed to apply some operations on the 
basic temporal relations and TRMs such as composition, disjunction, complement, 
intersection, etc. These operations brought to light more complex patterns; e.g. event 1 
occurs at the same time of event 2 followed by event 3. In the work presented in this paper, 
we define a temporal relation algebra including its set of operations based on the 
parametric representation and TRM defined above. Several experi-mentations have been 
done on different audio and video documents to show the efficiency of the proposed 
representation and the defined operations for audiovisual content analysing.
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1 Introduction

In the domain of audiovisual content indexing, several automatic tools have been already

presented to help in segmenting a video stream and detecting specific objects in it. Most of

these methods are based on low-level features extracted in a previous step (activity rate,

dominant color, music or speech on the soundtrack, text or character presence on the screen,

etc.). The goal of these techniques is to detect events, in order to create summaries or to

determine temporal entries in the video stream as inputs for an index or for further processing

steps. Their results generally suffer from the lack of semantics of produced index. The

important information used during the analysis process might come from video, audio, or

even textual sources. Thus, the need for tools that can combine the separated information to

improve the semantic level of the extracted data became an issue. This could be considered as

a first step towards more complex processes. An interesting way to detect relevant structuring

rules, to extract its structural schema or to categorize the content type of an audiovisual

document independently and without supervision is to study its temporal structure. For

example, observing alternation between events of high semantic levels like newscaster on

the screen and report will be more characteristic of a TV news program than a TV show.

Currently, indexing tools can be classified based on the features involved in the analysis

process. In the literature, features extracted from motion analysis are used in [60] to detect the

complete set of events that can be present in a soccer game video based on tracking players and

ball in the field. Since the performance of such techniques is based on the accuracy of the

players and ball tracking technique, background subtraction and colour features have been

used in several works to improve the performance of tracking techniques such as in [26].

Motion features have been also used to extract highlights and events from soccer games [7].

Some other techniques are based on colour and movement features like in [70] to classify the

soccer video game in two phases: play and break. Colour and shape are used as in [3] to

classify the news video in semantic classes. The classification of shots in play and break was

used in [59] to detect several types of semantic events like goal, card, goal attempt, corner,

foul, offside, and non-highlights. The method extracts features from each play and break

sequence and then applies Bayesian network to recognize the mentioned events. Classification

of basketball videos in semantic classes using some rules is made as in [75] by a combination

of colour, shape, movement, and texture. Other techniques base on audio features like in [2]

aiming to detect audio events for highlights generation in which the rugby sport is used as a

case study, or to generate summary for tennis sports video as in [57]. Multimodal features are

also used in [18] to index the news videos by detecting 6 semantic classes, in [23] to detect the

highlights of baseball videos and in [45] to extract the highlights in TV programs of formula 1.

These techniques have several limitations. One of them resides in the use of prior

knowledge about analyzing the video data. This knowledge concerns what we are looking

for, either what is the type of the video we are analyzing or the rules that exist in the domain

the video belongs to (rules used in a soccer game, rules used in the production phase for this

type of videos, etc.). In this case, the scope of these techniques is limited to a specific content

and must be updated each time the knowledge changes. Hence, it cannot be used neither to

analyze new types of content nor to retrieve events that are not predefined.

Some efforts to generalize event detection techniques are made. For example, in [16]

generalization is made at sports video level but this is still limited to a specific domain.

With the development of video content understanding applications, and the success of deep

learning techniques in image [20, 33, 39, 53, 54, 74] and speech domains [22, 25], several



works have been proposed for video content analysis using deep learning techniques, such as

object recognition (Faster R-CNN [52], SSD [68], and YOLO ([50, 51])), video classification

[31, 48, 49, 56, 72], video captioning [15, 71], congestion detection and crowd counting (i.e.

[66]), scene labelling (i.e. [67]) and many other applications. Up to our day, the temporal

information is not well taken into account. For example, image-based video classification

methods such as [49] treat a video as a collection of independent frames where each is

represented by a feature vector derived from a fully connected layer. Then the feature vector

of the whole video is extracted as the average of all frames’ feature vectors. The feature vector

is fed later to any traditional algorithm such as SVM or Random Forest for recognition. The

methods that tried to take into account temporal information stay limited to low level

descriptors like optical flow or trajectories. Hence, the structure of videos is not fully

represented. However, a possible benefit of deep learning methods is to feed the set of 3D

co-occurrence matrices (the TRMs) into 3D CNN in order to train a model to recognize the

structural information inside videos.

A promising proposition to cope with the above-mentioned limitations could be to rely on

several segmentation systems that provide information on the content evolution at a low and

mid-level of semantic. This would be done by observing the temporal relations between events

coming from the resulted segmentations of different systems. Then, deducing some comple-

mentary descriptive information on the document temporal structure or content. Unlike the

previously used techniques for video content analysis, the proposition here is not to use any

predefined semantic segments or prior information. It is based on the mining of temporal

segments provided by the different segmentation systems on different medias (image, audio).

To reach this goal, we came to the main contribution of the work presented in this paper

which is to define new temporal relation algebra. This algebra is composed of a parametric

representation of temporal relations between convex segments (a segment that has no gaps)

and the set of well-known operations that exists in the literature such as composition,

complement, disjunction etc. The proposed temporal model is a hybrid model that handles

quantitative and qualitative temporal information. Moreover, the parametric representation of

temporal relation can be calculated between points and intervals. In this algebra, the parametric

representation is also extended to work for non-convex intervals (defined as the union of

several ones) that are used to compute a co-occurrence matrix named Temporal Relation

Matrix (TRM). Each audiovisual document is then represented by a set of TRMs. Each TRM

in its turn is analyzed using the operations defined in the algebra, in order to highlight some

frequent temporal patterns that exist between the two segmentations e.g. “when event 1 occurs,

it is followed by event 2” or more complex ones such as “event 1 overlaps with event 2 that

occurs at the same time with event 3”. Since we represent each video by a set of TRMs that

should be analyzed, the operations in the algebra are also defined to work on the TRMs. Later

in this paper, we will show how many well-known temporal models can be derived from our

proposed algebra. To test the efficiency of our contribution, several experimentations were

done on different audio and video documents for video structuring, clustering and

classification.

This paper will be organized as follows: in Section 2, we present the existing temporal

relational algebras. Section 3 will be dedicated to our temporal model to represent temporal

information. In this section, we present our parametric representation of temporal relations. We

show how to compute what we call temporal relation matrix (TRM) that represents a relation

between two non-convex intervals and we present a new reasoning method in Section 4.

Section 5 will be dedicated to some notations that will be used through the article. In the



Section 6, we define the operations that can be applied on the new representation of temporal

relations. In Section 7, we show how such operations can be applied between TRMs. Through

Section 8, we validate the operations that we have defined on existing temporal models such as

Allen’s temporal relations. In Section 9, we show how operations can be applied on new

relations derived from the distribution of votes in the TRMs. We end the section with the

definition of a temporal relations algebra and then we show in Section 10 some already

published works using this algebra to analyze audiovisual content. Finally, we conclude in

Section 11.

2 Temporal representation and reasoning

Temporal representation and reasoning is an essential process in any activities that changes

over time. That is why we find such process in several disciplines such as natural language

processing, audio-visual content analysis, specification and verification of processes, temporal

planning etc. The reader can find a list of possible applications in [21].

Hayes has introduced in [24] a basic representation of time in which six notions of

time to represent temporal relations are given: basic physical dimension, time-line, time

intervals, time points, amount of time or duration, and time positions. These notions were

later used by several researchers in order to represent and to reason about time. Reader

can find an overview of different approaches of temporal representation and reasoning in

[9, 10], a survey in [62], and a review in [44]. However, we found that it is interesting to

give a quick overview of the existing temporal representation and reasoning approaches

in the literature.

Several temporal models to represent and reason about time were proposed in the literature.

They can be classified according to the type of temporal entities they consider (point, interval,

or both) or according to the type of temporal relations they deal with (qualitative, quantitative,

or both). The qualitative models focus on the nature of the relations observed between the

entities such as the relation before in the Allen’s algebra. In contrast, quantitative models

represent numerical values between the entities such as the distance between two entities, the

duration of entities and so on.

In the literature, we could identify three well-known formalism that deal with qualitative

temporal relations: Vilain and Kautz’s Point Algebra [64] that handles temporal relations

between points, Allen’s Interval Algebra [1] that handles relations between intervals, Vilain’s

Point-Interval Algebra [63] and Ligozat’s Generalized Interval Calculus [37] which are

considered as hybrid models integrating the point and the interval entities in the same model.

In [64], the entities considered are time points and three basic temporal relations between

points are defined: before (<), after (>) or simultaneous (=). The temporal relation between

two points may be a disjunction of the three basic relations if it cannot be defined. For

example, we know that a point p1 is not before another point p2. In this case, the relation

between the two points p1 and p2 is the set {=,>}. That is why the three basic relations defined

above represent only the cases when the two points are known. So, the relation that may exist

between two points is a set of disjunctions {ø, {<}, {>}, {=}, {<,=}, {<,>}, {>,=}, {<,=,>}}.

In multimedia systems, an example of a point-based representation is the timeline, on which

media objects are placed on several time axes. Though this representation is also used as an

interval-based representation, we can find the timeline model applied in various applications

such as HyTime [30].



Allen introduced in [1] the famous and well-known interval algebra. The entities considered

are intervals represented by their starting and ending times. The considered intervals are noted

as convex ones in order to differentiate them from other type of intervals known as non-convex

ones. In his algebra, Allen proposed a set of 13 temporal relations that may exist between two

intervals: {=, <, >, m, mi, o, oi, s, si, d, di, f, fi}. Since an interval is represented by two points

(its start and its end), a switch between the models is made by representing the intervals

relations as conjunctions of point basic relations between the interval boundaries [40]. The

Allen’s algebra consists of the 8192 possible relations between intervals together with the

operations inverse −1, intersection ∩, and composition ⋀.

Since the computational complexity of Allen’s formalism is intractable, several works in the

literature tried to identify subclasses of the Allen’s algebra that are tractable [43, 61, 65]. Beek

et al. in [61] have defined the pointisable algebra as being the set of relations in the Allen’s

interval algebra that can be expressed by one of the relations <, ≤, =, ≠, ≥, and >. Vilain et al.

defined in [65] the algebra of Continuous Endpoint (CEA) in which they model only

continuous relations between time points. The algebra represents the set of the Allen’s interval

algebra which can be expressed by the <, ≤, =, ≥, and >. Nebel et al. in [43] have defined the

ORD-Horn algebra basing on the notion of ORD clause. This clause is defined as the

disjunction of relations having the form x R y where the relation R is one of the relations ≤,

=, and ≠.

Some works focused on providing another representation of temporal relations or

extending Allen’s relations [38, 47, 73]. In [73], each interval I = [Ib Ie] (Ib stands for

interval beginning and Ie for interval end) is represented by the five zones:]-∞ Ib[, {Ib},]Ib
Ie[,{Ie}, and]Ie +∞[. Using this representation, each Allen’s temporal relation is repre-

sented by a 5 × 5 matrix in which each value indicates the intersection between the

associated zones. Contrary to the previous representation, Pujari et al. have extended the

set of Allen’s relations by integration of the duration information [47]. In this represen-

tation, each Allen’s relation is superscripted by one of the relations {<,=, >} to express

the new information about duration. For example, the meet relation noted as m becomes

{m<, m=, m>}. Ligozat et al. [38] have provided a graphical representation of the Allen’s

relations by regions. Each temporal relation is associated to a region in the Euclidean

space.

Unbounded intervals are considered by Cukierman et al. who extend Allen’s temporal

relations to work with unbounded intervals [12]. The considered unbounded intervals are since

interval with a finite beginning point and an infinite ending point, until interval with an infinite

beginning point and a finite ending point, and alltime representing the time line with both

infinite boundaries. Another work handling incomplete information about the start or the end

of intervals was the one defined by Freksa in [19].

In the interval algebra of Allen, intervals are considered as convex ones which are intervals

with no gaps. Ladkin defines in [35, 36] the notion of non-convex intervals defined as the

union of convex ones. In this work, the defined temporal relations are based on the qualifiers

mostly, always, partially and sometimes, and a disjunction relation to represent relation

alternatives. The algebra defined in [35] has the advantage of being independent of the number

of subintervals of each non-convex interval (potentially indefinite). It generates non-convex

relations from convex ones.

Hybrid qualitative models have taken considerable place in the literature [37, 40, 63]. Vilain

presented in his work [63] the temporal relations that may exist between a point and an interval

and between an interval and a point. It allows the temporal qualitative relations between



objects of different types. In [17], a set of models that base on the temporal relations between

intervals and points to compose multimedia data is cited (i.e. [8, 14]).

By the same way, Meri proposed in [40] a qualitative algebra in which a qualitative

constraint between two events ei and ej (each may be a point or an interval), is a disjunction

of the form: (ei R1 ej) (ei R2 ej) ⋁…… ⋁ (ei Rk ej), where each of the R’s is a basic relation that

may exist between two objects. From this representation, the interval-interval relations, the

point-point relations, the point-interval, and interval-point relations can be deduced.

Based on the previously presented formalisms, Ligozat proposed a generic notion of points,

intervals and relations between them dealing with convex and non-convex intervals and points

[37]. The proposed framework is based on the Vilain’s point-interval relations [63] and

Ladkin’s non-convex interval ones [35]. In this approach, an interval is defined as a linearly

ordered sequence of distinct points where a sequence of p points is called a p-interval.

Consequently, a point is represented by a 1-interval while Allen’s interval is a 2-interval. A

3-interval may represent three points, a point followed by an interval, or an interval followed

by a point. Relations between a p-interval and a q-interval are called (p,q)-relations and noted

by ∏(p,q).

Quantitative models are those which focus on quantitative relations rather than qualitative

ones. An example of such model is the point-based distance algebra DA proposed by Dechter

et al. in [13]. The DA allows to represent quantitative information between entities. It models

distances between time points, durations of intervals, and allows constraints about the value of

dates.

Some efforts have been dedicated to the proposition of temporal models integrating

qualitative and quantitative information in the same framework [32, 40]. In [32], Kautz et al.

have augmented the Allen’s algebra with quantitative constraints of the form -c R1 (x-y) R2 d

where R1 and R2 ϵ {<, ≤} and x, y are the endpoints of the intervals. In the Meiri’s temporal

model [40], four types of qualitative constraints are taken into account: constraints between

two points, constraints between a point and an interval, constraints between an interval and a

point, and constraints between two intervals as already presented. The quantitative information

is similar to the one presented in the DA by Dechter et al. [13].

To reason about time, several reasoning mechanisms are proposed in the literature. One of

the well-known reasoning mechanisms is to consider relation between temporal entities as

temporal constraints which are represented by a temporal network (i.e. [1]). The nodes of the

network are the entities (point or intervals) and the vertices are the temporal relation that exist

between the connected entities. The network is a special case of CSP (Constraint Satisfaction

problems). Another particular CSP called Temporal CSP is used to represent quantitative

information such as in [13] or qualitative and quantitative one such as in [32, 40]. A third type

of network called the point-duration network (PDN) is used to reason about durations [11, 42,

46, 69]. The reader may refer to [55] for a survey of the constraint satisfaction problem (CSP)

algorithms while Krokhin et al. provide a complete classification of the computational

complexity of the algorithms of satisfiability of the IA [34].

In the multimedia domain, an event can be produced by interaction of multimedia objects,

thus analysing temporal relations between events in an audio-visual document is an important

issue. Results of such an analysis can be used to match up a given content with a predefined

temporal structure (by means of hierarchical hidden markov models for example) in order to

identify specific highlights, or to automatically build a temporal representation of the content

evolution. The state of the art demonstrates that such tools are always built on a priori

knowledge of how events are temporally related to each other in audio-visual documents.



For example, we can use the fact that anchor frames alternate with reports in a TV news

program. By the same way, we can take into account that songs are followed by applauses on

entertainment program soundtracks, or that goal in a soccer game, could have been marked

when the ball crosses the goal region and when an explosion of audiences’ voice follows

immediately. In the following section, we will introduce our generic parametric temporal

model. Then, we will define our reasoning method having as a first aim the analysis of video

content in order to detect information about the content and the structure of audio-visual

documents.

3 Proposed temporal model

The aim of our work is the multimedia content analysis especially events detection, video

structuring, and audiovisual document categorization. These tasks are solved by analyzing the

interaction between multimodal events. For example, a goal event in a soccer game is modeled

as low movement segment followed by close up view of the players during an explosion on the

audio track. By the same way, one of the ways to structure a news video is to identify the

segments containing the newscaster and the segments that represent the reports in order to get

the structure as a sequence of Newscaster segments (intervals) followed by Report ones. The

interaction between multimodal events can be seen as the identification of temporal relations

between segments of different types. The presence of frequent or rare temporal relations

between segments may give valuable information about the structure and the content of the

video document, as we will see later in this work.

In the video analysis domain, the temporal video segmentation task plays an essential role.

This task is the process of partitioning video into temporal units that are homogeneous in some

feature space. It is an important step of many video analysis problems such as video

summarization, indexing, and retrieval. Different features and homogeneity criterion lead to

different temporal segmentations. Each of the segmentations provides the temporal segments

where this feature is homogeneous. Each segment (noted also event) may be represented by a

temporal interval or point. Thus, temporal segment (event) is an important notion in the video

analysis domain. Meanwhile, the analysis steps are applied on the audio track as the visual one,

which leads to segments of different nature. In other words, audio segments have some

duration while video segments may concern a frame sequence or one frame. Consequently,

and based on the frame as basic unit, the segments may have duration and may not have. Thus,

the mixture of the point-based and interval-based formalisms should be adopted. In other

words, the best model is the one that handles interval-interval, interval-point, point-interval,

and point-point temporal relations.

The exploitation of temporal relations between events may be qualitative-based, quantita-

tive-based, or the mixture of the two. In our work, qualitative temporal relations may be seen

as the target temporal relations to be considered. This is unfortunately false. In our framework,

an event that lasts for 10 s should not be treated similarly to another lasting for 1 s. For

example, an applauses segment lasting for 10 s has not the same signification as a one that lasts

for 1 s. Besides that, an event that occurs 1 min before another one may be semantically less

related than two events with 10 s of distance. Other quantitative information may be also very

valuable in the analysis step such as the intersection of two segments, time shifts between

starts, ends, start and ends and so on. For these reason, the chosen model should consider not

only qualitative information but also quantitative one about the temporal relations between



events in order to detect events of higher level. We should emphasize here that the aim of our

work is not to compare our temporal model to the existing ones but to show that our model is

an hybrid one and the existing models can be derived from our model.

The properties of the model that we should consider led us to propose a parametric

representation of temporal relations between events. In the next section, we present our novel

qualitative and quantitative representation handling temporal relations between segments of

different types (points or intervals). Meanwhile, we show how existing temporal relations

(Allen’s interval-interval relations, Vilain’s point-interval and interval-point relations, Vilain

and Kautz’s point-point relations…) can be derived directly from our parametric representation

or derive new ones.

3.1 Parametric representation of temporal relation

Let I = [Ib Ie] and J = [Jb Je] two temporal intervals characterized by their beginning and end

times. The temporal relation that may exist between I and J is represented by the three

parameters DE, DB, LAP. This representation is derived from the work of Moulin [41] used

in the domain of natural language analysis. It allows us taking into account quantitative

constraints and helps us to derive qualitative and quantitative constraints. They measure the

time-shift between the boundaries of the two intervals. These parameters computed between I

and J are presented in Fig. 1 and are defined as follows:

DE ¼ Je–Ie;DB ¼ Ib–Jb;Lap ¼ Jb–Ie

In the rest of this article, the relation between two intervals I and J is noted I R(DE, DB,

Lap) J.

However, the parametric representation can be used to handle relations between a point and

an interval. In this case, the point is represented by an interval with no duration (Ib = Ie).

Figures 2 and 3 show such representation.

As we can notice in the previous figures, two parameters are sufficient to represent the

temporal relation between a point and an interval (and vice versa). In the interval-point

representation, we have Lap = DE while in the point-interval one, we have DB = -Lap.

Meanwhile, in the point-point parametric representation, we obtain DE = -DB = Lap which

means that one parameter is sufficient to represent the relation between two points.

Using our parametric representation, we are able to deal with intervals or points and we can

deduce directly if the temporal relation is an interval-interval, interval-point, point-interval, or

point-point one based on the values of the parameters.

This parametric representation is mapped to a geometric one based on the three parameters.

The computed parameters can be seen as the coordinate of a point in a 3D space. In other

words, each temporal relation between two specific intervals (or points) can be represented

Ib Ie

Jb Je

DB
DE

Lap

Fig. 1 Parameters of the temporal relation between two intervals



geometrically by a point in the 3D space. Figure 4 shows an example of three temporal

relations computed between the following couple of intervals [I1, J1], [I2, J2], and [I3, J3].

Based on the parametric and geometric representations, the first question that should be

asked is about the temporal relations that we may observe.

3.2 Which relations to observe?

The proposed parametric representation of temporal relations between events (points or

intervals) can handle qualitative and quantitative information. There are two categories of

temporal relations that can be observed. The first category represents predefined temporal

relations such as the ones that have been proposed in the existing temporal models (Allen’s

relations…). The second category represents new relations that may be derived from the

distribution of temporal relations between events. In the following paragraph, we show what

type of relations can be observed in the first category. The second category will be presented

later in the paper.

3.2.1 Qualitative temporal information

Relations between two points We have previously presented the Vilain and Kautz’s algebra that

models the temporal relations that may exist between two points. Considering our parametric

representation, the parameters are reduced to the following case: DE= -DB=Lap = Je-Ie with Jb=

Je and Ib= Ie. Table 1 shows the different temporal relations between two points.

Relations between points can be represented graphically using a one-dimension space

where the DE parameter is the value of the coordinate as presented in Fig. 5.

Ib Ie

DB Lap = DE

Jb = Je

I

J

Fig. 2 Parametric representation of the interval-point relation

Jb Je

DB = -Lap

DE
Ib = Ie

I

J

Fig. 3 Parametric representation of the point-interval relation



Relations between a point and an interval In the Vilain’s temporal model, a point may be

related to an interval by one of the five following relations {<, s, d, f, >} as presented in the

previous section.

Applying our parametric representation, we obtain DE = Lap which means that DE and DB

are sufficient to represent the temporal relations between a point and an interval. The mapping

between our representation and the five relations are presented in Table 2.

By the same way, the interval-point relations can be deduced directly from the DE, and DB

parameters. Figure 6 shows the graphical representation of the temporal relations between a

point and an interval.

As we can notice, the area corresponding to (DE < 0 and DB< 0) is not associated to any

temporal relation. This area represents the case where the start of an interval appears after its

end (i.e. Ie < Ib). This case is not considered here but such constraint is present in the literature.

It models acyclic intervals [4, 5].

Relations between two intervals Based on the constraints between the boundaries of two

intervals and by mapping these constraints to our representation space, we obtain a parametric

representation of Allen’s temporal relations. An example of such representation and how it is

Fig. 4 Geometric representation of three temporal relations between intervals

Table 1 Parametric representation

of the point-point relations Relation Constraint on DE

before DE > 0

simultaneous DE = 0

after DE < 0



computed is given in the below example. Let I = [Ib Ie] and J = [Jb Je] be two intervals related

with the “during” relation. In this case, we have the following constraint:

Jb < Ib < Ie < Je ðC1Þ

(C2) and (C3) are derived from (C1) by subtracting Ie and Jb respectively as follows:

Jb−Ie < Ib−Ie < Ie−Ie < Je−Ie⇔Lap < 0 < DE ðC2Þ

Jb−Jb < Ib−Jb < Ie−Jb < Je−Jb⇔0 < DB < −Lap ðC3Þ

Table 3 shows all the parametric representation for the whole set of Allen’s relations.

Figures 7 and 8 show the graphical representation of the meet and overlap relations.

3.2.2 Quantitative temporal information

Using our parametric representation, we maintain quantitative information about the relations.

In addition to the parameters that measure the time-shift between the boundaries, other

quantitative information may be extracted as the following:

& Duration of each of the two events (interval or point).

& The time-shift that measures the distance between the two events.

& The intersection of two events.

& The union of two events.

The duration of two events I and J in relation R(DE, DB, Lap) are computed as follows:

& ||I|| = -DB – Lap

& ||J|| = DE – Lap

As we have mentioned, I and J may be points or intervals.

Fig. 5 Graphical representation of the point-point temporal relations

Table 2 Parametric representation

of the interval-point relations Relation Constraint on DE Constraint on DB

< DE > 0 DB< 0

s DE > 0 DB= 0

d DE > 0 DB> 0

f DE = 0 DB> 0

> DE < 0 DB> 0



Moreover, we can compute the distance noted as TShift separating two events:

TShift I ; Jð Þ ¼
Lap if Lap≥0ð Þ
Lap−DE þ DB if Lap−DE þ DB≥0ð Þ
Undefined otherwise

8

<

:

9

=

;

The value of TShift(I,J) is set to “undefined” when the two events intersect.

The intersection quantity may be also deduced from the three parameters as follows:

∩ I ; Jð Þ

0 if Lap≥0

−Lap if Lap < 0;DB≤0;DE≥0ð Þ

DE−Lap−DB if
�

Lap < 0;DB≥0;DE≤0

‖I‖ if Lap < 0;DB≥0;DE≥0ð Þ

‖J‖ if Lap < 0;DB≤0;DE≤0ð Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

By the same way, we can compute the union quantity of two events I and J as follows:

∪ I ; Jð Þ ¼ ‖I‖þ ‖J‖−∩ I ; Jð Þ

Fig. 6 Graphical representation of the point-interval temporal relations

Table 3 Parametric representation of the interval-interval relations

Allen’s relations DE DB Lap

< DE > Lap DB < -Lap Lap > 0

m DE > 0 DB< 0 Lap = 0

o DE > 0 DB< 0 Lap < 0

s DE > 0 DB= 0 Lap < 0

f DE = 0 DB> 0 Lap < 0

= DE = 0 DB= 0 Lap < 0

d DE > 0 DB< -Lap Lap < 0

> DE < 0 DB> 0 Lap >DE-DB

mi DE < 0 DB> 0 Lap =DE-DB

oi DE < 0 DB> 0 Lap <DE-DB

si DE < 0 DB= 0 Lap <DE

fi DE = 0 DB< 0 Lap < 0

di DE < 0 DB< 0 Lap <DE



4 Matrix representation of temporal relations

A temporal relation between two segments can be represented using the three parameters

mentioned above. Thus, from a graphical point of view, a relation between two intervals will

be modeled as a 3D point. As we have already mentioned, in the video analysis domain, low-

level features are mined in order to highlight some meaningful events in the content. In almost

all the existing temporal segmentation methods, the start and the end of segments are usually

produced based on one type of events. For example, one temporal segmentation system may

localize all the segments of gradual transition effects, all appearances of a given character,

moments where some music can be heard on the soundtrack, frames in which the same person

appears, etc). The result of such segmentation contains meaningful information about the

content of the video. Moreover, the events that belongs to different segmentations are not

independent. For example, the appearance of a specific person on the screen may be

Fig. 7 Graphical representation of the interval-interval meet relation

Fig. 8 Graphical representation of the interval-interval overlap relation



temporally related to the hearing of a music on the soundtrack. Thus, trying to highlight some

temporal relations patterns is of big interest.

Let us consider that two temporal segmentations S1 and S2 of a same video document are

performed in order to use their results in an analysis step. The segmentation corresponds to a

set of temporally disjointed segments:

S1 ¼ s1if gi∈ 1 M½ � S2 ¼ s2 j
� �

i∈ 1 N½ �

The segmentation can be viewed as a non-convex interval.

For two segmentations S1 and S2, the three parameters between each couple of segments

(s1i, s2j) is evaluated and so represented by a point in the corresponding 3D space. The relation

between s1i and s2j is noted as:

s1i R DE;DB;LAPð Þ s2 j

No existing temporal models that have been proposed in the literature to work with non-

convex intervals are suitable in our context of work since the same model does not integrate

quantitative and qualitative information and does not handle relation between different type of

events (points and intervals). Hence, we propose to evaluate the temporal relation between two

segmentations S1 and S2 (two non-convex intervals) by evaluating the temporal relation

between each couple of intervals (s1i, s2j).

For each 3D point (ie. for each potential temporal relation between two intervals), we

associate a vote accumulator that counts the number of times this relation is observed between

the two segmentations (non-convex intervals). Then we obtain a matrix of accumulators called

the Temporal Relation Matrix (TRM). It can be used directly to determine the frequencies of

potential relations. It can also be used to observe remarkable distributions of votes and so to

identify a general rule about the temporal behavior of events. For each occurrence of a given

relation R (represented by the value of the vector of parameters), a vote is added to the

associated cell in the TRM. For example, the relation s1iR(DE, DB, Lap) s2j will correspond to

the cell TRM[DE][DB][Lap].

Figure 9 shows how the TRM is evaluated between the two segmentations S1 and S2 while

Fig. 10 shows a graphical representation of the distribution of votes in a TRM.

Once the vote step has been performed, i.e. when all possible couples of segments have

voted for the way they are temporally related, we have to analyze the TRM to identify for

example the most frequent or rare relations between the concerned features. Unlike other vote

techniques, a maximum value in a cell is not enough to fully identify a relation. Actually, most

of semantic temporal relations determine subparts of the TRM where votes are distributed.

Therefore, the first step of the TRM analysis is to localize zones in the 3D space regarding to

the vote distribution. This localization can be achieved by clustering methods or classification

methods. The Fig. 11 shows the graphical representation of a TRM computed between two

segmentations in which three classes of relations are identified using the K-means clustering

method. The temporal relation between the two segmentation is represented by a vector of

three values that are the number of points in each cluster.

Another approach consists in using prior knowledge about semantic relations like for

example the Allen’s relations as presented in Section 2. This approach consists in

identifying disjointed subparts of the vote space associated to remarkable relations. For

example, the overlap relation in the Allen’s algebra is associated to the 3D subpart

overlap(X > 0, Y < 0, Z < 0).



5 Notations

Before presenting the operations that we can apply on temporal relations, we present the

notations that we use in to help you understand the rest of the article.

Let R ¼ x; y; zð Þ= x; y; zð Þ∈ℝ3
� �

be the set of all possible relations that may exist between

two events (points or intervals). We note S ¼ P Rð Þ the set of all possible subsets of R.

In the rest of the article, we use the following notations:

& R(A,B,C) in S where A, B and C are convex intervals in ℝ (parameters in capital)

represents a set of temporal relations and will be named temporal relations class. For

example, R([−5 10], [2 9], [−7, 3]) is a class of temporal relations.

& R(a, b, c) (parameters in lower case) is a temporal relation between two specific intervals.

For example, R(2, 7, 0) is a temporal relation.

& R(a, b, c) is an instance of R(A,B,C) if and only if a ∈ A, b ∈ B, c ∈C. In other words, we

say that R(a,b,c) verify the constraints of R(A,B,C). For example, R(2, 7, 0) is an instance

of R([−5 10], [2 9], [−7, 3]).

& For each R(a,b,c) there exists two events I and J (intervals or points) that can be related by

R such that I R(a,b,c) J.

& We note I R(A,B,C) J to express that I and J are related through a relation instance of R(A,B,C).

6 Operations on temporal relations

In the literature, five operations on temporal relations are commonly used:

Fig. 9 Evaluation of temporal relations between two segmentations (non-convex intervals)



& Disjunction or union: Undefinite relation between events is represented by the disjunction

of possible relations that can present between two events I and J (intervals or points). The

disjunction operators will be noted by the symbol .

I R∨Sð Þ J⇔I R J or I S J

& Composition: Let R1 (respect. R2) represents the relation between the events I and J

(respect. J and K). The composition will be noted as and represents the relation that

presents between I and K.
I R∧Sð Þ J ⟺ ∃ K=I R K & K R J

& Inverse: The inverse of the relation R holding between I and J is noted as R−1 and

represents the relation between J and I.

I R−1 J⇔J R I ∀ I ; Jð Þ

& Intersection: The intersection of two classes of relations R1(A1,B1,C1) and R2(A2,B2,C2)

represents the set of relations (the zone) where each relation verifies the constraints ofR1 andR2.

I R∩Sð Þ⟺ I R J & I S J

Fig. 11 TRM between two segmentations (two non-convex intervals)

Fig. 10 Graphical representation of a TRM



& Complement: The complement of an interval relation R noted as CR or R~ is the set of the

remaining relations.
I R∼ J⇔: I R Jð Þ

6.1 Disjunction

The disjunction operator is a function that maps an element from S × S domain to an element

in the S domain.

f : S � S→S

R1 A1;B1;C1ð Þ;R2 A2;B2;C2ð Þð Þ→ f R1∨R2ð Þ ¼ R1 A1;B1;C1ð Þ∪R2 A2;B2;C2ð Þ

In other words, the disjunction of two classes of relations represented by two subsets of Z3 is

the union of these two subsets. For example, given the following two classes of relations R1([7

15], [20 55], [−10 15]) and R2([−15–5], [−5–5], [1 25]), their disjunction is the union of the

two subsets in the 3D space as shown in Fig. 12.

If each of the two classes of relations is reduced to a relation, the disjunction is the union of

two 3D points.

6.2 Intersection

The intersection operator is a function that maps an element from S × S domain to an element

in the S domain.

f : S � S→S

R1 A1;B1;C1ð Þ;R2 A2;B2;C2ð Þð Þ→ f R1∩R2ð Þ ¼ R1 A1;B1;C1ð Þ∩R2 A2;B2;C2ð Þ ¼ R A1∩A2;B1∩B2;C1∩C2ð Þ

In other words, the intersection of two classes of relations corresponds to the intersection of

two 3D zone. For example, consider the following two classes of relations R1([−5 10], [1 30],

Fig. 12 Disjunction of R1 and R2



[3 25]) and R2([−20–1], [−5 13], [1 5]). The intersection of R1 and R2 is the relation R([−5–

1], [1 13], [3 5]) as shown in Fig. 13.

6.3 Complement

The complement operator is a function that maps an element from the S domain to an element

in the S domain.

f : S→S

R A;B;Cð Þ→ f Rð Þ ¼ R∼ ¼ R1 ℝ−A;ℝ;ℝð Þ∨R2 A;ℝ−B;ℝð Þ∨R3 A;B;ℝ−Cð Þ

In other words, the complement of a class of relations R is equal to all the relations in S except

the ones inside the zone of the class of relations R. For example, given the following class of

relations R([−5 3], [10 25], [−6 2]), the complement of R in the space SPACE([−10 20], [−7

25], [−15 15]) is shown on Fig. 14. Here, we have done the complement over SPACE and not

over ℝ for plotting issues.

6.4 Composition

The composition operator is a function that maps an element from the S × S domain into an

element in the S domain.

f : S � S→S

R1 A1;B1;C1ð Þ;R2 A2;B2;C2ð Þð Þ→ f R1∧R2ð Þ ¼ R A;B;Cð Þ
¼ R

0

A1 þ A2;B1 þ B2;C1−B2ð Þ∩R″ A1 þ A2;B1 þ B2;A1 þ C2ð Þ
¼ R A1 þ A2;B1 þ B2; C1−B2ð Þ∩ A1 þ C2ð Þð Þ

Fig. 13 Intersection of R1 and R2



Before proving the above function, we start with the composition of two individual temporal

relations instead of classes of relations.

f : S � S→S

R1 a1; b1; c1ð Þ;R2 a2; b2; c2ð Þð Þ→ f R1∧R2ð Þ ¼ R a; b; cð Þ ¼ R a1 þ a2; b1 þ b2; c1−b2ð Þ ¼ R a1 þ a2; b1 þ b2; a1 þ c2ð Þ

Proof Let I = [Ib Ie], J = [Jb Je], and K = [Kb Ke] three temporal intervals (sub-intervals) that

correspond to three different segmentations (non-convex intervals). R1(a1,b1,c1), R2(a2,b2,c2)

represent the relations between I and J, and J and K respectively. The composition of two

relations R1 and R2 is defined by:

R1 ∧ R2 = {(I, K) where I and K are intervals / ∃ an interval J, I R1 J and J R2 K}. Since the

composition of the relations will represent the relation between I and K, in this case the

parameters of the resulted relations are:

& a = Ke - Ie = Ke - Je + Je - Ie = a1 + a2.

& b = Ib - Kb = Ib - Jb + Jb - Kb = b1 + b2.

& c = Kb - Ie =Kb – Jb + Jb - Ie = c1 – b2.

& c = Kb - Ie =Kb – Je + Je - Ie = a1 + c2.

The idea behind the last equality is that the composition of two relations should have a

common interval, which is in the above example the interval J.

To prove the composition operator for classes of relations, we proceed with proving the

inclusion of each set in the other one. In other words, we should prove the following:

R1 A1;B1;C1ð Þ∧R2 A2;B2;C2ð Þ⊆ R A1 þ A2;B1 þ B2; C1−B2ð Þ∩ A1 þ C2ð Þð Þ

and

R A1 þ A2;B1 þ B2; C1−B2ð Þ∩ A1 þ C2ð Þð Þ⊆ R1 A1;B1;C1ð Þ∧ R2 A2;B2;C2ð Þ

Fig. 14 Complement of R over SPACE



Proof Let I R(a,b,c) J with I = [IbIe] and J = [JbJe]. Suppose that R is an instance of R1(A1, B1,

C1) ∧ R2(A2, B2,C2). We can write:

I R1 A1;B1;C1ð Þ∧R2 A2;B2;C2ð Þð Þ J⇒∃K ¼ Kb Ke½ �=I R1 A1;B1;C1ð Þ KK R2 A2;B2;C2ð Þ J
I R1 A1;B1;C1ð Þ K⇒∃ a1; b1; c1ð Þ∈ A1;B1;C1ð Þ=I R1 a1; b1; c1ð Þ K
K R2 A2;B2;C2ð Þ J ∃ a2; b2; c2ð Þ∈ A2;B2;C2ð Þ=K R2 a2; b2; c2ð Þ K

I R a; b; cð Þ J⇒a ¼ J e−Ie ¼ J e−Ke þ Ke−I e ¼ a1 þ a2∈ A1 þ A2ð Þ
b ¼ Ib−J b ¼ Ib−Kb þ Kb−J b ¼ b1 þ b2∈ B1 þ B2ð Þ
c ¼ J b−Ie ¼ J b−Ke þ Ke−Ie ¼ a1 þ c2∈ A1 þ C2ð Þ
c ¼ J b−Ie ¼ J b−Kb þ Kb−I e ¼ c1−b2∈ C1−B2ð Þ

Hence:

R a; b; cð Þ∈R A1 þ A2;B1 þ B2;C1−B2ð Þ and R a; b; cð Þ∈R A1 þ A2;B1 þ B2;A1 þ C2ð Þ⇒R a; b; cð Þ
∈R A1 þ A2;B1 þ B2; A1 þ C2ð Þ∩ C1−B2ð Þð Þ

Reciprocally, ∀I R(a, b, c) J ∈ R(A1 + A2, B1 + B2,C1 − B2)∩ R(A1 + A2, B1 + B2, A1 +C2), we

only have to find an interval K such that I R1(A1, B1,C1) K and K R2(A2, B2,C2) J.

I R a; b; cð Þ J∈R A1 þ A2;B1 þ B2;C1−B2ð Þ∩R A1 þ A2;B1 þ B2;A1 þ C2ð Þ⇒a∈A1 þ A2; b∈B1 þ B2; c∈C1−

B2 and c∈A1 þ C2:
⇒∃a1; b1; c1; a2; b2; c2=a ¼ a1 þ a2; b ¼ b1 þ b2
I R a; b; cð Þ J⇒a ¼ J e−I e; b ¼ Ib−J b; c ¼ J b−I e:

By substituting the values of a, b, and c in their places above and adding the values Kb and Ke,

we can find the values of K = [Kb Ke] and hence we obtain I (R1 ∧ R2) J.

6.4.1 Properties of the composition operator

The composition operator is a law of composition under the S domain (< S, ∧> is a law of

composition). It has the following properties:

– < S, ∧> is associative: Let R1, R2, and R3 be three temporal relations of S between the

intervals I,J and K. we have:

R1∧ R2∧R3ð Þ ¼ R1∧R2ð Þ∧R3

Proof
R1 A1;B1;C1ð Þ∧

�

R2 A2;B2;C2ð Þ∧R3 A3;B3;C3ð Þð Þ

¼ R1 A1;B1;C1ð Þ∧R
0

A2 þ A3;B2 þ B3; C2−B3ð Þ∩ A2 þ C3ð Þð Þ

¼ R
�

A1 þ A2 þ A3;B1 þ B2 þ B3; C1−B2−B3ð Þ∩ A1 þ C2−B3ð Þ

∩ A1 þ A2 þ C3ð Þ
�

R1 A1;B1;C1ð Þ∧R2 A2;B2;C2ð Þð Þ∧R3 A3;B3;C3ð Þ
¼ R

0

A1 þ A2;B1 þ B2; C1−B2ð Þ∩ A1 þ C2ð Þð Þ∧R A3;B3;C3ð Þ

¼ R
�

A1 þ A2 þ A3;B1 þ B2 þ B3; C1−B2−B3ð Þ∩ A1 þ C2−B3ð Þ

∩ A1 þ A2 þ C3ð Þ
�

We can prove the associativity property by taking instance from each class of relation as

follows:



Let R1(a1, b1, c1), R2(a2, b2, c2), R3(a3, b3, c3) be instances of R1(A1, B1, C1), R2(A2, B2, C2),

R3(A3, B3, C3) respectively.

R1 a1; b1; c1ð Þ∧ R2 a2; b2; c2ð Þ∧R3 a3; b3; c3ð Þð Þ ¼ R1 a1; b1; c1ð Þ∧R
0

a2 þ a3; b2 þ b3; c2−b3ð Þ

¼ R} a1 þ a2 þ a3; b1 þ b2 þ b3; c1−b2−b3ð Þ

And

R1 a1; b1; c1ð Þ∧R2 a2; b2; c2ð Þð Þ∧R3 a3; b3; c3ð Þ ¼ R
0

a1 þ a2; b1 þ b2; c1−b2ð Þ∧R3 a3; b3; c3ð Þ

¼ R} a1 þ a2 þ a3; b1 þ b2 þ b3; c1−b2−b3ð Þ

– <S, ∧> is not commutative:

R1∧R2≠R2∧R1

Proof

R1 A1;B1;C1ð Þ∧R2 A2;B2;C2ð Þ ¼ R
0

A1 þ A2;B1 þ B2; C1−B2ð Þ∩ A1 þ C2ð Þð Þ
R2 A2;B2;C2ð Þ∧R1 A1;B1;C1ð Þ ¼ R″ A1 þ A2;B1 þ B2; C2−B1ð Þ∩ A2 þ C1ð Þð Þ

<S, ∧> is commutative in the case where (C1 −B2) = (C2 −B1) and (A1 + C2) = (A2 + C1). This

case corresponds to intervals with equal duration. This can be simply proven by taking an

instance of each relation as follows:

R1 a1; b1; c1ð Þ∧R2 a2; b2; c2ð Þ ¼ R
0

a1 þ a2; b1 þ b2; c1−b2ð Þ ¼ R
0

a1 þ a2; b1 þ b2; a1 þ c2ð Þ
R2 a2; b2; c2ð Þ∧R1 a1; b1; c1ð Þ ¼ R″ a1 þ a2; b1 þ b2; c2−b1ð Þ ¼ R″ a1 þ a2; b1 þ b2; a2 þ c1ð Þ

<S, ∧> is commutative if and only if:

c1−b2 ¼ c2−b1⇔ J b−Ieð Þ− Ib−Kbð Þ ¼ Kb−J eð Þ− Ib−J bð Þ⇒Ie−Ib ¼ J e−J b⇒duration Ið Þ
¼ duration Jð Þ:

If we take the case a1 + c2 = a2 + c1, we obtain the duration(J) = duration(K)

In other words, <S, ∧> is commutative in the cases where I and J or J and K have the same

duration. This result is logic since an event e1 that appears, for example, before a second event

e2 is not the same as when e2 appears before e1.

6.4.2 Properties of the disjunction operator

The disjunction operator is a law of composition under the S domain (< S, ∨> is a law of

composition). It has the following properties:

– < S, ∨ > is associative: Let R1, R2, and R3 be three temporal relations of S between the

intervals I, J and K. we have:

R1∨ R2∨R3ð Þ ¼ R1∨R2ð Þ∨R3



Proof R1(A1, B1, C1) ∨ ((R2(A2, B2, C2) ∨R3(A3, B3, C3)) = R1(A1, B1, C1) ∪ ((R2(A2, B2, C2) ∪

R3(A3, B3, C3)) = (R1(A1, B1, C1) ∪ (R2(A2, B2, C2)) ∪R3(A3, B3, C3) since the union operator is

associative over the ℝ3 space.

We can prove the associativity property by taking instance from each class of relation as

follows:

Let R1(a1, b1, c1), R2(a2, b2, c2), R3(a3, b3, c3) be instances of R1(A1, B1, C1), R2(A2, B2, C2),

R3(A3, B3, C3) respectively.

R1 a1; b1; c1ð Þ∨ R2 a2; b2; c2ð Þ∨R3 a3; b3; c3ð Þð Þ¼ R1 a1; b1; c1ð Þ∨R
0

a2 þ a3; b2 þ b3; c2 þ c3ð Þ

¼ R″ a1 þ a2 þ a3; b1 þ b2 þ b3; c1 þ c2 þ c3ð Þ

And

R1 a1; b1; c1ð Þ∨R2 a2; b2; c2ð Þð Þ∨R3 a3; b3; c3ð Þ¼ R
0

a1 þ a2; b1 þ b2; c1 þ c2ð Þ∨R3 a3; b3; c3ð Þ

¼ R} a1 þ a2 þ a3; b1 þ b2 þ b3; c1 þ c2 þ c3ð Þ

– <S, ∨> is commutative:

R1∨R2 ¼ R2∨R1

Proof

R1 A1;B1;C1ð Þ∨R2 A2;B2;C2ð Þ ¼ R1 A1;B1;C1ð Þ∪R2 A2;B2;C2ð Þ

¼ R2 A2;B2;C2ð Þ∪R1 A1;B1;C1ð Þ

¼ R2 A2;B2;C2ð Þ∨R1 A1;B1;C1ð Þ

6.4.3 Other properties

– Identity relation: The class of relations Re({0}, {0},ℝ) is the identity class of relations of the

composition operator. The following properties hold for each class of relations R(A, B, C):

R A;B;Cð Þ∧Re 0f g; 0f g;ℝð Þ ¼ R A;B;Cð Þ
Re 0f g; 0f g;ℝð Þ∧R A;B;Cð Þ ¼ R A;B;Cð Þ

More specifically, we have also the following properties that hold:

R A;B;Cð Þ∧Re 0f g; 0f g;C−Að Þ ¼ R A;B;Cð Þ
Re 0f g; 0f g;Bþ Cð Þ∧R A;B;Cð Þ ¼ R A;B;Cð Þ

Proof

R A;B;Cð Þ∧Re 0f g; 0f g;ℝð Þ ¼ R A;B;C− 0f gð Þ∩R A;B;Aþ ℝð Þ ¼ R A;B;C∩ℝð Þ

¼ R A;B;Cð Þ

By the same way, Re({0}, {0},ℝ) ∧ R(A, B,C) = R(A, B,C).



The above property can be proven for all instances of R(A,B,C). Let R(a,b,c) be an instance

of R(A,B,C).

∃Re 0; 0; bþ cð Þ∈ R 0f g; 0f g;Bþ Cð Þ⊆ R 0f g; 0f g;ℝð Þ=R a; b; cð Þ∧Re 0; 0; bþ cð Þ ¼ R a; b; cð Þ

and

∃Re 0; 0; c−að Þ∈ R 0f g; 0f g;C−Að Þ⊆ R 0f g; 0f g;ℝð Þ=Re 0; 0; c−að Þ∧ R a; b; cð Þ ¼ R a; b; cð Þ

The relation Re(0, 0, b + c) is a right identity relation. This relation is a part of the equal

relation. In the qualitative representation of temporal relations, they use it totally as an identity

relation. In the cases where <S, ∧> is commutative, Re(0, 0, b + c) is also the left neutral

relation. Otherwise, Re(0, 0, c − a) is the left identity relation. In other words, we can say that

the two identity relations intersect in the zones where the intervals have the same durations.

The Figs. 15, 16, and 17 show three examples of a class of relations and its associated parts

of the identity class.

– Inverse relation: For all relations R(a, b, c) ∈ R(A,B,C) in S, there exist R−1(−a, −b,

−a + b + c) in S such that R(a, b, c) ∧ R−1(−a, −b, −a + b + c) = R′(a − a, b − b, c + b) =

Re(0, 0, b + c) ∈ Re({0}, {0},ℝ) and R−1(−a, −b, −a + b + c) ∧ R(a, b, c) = Re(0, 0, c −

b) ∈ Re({0}, {0},ℝ).

Proof Let R1(a1, b1, c1) be a relation between two intervals I = [Ib Ie], and J = [Jb Je] in S

(I R1(a1, b1, c1) J). Let R2(a2, b2, c2) be the inverse between I and J (J R2(a2, b2, c2) I). We have

the following values for the parameters:

& a2 = Ie – Je = −a1.

& b2 = Jb – Ib = −b1.

& c2 = Ib – Je = Ib – Jb + Jb – Ie + Ie – Je = −a1 + b1 + c1.

The Fig. 18 shows the class of relation R([−5 3], [2 10], [−15 -5]) and its inverse.

The inverse is calculated as the union of the inverse of each instance of the class of

relations.

– For all couple of relations R1(a1, b1, c1) and R2(a2, b2, c2) in S, we have the following

property:

R1∧R2ð Þ−1 ¼ R−1
2 ∧R−1

1

Proof

R−1
2 ∧R−1

1

� �

∧ R1∧R2ð Þ ¼ R2 −a2;−b2;−a2 þ b2 þ c2ð Þ∧R1 −a1;−b1;−a1 þ b1 þ c1ð Þð Þ∧R
0

a1 þ a2; b1 þ b2; c1−b2ð Þ

¼ R″ −a1−a2;−b1−b2;−a2 þ b2 þ c2 þ b1ð Þ∧R
0

a1 þ a2; b1 þ b2; c1−b2ð Þ ¼ Re 0; 0; c2−a2ð Þ
R1∧R2ð Þ∧ R−1

2 ∧R−1
1

� �

¼ R
0

a1 þ a2; b1 þ b2; c1−b2ð Þ∧ R2 −a2;−b2;−a2 þ b2 þ c2ð Þ∧R1 −a1;−b1;−a1 þ b1 þ c1ð Þð Þ

¼ R
0

a1 þ a2; b1 þ b2; c1−b2ð Þ∧R″ −a1−a2;−b1−b2;−a2 þ b2 þ c2 þ b1ð Þ ¼ Re 0; 0; b1 þ c1ð Þ

– For each relation R(a, b, c) in S, we have the following property: (R−1)−1 = R



Proof

R a; b; cð Þ−1
� �−1

¼ R
0

−a;−b;−aþ bþ cð Þ−1

¼ R
00 − −að Þ;− −bð Þ;− −að Þ þ −bð Þ þ −aþ bþ cð Þð Þ ¼ R a; b; cð Þ

Fig. 15 R(A,B,C) = R([5 10],[−1–7],[0 12]) and R(0,0,C-A)

Fig. 16 R(A,B,C) = R([5 10],[−1–7],[0 12]) and R({0},{0},B + C)



– For all relations R1, R2, R3 in S, we have the following property: R1 = R2 ∧ R3⇔ R2 =

R1 ∧ (R3)−1⇔ R3 = (R2)−1 ∧ R1

Fig. 17 R(A,B,C) = R([5 10],[−1–7],[0 12]) and R({0},{0}, ℝ)

Fig. 18 R([−5 3], [2 10], [−15 -5]) in blue and its inverse in red



Proof

R1 ¼ R2∧R3⇔R1∧R
−1
3 ¼ R2∧R3∧R

−1
3 ⇔R1∧R

−1
3 ¼ R2∧Re ¼ R2

By the same way, we can verify the second property.

Using the parameters of the relations, we can verify the property as follows:

R1 a1; b1; c1ð Þ ¼ R2 a2; b2; c2ð Þ∧R3 a3; b3; c3ð Þ⟺R1 a1; b1; c1ð Þ

¼ R2 a2 þ a3; b2 þ b3; c2−b3ð Þ

In this case, we have the following equalities that hold:

– a1 = a2 + a3
– b1 = b2 + b3, and

– c1 = c2 - b3

From these equalities, we can derive the following:

– a2 = a1 - a3
– b2 = b1 - b3
– c2 = c1 + b3

⇔R2 a2; b2; c2ð Þ ¼ R1 a1; b1; c1ð Þ∧R
0

3 −a3;−b3;−a3 þ b3 þ c3ð Þ

¼ R1 a1; b1; c1ð Þ∧R−1
3 a3; b3; c3ð Þ

By the same way, we can write the following:

– a3 = a1 – a2
– b3 = b1 – b2
– b3 = c2 – c1⇔ Jb –Kb = Jb – Ie – (Kb − Ie)

After adding and subtracting variables, we will find that c3 = −a2 + b2 + c2 - b1, which verify the

property:

R3 a3; b3; c3ð Þ ¼ R−1
2 a2; b2; c2ð Þ∧R1 a1; b1; c1ð Þ

– For all relations R1, R2, R3 in S, we have the following property: R∼
1∨R2

� �

∼∨ R∼
1∨R

∼
2

� �

∼ ¼ R1

Proof

R∼
1∨R2

� �∼
∨ R∼

1∨R
∼
2

� �∼
¼ R∼

1∪R2

� �∼
∪ R∼

1∪R
∼
2

� �∼
¼ R∼

1

� �∼
∩R∼

2

� �

∪ R∼
1

� �∼
∩ R∼

2

� �∼� �

¼ R1∩R
∼
2

� �

∪ R1∩R2ð Þ ¼ R1∩ R1∪R
∼
2

� �

¼ R1



– For all relations R1 and R2 in S, we have the following property: R1∨R2ð Þ−1 ¼ R−1
1 ∨R−1

2

Proof For all couple of relations R1(a1, b1, c1) and R2(a2, b2, c2) in S, we have the following

property:

R1∨R2ð Þ−1 ¼ R
0

a1 þ a2; b1 þ b2; c1 þ c2ð Þ−1 ¼ R −a1−a2; −b1−b2;−a1−a2 þ b1 þ b2 þ c1 þ c2ð Þ
R−1
1 ∨R−1

2

� �

¼ R1 −a1;−b1;−a1 þ b1 þ c1ð Þ∨R2 −a2;−b2; −a2 þ b2 þ c2ð Þ
¼ R −a1−a2; −b1−b2; −a1 þ b1 þ c1−a2 þ b2 þ c2ð Þ
¼ R −a1−a2; −b1−b2; −a1−a2 þ b1 þ b2 þ c1 þ c2ð Þ

– For all relations R1, R2, R3 in S, we have the following property: (R1 ∨ R2) ∧ R3 = (R1 ∧

R3) ∨ (R2 ∧ R3)

Proof Let I R(a,b,c) J with I = [IbIe] and J = [JbJe]. Suppose that R is an instance of (R1(A1,

B1,C1) ∨ R2(A2, B2,C2)) ∧ R3(A3, B3,C3). We can write:
I R1 A1;B1;C1ð Þ∨R2 A2;B2;C2ð Þð Þ∧R3 A3;B3;C3ð Þ J

⇒I R1 A1;B1;C1ð Þ∪R2 A2;B2;C2ð Þð Þ∧ R3 A3;B3;C3ð Þ J⇒ ∃K

¼ Kb Ke½ �=I R1 A1;B1;C1ð Þ∪ R2 A2;B2;C2ð Þð Þ K & K R3 A3;B3;C3ð Þ J
⇒I R1 A1;B1;C1ð Þ K & K R3 A3;B3;C3ð Þ J or I R2 A2;B2;C2ð Þ K&K R3 A3;B3;C3ð Þ J
⇒I R1 A1;B1;C1ð Þ∧R3 A3;B3;C3ð Þð Þ J or I R2 A2;B2;C2ð Þ∧ R3 A3;B3;C3ð Þð Þ J
⇒I R1 A1;B1;C1ð Þ∧R3 A3;B3;C3ð Þð Þ J ∨ I R2 A2;B2;C2ð Þ∧R3 A3;B3;C3ð Þð ÞJ
⇒ R1 ∨ R2ð Þ∧ R3 ⊑ R1∧R3ð Þ∨ R2∧R3ð Þ

Reciprocally; if I R1 A1;B1;C1ð Þ∧ R3 A3;B3;C3ð Þð Þ∨ R2 A2;B2;C2ð Þ∧ R3 A3;B3;C3ð Þð Þ J ⇒ I R1 A1;B1;C1ð Þ∧
R3 A3;B3;C3ð Þ J or I R2 A2;B2;C2ð Þ∧R3 A3;B3;C3ð Þ J ⇒ ∃K ¼ Kb Ke½ �=
I R1 A1;B1;C1ð Þ K & K R3 A3;B3;C3ð Þ J or I R2 A2;B2;C2ð Þ K&K R3 A3;B3;C3ð Þ J ⇒

I R1 A1;B1;C1ð Þ K or I R2 A2;B2;C2ð Þ Kð Þ & K R3 A3;B3;C3ð Þ J ⇒ I R1 A1;B1;C1ð Þ ∨ R2 A2;B2;C2ð Þð Þ∧
R3 A3;B3;C3ð Þ J ⇒ R1∧R3ð Þ ∨ R2∧R3ð Þ ⊑ R1∨R2ð Þ ∧ R3

7 Operations on TRM

We have already mentioned that in the domain of multimedia content analysis, the segmentation

systems provide non-convex intervals where a specific event occurs. For that reason, we have

proposed a novel representation of the temporal relations between non-convex intervals that is the

Temporal Relation Matrix (TRM) in addition to a novel method of analysis of such Matrix.

Hence, it is important to define some of the already presented operations such as inverse,

composition, disjunction but this time between TRMs rather than between two temporal relations.

7.1 Inverse of TRM

If we consider now occurrences of a temporal relation R’ that can be observed between s2j and

s1i (s2jR−1(DE’, DB’, Lap’) s1i), we can calculate its parameters by using those of the relation R

that exist between s1i and s2j, we can establish that



DE
0

¼ −DE;DB
0

¼ −DB;Lap
0

¼ −DEþ DBþ Lap

So the TRM associated to the relations that can be observed between two segmentation S2 and

S1 (TRM(S2, S1)) can be calculated using the TRM(S1,S2) by considering:

TRM S2; S1ð Þ i½ � j½ � k½ � ¼ TRM S1; S2ð Þ −i½ � − j½ � −iþ jþ k½ �:

7.2 Disjunction of two TRM

Let TRM1, TRM2 two matrix that represent all possible relations that can present between all

the point of couple of segmentations (two non-convex intervals). The disjunction of these two

TRMs is the addition of the two matrices.

The value of occurrences of the disjunction of two relations is equal to the sum of the

occurrences of each one.

TRM1 S1; S2ð Þ∨TRM2 S3; S4ð Þ ¼ TRM1 þ TRM2

7.3 Composition of two TRM

The composition of two relations is more complex than the disjunction and the inverse

operation since there are more additional constraints on the composition process. The com-

position of two relations should have a common interval. In other word, if we have I R1J and K

R2L, the composition of these two relations cannot be performed unless J and K are the same

intervals in the intermediate temporal segmentation. Let us consider S1 = {[s1ib s1ie]}i ∈ [1 M],

S2 = {[s2jb s2je]}j ∈ [1 N], S3 = {[s3kb s3ke]}k ∈ [1 P] three segmentations (non-convex intervals).

Suppose TRM1(S1, S2), TRM2(S2, S3) and TRM3(S1, S3) be the TRMs calculated between

these non-convex intervals. We will note TRM=TRM1 TRM2 as the composed TRM.

If we have S1iR S3k a relation resulted from a composition operation, it means there exists a

sub-interval S2j such that S1iR S3k = (S1iR1S2j) (S2jR2S3k).

Since the TRM represents the temporal relations computed between each couple (S1i, S3k), a

couple of specific sub-intervals (S1i, S3k) will occur N times in the composed TRM. This is

because these two sub-intervals can be related through each sub-interval S2j in S2.

Therefore, it can be verified that TRM1 TRM2 =N*TRM3 where N = number of sub-

intervals in the second non-convex interval S2.

8 Application of operations on Allen’s predefined relations

Through this section, we will show you as an example the application of the different

operations on Allen’s interval relations. We have included into the table the cases where one

or two of the intervals may be points (duration = 0). As shown in Tables 1, 2, and 3, the

relations are transformed in the space of our representation. For example, the before relation in

the Allen’s interval relations is represented by the following three constraints: Lap >0, DB < -

Lap, and DE > Lap. This relation can be written: before(]Lap + ∞ [,] − ∞ − Lap[, ]0 + ∞ [).

However, if we take into account the fact that one of the intervals or the two intervals may be

points (duration = 0), the relation can be written before(]0 + ∞ [,] − ∞ 0[, ]0 + ∞ [).



The following table (Table 4) shows you the different constraints of the Allen’s relations.

If we take as an example the composition of the two relations finish and during. The

resulted relation is the during relation. In other words, (I f J) (J d K) = (I d K). This result can

be derived from our representation as follows:

f 0f g;ð �0þ ∞ ;½ �−∞0½ Þ∧dð �0þ ∞ ;½ �0þ ∞ ;½ �−∞0½ Þ
¼ R1 0f gþð �0þ ∞ ;½ �0þ ∞ þ½ �0þ ∞ ;½ �−∞0 −½ �0þ ∞½ Þ∩R2 0f gþð �0þ ∞ ;½ �0
þ∞ þ½ �0þ ∞ ; 0f gþ½ �−∞0½ Þ
¼ R1ð �0þ ∞ ;½ �0þ ∞ ;½ �−∞0½ Þ∩R2ð �0þ ∞ ;½ �0þ ∞ ;½ �−∞0½ Þ
¼ Rð �0þ ∞ ;½ �0þ ∞ ;½ �−∞0½ Þ

By the sameway, the composition of the relations si (start inverse) and before is computed as follows:

sið �−∞0 ; 0f g½ �−∞0½ Þ∧bð�0þ ∞½�−∞0½�0þ ∞½ Þ
¼ R1ð�−∞0 þ½ �0þ ∞ ; 0f gþ½ �−∞0½�−∞0 −½ �−∞0½Þ∩R2ð�−∞0 þ½ �0
þ∞ ; 0f gþ½ �−∞0½�−∞0 þ½ �0þ ∞½Þ
¼ R1ð�−∞þ ∞½�−∞0½�−∞þ ∞½Þ∩R2ð�−∞þ ∞½�−∞0½�−∞þ ∞½Þ
¼ Rð�−∞þ ∞½�−∞0½�−∞þ ∞½Þ

The constraints of the resulted relation R is the union of the constraints of several relations

among them the relations before (<), meet (m), overlap (o), finish inverse (fi) and during

inverse (di). The remaining relations are not associated to any relation in the space of Allen’s

relations. Table 5 shows the different possible relations issued from the composition of two

basic relations. They are split over two tables for simplicity.

To validate the inverse operation, let us take the relation finish represented by finish ({0},]0 +

∞[,]- ∞ 0[). As we have already presented, the inverse of a relation R(A, B, C) is R−1(−A, -B,

−A+B+C). Hence, the inverse of the finish relation is R(− ({0}), − (]0 +∞[), −({0}) + (]0 +

∞[) + (]- ∞ 0[)) =R({0},]- ∞ 0[,]- ∞+∞ [). The resulted relation is the union of the following

relations: R1({0},]- ∞ 0[,]- ∞ 0 [), R2({0},]- ∞ 0[, {0}), and R3({0},]- ∞ 0[,]0 +∞ [). R1 is the

relation finish inverse (fi) while R2 and R3 are not associated to any relation in the Allen’s space.

9 Application of operations on clustered relations

We have already presented two ways to analyze a TRM. The first by decomposing the 3D

space represented by the TRM into predefined zones each associated to a semantic relation

such as the Allen’s relations. The second way generically proposes to base on the distribution

of votes in order to derive the relations named classes of temporal relations. A clustering

algorithm such as k-means, hierarchical or any other clustering algorithm can be used to

produce such classes of relations. When classes of relations are ready, each is represented by

the number of votes included in the cluster in addition to other parameters if necessary.

When a clustering algorithm is used to highlight classes of relations in the TRM, one of two

methods can be used in order to represent a class of relations. In the first method, each class is

represented by the constraints of the 3D zone that includes all the points of this class in addition to

the number of votes contained in the zone. Using this method, the previously defined operations

can be used by the same way as in the case of Allen’s relations (refer to Section 5). While the

second method represents each cluster by its mean (or median) and its covariance matrix. In the

latter case, a class of relations is noted R(m, ∑, nb) where m is the mean, ∑ is the covariance

matrix and nb is the number of occurrences of relation instances in the cluster.



9.1 Inverse of a class of relations

To compute the inverse of a class of relations R, we compute the inverse of each instance

R(a,b,c) in R as we have already presented (R−1(−a, −b, −a + b + c)). Then the mean and the

covariance matrix are calculated for the new class of relations while the number of occurrences

remains the same. The parameters of the inverse relation can be also derived from the

parameters of the relation R directly as follows:

Let R(m, ∑, nb) be a class of relations represented in addition to the number of occurrences

by the following parameters:

m = (mx,my,mz) is the mean value.
Σxx Σxy Σxz

Σxy Σyy Σyz

Σxz Σyz Σzz

2

6

6

6

3

7

7

7

is the covariance matrix.

The inverse relation is R−1(m−1, ∑−1, nb) where: m−1 = (−mx, −my, −mx +my +mz)

Σ
−1 ¼

Σxx Σxy Σxx−Σxy−Σxz

Σyy Σxy−Σyy−Σxz

Σxx þ Σyy þ Σzz−2Σxy−2Σxz þ 2Σyz

2

6

6

6

3

7

7

7

9.2 Disjunction of two classes of relations

The disjunction of two classes of relations is approximated as the union of the means and the

co-variance matrices of two classes of relations produced by clustering algorithm.

R1 m1;Σ1; nb1ð Þ∨R2 m2;Σ2; nb2ð Þ ¼ R m1;m2f g; Σ1;Σ2f g; nb1; nb2f gð Þ

9.3 Composition of two classes of relations

The composition of two classes of relations is more complicated than the two operations

presented above. The complication comes from the fact that the composition of two relations I

R1J and K R2L has no sense unless J and K are the same interval. When we construct the TRMs

and then we cluster data into classes of relations into each TRM, we do not keep track of the

Table 4 Constrainsts associated to Allen’s and villain and Kautz temporal relations

Relation DE DB Lap

< ]0 +∞[ ]-∞ 0 [ ]0 +∞[

m ]0 +∞[ ]-∞ 0[ {0}

o ]0 +∞[ ]-∞ 0[ ]-∞ 0[

s ]0 +∞[ {0} ]-∞ 0[

f {0} ]0 +∞[ ]-∞ 0[

= {0} {0} ]-∞ 0[

d ]0 +∞[ ]0 +∞[ ]-∞ 0[

> ]-∞ 0[ ]0 +∞[ ]DE – DB +∞[

mi ]-∞ 0[ ]0 +∞[ {DE - DB}

oi ]-∞ 0[ ]0 +∞[ ]-∞ DE - DB[

si ]-∞ 0[ {0} ]-∞ 0[

fi {0} ]-∞ 0[ ]-∞ 0[

di ]-∞ 0[ ]-∞ 0[ ]-∞ 0[



Table 5 Composition table of Allen’s relations, Ball^ means the whole set of relations

– < m o s f =

< < < < < {<,m,o,s,d} <
m < < < m {o,s,d} m
o < < {<,m,o} o {o,s,d} o
s < < {<,m,o} s d s
f < m {o,s,d} d f f
= < m o s f =
d < < {<,m,o,s,d} d d d
> all {f,d,mi,oi} {f,d,mi,oi} {f,d,mi,oi} > >
mi {<,m,o,fi,di} {s,=,si} {f,d,oi} {d,f,oi} mi mi
oi {<,m,o,fi,di} {o,fi,di} {o,s,f,=,d,oi,si,fi,di} {d,f,oi} oi oi
si {<,m,o,fi,di} {o,fi,di} {o,fi,di} {s,=,si} oi si
fi < m o o {f,=,fi} fi
di {<,m,o,fi,di} {o,fi,di} {o,fi,di} {o,fi,di} {oi,si,di} di
– d > mi oi si fi di
< {<,m,o,s,d} all {<,m,o,s,d} {<,m,o,s,d} {<} {<} {<}
m {o,s,d} {di,si,oi,mi, >} {=,f,fi} {o,s,d} {m} {<} {<}
o {o,s,d} {di,si,oi,mi, >} {oi,si,di} {o,s,f,=,d,oi,si,fi,di} {o,fi,di} {<,m,o} {<,m,o,fi,di}
s {d} {>} {mi} {f,d,oi} {s,=,si} {<,m,o} {<,m,o,fi,di}
f {d} {>} {>} {>,mi,oi} {>,mi,oi} {f,=,fi} {>,mi,oi,si,di}
= {d} {>} {mi} {oi} {si} fi {di}
d {d} {>} {>} {f,d,mi,oi,>} {f,d,mi,oi,>} {<,m,o,s,d} all
> {f,d,mi,oi} {>} {>} {>} {>} {>} {>}
mi {f,d,oi} {>} {>} {>} {>} {mi} {>}
oi {f,d,oi} {>} {>} {>,mi,oi} {>,mi,oi} {oi,si,di} {>,mi,oi,si,di}
si {f,d,oi} {>} {mi} {oi} {si} {di} {di}
fi {o,s,d} {di,si,oi,mi, >} {oi,si,di} {oi,si,di} {di} {fi} {di}
di {o,s,f,=,d,oi,si,fi,di} {di,si,oi,mi, >} {oi,si,di} {oi,si,di} {di} {di} {di}



intervals that have voted for each relation in the TRM. Thus, the composition of two instances

of relations one from each cluster may have a common interval and may not have. However,

the main idea of our representation is to highlight the relations that may occur frequently or

rarely compared to other relations and hence the number of occurrences has the main

importance for us. To overcome the problem of composition, we proceed to an approximation

of the composition of two classes of relations.

Let us consider the following two classes of relations that wewant to compute their composition.

C1 ¼ pix; piy; piz

� �

; i ¼ 1…M
n o�

C2 ¼ qjx; qjy; qjz

� �

; j ¼ 1…N
n o

C ¼ C1∧C2 ¼ rkx; rky; rkz
� �

; k ¼ 1…P
� �

Each of the above classes is represented by the mean of the relation instances in the class, the

covariance matrix and the number of instances in the class. We will note them as follows:

C1 mc1;Σ
c1;M

� �

=mc1 ¼ m1x;m1y;m1zð Þ; C2 mc2;Σ
c2;N

� �

=mc2 ¼ m2x;m2y;m2zð Þ; C mc;Σc;Pð Þ; =mc ¼ mx;my;mz

� �

Σ
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c1
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Σ
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c
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c
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In the ideal case, the composition of two classes is computed by performing the operation

between two points each one comes from a class providing that these two points be computed

with a common interval. Otherwise, the relation will not be defined.

To ensure that the two classes will have points calculated between common intervals, we

compose only classes that results from TRMs with a common non-convex interval (same

segmentation). In other words, suppose C1 (C2 resp.) is a class resulted from the clustering of

data in TRM1 (TRM2 resp.) with TRM1 (TRM2 resp.) computed between the two non-convex

intervals S1 and S2 (S3 and S4 resp.). The composition of C1 and C2 is defined only in the case

where S2 and S3 are the same non-convex interval. Only in this case, we are sure that some

relation instances in C1 can be composed with some relation instances in C2. However, we

cannot know each relation instance in C1 can be composed with which relation instances in C2.

Thus, we proceed to an approximation of the composition. The approximation is done by

composing each relation instance in C1 with each relation instance in C2 even though some of

them will not have a common interval. The parameters of the resulted class can be derived

from the parameters of C1 and C2 as described below.

F ¼ f 1; f 2ð Þ : mx;Σxð Þ; my;Σy

� �� �

→ mz;Σzð Þ=mz ¼ f 1 mx;my

� �

;Σz ¼ f 2 Σx;Σy

� �

mz≈ mx1 þ my1;mx2 þ my2;mx3−my2 ¼ mx1 þ my3

� �

Σz≈

Σ
c1
xx þ Σ

c2
xx Σ

c1
xy þ Σ

c2
xy Σ

c1
xz−Σ

c2
xy

Σ
c1
xy þ Σ

c2
xy Σ

c1
yy þ Σ

c2
yy Σ

c1
yz−Σ

c2
yy

Σ
c1
xz−Σ

c2
xy Σ

c1
yz−Σ

c2
yy Σ

c1
zz þ Σ

c2
yy
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6

4
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7
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In order to test the approximation that we have done, we have completed it by an experimen-

tation using simulated data. Given two classes C1 and C2 generated randomly using a Gaussian

distribution, the parameters of the composed class C = C1 C2 can be computed in two ways as

mentioned before. The first way is to do a point-by-point composition between the two classes

and then compute the parameters of the obtained result. In the second way, the parameters of C



are derived from the parameters of the two classes by approximation as described above.

Table 6 lists the obtained results.

As we can notice, the approximated values of the parameters of C are very close to the ones

calculated after a point-by-point composition of C1 and C2.

Figure 19 shows two classes to be composed and Fig. 20 shows the composed class using a

point-by-point composition.

Based on the theorem concerning the relations algebras [58], we can deduce that:

S;∩; ∪;CR;∅;R; ∧; −1;Reð Þ is an algebra of temporal relations, where:

S ¼ P Rð Þ = the set of partitions ofℝ3, CR the complement of a relation R, R(∅, ∅ ,∅) the

empty relation, R ¼ ℝ;ℝ;ℝð Þ the total relation, −1 the inverse operator, and Re ({0}, {0}, ℝ)

the identity relation.

10 Video analysis using the defined temporal reation algebra

The analysis of the temporal relations that exist between different segmentations has been used

in several already-published works for audio-visual document structuring, event detection and

audio-visual document classification [27–29].

Table 6 Comparison between approximated and non-approximated parameters

Covariance Matrix of C1 Covariance Matrix of C2

30,514 −29,421 30,241 24,756 −24,236 24,292

−29,421 29,563 −29,381 −24,236 24,558 −24,337

30,241 −29,381 30,280 24,292 −24,337 24,404

Approximated Covariance Matrix of C Covariance Matrix of C using Point-by-Point Composition

55,269 −53,657 54,477 55,018 −53,414 54,228

−53,657 54,121 −53,939 −53,414 53,877 −53,696

54,477 −53,939 54,838 54,228 −53,626 54,589

Mean of C1 Mean of C2

3.3161 −10.852 −25,839 12.08 −9.3222 −15.498

Approximated Mean of C Mean of C using Point-by-Point Composition

15.396 −20.174 −16.516 15.396 −20.174 −16.516

Fig. 19 The two classes to be composed



In [27], the analysis of French TV-game video is done in order to highlight the structure of

the video. The analysed video document is a 31 min’ video. From an audio-point of view, the

video is a competition between two teams, each with two players (speaker #2, speaker#3) and

(speaker #4, speaker #5). Two animators are animating the TV game, speaker #1 the principal

animator while speaker #6 and speaker #7 are secondary ones (presenting the audiences that

participate to the game and the set of gifts to be won). One audience is also appearing in the

program (speaker #8). The video is composed of several game phases each is a sequence of

interaction between the two speakers of the same team. When a team wins a game phase, the

audiences start applauding. Eight elementary segmentations are derived from the speaker

segmentation, one per speaker. A TRM is computed between each couple of elementary

segmentations, the optimal number of clusters is determined in each TRM and the total

number of votes in each cluster is calculated. A parameter is introduced in the process of

TRM calculation to consider only the temporal relations between the two segments of two

segmentations having a gap less than 10 s. In other words, if the two segments are too far from

each other, the temporal relation between them will be less relevant and will be discarded.

Table 7 shows the distribution of votes between clusters in each TRMs. Two clusters are

identified, C1 represents the case when the first speaker of the first segmentation is speaking to

the second one while the second cluster C2 represents the inverse case. In this table, TRMS(1,2)

stands for the TRM computed between speaker #1 and speaker #2.

Fig. 20 The composition of C1 and C2

Table 7 Distribution of votes between clusters in TRMs ([12])

TRM C1 C2 TRM C1 C2 TRM C1 C2

TRMS(1,2) 65 60 TRMS(1,3) 49 49 TRMS(1,4) 84 71

TRMS(1,5) 106 97 TRMS(1,6) 6 5 TRMS(1,7) 89 79

TRMS(1,8) 3 5 TRMS(2,3) 123 124 TRMS(2,4) 4 7

TRMS(2,5) 6 6 TRMS(2,6) 0 0 TRMS(2,7) 6 7

TRMS(2,8) 0 0 TRMS(3,4) 6 5 TRMS(3,5) 10 5

TRMS(3,6) 0 0 TRMS(3,7) 7 4 TRMS(3,8) 0 0

TRMS(4,5) 245 205 TRMS(4,6) 4 8 TRMS(4,7) 15 19

TRMS(4,8) 0 0 TRMS(5,6) 0 0 TRMS(5,7) 39 26

TRMS(5,8) 0 0 TRMS(6,7) 1 0 TRMS(6,8) 0 3

TRMS(7,8) 4 3



As we can notice, we have high interactions between speakers #2 and #3 (first team) and

between speakers #4 and #5 (second team). Moreover, we can highlight that the first speaker

has considerable number of interactions with almost all the other speakers due to his role as

animator. The composition of the TRMS(2,3) (TRMS(4,5) resp.) with itself several times high-

lights the game phases of the video. Composing the obtained game phases with the applauses

segmentations will highlight the won game phases only.

Another type of segmentations has been considered in this work. The face detection and

recognition process provides eight elementary segmentations each contains the segments

where the same face appears on the screen. The TRMs between each couple of segmentations

is computed as above and the optimal number of clusters is determined. The optimal number

of clusters in almost all the TRM is two while it is equal to three in TRMF(1,4), TRMF(1,5),

TRMF(4,5), TRMF(2,3) and TRMF(1,7). C1 is the cluster when the first face appears before the

second, C2 the inverse clusters, and C3 is the cluster when the two faces appears at the same

time on the screen. Table 8 provides the distribution of votes between clusters in each TRM.

Table 8 Distribution of votes between clusters in TRMs ([12])

TRM C1 C2 C3 TRM C1 C2 C3 TRM C1 C2 C3

TRMF(1,2) 25 15 0 TRMF(1,3) 10 10 0 TRMF(1,4) 19 19 5

TRMF(1,5) 19 13 2 TRMF(1,6) 9 19 0 TRMF(1,7) 2 1 8

TRMF(1,8) 2 1 0 TRMF(2,3) 38 36 53 TRMF(2,4) 11 7 0

TRMF(2,5) 3 2 0 TRMF(2,6) 6 6 0 TRMF(2,7) 2 1 0

TRMF(2,8) 0 0 0 TRMF(3,4) 1 2 0 TRMF(3,5) 1 0 0

TRMF(3,6) 4 4 0 TRMF(3,7) 1 0 0 TRMF(3,8) 0 0 0

TRMF(4,5) 52 50 76 TRMF(4,6) 14 5 0 TRMF(4,7) 4 1 0

TRMF(4,8) 4 5 0 TRMF(5,6) 22 14 0 TRMF(5,7) 1 1 0

TRMF(5,8) 4 5 0 TRMF(6,7) 2 2 0 TRMF(6,8) 1 0 0

TRMF(7,8) 2 1 0

Table 9 Experimental corpus description

Document type Subtype Number duration

Mean Min Max

TV news: TREC2003 ABC 49 00:34:20 00:32:50 00:35:50

CNN 49 00:34:20 00:32:00 00:37:20

TV news: TREC2004 ABC 6 00:34:00 00:33:50 00:34:10

CNN 6 00:34:40 00:34:10 00:35:55

TV news: TREC2005 CCTV 9 00:53:50 00:34:00 01:10:00

CNN 7 00:54:30 00:34:00 01:10:00

LBC 8 00:54:40 00:30:00 01:10:00

NBC 7 00:33:00 00:28:40 00:34:00

MSNBC 6 00:34:00 00:34:00 00:34:00

NTDTV 4 00:34:00 00:34:00 00:34:00

TV news: Argos France2 17 00:39:40 00:24:40 00:44:40

Soccer game sequences 20 01:26:10 00:25:00 02:45:00

Documentary films 21 00:29:10 00:14:00 01:05:10

TV Series Stargate 24 00:42:18 00:39:55 0042:20

French TV games Les’amours 5 00:31:55 00:30:30 00:36:00

Movie extracts Matrix 4 00:31:20 00:24:00 00:38:30

Total duration 242 6d:6 h:4 m:27 s



The distribution of votes in Table 8 validates the results obtained when considering the

speaker segmentations. Moreover, such results can be used to associate faces to speakers.

The distribution of votes over the clusters in each TRM was used in [29] in order to

compute the similarity between audiovisual documents. Several elementary segmentations

derived from dominant color, motion quantity, contrast, speakers, faces, applauses, speech,

music, silence are used. Each video v is represented by the set of the TRMs computed between

each couple of elementary segmentations.

TRMv ¼ TRM v
1; TRM

v
2; TRM

v
3;…; TRM v

M

� �

On each TRM v
i , a clustering method is applied in order to highlight automatically how votes

are distributed in the co-occurrence matrix and the number of votes (NbV) in each cluster is

counted.

TRMv
i ¼ NbVv

i;1;NbV
v
i;2;NbV

v
i;3;…;NbVv

i;K

n o

So, a video v is represented by a matrix Mv of numeric values in which each row contains the

number of votes of the clusters highlighted in one TRM. A distance between two videos v1 and

v2 is defined as a weighted distance between their two matrices Mv1 and Mv2 as follows:

d v1; v2ð Þ ¼ ∑
M

i¼1

αi ∑
K

j¼1

β j

NbVv1
i; j

tv1
−
NbV v2

i; j

tv2

�

�

�

�

�

�

�

�

�

�

" #

Where tv1 and tv2 are the time durations of v1 and v2.

Several supervised and unsupervised classification methods have been tested using the

dataset shown in Table 9.

Table 10 shows the clustering results obtained using the k-means algorithm with k = 6.

As supervised classification methods, we have defined a simple supervised method and

tested a set of well-known classifiers. The proposed supervised method takes as input a set of

Table 10 F-measure of the k-means clustering - 6 clusters

Clustering results F-measure (%) Miss-classified in the class Miss-classified out the class

News 99.1% 0 3/168

Soccer 91.9% 0 3/20

TV Series 92.33% 4 0/24

Documentary 97.7% 0 1/21

Tv Games 88.9% 0 1/5

Movie extracts 0% 0 4/4

Table 11 F-measure of the proposed supervised method

10% models training F-measure (%) Miss-classified in the class Miss-classified out the class

News 99.1% 0 3/168

Soccer 94.8% 0 2/20

TV Series 91.32% 1 3/24

Documentary 95.45% 2 0/21

Tv Games 80% 1 1/5

Movie extracts 61.6% 5 0/4



videos of each category. Each video is represented by a matrix of numeric values M as stated

above. Then, the method computes simply the average matrix M of all the matrices of the

videos in each category and takes them as the models of the categories. To classify a video v,

the distance between its associated matrix Mv and the matrix of each category is computed.

The label of the category having the least distance with the video matrix is assigned. Table 11

shows the results obtained by applying the proposed supervised method trained on 10% of the

dataset and tested on the remaining 90% while Table 12 shows the results obtained by applying

a set of well-known classification algorithms using a 3-folds cross validation sampling method.

A pioneer idea to be tested for video classification is to train a 3D CNN on the set of TRMs.

We can consider to train one 3D CNN per TRM or feed the set of TRMs in one 3D CNN.

A third type of applications of the temporal relations analysis is the conversation detection

process proposed in [28]. The speaker segmentations are used in order to highlight high

interactions between speakers. The TRM between each couple of speaker segmentations

speakeri and speakerj is computed. The analysis of the TRMs highlights the interactions

between speakers of the form “speakeri / speakerj” and “speakerj / speakeri (the symbol /

stands for interacts). Then, the composition operator is applied several times in order to detect

the patterns “speakeri / speakerj / speakeri / speakerj….” or “speakeri / speakerj / speakeri /

speakerk….” which may correspond to a conversation between the involved speakers. The

proposed method is validated on a 65-min debate video. The method is analyzed deeply in the

work of bigot et al. in [6] based on the interactions between speakers.

11 Conclusion

In this article, we have proposed a novel temporal model based on parametric representation of

temporal relations between convex segments. Then, we have proposed a new representation of

temporal relations between two non-convex segments and we called it Temporal Relation

Matrix (TRM). The analysis of such TRMs allowed us to highlight classes of temporal

relations. Operations such as composition and disjunction are defined in the framework of

temporal relation algebra that are later applied on the classes of relations in order to highlight

events of higher level in the video analysis domain. The defined temporal relations algebra is

applied on different audiovisual documents in order to highlight clues about the structure of the

documents, to detect events or to categorize documents in predefined or non-predefined types.

However, it will be very interesting to study the effectiveness of the temporal algebra in order

Table 12 Three-folds cross-validation sampling method—F-measure

Cross validation: 3- folds F-measure (%)

News Soccer TV series Documentary TV games Movie extracts

Random forest 98.23 100 86.96 100 61.54 40

C4.5 96.68 82.05 76.6 93.33 57.14 50

Classification Tree 97.9 81.08 82.35 97.67 72.73 22.22

SVM 99.40 94.74 82.35 84.45 88.89 40

CN2 Rules 96.83 88.89 84.45 95.45 33.33 66.67

KNN 99.7 94.74 92.30 90.48 88.89 75

Naïve Bayes 98.49 97.44 93.33 89.36 88.89 61.53



to analyze data coming from other domains or for other type of applications such as the

constraint satisfaction problem (CSP). Moreover, and as stated in the introduction, we aim to

use deep learning techniques to learn video structures by feeding the TRMs into 3D CNNs.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.
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