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Abstract 

Our aim is to solve a problem of optimal control with free final time using the Pontryagin’s maximum principle. As an illustration, 

we consider a navigation problem which is solved analytically and numerically by the shooting method in the case without 

constraint. The two approaches are compared. In the second case, we solve numerically the same problem with constraint on the 

state. At the end, we prove the convergence of the method for the second case.  
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____________________________________________________________________________________________ 

1. Introduction

Indirect methods based on the principle of maximum 

Pontryaguin [1, 2, 4] are known for their speed and precision 

in the treatment of optimal control problems. In the present 

study, we consider an optimal control problem with free 

final time. In order to illustrate this study, we consider a 

problem of aircraft flying from an initial state to a final state. 

We are particularly interested in minimizing the duration 

landing pass from an initial position to a final one. For this, 

we will use the principle of Pontryaguin [4, 15, 16, 17], and 

determine the optimality equations resulting from this 

principle; i.e.; a differential-algebraic system as the state 

equation is provided (with an initial condition and a final 

condition) and the adjoint equation. On other hand, note that 

in the adjoint equation, derived from the principle’s 

Pontryaguin, no information is given concerning the initial 

or the final conditions; consequently this costate equation is 

hard to use algorithmically[12, 13, 14, 17]. Thus, in order to 

determine the initial condition of the adjoint state, we use the 

shooting indirect method for the numerical procedure [4]. 

Note also, that we consider in the presented study two 

distinct cases corresponding to the cases where constraints 

are submitted or not submitted to the state. Finally, we 

present the results of numerical experiments implemented 

using Matlab facilities.  

2. Statement of problem

The optimal control problem considered is to find the control 

! u"t#  that minimizes the performance index

! 

J "ϕ#t
f
$x

f
%+

t
&

t
f

∫ L#t $x $u%dt $ (1) 

subject to the differential constraints 

!  ɺx " f #t $x $u%& (2) 

the prescribed initial condition at the initial time 
! 
t
"

! 
x"t

#
$% x

#
& (3) 

and prescribed final conditions at the final time 
 
t

f

! 
ψ"x

f
#t

f
$% &# (4) 

here, ψ  is a ! "l +#$×#−  vector, where 
! 
"≤ l ≤ n#  there

must be at least one final condition that draws the optimal 

path to the final value. 

In order to use the Pontryaguin principle’s, the 

Hamiltonian  H  is defined by:  

! H " L#t $x $u%+ pT f #t $x $u%& (5) 

The Euler-Lagrange equations are given by: 

!  ɺx " f #t $x $u%$ (6) 

!  
ɺp " −H

x
T #t $x $u$ p%$ (7) 

! 
"# H

u
T $t %x %u% p&% (8) 



!

and the previous prescribed boundary conditions 

! 
x"t

#
$% x

#
& (9) 

! 
ψ"t

f
#x

f
$%&' (10) 

We will find ! u
"

 which minimizes  H  such that ! u
"

verify the following inequality  

! H"t #x #u
$ # p%−H"t #x #u# p%≤&#!∀!u (11) 

2.1. Transversality condition on p

Generally, when the terminal cost is considered in the cost 

functional, the functional to be minimized can be written as 

follows :  

! 

J "ϕ#t
f
$x

f
%+

t
&

t
f

∫ L#t $x $u%dt $ (12) 

Let 
! 
M
"

 and 
! 
M
"

 be two subsets of 
!! 
"

n
"  then to 

minimize the cost functional one should find a trajectory 

between 
! 
M
"

 and 
! 
M
"

. Moreover if 
! 
M
"

 and 
! 
M
"

 are 

two varieties of ! "
n

 having the tangent spaces 
! 

T
x
"

M
"

 and 

! 

T
x"t

f
#
M
$

 respectively 
! 
x
"
∈ M

"
 and 

! 

x
t
f
∈ M

"
#  then the

vector ! p"t#  must verify the transversality conditions:

! 
p"#$⊥ T

x
#

M
#
% (13) 

! 

p"t
f
#− p$∇

x
ϕ"t

f
%x

f
#⊥ T

x
f

M
&
% (14) 

where 
! 
p
"  is a real such that 

! 
p
"
#"  leads to the

Pontryaguin’s maximum principle and 
! 
p
"
#"  leads to the

Pontryaguin’s minimum principle [4]. If 
! 
M
"
# x

"
$  the

condition !"#$%  becomes empty and the variety 
! 
M
"

 can

be written as follows:  

!! 
M
"
# $x ∈ "n % F

"
&x'# F

(
&x'# ))) # F

q
&x'# *+,

where 
 
F

i
 are functions of class ! C

"
 on 

!! 
"

n
"  then the 

tangent space to 
! 
M
"

 at a point 
! 
x ∈ M

"
 is defined by:

!! 
T

x
M
"
# $ν ∈ "n %∇F

i
&x'ν #()!i #")***)q+)

and the condition !"#$%  is written as follows:

!! 

∃ν
"
#$$$$ν

q
∈ " % p&t

f
'(

i("

q

∑ν
i
∇

x
F

i
&x&t

f
''+ p)∇

x
ϕ&t

f
#x

f
'#

where 
 
ν

i
 are the Lagrange multipliers. 

The transversality condition of Hamiltonian is defined 

by: 

! 
H"t

f
#x

f
# p"t

f
$# p

%
#u"t

f
$$& %'

corresponding to the fact that the Hamiltonian vanishes at 

final time.  

3. Shooting Indirect method

The shooting indirect method is used to obtain the value of 

! p"#$  necessary to the solution of the problem characterized

by the Pontryaguin principle. If it is possible, from the

condition of minimization of the Hamiltonian to express the

control extremal function of ! "x"t#$ p"t##  then the extremal

system is a differential system of the form !  ɺz"t#$G"t % z"t##

where ! z"t#$ "x"t#% p"t## . With a numerical integrator from

! 
z
"

 we obtain : 
!   
ɶz
i

z
" : z#t

i
$ , where the 

 
t
i

 
!  
i "#$%$…  are the

time moments discretized by the integrator. But in 

! 
z
"
#$x

"
% p
"
&% the value 

! 
x
"

is given by the initial 

condition. Then, by doing some variations on 
! 
p
"

, we obtain

the different 
!  
ɶz
i

z
" . Which interests us are the 

!   
ɶz

N

z
" : z#t

f
$

(at final time); else 
!  
ɶz

N

z
" #$ ɶx

N

z
" % ɶp

N

z
" &  and only the 

!  
ɶx

N

z
" are 

significant. Since they depend only on 
! 
p
"

, note that 
!  
ɶx

N

p
" .

Let  G  be the implicit function giving 
! 
p
"

 by numerical

calculation using an integrator returns 
!  
ɶx

N

p
" − x

f
 :

!! G ""
n
→"

n
 and

!  
G" p

#
$% ɶx

N

p
# − x

f
&

Here  G  is an implicit nonlinear system of  n

equations and  n  unknowns: 

! 
G" p

#
$%#&

For the solution, we used the Newton’s method. The 

principle of the Newton’s method is described as follows: in 

the  k − th  step, let 
! 
p
"

k  be an approximation of the zero

! 
p
"

 of  G ; therefore 
! 
p
"

 can be written 
! 
p
"
# p

"

k
+∆p

"

k ,

and then: 

! 
"#G$ p

"
%#G$ p

"
k
+∆p

"
k %&

! 

"G# p
$
k %+

∂G

∂p
$

# p
$
k %&# p

$
− p

$
k %+o# p

$
− p

$
k %'

which leads to the solution of 

! 

∂G

∂p
"

# p
"
k $%# p

"
− p

"
k $& −G# p

"
k $'



where 

! 

∂G

∂p
"

# p
"
k $  is the Jacobian matrix of the application

! 
p
"
→G# p

"
$  computed when

! 
p
"
# p

"

k ; note that the

mapping 
! 
p
"
→G# p

"
$  is not explicitly known but is

known numerically. So we will use a method of numerical 

derivation based on the finite difference. To avoid the 

calculation of 

! 

∂G

∂p
"

# p
"
k $ , it suffices to find an

approximation of 

! 

∂G

∂p
"

# p
"
k $ ; according to [3] , we will use

one of the following finite difference approximations. 

! 

∂G
i

∂p
"

j

# p
"
k $≈

%

h
ij

&G
i
# p

"
+

k'%

j

∑h
ik

ek $

! 

−G
i
" p

#
+

k$%

j−%

∑h
ik

ek &'(

or else 

! 

∂G
i

∂p
"

j

# p
"
k $≈

%

h
ij

&G
i
# p

"
+ h

ij
e j $−G

i
# p

"
$'(

where the 
 
h

ij
 are the given discretization step of the  i− th

equation with respect to the  j − th  variable, and  e
k

 are

the  k − th  vector of the canonical basis; note that, 

classically, we can always choose the values of 
 
h

ij
 equal

each other at a common value  h . Let 
! 
∆

ij
" p

#
$h%  be a finite

difference approximation, then we have: 

!  
h→"
lim∆ij

# p
"
$h%&

∂G
i

∂p
" j

# p
"
%$i$ j &'$((($n(

Let, 

! 
J" p

#
$h%& "∆

ij
" p

#
$h%%$

which is an approximation of the Jacobian matrix; then 

the approximate Newton’s method can be written as follows 

: 

! 
p
"
k+# $ p

"
k
− J% p

"
k &hk '−#(G% p

"
k '(

The problem of convergence of this iterative process is 

ensured by using a result of the book of Ortega and 

Rheinboldt !"#$ ; indeed if the discretization step 
 
h

ij
 are

small and tend to zero, the convergence is ensured.  

4. Navigation problem

4.1. Case without constraint on the state 

Consider the problem of flying an aircraft with a constant 

speed crosswind from one point to another in minimum 

time. Figure !"#$ , describes the simplified form of

Zermelo’s problem [1]. Note that 
 
t

f
 is free, as it must be

to have a minimum time problem. 

Fig. 1. Navigation problem 

The optimal control problem is stated as follows: Find 

the control ! θ"t#  that minimizes the final time

!  
J " t

f
→min# (15) 

subject to the differential constraints 

!  
ɺx
"
#Vcosθ  (16) 

!  
ɺx
"
#Vsinθ +w$ (17) 

Where, 

• 
! 
x
"

 et 
! 
x
"

 are the Cartesian coordinates,

•  V  is the constant speed of the aircraft relative to the

air, 

• θ  is the controllable orientation of aircraft velocity

vector relative to the ground, 

• w  is the speed of the air relative to the ground.

The prescribed boundary conditions: 

! 
t
"
#"$!x

%"
#"$!x

&"
#"$  (18) 

! 
x
" f
#"$!x

% f
#&'

The functional !"#$%  is equivalent to:

! "

t
f

∫ dt → min# (19) 

The Hamiltonian is given by: 



! 
H " p

#
$Vcosθ %+ p

&
$Vsinθ +w%−#'    (20)

The Euler-Lagrange equations leads to: 

!  
ɺx
"
# H

p"
#Vcosθ $ (21) 

!  
ɺx
"
# H

p"
#Vsinθ +w$ (22) 

!  
ɺp
"
# −H

x"
#$% (23) 

!  
ɺp
"
# −H

x"
#$% (24) 

! 
"# H

θ
# −p

$
Vsinθ + p

%
Vcosθ & (25) 

From !"#$%−"#&% , it follows that:

! 
p
"
# constante$!p

%
# constante&

 
(26) 

Then, the equation for θ  gives: 

! 
−p

"
sinθ + p

#
cosθ $%& (27) 

Which, since 
! 
p
"

 and 
! 
p
"

 are constant, implies that 

 
tgθ  is constant and then θ  is also constant. 

From the equation !"#$% , we deduce that:

! 
x
"
#$Vcosθ %!t & (28) 

From the equation !"##$ , we obtain:

! 
x
"
#$Vsinθ +w%t&  (29) 

Using the prescribed final conditions 
! 
x
" f
#"  and

! 
x
" f
#$ , leads to:

! 
t

f
"

#

Vcosθ
$!sinθ " −

w

V
% (30) 

Then, from Figure !"#$ , we obtain:

! 

cosθ "
V
#
−w

#

V
$  (31) 

Hence, the optimal control and the final time can be 

written as:  

! 

θ " −arcsin#w$V %&!t
f
"

'

V (
−w(

)  (32) 

Fig. 2. Control Triangle 

The boundary conditions for this problem are given by: 

! 
H

f
" −#$!p

# f
"ν

#
$!p
% f
"ν

%
& (33) 

The value 
! 
p
"

 (
!
ν
"

) is given by:

! 

p
"
# −

"

V
$
−w

$

% (34) 

From the equation !"#$% , we obtain:

! 

p
"
#

w

V
"
−w

"
$ (35) 

Finally, we obtain the following results: 

! 
θ " −arcsin#w$V %&!t

'
"'&!t

f
"#V (

−w(%−)$(

! 
x
"
# V $

−w$t %!x
"&
#&%!x

" f
#"

! 
x
"
#$Vsinθ +w%t &!x

"'
#'&!x

" f
#'

! 
p
"
# −$V %

−w%&−"'% # p
"(
# p

" f
(36) 

! 
p
"
# w$%V "

−w"&# p
"'
# p

" f
(

Note that the aircraft is pointing upwind but it is moving 

directly toward the final point. An interesting check of the 

results can be made for the case where ! w""V . Here, 

! 
θ ≅"#!x

$
≅Vt , and 

! 
x
"
≅#$  which seem reasonable.

To test the minimality of the solution, application of the

Weierstrass condition leads to 

! 

p
"
Vcosθ

#
+ p

$
%Vsinθ

#
+w&−

−p
"
Vcosθ − p

$
%Vsinθ +w&'()

(37) 

Since 
! 
V ≠"#  and cancelation of the term 

! 
p
"
w  gives:

! 
p
"
cosθ

#
− p

$
sinθ

#
− p

"
cosθ − p

$
sinθ %&  (38) 

Then, the optimality condition !"#$%  becomes:

! 
p
"
# p

$
tanθ  (39) 

The application of the Legendre-Clebsch condition to 

this problem starts with : 

! 
H
θθ
" −p

#
Vcosθ − p

$
Vsinθ % (40) 

If the values for 
! 
p
"
#
! 
p
"
#  and θ  from the equation

!"#$%  are substituted into the expression of 
 
H
θθ

, we 

obtain: 



! 

H
θθ
"

V
#

V
#
−w

#
$%& (41) 

Since ! w""V , H
θθ

are positive. 

Numerical application  

For 
!  
V "#$$km / h%w" &$km / h , then

! 
θ " −#$%&&'radians(!t

#
"#(!t

f
"#$)#*#mn

! 
x
"
#$%&'($")t *!x

"+
#+*!x

" f
#"

! 
x
"
# −$%&'()*+t ,!x

"-
#-,!x

" f
#-

! 
p
"
# −$%$$&' # p

"$
# p

" f
(42) 

! 
p
"
# $%&"$'e−(($ # p

"(
# p

" f
%

For different values of  V  and  w , the analytical 

solution allows to obtain the following results: 

Table 1. Analytical solution 

5. Numerical solution

For the numerical solution, we used the shooting indirect 

method. Then we have to solve the following system :  

!!  

ɺz
"
#Vcosθ $

ɺz
%
#Vsinθ +w$

ɺz
&
#'$

ɺz
(
#'$

θ # arctang
z
(

z
&

z
"
)'*∈ " $ z

%
)'*∈ " $

z
&
)'*∈ " $ z

(
)'*∈ "+






















Let ! z"t#  be the solution of the previous system at time

 t  with the initial conditions  

! 
z"#$% "z

&
"#$'z

(
"#$'z

)
"#$'z

*
"#$$+

Let ! z"#$% "x"#$& p"#$$'

We construct a shooting function which is a nonlinear 

algebraic equation of the variable p  at time ! t "# . This 

shooting function is computed by a numerical procedure of 

integration of ordinary differential equation (using for 

example Euler method, Runge-Kutta method,. . . ); the 

shooting function is defined by:

! 

G"z"#$$%
z
&
"t

f
'#'#' p

&
' p
(
$−&

z
(
"t

f
'#'#' p

&
' p
(
$














)  

The problem to solve is then written: Find ! p"#$  such

that ! G"z"#$$  gives the desired value of 
! 
x"t

f
# . The

algorithm for numerical solution of this problem will then be 

completely defined if one gives oneself:  

1. the integration algorithm of a differential system with

initial condition (e.g., Euler or Runge-Kutta procedure)

to compute the shooting function  G  (implemented in

’ode45’ of Matlab which is a method of Runge-Kutta

4/5 with variable pitch).

2. the solution algorithm ! G"z#$%  which in our case

uses the method quasi- newton (implemented in

’fsolve’ of Matlab).

For different values of the  V  and  w , we obtain the 

following figures that shows the state and the control. 

Fig. 3. State and control for a speed of aircraft V=300 and of wind 

w=40 

Fig. 4. State and control for a speed of aircraft V=400 and of wind 

w=60  

Fig. 5. State and control for a speed of aircraft V=600 and of wind 

w=100 

V (Km/h) w (Km/h) tf (mn) θ (radians) 

300 40 0.2040 -0.1337

350 50 0.1740 -0.1433

400 60 0.1517 -0.1506

450 70 0.1350 -0.1562

500 80 0.1216 -0.1607

600 100 0.1014 -0.1674

700 120 0.0870 -0.1723

800 140 0.0762 -0.1759

900 170 0.0679 -0.1900



Fig. 6. State and control for a speed of aircraft V=900 and of wind 

w=170 

The results are in the Table 2: 

Table 2:Numerical solution 

 V

(km/h) 
 w

.(km/h)

θ .
Itérations 

Time 

(seconds) 

300 40 0.1860 -0.1980 6 0.19 

350 50 0.1680 -0.1433 6 0.20 

400 60 0.1500 -0.1506 6 0.22 

450 70 0.1320 -0.1562 6 0.20 

500 80 0.1140 -0.1607 6 0.21 

600 100 0.0960 -0.1674 6 0.21 

700 120 0.0840 -0.1723 6 0.21 

800 140 0.0763 -0.1759 6 0.21 

900 170 0.0660 -0.1900 6 0.20 

We deduce that the exact solution and the numerical 

solution are similar (see Tables 1 and 2). The performance of 

the numerical procedure are summarized in Table 2, for 

different values of  V  and  w . Note that the convergence is 

fast, moreover, the computation time is very low for a 

number of iterations not large enough. Note that when the 

speed of the wind increases, then, the time of landing 

decreases. In addition, it should be noted that wind is an 

important factor that reduces the duration of landing. In fact, 

during the flight, the aircraft must navigate in an air lane.  

5.1. Case with constraints on the state 

In this section, we consider a more complex situation. Then, 

a more realistic modelisation of the navigation of the aircraft 

will be better described by considering (15)-(56) in which 

! 
x

i
≤ x

i
"t#≤ xi $!i %&$'$!  

 
x

i
 and 

 xi  being the extremal 

values of the state variables 
! 
x

i
"!i #$"%&  In such a case, the

analytical procedure can not be applied, but the numerical 

procedure is well adapted. From a practical point of view, 

during the numerical procedure, we have to project the 

values of 
! 
x

i
"!i #$"%"  on the convex set describing the 

constraints in the state variables. 

! 

J "ϕ#t
f
$x

f
%+

t
&

t
f

∫ L#t $x $u%dt $ (43) 

subject to the differential constraints 

!  ɺx " f #t $x $u%& (44) 

the prescribed initial condition at the initial time 
! 
t
"

! 
x"t

#
$% x

#
& (45) 

and prescribed final conditions at the final time 
 
t

f

! 
ψ"x

f
#t

f
$% &# (46) 

here, ψ  is a ! "l +#$×#−  vector, where 
! 
"≤ l ≤ n#  there

must be at least one final condition that draws the optimal 

path to the final value. 

We consider a constraint of the state ! g"t #x #u$≥%  To

state the maximum principle, we define the Hamiltonian 

function as: 

! H " L#t $x $u%+ pT f #t $x $u%& (47) 

we also define the Lagrangian function as 

!  L"t #x #u# p#µ$% H"t #x # p#u# p$+µg"t #x #u$  (48) 

where 
 
µ ∈ R  is a row vector, whose components are called 

Lagrange multipliers. These Lagrange multipliers satisfy the 

following condition:  

! µ ≥"#$ µ #g%t #x #u&'(" (49) 

The adjoint vector satisfies the differential equation: 

!  
ɺp " −L

x
T #t $x $u$ p%$  (50) 

with boundary conditions 

! 

p"t
f
#$ϕ"t

f
%x

f
#+αψ

x
f
"t

f
%x

f
# (51) 

where 

! 

α ≥"#!$α #ψ
x

f
%t

f
#x

f
&'("  with α  is constant

vector. 

The maximum principles states that the necessary 

condition for ! u
"

, with corresponding state trajectory 
! 
x
"
#

to be an optimal control are there should exist continuous 

and piecewise continuously differentiable function 
! 
p"

piecewise continuous function 
!
µ "  and constant α  such

that the following conditions are verified: 

!  
ɺx" # f $t %x" %u"&%!x"$'&# x

'
%

satisfying the terminal constraint 

! 
ψ"t

f
#x

f
$%&

!  
ɺp " −L

x
T #t $x $u$ p%  

with the transversality condition 

! 

p"t
f
#$∇

x
ϕ"t

f
%x

f
#+αψ

x
f
"t

f
%x

f
#



! 

α ≥"#!$α #ψ
x

f
%t

f
#x

f
&'("

the Hamiltonian maximizing condition 

! H"t #x
$"t%#u$"t%# p"t%%≥ H"t #x$"t%#u$"t%# p"t%% (52) 

! 
at each!t ∈ "#$t

f
%

for all  u satisfying ! g"t #x #u$≥% and the Lagrange

multipliers ! µ"t#  are such that

! 

∂L

∂u
"
u#u

$
#%
∂H

∂u
+µ

∂g

∂u
&"

u#u
$
#'  

and the complementary condition 

! µ"t#≥$%!& µ"t#%g"t %x
' %u'#()$!hold

The transversality condition of Hamiltonian is defined 

by: 

! 
H"t

f
#x

f
# p"t

f
$# p

%
#u"t

f
$$+ϕ"t

f
#x

f
$&%'

5.2. Sufficiency condition 

Definitions   

• A function 
! f "D→ E  is concave, if for all 

! 
x
"
#!x
$
∈ D

and for all !λ ∈ "#$%&$

! 
f "λx

#
+"#−λ$x

%
$≥ λ f "x

#
$+"#−λ$ f "x

%
$&

this definition is equivalent to:  

! If !! ′′f "x#≥$!!on!!D %!then f !!is concave on!!D&

• The function  f  is quasiconcave if

! 
f "x

#
$≤ f "x

%
$⇒ f "λx

#
+"#−λ$x

%
$≥ f "x

#
$

Theorem 5.1 [5] Let ! "t #x
$ #u$ # p#µ #α%  satisfy the necessary

conditions in (52) . If ! H"t #x"t$#u"t$# p"t$$  is concave in

! "x #u$  at each 
! 
t ∈ "#$t

f
% , ϕ  is concave in 

! 
x " g

quasiconcave in ! "x #u$#  ψ  is concave in 
! 
x "  then 

! "x
# $u#%  is optimal.

5.3. Application 

! "

t
f

∫ dt → min# (53) 

subject to the differential constraints 

!  
ɺx
"
#Vcosθ  (54) 

!  
ɺx
"
#Vsinθ +w$ (55) 

The prescribed boundary conditions: 

! 
t
"
#"$!x

%"
#"$!x

&"
#"$  (56) 

! 
x
" f
#"$!x

% f
#&'

The constraint of the state are: 
! 
x

i
≤ x

i
"t#≤ xi $!i %&$'

with 
! 
x

i
"#$  ! xi "#$

This constraint is equivalent to: 

! 
x
"
#t$−%≥%&  

! 
x
"
#t$−%≥%&  

! 
−x

"
#t$+%≥&'  

! 
−x

"
#t$+"≥%&

The Hamiltonian is given by: 

! 
H " p

#
$Vcosθ %+ p

&
$Vsinθ +w%−#' (57) 

The Lagrangian is given by: 

! 
L " p

#
$Vcosθ %+ p

&
$Vsinθ +w%−#+µ

##
$x
#
$t%−'%

! 
+µ

"#
$x
#
$t%−&%+µ

#"
$−x

"
$t%+#%+µ

##
$−x

#
$t%+#%

where 
!
µ
""
#!µ
"$
#!µ
$"
#!µ
$$

 are Lagrange mutlipliers.

!  
ɺp
"
# −H

x"
#$% (58) 

!  
ɺp
"
# −H

x"
#$% (59) 

! 
"# L

θ
# −p

$
Vsinθ + p

%
Vcosθ & (60) 

We show in the following proof that the solution ! "x #θ $

is an optimal control 

Proof We have: 

! 

H
θθ
"

V
#

V
#
−w

#
$%& (61) 

Then,  H  is concave in ! "x #θ $%

g  is quasiconcave: 

! 
x

i
"t#−$≥$%!!i &'%(  

! 
λx

i"
#t$+#"−λ$x

i%
#t$−&≥ λx

i"
#t$
! 
+"#−λ$x

i#
"t$% x

i#
"t$

! 
−x

i
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! 
−λx
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i%
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#t$

! 
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"t$+%& x

i#
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ψ is quasiconcave:
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! 
x
" f
−"#$

! 
λx

" f "
#t$+#"−λ$x

" f %
#t$−"≥ λx

" f "
#t$

! 
+"#−λ$x

# f #
"t$−#% x

# f #
"t$−#

! 
x
"

f −#$#  

! 
λx

" f #
$t%+$#−λ%x

" f "
$t%−&≥ λx

" f #
$t%

! 
+"#−λ$x

% f #
"t$−&' x

% f #
"t$

then ψ  is quasiconcave. 

Consequently, ! "x
# $θ #%  is optimal.

In the constrained case, the numerical experiments (

! 
x

i
"#$!xi "% ), are summarized below:  

Fig. 7. State and control for a speed of aircraft V=300 and of wind 

w=40 

Fig. 8. State and control for a speed of aircraft V=400 and of wind 

w=60 

Fig 9. State and control for a speed of aircraft V=600 and of wind 

w=100 

Fig. 10. State and control for a speed of aircraft V=900 and of wind 

w=170 

Table 3. Numerical solution 

 V

.(km/h) 
 w

.km/h)

θ . Iterations Time 

(seconds) 

300 40 0.1980 -0.1980 6 0.15 

350 50 0.1680 -0.1433 6 0.12 

400 60 0.1440 -0.1506 6 0.14 

450 70 0.1260 -0.1562 6 0.15 

500 80 0.1140 -0.1607 6 0.14 

600 100 0.0960 -0.1674 6 0.15 

700 120 0.0840 -0.1723 6 0.15 

800 140 0.0763 -0.1759 6 0.15 

900 170 0.0660 -0.1900 6 0.15 

Analogously will the case without constraints, we can 

note that:   

• the fast convergence,

• and a very short time of computation.

Then, the numerical procedure is well, adapted to an 

air-line regulation of aircraft flight.  

!

6. Conclusion

In this paper, we have solved a problem of optimal control in 

free final time using Pontryaguin’s maximum principle, and 

for the numerical solution, we used the shooting indirect 

method to find the transversality conditions in both cases 

where the state is submitted or not to constraints. We applied 

this procedure to a navigation problem, where the solution 

are computed by a numerical way and by an analytical 

method in the unconstrained case. In this last case, the 

comparison between the results obtained by the analytical 

and the numerical methods shows that the solution are 

similar. We concluded that, in the numerical procedure, the 

convergence is fast and the computational time are small for 

both cases where the state is subject or not to constraint. 

This is an Open Access article distributed under the terms of the 

Creative Commons Attribution Licence  

______________________________ 
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