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Judgment Aggregation in

Dynamic Logic of Propositional Assignments

Arianna Novaro∗1, Umberto Grandi†1, and Andreas Herzig‡2

1IRIT, University of Toulouse
2IRIT, CNRS, University of Toulouse

Abstract

Judgment aggregation models a group of agents having to collectively decide over a number

of logically interconnected issues starting from their individual opinions. In recent years, a

growing literature has focused on the design of logical systems for social choice theory, and for

judgment aggregation in particular, making use of logical languages designed ad hoc for this

purpose. In this paper we deploy the existing formalism of Dynamic Logic of Propositional

Assignments (DL-PA), an instance of Propositional Dynamic Logic where atomic programs

affect propositional valuations. We show that DL-PA is a well-suited formalism for modeling

the aggregation of binary judgments from multiple agents, by providing logical equivalences

in DL-PA for some of the best known aggregation procedures, desirable axioms coming from

the literature on judgment aggregation, and properties for the safety of the agenda problem.

Keywords: Dynamic Logic; Modal Logic; Social Choice Theory; Computational Social Choice;

Automated Reasoning

1 Introduction

Social choice theory gathers mathematical models for the study of collective decision making,

such as voting and elections, or the allocation of resources among a group of agents (Arrow

et al., 2002). Judgment aggregation is one such model where the individual opinions expressed

by the agents over a set of correlated issues are aggregated into a collective choice by means

of an aggregation rule. The classical example that initiated this research field is known in the

literature as the discursive dilemma (List and Pettit, 2002): three agents have to decide over

three issues that are logically correlated, and though all agents express consistent views, issue-

wise majority voting can lead to inconsistent outcomes (cf. Example 1). The study of the

aggregation of binary judgments can be traced back to work by legal scholars (Kornhauser and

Sager, 1993) and is now an established framework in artificial intelligence to handle complex

collective decisions (Endriss, 2016; Grossi and Pigozzi, 2014).

The evident link between judgment aggregation and (propositional) logic, together with
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the modularity of many judgment aggregation results looking for incompatible combinations of

axiomatic properties, inspired researchers to investigate logical formalizations of this framework.

Notable examples include the work of Pauly (2007), who formulated judgment aggregation in

a minimal logical language to refer to the outcomes of aggregation rules, and of Ågotnes et al.

(2011), who designed a Judgment Aggregation Logic with a Hilbert-style axiomatization, later

expanded by a natural deduction system proposed by Perkov (2016). Similar formalizations had

already been proposed for social choice functions — the main model in social choice theory, where

a set of individual preferences represented by linear orders over a set of alternatives has to be

aggregated into a collective preference. To give some examples, Arrow’s theorem, the cornerstone

result of social choice theory, has been expressed in higher-order logics (Wiedijk, 2007; Nipkow,

2009), first-order logic (Grandi and Endriss, 2013) and modal logic (Ciná and Endriss, 2015),

while a modal logic for strategic preference aggregation was proposed by Troquard et al. (2011).

The final aim of formalizing aggregation models in a suitable logical language is the formal

verification of properties and theoretical results already obtained in the literature and, ulti-

mately, the automated discovery of new theorems. This can be viewed as a sort of ‘Hilbert

program’ where concepts and results that were previously established in an informal language

are recast in formal logic. This approach has recently been proven very successful in preference

aggregation and voting, thanks to the combination of mathematical lemmas and automated rea-

soning techniques. In preference aggregation, the seminal work of Tang and Lin (2009) obtained

a semi-automated proof of Arrow’s theorem by combining two inductive lemmas with SAT-

solving. Geist and Endriss (2011) later brought this approach to the level of theorem discovery

in the field of ranking sets of objects, automatically testing all combinations of 20 axiomatic

properties via SAT-solving, which combined with a general inductive lemma gave rise to 84

impossibility theorems (among which many non-trivial ones). In recent years, a number of open

problems in classical social choice theory has then been tackled and solved (Brandl et al., 2016;

Brandt and Geist, 2016; Brandt et al., 2017) using a variety of techniques in automated rea-

soning from SAT-solvers, satisfiability modulo theory (SMT-solvers), and minimal unsatisfiable

subset extraction (MUS).

Despite its success, the use of automated reasoning techniques in social choice theory of-

ten requires proving hard mathematical lemmas, thus confining its use to specialists. A more

friendly and flexible tool is of need, with human-readable formulas that can be easier to under-

stand and manipulate in search for new results and new applications. However, each high-level

formalization of judgment aggregation that has been proposed is based on a new logical lan-

guage, making the use of automated reasoning techniques less immediate. In this paper we

aim at attaining both goals by employing a high-level logical language that is also amenable to

automated reasoning through the use of a dedicated prover, or possibly through a translation

into propositional logic.

For this reason, the logical formalism of our choice is Dynamic Logic of Propositional Assign-

ments or DL-PA (van Eijck, 2000; Balbiani et al., 2013), which is an instance of Propositional

Dynamic Logic (Pratt, 1976; Fischer and Ladner, 1979) where atomic programs assign truth

values to propositional variables. An existing literature in the fields of knowledge representation

and multi-agent systems has proven DL-PA to be a ‘unifying language’ to express a variety of
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frameworks, from belief change operations (Herzig, 2014) and abstract argumentation (Doutre

et al., 2014), to interaction in normative systems (Herzig et al., 2011) and social simulations

(Gaudou et al., 2011). The present paper aims to add another important setting from the area

of computational social choice to the previous list of successful results: i.e., judgment aggrega-

tion. Crucially, DL-PA is grounded on propositional logic, meaning that there exists a translation

for every DL-PA formula into a propositional one (cf. Section 2.4), easing the application of au-

tomated reasoning techniques.

In this paper we translate three classical computational problems in judgment aggregation

as the verification of DL-PA specifications, showing the flexibility of the language in a variety of

situations. We begin by translating a wide range of aggregation rules proposed in the literature

on judgment aggregation as DL-PA programs, guaranteeing that the size of each program remains

polynomial in the number of agents and issues. While this translation is straightforward for

most well-known rules, we show that non-trivial rules based on minimization also correspond

to a relatively simple DL-PA formula. Aggregation rules are usually justified in reason of the

axiomatic properties they possess, and the properties themselves often serve to prove limitative

results on the boundaries of aggregation — the notorious impossibility theorems. We thus

translate as DL-PA formulas the most common aggregation axioms and we interpret them on

the DL-PA translation of rules previously obtained. Finally, we focus on the problem of ensuring

a safe aggregation process, i.e., identifying constraints whereby aggregating individual judgments

yields a consistent result, obtaining DL-PA formulas whose satisfaction corresponds to various

levels of safety.

The paper is organized as follows. We start in Section 2 by providing the basic definitions

of judgment aggregation and DL-PA, and we set the stage for a translation of the former into

the latter. In Section 3 we propose DL-PA programs to compute judgment aggregation pro-

cedures. Section 4 provides translations for the axiomatic properties of aggregation functions,

and Section 5 focuses on formulas characterizing safe aggregation. In Section 6 we analyze and

compare our results with the literature and consider the case for automated reasoning. Section 7

concludes and points to a number of directions for future work.

2 From Judgment Aggregation to DL-PA

In this section we introduce the notation and formal background of both judgment aggregation

and star-free dynamic logic of propositional assignments. We present the translation of DL-PA

into propositional logic, given its importance for using automated reasoning tools. Further-

more, we provide our first contribution by showing how to translate any instance of a judgment

aggregation problem into DL-PA.

2.1 Binary Aggregation with Integrity Constraints

In judgment aggregation agents give acceptance/rejection opinions over logically connected issues

to get a collective choice. There are two main frameworks that can be considered: the classic

formula-based model (List and Pettit, 2002), in which individuals vote directly on complex logical

formulas, and binary aggregation with integrity constraints (Dokow and Holzman, 2009; Grandi
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and Endriss, 2011) where agents have binary opinions on atomic issues linked by an integrity

constraint. The two formalisms are equivalent, in the sense that we can translate a problem

from one setting into the other and vice versa (Endriss et al., 2016), and we choose the latter

for ease of presentation.

Let I = {1, . . . ,m} be a finite non-empty set of issues, on which the agents in the finite

non-empty set N = {1, . . . , n}, for odd n (as we shall see, this is just a technical assumption),

express a binary opinion. Individual opinions form a boolean combinatorial domain D = {0, 1}m,

where 1 denotes acceptance and 0 rejection. A simple propositional language can be defined

from the set of propositional symbols {p1, . . . , pm}, with one atom per issue in I. Then, integrity

constraints are formulas of this language that we denote by IC. They express the logical inter-

dependencies among the issues, where IC = ⊤ if there is none. Consider now the following

classical example of aggregation, known in the literature as the discursive dilemma (List, 2012):

Example 1. Three judges have to decide whether (1) a defendant is liable for breaching a con-

tract, depending on whether (2) the contract forbade a particular action and (3) the defendant did

the action anyway. Let thus IC = p1 ↔ (p2∧p3) be the constraint expressing the aforementioned

law on contracts, and consider the profile below:

1 2 3

Judge 1 1 1 1

Judge 2 0 0 1

Judge 3 0 1 0

Majority 0 1 1

Observe that while each of the judges respects the constraint, the majority outcome does not.

A ballot B = (b1 . . . bm) ∈ D is a particular choice of zeroes and ones for the issues. For

example, the second judge’s ballot in Example 1 is (001). We interchangeably see a ballot B

as an assignment of truth values to the propositional variables in {p1, . . . , pm}. The Hamming

distance measures in our setting how much two ballots disagree on the issues, and is defined

as H(B,B∗) := |{j ∈ I | bj 6= b∗j}|. For example, if B1 = (111) and B2 = (001), we have

H(B1, B2) = 2, since they differ on the first two issues.

The set of all ballots satisfying IC, written Mod(IC) = {B | B |= IC}, is called the models of

IC. For instance, Mod(IC) = {(111), (001), (010)} for the IC presented in Example 1. We denote

by Bi the individual ballot of agent i and we assume all agents to be rational, i.e., Bi ∈ Mod(IC)

for all i ∈ N . A profile B = (B1, . . . , Bn) collects all the individual ballots of the agents, such

that bij indicates the j-th element of ballot Bi in B. The set NB

j:1 = {i ∈ N | bij = 1} is the

coalition of supporters of issue j in B. An aggregation procedure, which we also call aggregation

rule or aggregator, is a function F mapping a rational profile to a (possibly irrational) non-empty

set of ballots. The following is the formal definition:

Definition 1. Given a set of agents N , a set of issues I and an integrity constraint IC, an

aggregation procedure is a function F : Mod(IC)N → (2D \ ∅), for 2D the powerset of D.
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A rule is called resolute if its outcome is a singleton for every profile, and irresolute otherwise.

We denote by F (B)j the outcome of a resolute aggregation rule on issue j. An example of

aggregator is the majority rule used in Example 1.

2.2 Dynamic Logic of Propositional Assignments

Dynamic Logic of Propositional Assignments has both formulas and programs, and atomic pro-

grams modify the truth values of propositional variables. Our choice of logical language to

describe problems in judgment aggregation is that of star-free DL-PA, meaning that we do not

make use of unbounded iteration.1

The language of star-free DL-PA is thus given by the following Backus-Naur grammar:

ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

π ::= +p | −p | π ;π | π ∪ π | ϕ?

where p ranges over P = {p, q, . . . }, a countable set of propositional variables.

Atomic formulas consist of variables and constants ⊤ and ⊥. Complex formulas are built

via negation ¬, disjunction ∨, and a diamond modality for each program 〈π〉. Other boolean

connectives (e.g., conjunction ∧, implication →, biconditional ↔, exclusive disjunction ⊕) and

the dual operator [π]ϕ are defined in the usual way. Atomic programs +p and −p assign value

true or false to variable p, respectively. Sequential composition π ;π′ executes first π and then

π′, nondeterministic union π∪π′ nondeterministically chooses to execute either π or π′, and test

ϕ? checks that ϕ holds (and fails otherwise).

A valuation v is a subset of P that specifies the truth value of every propositional variable,

so that V = 2P = {v1, v2, . . . } is the set of all valuations. When p ∈ v, we say that p is true

in v (and we say that p is false in v otherwise). As illustrated in Table 1, DL-PA programs are

interpreted through a unique relation between valuations.2

‖p‖ = {v ∈ V | p ∈ v}
‖⊤‖ = 2P

‖⊥‖ = ∅
‖¬ϕ‖ = 2P\ ‖ϕ‖

‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖
‖〈π〉ϕ‖ = {v ∈ V | there is v1 s.t. (v, v1) ∈‖π‖ and v1 ∈‖ϕ‖}
‖+p‖ = {(v1, v2) | v2 = v1 ∪ {p}}
‖−p‖ = {(v1, v2) | v2 = v1 \ {p}}

‖π ;π′ ‖ = ‖π‖ ◦ ‖π′ ‖
‖π ∪ π′ ‖ = ‖π‖ ∪ ‖π′ ‖
‖ϕ?‖ = {(v, v) | v ∈‖ϕ‖}

Table 1: Interpretation of DL-PA connectives and programs

1This logic is obtained from full DL-PA via elimination of the Kleene star, as shown by Balbiani et al. (2013).
2We can construct a Kripke model MDL-PA for PDL by letting the valuations be the states, by including

{+p | p ∈ P} ∪ {−p | p ∈ P} in the set of atomic programs, and by considering the identity function for the
valuation (Balbiani et al., 2013).
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As a notational convention, formulas will start by an uppercase letter, while programs and

counters will start by a lowercase letter. The standard programming language primitives can

be expressed in PDL, and we thus have skip := ⊤?, if ϕ then π1 else π2 := (ϕ? ;π1) ∪ (¬ϕ? ;π2),

p← [ q := if q then+p else−p and if ϕ do π := if ϕ then π else skip. We let the conjunction of an

empty set of formulas be ⊤, and the sequential and nondeterministic composition of an empty

set of programs be skip. Namely,
∧

ϕ∈∅ ϕ := ⊤, and
⋃

π∈∅ π := skip, and ;π∈∅ π := skip.

2.3 Basic DL-PA Programs and Formulas

In this section we present useful DL-PA programs and formulas, for the most part already

introduced by Balbiani et al. (2013).

In DL-PA we can repeatedly execute a program n times or up to n times, as follows:

πn := π ;πn−1

π≤n := (skip ∪ π) ;π≤n−1

with the convention that both programs are equal to skip in case n = 0.

Any natural number s ∈ N0 can be written in DL-PA via its binary expression, thanks to a

conjunction of t = ⌊log s⌋+ 1 variables. If x is the binary expression of s, we use a conjunction

of literals qi and ¬qi, with i ∈ {0, . . . , ⌊log s⌋}, such that a non-negated variable means that the

corresponding binary digit in x is a 1, while a negated variable indicates a 0. For instance, if

s = 14, we have that x = 1110 and the corresponding formula in DL-PA is 14 := q3∧q2∧q1∧¬q0.

The following two programs increment (up to 2t−1) and set to zero, i.e., assign truth value

false to all the variables in P , a given t-bit counter:

incr(xt) := ¬
(

∧

0≤i≤t−1

qxi
)

? ;
⋃

0≤k≤t−1

(

(¬qxk ∧
∧

0≤i≤k−1

qxi )? ;+q
x
k ; ;

0≤i≤k−1

−qxi
)

zero(P ) := ;
p∈P

−p

where xt := {qxi | 0 ≤ i < t} is a set of variables. Observe that in program zero(P ) the order

in which elements are set to false does not matter, as it leads to identical interpretations.

We can check whether two numbers are equal, whether one is greater than the other, or

whether one is greater than or equal to the other, via the following DL-PA formulas:

xt = yt :=
∧

0≤k<t

qxk ↔ q
y
k

xt > yt :=
∨

0≤k<t

((

∧

k<i<t

(qxi ↔ q
y
i )
)

∧ qxk ∧ ¬q
y
k

)

xt ≥ yt := xt > yt ∨ xt = yt

where the general idea is to compare the digits at the same position in the binary expressions

of the two numbers.3

3In some cases we need to compare numbers that can be expressed with different minimal amounts of binary
digits. In programs where multiple counters are used, we take the maximal value taken by a counter as the upper

6



We may need to reverse the truth value of some variables in a set P . The first program

below flips the truth value of a single nondeterministically chosen variable in P . The second

nondeterministically resets the truth value of all variables in P to some new value: as a result,

either their truth value has been flipped or not.

flip1(P ) :=
⋃

p∈P

(p← [ ¬p)

flip≥0(P ) := ;
p∈P

(+p ∪ −p)

Finally, the next two formulas hold when different types of minimization are achieved. The

first is true if and only if it is not possible to make ϕ true by flipping the truth values of the

variables in a strict subset of the non-empty set P . The second holds if and only if the Hamming

distance to a state where ϕ holds is at least s, where the variables outside P are kept constant.

D(ϕ, P ) := ¬〈
⋃

p∈P

flip≥0(P \ {p})〉ϕ

H(ϕ, P,≥s) :=

{

⊤ if s = 0

¬〈flip1(P )≤s−1〉ϕ if s > 0

Observe that D(ϕ, P ) does not imply that ϕ will hold if we flip the truth value of all the

variables in P . In our setting this definition suffices, but such an alternative formulation has

been given as well by Herzig (2014).

2.4 From DL-PA to Propositional Logic

A translation from DL-PA formulas to propositional formulas was proposed by Balbiani et al.

(2013). We here give it for the star-free fragment of DL-PA. It is presented in terms of reduction

axioms: equivalences that, first, simplify programs into atomic programs, second, ‘push’ atomic

programs across the boolean connectives inside formulas until they meet an atomic formula,

and, third, eliminate atomic programs.

[ϕ?]ψ ↔ ϕ→ ψ

[π1 ;π2]ϕ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ

[π]¬ϕ↔ ¬[π]ϕ

[π](ϕ1 ∧ ϕ2)↔ [π]ϕ1 ∧ [π]ϕ2

bound for all other counters in that program. Let t be the maximal number of variables needed to express the
maximal value a counter can take in a program: if another number is expressible by using only k < t variables, it
will nonetheless be expressed by t variables with ¬qi for all i such that k < i ≤ t. We then write x instead of x

t.
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[+p]q ↔







⊤ if p = q

q otherwise

[−p]q ↔







⊥ if p = q

q otherwise

For example, the DL-PA formula [(+p∪−q) ;(p∧r?)]r∨q is reduced to the propositional formula

(r → (r ∨ q)) ∧ ((p ∧ r) → r). Note that when translating formulas such as flip≥0(P ) we are

going to visit all valuations with all possible combinations for the values of the variables in P ,

which gives an exponential explosion in the length of the translation.

2.5 Aggregation Problems Translated into DL-PA

We here show how to translate profiles and aggregation rules from judgment aggregation into

DL-PA. The former are turned into a valuation, while the latter become programs. As a first

step, let B := {pij | i, j ∈ N} be the subset of P whose variables encode the opinion of agent i on

issue j. Analogously, O := {pj | j ∈ N} is the subset of P whose variables refer to the possible

output for any issue j.

From these two infinite sets, we derive two finite subsets for specific n agents and m issues.

Namely, for N = {1, . . . , n} and I = {1, . . . ,m}, we let B
n,m := {pij | i ∈ N and j ∈ I} be

the set of propositional variables referring to the decision of the agents in N on the issues in I,

and we let the variables in O
m := {pj | j ∈ I} refer to the collective decision on the issues in I.

Finally, we define an additional set U := {qi | i ∈ N} of variables of P that are used to encode

finitely many counters in our programs. We suppose B, O and U to be disjoint.

The following definition identifies the valuations that correspond to a profile in judgment

aggregation.

Definition 2. Valuation vB translates profile B = (B1, . . . , Bn) on m issues, in case:

(i) vB ⊆ B
n,m, and

(ii) pij ∈ vB if and only if bij = 1.

The first condition ensures that only variables corresponding to the decision of the agents on

the issues could possibly be true in vB. This means, in particular, that counters are initially set to

zero. According to the second condition, a variable in vB is true if and only if the corresponding

entry in profile B has value 1. For example, if we have profile B = ((01), (00), (10)) for 3 agents

and 2 issues, the set B3,2 = {p11, p12, p21, p22, p31, p32} corresponds to the entries in the profile, the

set O2 = {p1, p2} handles the outcome of aggregation rules and valuation vB = {p12, p31} ⊆ B
3,2

encodes the profile.

Let V f
vB

= {v′ ∩ O
m | (vB, v

′) ∈‖ f(Bn,m) ‖} be the set of valuations v′ restricted to O
m

reachable from vB through f(Bn,m). We now translate aggregation rules into DL-PA programs.

Definition 3. Program f(Bn,m) translates aggregation rule F , if for all profiles B and valuations

vB translating B according to Definition 2, it is the case that V f
vB

= F (B).
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In Definition 3 we thus compare the truth values of the outcome variables in O
m in the

valuations reachable after the execution of program f(Bn,m) with the outcome ballots of rule F

(recall that we interchangeably see a ballot as a valuation over {p1, . . . , pm}). If the program

translates the rule we should get the same set on both sides — a singleton for resolute rules.

This definition will be used in the proofs of Section 3 to ensure that our translations are correct.

Before proceeding, we stress an important point. Since aggregation rules are defined over a

specific number of issues, number of agents and integrity constraint, the programs we provide

as their DL-PA translation are to be intended as general ‘program schemas’: a set of issues I,

set of agents N and constraint IC need to be provided to completely spell them out.

The integrity constraint is written as a formula IC over variables in O
m. To check whether a

particular choice of truth values over Bn,m corresponds to a profile, i.e., all the individual ballots

satisfy the constraint, the following formula must hold:

RationalIC(B
n,m) :=

∧

i∈N

〈 ;
j∈I

pj ←[ pij〉IC.

That is, we check whether by copying into the outcome variables the truth values of the variables

for each individual ballot, the formula for the integrity constraint is true.

The next formula is true if and only if we are in a valuation that possibly corresponds to the

encoding of a profile, meaning that the initial conditions of Definition 2 hold:

ProfIC(B
n,m,Om) := (

∧

pj∈Om

¬pj) ∧ RationalIC(B
n,m).

Program profIC(B
n,m,Om) := ProfIC(B

n,m,Om)? tests that the properties of a profile hold

at the current valuation. Observe that in the codomain of ‖ profIC(B
n,m,Om) ‖ the outcome

variables are false, but this is not enough to conclude that condition (i) of Definition 2 holds.

Nevertheless, all programs translating aggregation rules will only need to inspect variables in

B
n,m and (possibly) change the truth values of variables in O

m, and they will set to zero all

counters as the first step. Hence, the valuation reached after the execution of profIC(B
n,m,Om)

will be considered as encoding a profile as well.

With a slight abuse of notation, in the rest of this paper we drop the superscripts from B
n,m

and O
m to simplify the reading of the programs. It will be clear from context when we are

referring to the infinite sets B and O instead.

3 Aggregation Rules

Aggregation rules are the basic bricks of judgment aggregation, since they provide different ways

to produce collective choices from the individual judgments of the agents on the issues. In this

section we translate as DL-PA programs some of the most studied examples of aggregation proce-

dures. We prove the correctness of our translation for a resolute and an irresolute rule, omitting

the proofs whenever they can be obtained as a straightforward adaptation of the presented ones.
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3.1 Expressibility of Aggregation Rules

The aptness of DL-PA to model judgment aggregation can be assessed by its capability to express

judgment aggregation procedures. Our first general result is thus a positive one: we prove below

that any aggregation rule, as introduced in Definition 1, can be expressed as a DL-PA program.

Theorem 1. For every N , I and IC, all aggregation rules F : Mod(IC)N → 2D\∅ are expressible

as DL-PA programs.

Proof. We start by examining the case of a resolute aggregator F . Consider the DL-PA program

consisting of a sequential composition of sub-programs of the form if ϕB do πF (B) for each profile

B, for ϕB := (
∧

j∈I

∧

i∈N
B

j:1
pij) ∧ (

∧

j∈I

∧

i∈(N\NB

j:1)
¬pij) and πF (B) := ;{j∈I|F (B)j=1}+pj ;

;{j∈I|F (B)j=0}−pj . Namely, ϕB completely identifies profile B and πF (B) modifies the outcome

variables according to the result of F on profile B.

If F is irresolute it is sufficient to consider a sequential composition of sub-programs of

the form if ϕB do
⋃

B∈F (B) πB, where πB is defined as πB := ;{j∈I|bj=1}+pj ; ;{j∈I|bj=0}−pj ,

generating a non-deterministic program whose output consists of all outcomes of F . These two

types of programs provide a straightforward translation of resolute and irresolute rules.

Theorem 1 shows that DL-PA is fully expressive when it comes to translating judgment

aggregation rules. Nevertheless, observe that the formulas used in the proof are all of size

exponential in the number of individuals and issues. More precisely, since all profiles explicitly

occur in the specification of the programs, the size is in the order of 2|I|·|N |. Therefore, in

the remainder of this section we present compact programs for a selection of well-known rules

proposed in the literature on judgment aggregation (cf. Appendix A for an example illustrating

the compactness of our translations). The ideas appearing in the construction of these programs

suggest how to translate other rules that are not explicitly presented here.

3.2 Simple Aggregation Rules

We begin our study of compact representations of judgment aggregation rules with a section on

what we call simple rules. By this term we mean resolute rules relatively easy to explain and

understand, which regularly occur in real-world scenarios.

3.2.1 Dictatorship of Agent i

While in general the dictatorial rule is an unattractive procedure to use, it gives us perhaps

the simplest example of aggregator. The outcome of the dictatorship of some fixed agent

i ∈ N for all profiles B is her individual ballot. Namely, for all j ∈ I Dictatorshipi(B)j =

1 if and only if bij = 1. In the following proposition we find the translation of Dictatorshipi as

a DL-PA program. The given proof serves as an example for all propositions on resolute rules.

Proposition 1. Let I and N be given, and let dictatorshipi(B) := ;j∈I(pj ← [ pij). Then,

program dictatorshipi translates rule Dictatorshipi.

Proof. To shorten notation, we call F the aggregation rule Dictatorshipi, and f the program

dictatorshipi. By Definition 3 we need to show that for all profiles B, if vB is the valuation
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translating B (cf. Definition 2), and (vB, v
′) ∈‖ f(B) ‖, then for all j ∈ I we have F (B)j =

1 if and only if pj ∈ v
′.

For the left-to-right direction, consider an arbitrary j ∈ I such that F (B)j = 1: we have to

show that pj ∈ v′. From the definition of F , we have that F (B)j = 1 if and only if bij = 1,

where agent i is the dictator. Let vB be the valuation translating B. By construction, we have

that pij ∈ vB and pj 6∈ vB.

Let v′ be the outcome valuation, i.e., such that (vB, v
′) ∈‖ f(B)‖. There is exactly one such

valuation. By the definition of F and by applying program equivalences, we get that there are

valuations v1, . . . , vm+1 such that v1 = vB, vm+1 = v′, and

(v1, v2) ∈‖(pi1? ;+p1) ∪ (¬pi1? ;−p1)‖, . . . , (vm, vm+1) ∈‖(pim? ;+pm) ∪ (¬pim? ;−pm)‖ .

Let a ∈ {1, . . . ,m} and b be two indices such that b = a + 1 and (va, vb) ∈‖ (pij? ;+pj) ∪

(¬pij? ;−pj) ‖ for the arbitrary issue j ∈ I we are considering. Let us call A = {(v, v∗) | pij ∈

v and v∗ = v ∪ {pj}} and B = {(v, v∗) | ¬pij ∈ v and v∗ = v \ {pj}}. By the interpretation of

DL-PA programs given in Table 1 we get that (va, vb) ∈ A ∪B. We thus have to check whether

(va, vb) ∈ A or (va, vb) ∈ B, since A and B are disjoint sets. In order to do so, we have to inspect

whether pij ∈ va or ¬pij ∈ va.

We now show that pij ∈ va, which will allow us to conclude that pj ∈ v′. In case a = 1,

we have that va = vB and thus pij ∈ vB by assumption. Otherwise, note that v1, . . . , va only

(possibly) differ in the truth value assigned to p1, . . . , pj−1, respectively. Thus, since pij ∈ vB =

v1 and the truth value of pij has not been modified in v2, . . . , va−1, we have that pij ∈ va. Hence,

(va, vb) ∈ A, and vb = va ∪ {pj}. Observe also that vb+1, . . . , vm+1 only (possibly) differ in the

truth values assigned to pj+1, . . . , pm. Therefore, we can conclude that pj ∈ vm+1 = v′.

For the right-to-left direction, we can equivalently show that if F (B)j = 0 then pj 6∈ v′. The

proof is analogous to the one presented above, with the sole exception that we have to show

that (va, vb) ∈ B in order to conclude that pj 6∈ v′.

The length of the program dictatorshipi increases only if the number of issues does, as it

considers just the truth values of the dictator’s variables while ignoring the rest.

3.2.2 Quota Rules

A quota rule specifies for each issue a certain threshold of support that has to be reached in

order for the issue to be accepted in the outcome (Dietrich and List, 2007b). The quota q can be

any integer such that 1 ≤ q ≤ |N |. In case all issues have the same quota, we speak of uniform

quota rules. If qj is the quota for issue j ∈ I and ~q = (q1, . . . , qm), we have:

Quota~q(B)j = 1 if and only if |NB

j:1| ≥ qj .

We now state a result that provides, for every choice of quotas, a DL-PA program translating

the corresponding quota rule.

Proposition 2. Let I be a set of issues, N a set of agents, and 1 ≤ q1, . . . , qm ≤ |N |. Let

supp := {q1, . . . , qlogn} and quotaj := {q′1, . . . , q
′
logn} for j ∈ I be disjoint subsets of U. The
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Quota~q rule is translated into the following DL-PA program:

quota~q(B) := ;
j∈I

zero(quotaj) ; ;
j∈I

incr(quotaj)
qj ; ;

j∈I

(

zero(supp) ;

( ;
i∈N

if pij do incr(supp)) ; if supp ≥ quotaj do + pj
)

.

The subprogram incr(quotaj)
qj sets the counter variables in the set quotaj to the value qj

and the counter variables in supp keep track of the support for the issue currently inspected.

A special instance of quota rules is the majority rule, an intuitive aggregator recurring in

many everyday examples, where for all issues the quota is fixed at n+1
2 . Recall that we assumed

the number of agents to be odd, a common assumption that permits to leave aside the question

of how to adapt the definition of majority for an even number of agents: should we accept an

issue if and only if more than half of the agents accept it individually (strict majority), or if

at least half of the agents accept it (weak majority)? Either way, if we want to keep the rule

resolute we generate an outcome biased towards acceptance or rejection in all profiles where an

issue is accepted by exactly half of the agents.

The majority rule being a quota rule, we could express it in DL-PA with the same program

schema of Proposition 2. Nonetheless, we provide below an alternative formulation making use of

the counters introduced in Section 2.2, giving us a program of length polynomial in the number

of agents.

Proposition 3. Let I be a set of issues and N a set of agents. Let pro := {q1, . . . , qlogn} and

con := {q′1, . . . , q
′
logn} be disjoint subsets of U. The majority rule Maj is translated into program:

maj(B) := ;
j∈I

(

zero(pro ∪ con) ; ;
i∈N

(if pij then incr(pro) else incr(con)) ; if pro > con do + pj
)

.

Since majority is an uniform quota rule, program maj economizes on the number of counters

for the quotas. Moreover, it is useful to define it as a separate program since it will be extensively

used in the definitions of other aggregation rules.

Note that for the nomination rule, i.e., the uniform quota rule with q = 1, an even more

compact program is simply nomination(B) := ;j∈I(if
∨

i∈N pij do + pj).

3.3 Maximization and Minimization Rules

Rules returning a ballot that appears in the input profile, such as Dictatorshipi, guarantee the

outcome to satisfy the integrity constraint, while more appealing rules such as majority may fail

to do so (as illustrated by Example 1). In this section we present two aggregation rules based on

maximization and minimization operations that aim at amending the outcomes of the majority

rule when they do not satisfy the constraint.
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3.3.1 Maximal Subagenda Rule

The maximal subagenda rule returns all ballots satisfying the integrity constraint and having

maximal set-inclusion agreement with the majority outcome (Lang and Slavkovik, 2014):

MSAIC(B) =
⊆

argmax
B|=IC

{j ∈ I | bj = Maj(B)j}.

Differently from simple rules, it is not as straightforward to translate MSAIC into DL-PA.

In fact, we have to encode a maximization operation and we thus need some further notation.

Consider the following programs:

store(P ) := ;
p∈P

p′ ←[ p

restore1(P ) :=
⋃

p∈P

(p⊕ p′? ; p←[ p′)

restore≥0(P ) := ;
p∈P

(skip ∪ p←[ p′).

The program store stores the truth value of the variables in P in some fresh variables p′, program

restore1(P ) restores the truth value of just one variable p that has been previously modified, and

program restore≥0(P ) restores the truth value of none, some, or all variables.

Inspired by analogous work in the literature on belief change for the Possible Models Ap-

proach (Herzig, 2014), we now present and prove the correctness of a program translating MSAIC.

Given that we are dealing with an irresolute rule, we might need to handle multiple outcomes

for the same profile, whence the structure of the proof differs from that of Proposition 1. We

present it here as an example for all irresolute aggregation rules.

Proposition 4. Let I be a set of issues, N a set of agents and IC a propositional formula. The

MSAIC rule is translated into the following DL-PA program:

msaIC(B) := maj(B) ; store(O) ; flip≥0(O) ; IC? ;[restore1(O) ; restore≥0(O)]¬IC?.

Proof. Consider an arbitrary profile B for a set of agents N and a set of issues I, and let

vB be the valuation translating it according to Definition 2. Given that MSAIC is an ir-

resolute rule, we will show that there exists a bijection g : MSAIC(B) → V msaIC
vB

such that

bj = 1 if and only if pj ∈ g(B) for all j ∈ I. For B ∈ MSAIC(B) define v′ = g(B) as follows:

v′ = vB on all variables in P \O, and pj ∈ v′ if and only if bj = 1 for pj ∈ O.

We begin by showing that g(B) = v′ ∈ V msaIC
vB

for all B ∈ MSAIC(B), proving that the

co-domain of g is V msaIC
vB

. More precisely, we need to show that there are valuations va, . . . , vf
such that va = vB, vf = v′, and

(va, vb) ∈‖maj(B)‖, (vb, vc) ∈‖store(O)‖, (vc, vd) ∈‖flip≥0(O)‖,

(vd, ve) ∈‖ IC?‖, (ve, vf ) ∈‖ [restore1(O) ; restore≥0(O)]¬IC?‖ .

Recall that program maj is deterministic: hence, we let vb be the unique valuation reachable

from va after its execution. Program store(O) is deterministic as well, hence let vc be the unique
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valuation reachable from vb after its execution. We now have to consider two cases: either (a)

Maj(B) |= IC, or (b) Maj(B) 6|= IC.

(a) Since B = Maj(B), we consider the execution of program flip≥0(O) such that no vari-

able gets its truth value flipped (i.e., vd = vc). By Proposition 3 we know that pj ∈

vb if and only if Maj(B)j = 1, for all j ∈ I. Hence, since by assumption Maj(B) |= IC,

we have that vc ∈‖ IC ‖. Then, take ve = vd = vf . It is now easily seen that, since the

variables in O and the fresh ones used by program store(O) have identical truth value,

program restore1(O) fails at vf , and therefore [restore1(O) ; restore≥0(O)]¬IC holds vacu-

ously in vf . Since v′ = vf = vc, and vc differs from vb only in the assignment to the fresh

variables, and pj ∈ vb if and only if Maj(B)j = 1 for all j ∈ I, and B = Maj(B), we

provided a valuation v′ ∈ V msaIC
vB

such that pj ∈ v′ if and only if bj = 1, for all j ∈ I.

(b) Since B ∈ MSAIC(B), by the definition of MSAIC we know that B |= IC and that there

is a maximal (with respect to set inclusion) subset Q of issues in Maj(B) such that bj =

Maj(B)j . Let now S = {pi ∈ O | i 6∈ Q}: we take vd to be the valuation that differs

from vc only in that the truth values of all the variables in S have been flipped. It is

immediately seen that (vc, vd) ∈‖ flip≥0(O) ‖. By our choice of valuation based on the

features of B ∈ MSAIC(B) we have that ve = vd satisfies IC. By a similar reasoning, we

can see that by taking vf = ve we get (ve, vf ) ∈‖ [restore
1(O) ; restore≥0(O)]¬IC?‖.

In both cases, we have shown that pj ∈ v′ if and only if bj = 1 for all j ∈ I.

Let now g : MSAMSA(B)→ V msaIC
vB

be the function associating to each B ∈ MSAIC(B) the

valuation v′ ∈ V msaIC
vB

constructed above. Simple but tedious arguments can be used to show

that g is a bijection and thus conclude the proof.

For a concrete example of an instance of program msaIC see Appendix A.

3.3.2 Minimal Number of Atomic Changes Rule

We have seen in Section 2.1 that the Hamming distance H(B,B′) between two ballots is the

number of issues on which they differ. The minimal number of atomic changes rule returns

the ballots satisfying the constraint that result from computing majority on a profile that is

minimally distant (in terms of the Hamming distance) from the current profile. The formal

definition is the following:

MNACIC(B) = {B | there is B
∗ such that Maj(B∗) = B,B |= IC,

and for all B′ :
∑

i∈N

H(Bi, B
∗
i ) ≤

∑

i∈N

H(Bi, B
′
i)}.

This rule is also known in the literature as Fulld, for d the Hamming distance (Miller and

Osherson, 2009). We find the translation of MNACIC into DL-PA in the next proposition.

Proposition 5. Let I be a set of m issues, N a set of n agents and IC a propositional formula.
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The MNACIC rule is translated into the following DL-PA program:

mnacIC(B) :=
⋃

0≤d≤m·n

(

H(〈profIC(B,O) ;maj(B)〉IC,B,≥d)? ; flip1(B)d
)

;

profIC(B,O) ;maj(B) ; IC?.

Program mnacIC finds the minimal number d of variables in the set B whose truth values

can be flipped such that applying program maj to this new profile leads to a valuation where

the outcome satisfies the constraint.

3.4 Preference Aggregation Rules

This section presents rules that have been adapted in judgment aggregation from the literature

on preference aggregation (Brams and Fishburn, 2002). The first is the Kemeny rule (Kemeny,

1959), which is also sometimes called the distance based rule (Endriss and Grandi, 2014) or

Prototyped (Miller and Osherson, 2009). We then present the Slater rule — called maxcard

subagenda rule by Lang and Slavkovik (2014) and Endpointd by Miller and Osherson (2009). In

both cases, d is the Hamming distance. Finally, we discuss the ranked pairs rule, which also

comes under the name of the ranked agenda rule (Lang and Slavkovik, 2014).

Similarly to the rules presented in the previous section, translations are not straightforward

since we need to encode minimization operations for the Hamming distance and comparisons

with the outcome of majority. Since the proofs of correctness of our translations would be in

line with that of Proposition 4, they are omitted.

3.4.1 Kemeny Rule

The adaptation of the Kemeny rule to judgment aggregation is a procedure that returns all

ballots that satisfy the constraint and that minimize the sum of the Hamming distance to the

individual ballots in the profile. The formal definition is as follows:

KemenyIC(B) = argmin
B|=IC

∑

i∈N

H(B,Bi).

We first introduce a program that computes the sum of the Hamming distances between the

outcome and the profile. Then, the counter dis stores this number.

sH(O,B) := zero(dis) ; ;
i∈N

;
j∈I

(

if pj ⊕ pij do incr(dis)
)

We make use of the program sH for translating the KemenyIC rule in the following proposition:

Proposition 6. Let I be a set of issues, N a set of agents and IC a propositional formula. The

KemenyIC rule is translated into the following DL-PA program:

kemenyIC(B) := flip≥0(O) ; IC? ; sH(O,B) ; store(dis) ;
(

¬〈flip≥0(O) ; IC? ; sH(O,B)〉(dis < dis′)
)

?
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Let us give an intuitive breakdown of the program kemenyIC. Subprogram flip≥0(O) is used

to reach an outcome, by nondeterministically choosing the ‘right’ one. Then, the test IC? checks

that the constraint is satisfied, the program sH(O,B) adds up the Hamming distances to the

individual ballots, and the last line of kemenyIC checks that it is not possible to find another

outcome that satisfies the constraint and that is even closer to the individual ballots.

3.4.2 Slater Rule

In case the outcome of majority does not satisfy the constraint, the Slater rule outputs those bal-

lots that do satisfy the constraint and that are minimally distant, with respect to the Hamming

distance, from the outcome of majority:

SlaterIC(B) = argmin
B|=IC

H(B,Maj(B)).

Proposition 7. Let I be a set of m issues, N a set of agents and IC a propositional formula.

The SlaterIC rule is translated into the following DL-PA program:

slaterIC(B) := maj(B) ;
⋃

0≤d≤m

(

H(IC,O,≥d)? ; flip1(O)d
)

; IC?.

The program slaterIC first computes the majority rule, and then it finds the minimal distance

d such that by reversing the truth value of d variables in the outcome we reach a valuation

where the constraint is satisfied. Observe that d = 0 if the majority outcome already satisfies

the constraint.

3.4.3 Ranked Pairs Rule

We follow the presentation of the ranked pairs rule given by Endriss and Grandi (2014). The

majority strength of issue j in profile B is defined as MSB(j) = max{|NB

j:0|, |N
B

j:1|} and issues

can be ordered according to their majority strength with ≻B
τ , where τ : I → I is a permutation

that breaks the ties in case two issues have the same majority strength.

For ballot B and partial function ℓ : I → {0, 1}, we write ℓ ⊆ B if ℓ(j) = bj for every j in

the domain of ℓ. Given profile B, integrity constraint IC and permutation τ : I → I, we define

the total function ℓBτ,IC as follows:

for j ∈ I, following order ≻B

τ do

ℓBτ,IC(j) :=

{

Maj(B)j if there exists B |= IC such that ℓBτ,IC ⊆ B

1−Maj(B)j otherwise

The ranked pairs rule returns ballots obtained by the above procedure, for a given tie-

breaking rule and integrity constraint IC:

RPIC(B) := {ℓBτ,IC | τ is a permutation on I}.

Example 2. Let N = {1, 2, 3} and I = {1, 2, 3, 4} with IC := (p1 ↔ p2)∨ (p3 ↔ p4). Consider

the profile B displayed in the following table:
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1 2 3 4

Agent 1 1 1 1 0

Agent 2 1 0 1 1

Agent 3 1 0 0 0

Majority 1 0 1 0

We have that MSB(1) = 3, MSB(2) = 2, MSB(3) = 2 and MSB(4) = 2 are the majority

strengths of the issues. Suppose that the tie-breaking function is the following: τ(1) = 4, τ(2) = 3,

τ(3) = 2 and τ(4) = 1. We thus have that 1 ≻B
τ 4 ≻B

τ 3 ≻B
τ 2 is the ordering of the issues

according to their majority strength in B and the tie-breaking function. Since ℓBτ,IC(1) = 1,

ℓBτ,IC(4) = 0, ℓBτ,IC(3) = 1 and ℓBτ,IC(2) = 1, we have RPIC(B) = (1110) for this choice of τ .

The DL-PA program we present as a translation of the RPIC rule is for the special case of no

ties in the majority strengths of the issues. The general case can be dealt with by introducing

a sub-program ordering the issues according to the tie-breaking rule.

First, we define a program that calculates the majority strength of the issues, assuming the

majority outcome has already been computed:

majSt(B) := ;
j∈I

(

zero(msj) ; if pj then
( ;
i∈N

if pij do incr(msj)
)

else
( ;
i∈N

if ¬pij do incr(msj)
))

.

The m sets defined below allow us to add and consider one issue at a time in the order of

their majority strengths:

Q1 := {pj | |MSB

j | ≥ |MSB

l | for all l ∈ I}

Qk := Qk−1 ∪ {pj | pj 6∈ Qk−1 and for all l ∈ I such that pl 6∈ Qk−1, |MSB

j | ≥ |MSB

l |}.

Proposition 8. Let I be a set of m issues, N a set of n agents and IC a propositional formula.

The RPIC rule is translated into the following DL-PA program:

rpIC(B) := maj(B) ; if ¬IC do
(

majSt(B) ; ;
1≤i≤m

(

⋃

j∈I

(
∧

l∈I

msj ≥ msl?;

if ¬〈flip≥0(O \Qi)〉IC do pj ←[ ¬pj ; zero(msj))
))

.

The program rpIC computes the majority, and if the constraint is not satisfied it calculates

the majority strength of the issues. Then, this procedure is applied m times: first, the issue

j with highest majority strength at that stage is selected. The program checks whether there

is a way to modify the outcome (without changing the truth value of pj and that of the issues

already inspected at some previous step) to satisfy the constraint. If not, the truth value of pj
is flipped — and the value of its majority strength is set to zero. At the following step, the

nondeterministic choice operator selects the next issue in the ranking; this is possible because

the issue has now highest majority strength, since the one of j has been set to zero.
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3.5 Summary and Discussion

We provided a DL-PA translation for many known aggregation rules, starting from simple ex-

amples such as dictatorship and quota rules, and then moving to more complex ones based on

minimization, maximization and on preference aggregation rules. Observe that the latter type

of rules can be easily adapted to those selecting the most representative voter in a given profile,

according to different principles (Endriss and Grandi, 2014). Programs in DL-PA translating

most representative voter rules are derivable from those of Kemeny, Slater and ranked pairs by

substituting every occurrence of the formula IC by the formula Repr :=
∨

i∈N

(
∧

j∈I pij ↔ pj
)

.

Beyond the theoretical interest of exploring the power of DL-PA, the intended application for

such a translation is to the winner determination problem for judgment aggregation rules (see,

e.g., Endriss et al., 2012; Lang and Slavkovik, 2014). By model checking DL-PA specifications

we can compute the outcome of a rule on a given profile. For a resolute aggregation rule F , the

problem is usually formulated as checking for each issue j whether F (B)j = 1 for profile B, and

this translates in DL-PA into simply checking whether vB |= [f(B)]pj holds.

4 Formalization of Axiomatic Properties

Aggregation rules are usually studied and characterized according to which desirable properties,

or axioms, they satisfy (Dietrich and List, 2007b; Grandi and Endriss, 2011; List, 2012; May,

1952). Following a similar distinction in preference aggregation between intra-profile and inter-

profile conditions (Rubinstein, 1984), we separate single-profile and multi-profile axioms. While

the former relate a profile with the outcome of a rule applied on that profile, the latter link

two profiles with the outcomes of the same aggregation rule applied on them. The former are

translated into propositional logic, while the latter are translated into DL-PA.

4.1 Single-profile Axioms

For the four single-profile axioms that we present, the full DL-PA machinery is not necessary

since we can provide an easy and direct translation into propositional logic. We first introduce

the definition in judgment aggregation, and then proceed to translate them. In Theorem 2 we

will use the dynamic component of DL-PA to prove the correctness of our translations.

A rule F is unanimous if in case all agents agree on some issue j, the outcome of F for issue

j agrees with them. Formally:

U : For all B, for all j ∈ I and for x ∈ {0, 1}, if for all i ∈ N bij = x then F (B)j = x.

A rule is neutral with respect to the issues if, when two issues are treated in the same way in

the input, they are treated in the same way in the output.

NI : For all B and any two j, k ∈ I, if for all i ∈ N bij = bik then F (B)j = F (B)k.

A rule is neutral with respect to the domain if, whenever two issues are treated in an opposite

way in the input, their output is opposite.

ND : For all B and any j, k ∈ I, if for all i ∈ N bij = 1− bik then F (B)j = 1− F (B)k.
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A rule is neutral-monotonic4 if the acceptance of an issue j in a given profile implies the

acceptance of any other issue k which is accepted by a strict superset of individuals.

MN : For all B and any j, k ∈ I, if for all i ∈ N bij = 1 implies bik = 1, and there is s ∈ N

such that bsj = 0 and bsk = 1, then F (B)j = 1 implies F (B)k = 1.

We are now ready to prove the following result:

Theorem 2. Let B be a set of variables for agents in N and issues in I, let F be an aggregator

for n and m, and let f be its DL-PA translation. Moreover, let:

U :=
∧

j∈I

(

((
∧

i∈N

pij)→ pj) ∧ ((
∧

i∈N

¬pij)→ ¬pj)
)

,

NI :=
∧

j∈I

∧

k∈I

(

(
∧

i∈N

(pij ↔ pik))→ (pj ↔ pk)
)

,

ND :=
∧

j∈I

∧

k∈I

(

(
∧

i∈N

(pij ↔ ¬pik))→ (pj ↔ ¬pk)
)

,

MN :=
∧

j∈I

∧

k∈I

(

(
∧

i∈N

(pij → pik) ∧
∨

s∈N

(¬psj ∧ psk))→ (pj → pk)
)

.

Then, the following equivalences hold:

(i) F satisfies U if and only if |= ProfIC(B,O)→ [f(B)]U.

(ii) F satisfies NI if and only if |= ProfIC(B,O)→ [f(B)]NI .

(iii) F satisfies ND if and only if |= ProfIC(B,O)→ [f(B)]ND.

(iv) F satisfies MN if and only if |= ProfIC(B,O)→ [f(B)]MN.

Proof. We provide a proof for (i), since the remaining parts can be proven in an analogous way.

For the left-to-right direction, consider an arbitrary valuation v such that v |= ProfIC(B,O) and

suppose for reductio that there is some v′ such that (v, v′) ∈‖ f(B) ‖ but v′ 6∈ ‖U ‖. Given the

definition of the interpretation, this means that there is some j ∈ I such that v′ 6∈ ‖((
∧

i∈N pij)→

pj) ∧ ((
∧

i∈N ¬pij)→ ¬pj)‖. Assume, without loss of generality, that v′ 6∈ ‖ (
∧

i∈N pij)→ pj)‖.

Hence, we have that v′ ∈‖
∧

i∈N pij ‖ and v′ 6∈ ‖pj ‖. Since v |= ProfIC(B,O) and (v, v′) ∈‖ f(B)‖,

we have that v corresponds to some profile B and v′ corresponds to F (B).

By assumption, F satisfies U: in particular, this means that for all j ∈ I, if for all i ∈ N

we have bij = 1, then F (B)j = 1. Observe that by the DL-PA programs we provided to

translate aggregation rules, v and v′ do not differ on the variables in B. Hence, the fact that

v′ ∈‖
∧

i∈N pij ‖ implies that v ∈‖
∧

i∈N pij ‖. Therefore, in profile B we have bij = 1 for all

i ∈ N , which implies that F (B)j = 1. This contradicts the fact that v′ corresponds to F (B)

and that v′ 6∈ ‖pj ‖. Hence, v′ ∈‖U‖.

For the right-to-left direction, take an arbitrary profile B. Suppose, for reductio, that for

some j ∈ I in profile B, we have bij = 1 for all i ∈ N and F (B)j = 0. Consider now valuations

v and v′ corresponding to B and F (B) respectively. This means that v |= ProfIC(B,O), that

4This axiom is non-standard, and has been introduced by Endriss et al. (2012).
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(v, v′) ∈‖ f(B)‖ and that v′ ∈‖U‖. Since v and v′ do not differ on the variables in B, by spelling

out the definition of the interpretation we get that v′ ∈‖pj ‖. This contradicts the fact that v′

corresponds to F (B) and that F (B)j = 0. Therefore, we have that F (B) = 1.

4.2 Multi-profile Axioms

The three multi-profile axioms we present are translated as DL-PA formulas. In fact, to check

whether an aggregation rule satisfies these axioms, we need to compare the outcomes of the rule

on different profiles. Dealing with multiple profiles means referring to more than one valuation

(and applying the program expressing rule F more than once), whence the need for DL-PA.

A rule is independent if, whenever an issue j has the same acceptance-rejection pattern in

two profiles, the outcome of the rule is identical for j in both of them. Formally:

I : For any j ∈ I and profiles B and B
′, if for all i ∈ N bij = b′ij then F (B)j = F (B′)j .

A rule F is independent-monotonic if, whenever we consider two profiles such that the second

differs from the first in that some agent i first rejected issue j and then she accepts it, if j was

accepted in the first outcome then it should still be accepted in the second. Let (B−i, B
′
i) =

(B1, . . . , B
′
i, . . . , Bn) for some profile B:

MI : For any issue j ∈ I, agent i ∈ N , profiles B = (B1, . . . , Bn) and B
′ = (B−i, B

′
i),

if bij = 0 and b′ij = 1 then F (B)j = 1 implies F (B′)j = 1.

An anonymous rule treats each agent in the same way. That is, by permuting the order of

the individual ballots in the input, the output for all issues does not change.

A : For all B and any permutation σ : N → N , F (B1, . . . , Bn) = F (Bσ(1), . . . , Bσ(n)).

We are now ready to prove the following:

Theorem 3. Let B be the set of variables for agents in N and issues in I, let F be an aggregation

rule for n and m, and let f be its DL-PA translation. Moreover, for Bj := {pij | i ∈ N} let:

I :=
∧

j∈I

(

(pj → [flip≥0(B \ Bj) ; profIC(B,O) ; f(B)]pj)∧

(¬pj → [flip≥0(B \ Bj) ; profIC(B,O) ; f(B)]¬pj)
)

,

MI :=
∧

j∈I

(

pj →
∧

i∈N

[+pij ; profIC(B,O) ; f(B)]pj
)

,

A :=[store(O) ;
(

⋃

i,k∈N

;
j∈I

(

if pij ⊕ pkj do (flip1({pij}) ; flip
1({pkj}))

))n−1
;

zero(O) ; f(B)]
∧

j∈I

(pj ↔ p′j).

Then, the following is the case:

(i) F satisfies I if and only if |= ProfIC(B,O)→ [f(B)]I.

(ii) F satisfies MI if and only if |= ProfIC(B,O)→ [f(B)]MI.
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(iii) F satisfies A if and only if |= ProfIC(B,O)→ [f(B)]A.

Proof. The proof for (i) and (ii) being very similar, we just give a proof for (ii). For the

left-to-right direction, consider v1 such that v1 |= ProfIC(B,O) and suppose for reductio that

there is some valuation v2 such that (v1, v2) ∈‖ f(B) ‖ but for some issue k ∈ I we have (a)

v2 ∈‖ pk ‖, and (b) v2 6∈ ‖
∧

i∈N [+pik ; profIC(B,O) ; f(B)]pk ‖. The latter implies that there is

some agent s ∈ N such that (c) there is v3 where (v2, v3) ∈‖+psk ; profIC(B,O) ; f(B)‖, and (d)

v3 6∈‖pk ‖. Given that (v2, v3) ∈‖+psk ; profIC(B,O); f(B)‖, then there is some valuation va such

that (v2, va) ∈‖+psk ‖ and (va, v3) ∈‖ profIC(B,O) ; f(B) ‖. Hence, va corresponds to a profile

B
a and v3 corresponds to F (Ba).

Consider now valuations v1, v2 and va. While v1 and v2 do not differ on the variables in B,

v2 and va possibly differ on psk. We now focus on the interesting case: namely, the one where

they do differ. If they differ, we have that psk 6∈ v1 and psk 6∈ v2 but psk ∈ va. Note that since

v1 |= ProfIC(B,O) and (v1, v2) ∈‖ f(B)‖, this means that v1 corresponds to a profile B
1 and v2

corresponds to F (B1). Since b1sk = 0 and by (b) we have F (B1)j = 1, and since by assumption

F satisfies MI, and since B
a differs from B

1 only on bsk, because bask = 1, we must have that

F (Ba)k = 1. But this contradicts the fact that by (d) we have pk 6∈ v3.

For the right-to-left direction, consider an arbitrary profile B. Suppose, for reductio, that

there is some issue j ∈ I, some agent i ∈ N and profile B
′, such that we have bij = 0,

b′ij = 1, F (B)j = 0 and F (B′)j = 0. Consider now valuation v1 corresponding to profile B and

valuation v2 corresponding to F (B). Moreover, consider valuation va corresponding to profile

B
′ and valuation vb corresponding to F (B′). Since by assumption F satisfies MI, and pj ∈ v2,

and va only differs from v1 in that pij ∈ va, we see that from the axiom we should get pj ∈ vb.

This contradicts the fact that vb is a translation of F (B′) and that F (B′)j = 0.

To obtain a proof for (iii), recall that it is possible to generate all the n! permutations of n

agents by repeatedly swapping the positions of just two agents with at most n− 1 swaps (Wells,

1961). Note also that the translation of the Anonymity axiom first stores the result of the

aggregation rule in some fresh variables p′j , then for n − 1 times it nondeterministically selects

two agents and swaps their individual ballots by inverting the truth values of the corresponding

variables. Finally, it executes again the rule F and it checks that the two results coincide.

4.3 Summary and Discussion

We have translated judgment aggregation axioms into formulas of either propositional logic or

DL-PA. More precisely, we have used propositional logic for single-profile axioms, and DL-PA for

multi-profile axioms, since these are the most suited formalisms for the corresponding cases, as

explained in Sections 4.1 and 4.2.

The possible applications of such a translation of axioms for aggregation rules are twofold.

On the one hand, a negative answer on the model checking for formula [f(B)]axiom tells us

that rule F does not satisfy the axiom whose DL-PA translation is axiom. On the other hand,

while we cannot take a positive answer to this model checking as a definite answer that the

aggregation rule (considered for all n and m) does satisfy an axiom, we can still use such a piece

of information to gather confidence that the rule indeed satisfies the axiom.
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5 Safety of the Agenda

A recurring problem in judgment aggregation is that the outcome of an aggregation process

might not satisfy the integrity constraint even though each agent satisfies it in the submitted

ballot. One way out of this problem is to investigate whether we can ensure that the outcome

of certain groups of aggregation rules will always satisfy a given constraint, provided it has

a particular syntactical form. This approach is known in the judgment aggregation literature

under the name of safety of the agenda (Endriss et al., 2012). In this section we express known

agenda properties within the logical formalism of our choice, something that has never been

explored in the literature connecting judgment aggregation to logic.

5.1 Safety and Prime Implicants

We begin by introducing prime implicants to express basic concepts of the agenda safety problem.

For a start, let a literal be either a variable p or its negation ¬p. A term D is a conjunction

of distinct literals, and D −D′ returns all the literals of D that are not in D′. A term D is an

implicant of ϕ if and only if D |= ϕ. We present now the formal definition of prime implicants

as given by Marchi et al. (2010):

Definition 4. D is a prime implicant of ϕ if and only if (i) D is an implicant of ϕ, and (ii)

for all literals L in D, (D − {L}) 6|= ϕ.

Every formula ϕ can be rewritten as a conjunction of negations of the prime implicants of ¬ϕ

(Marquis, 2000). Since in particular this holds for IC, we assume in the following that integrity

constraints are written in this syntactical form.

We now reinterpret some known agenda properties of formula-based judgment aggregation

for integrity constraints, making use of the concept of prime implicants. Let Pϕ be the set of

variables occurring in ϕ.

Definition 5. A constraint IC has the k-median property (kMP) if and only if any prime

implicant D of ¬IC is such that |PD| ≤ k. A constraint IC has the simplified median property

(SMP) if and only if any prime implicant D of ¬IC is such that |PD| = 2 and for p, q ∈ PD we

have that ¬Lp ∧ ¬Lq is also a prime implicant of ¬IC.

For k = 2 we speak of the median-property (MP). Observe that if IC = ⊤ we do not have

any prime implicant of ¬IC, which means that the issues are all independent from one another

— a condition known as syntactic simplified median property (SSMP) in the literature.

We conclude this section by providing the definition of safety for integrity constraints. Given

a set of axioms AX, we call the set FIC[AX] := {F | F satisfies all axioms in AX and the

domain of F is Mod(IC)N for some N} a class of aggregation procedures. Then:

Definition 6. An integrity constraint IC is safe for the class FIC[AX] if and only if for all

F ∈ FIC[AX], we have F (B) |= IC for all inputs B ∈ Mod(IC)N .

The intuitive meaning is that when an integrity constraint is safe for a group of aggregation

rules that all satisfy some axioms, on every input profile the output will satisfy the constraint.
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5.2 Agenda Safety in DL-PA

Our first result is a Lemma which characterizes by a DL-PA formula the valuations where some

prime implicant of a formula ϕ is true.

Lemma 1. Let D be a term such that PD ⊆ Pϕ. Then, D is a prime implicant of ϕ if and only

if D |= PI(PD, ϕ), where PI(PD, ϕ) := [flip≥0(Pϕ \ PD)]ϕ ∧ [flip1(PD)]¬[flip
≥0(Pϕ \ PD)]ϕ.

Proof. For the left-to-right direction, let D be a prime implicant of ϕ and suppose, for reductio,

that there is some valuation making D true such that ¬PI(PD, ϕ) holds. Observe that if we have

〈flip≥0(Pϕ\PD)〉¬ϕ we would have a contradiction with condition (i) of Definition 4 (D is not an

implicant of ϕ). In fact, while the literals in D are true at the current valuation ¬ϕ holds. On

the other hand, if 〈flip1(PD)〉[flip
≥0(Pϕ \ PD)]ϕ is the case, we would have a contradiction with

condition (ii) of Definition 4 (D is not prime). In fact, some variable pk ∈ PD corresponding to

a literal Lk in D would make (D − {Lk}) |= ϕ hold. Therefore, we have D |= PI(PD, ϕ).

We prove the right-to-left direction by contraposition. Suppose D is not a prime implicant

of ϕ. By Definition 4 this means that either D is not an implicant of ϕ, which would imply that

there is some valuation where D and 〈flip≥0(Pϕ \ PD)〉¬ϕ hold; or that D is not prime, which

would imply that in some valuation D holds and also 〈flip1(PD)〉[flip
≥0(Pϕ \ PD)]ϕ. Thus, in

both cases we conclude that there is a valuation where D holds and yet PI(PD, ϕ) does not.

Lemma 1 allows us to characterize the kMP in the following proposition. A similar result

on the SMP follows immediately.

Proposition 9. Constraint IC has the kMP if and only if |= ¬IC →
∨

P⊆PIC

|P |≤k

PI(P,¬IC).

Proof. For the left-to-right direction, assume that IC has the kMP and suppose, for reductio,

that there is some v such that v |= ¬IC and v |=
∧

P⊆PIC

|P |≤k

¬PI(P,¬IC). Since v 6|= IC and IC is

written as a conjunction of negations of prime implicants of ¬IC, we know that there must be

some prime implicant D of ¬IC such that v |= D and that |PD| ≤ k. By Lemma 1 we thus get

that v |= PI(PD,¬IC), which contradicts v |=
∧

P⊆PIC

|P |≤k

¬PI(P,¬IC).

We prove the right-to-left direction by contraposition. Suppose IC does not have the kMP:

hence, there is some prime implicant D of ¬IC such that |PD| ≥ k + 1. We now provide a

valuation v such that v |= ¬IC and v 6|=
∨

P⊆PIC

|P |≤k

PI(P,¬IC). Consider valuation v such that

v |= D and for all other prime implicants D′ of ¬IC, we have v 6|= D′ (such a valuation always

exists). Since v |= D, we get by Definition 4 that v |= ¬IC. Suppose there was some other term

D′ such that v |= PI(PD′ ,¬IC), |D′| ≤ k and v |= D′: by Lemma 1 this would imply that D′ is

a prime implicant of ¬IC, contradicting our choice of valuation.

Proposition 10. Constraint IC has the SMP if and only if

|= ¬IC →
∨

pi,pk∈PIC

(

PI({pi, pk},¬IC) ∧ [flip1(pi); flip
1(pk)]PI({pi, pk},¬IC)

)

.

Proof. For the left-to-right direction, assume that IC has the SMP and consider an arbitrary

valuation v where v |= ¬IC. For reductio, suppose the consequent does not hold. Hence, either
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there is no prime implicant of ¬IC of size 2 or there is one, but the negation of its literals is not

a prime implicant of ¬IC. Either way, this contradicts the assumption that IC has the SMP.

For the other direction, assume that IC does not have the SMP. This means that either it has

not the MP, or it has the MP but there is a prime implicant of ¬IC such that its negated literals

are not also a prime implicant of ¬IC. In the first case, we would get by Proposition 9 that there is

a valuation v such that v 6|= PI({pi, pk},¬IC) thus falsifying the consequent. In the second case,

we would have v 6|= [flip1(pi); flip
1(pk)]PI({pi, pk},¬IC), thus falsifying the consequent again.

Therefore, 6|=
∨

pi,pk∈PIC

(

PI({pi, pk},¬IC) ∧ [flip1(pi); flip
1(pk)]PI({pi, pk},¬IC)

)

.

Observe that in the consequent of the formula characterizing the kMP we have a disjunction

over all subsets of size k of variables of the constraint. This implies that the formula has length

exponential in the size of the constraint. While this appears as a negative result it is in line with

the literature, since the computational problem of deciding whether a constraint satisfies one of

the previous agenda properties is at the second level of the polynomial hierarchy.5

6 Discussion and Related Work

In this section we compare our work with the literature on formalizations of judgment aggregation

and social choice theory in logical languages. We discuss whether and how aggregation rules,

axioms and the agenda safety problem have been treated by other researchers. We then discuss

the significance of our results in the formalization of characterization and impossibility theorems

from social choice, and we discuss potential applications of automated reasoning techniques.

6.1 Related Work on Logic and Judgment Aggregation

In this paper we thoroughly explored the possibility to translate judgment aggregation into DL-

PA, providing both general and specific results for a number of aggregation rules, axioms, and

safety of the agenda properties. A translation of the issue-wise majority rule has been proposed

by Ågotnes et al. (2011) for Judgment Aggregation Logic, with the goal to express a variant of

the discursive dilemma. The formula they use, however, is of exponential size in the number

of agents, since they explicitly list all possible majoritarian coalitions in the profile (i.e., sets of

agents whose size is more than half the total number of agents). Our formalization in Section

3.2.2 is more compact thanks to the use of counters.

The approach taken by Pauly (2007) to study aggregation rules in formula-based judgment

aggregation is quite different from ours. The author focuses on three rules: the majority rule,

the consensus rule (i.e., a rule that accepts a formula if and only if all agents accept it) and

the dictatorship of agent i. Given an agenda and a group of agents, the author defines sets

of collective judgment sets corresponding to the outcome of a specific aggregation rule (among

the ones mentioned before) and he provides an axiomatization for these outcome sets. Pauly’s

approach is non standard since, as we shall see in the following section, when characterizing an

aggregation rule we do not usually refer to the structure of the set of its possible outcomes, but

on the properties satisfied by the rule on every input.

5See the Π
p
2
-completeness results by Endriss et al. (2012).
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As far as axioms are concerned, logical expressions for a small number of them can be found

in Judgment Aggregation Logic (Ågotnes et al., 2011). Given that the goal of the authors is to

express the Condorcet’s voting paradox as a formula of the logic, they only focus on positive

unanimity, independence and non-dictatorship (i.e., an axiom satisfied by all rules that are not

a dictatorship of some agent i). Moreover, a translation of the preference aggregation axioms

for strong monotonicity, independence of irrelevant alternatives and dictatorship are expressed

in the Logic for Social Choice Functions by Ciná and Endriss (2016).

To the best of our knowledge, the only paper that extensively addresses the problem of the

safety of the agenda is that of Porello (2017). However, the aim of the author’s investigations

there is to study whether the safety results we presented in Section 5 continue to hold if the

underlying logic of the agenda is non-classical.

6.2 Quantifying over Aggregation Rules

As mentioned at the beginning of this paper, one of the goals of formalizing a given setting in

computational social choice is to represent known impossibility or characterization results, such

as Arrow’s Theorem. In judgment aggregation, a result that is analogous to that of Arrow for

its importance in the field is the characterization of the majority rule given by May (1952).

While originally formulated for preference aggregation, this result can be rephrased in binary

aggregation as stating that, for an odd number of agents and one issue, an aggregator satisfies

ND, MI and A if and only if it is the majority rule. Recalling the conclusions of Section 4, we

see that the right-to-left direction of the theorem is easily expressible in our framework, as it

amounts to |= ProfIC(B
n,1,O1)→ [maj(Bn,1)](A ∧MI ∧ ND) for any odd n. On the other hand,

for the left-to-right direction we find a negative answer: in order to express it, we would need

to leave unspecified the program for the aggregation rule to be written inside the axioms in

Theorem 3, which would then turn out to be equivalent to the program for majority, something

that it is not possible to achieve in DL-PA.

Nevertheless, we can express existing results for the safety of the agenda problem. As an

example, the known theorem stating that a constraint is safe for the majority rule if and only

if the constraint has the MP, originally proved by Dietrich and List (2007b), can be stated as

|= [profIC(B,O) ;maj(B)]IC ↔ MPIC for an odd number of individuals.

6.3 Automated Reasoning

An essential feature of DL-PA is that this modal logic is grounded on propositional logic, as

we have seen in Section 2.2. Our work thus gives direct access to SAT-solvers to enhance

research in judgment aggregation, since we now have a chain of translations from aggregation

problems to DL-PA, and from DL-PA to propositional logic. Therefore, we can get the best of

both formalisms: DL-PA gives us an elegant and compact way to represent the key features of

judgment aggregation, and at the same time we do not have to design specific solvers for it since

we can deploy the existing ones for propositional logic.

Similar concerns about implementation have been addressed with respect to the Logic for

Social Choice Functions as well (Ciná and Endriss, 2016), though in that case the focus was on

preference aggregation rather than judgment aggregation. Interestingly, this logic has indeed
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been implemented by Troquard (2011) in the Common Lisp language, however focusing on

game theoretical notions for positional scoring rules (e.g., strategy-proofness and the presence of

Nash or dominance equilibria in given profiles). While the possibility of translating Judgment

Aggregation Logic into first-order logic is envisaged by Ågotnes et al. (2011) in the conclusion

of their paper, a possible implementation of the setting is left as an issue for future research.

7 Conclusions

In this paper we translated for the first time classical problems in judgment aggregation into

an existing logical formalism reducible to propositional logic, in line with similar work in the

knowledge representation literature. The core ideas of our translation from judgment aggregation

to DL-PA consist in turning profiles of individual ballots into a specific type of valuation, and

aggregation rules into DL-PA programs modifying the truth values of a set of outcome variables.

Firstly, we investigated the boundaries of expressibility of aggregation rules in DL-PA. The-

orem 1 gave us a positive result, in that any aggregator can be translated into DL-PA, albeit

with a program of length exponential in the number of issues and agents. To circumvent this

shortcoming we provided more compact translations of some well-known aggregation rules. We

then oriented our research towards single and multi-profile axioms for judgment aggregation

rules, translating them as propositional or DL-PA formulas. Additionally, we studied the safety

of the agenda problem by using the concept of prime implicants to provide DL-PA equivalents

of the most common agenda properties.

Our results showcase the flexibility of DL-PA as a useful formalism for judgment aggregation

problems, one in which human-readable formulas can be written and later fed to automated

solvers to obtain the result of an aggregation rule, check the satisfaction of axiomatic properties,

or verify the safety of a given judgment aggregation agenda.

The framework proposed in this paper could be easily generalized to a setting where agents

are allowed to abstain on the issues (Dietrich and List, 2008). Specifically, it would be sufficient

to consider an additional set of variables for the profile, to keep track of the issues on which the

agents abstained. The definitions of the aggregation rules and the axioms would then be easy

to adapt. Furthermore, the possibility of defining counters and to formalize the concept of the

Hamming distance allows the DL-PA formalism to incorporate the study of strategic judgment

aggregation, opening an interesting direction for future work (Dietrich and List, 2007a).
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A An Example of a Rule Compactly Expressed in DL-PA

We here give a concrete example of how the programs we defined in Section 3 shorten the general

program schema given in the proof of Theorem 1. More precisely, we spell out below the program

msaIC for 3 agents and 3 issues where IC = (p1 ↔ (p2 ∧ p3)), as in Example 1.

msaIC(B
3,3) := maj(B3,3) ; store(O3) ; flip≥0(O3) ; IC? ;[restore1(O3) ; restore≥0(O3)]¬IC?

= ;
j∈I

(

zero(pro ∪ con) ; ;
i∈N

(if pij then incr(pro) else incr(con)) ; if pro > con do + pj
)

;

store(O3) ; flip≥0(O3) ; IC? ;[restore1(O3) ; restore≥0(O3)]¬IC?

=
(

− q1 ;−q2 ;−q
′
1 ;−q

′
2 ;((p11? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1) ∪ (¬q2? ;+q2 ;−q1))) ∪ (¬p11? ;

(¬(q′1 ∧ q
′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? ;+q

′
2 ;−q

′
1))) ;(p21? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1)∪

(¬q2? ;+q2 ;−q1))) ∪ (¬p21? ;(¬(q
′
1 ∧ q

′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? ;+q

′
2 ;−q

′
1))) ;(p31? ;(¬(q1 ∧ q2)? ;

(¬q1? ;+q1) ∪ (¬q2? + q2 ;−q1))) ∪ (¬p31? ;(¬(q
′
1 ∧ q

′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? ;+q

′
2 ;−q

′
1))) ;

((((q1 ∧ ¬q
′
1) ∨ (q1 ↔ q′1 ∧ q2 ∧ ¬q

′
2))? ;+p1) ∪ (¬((q1 ∧ ¬q

′
1) ∨ (q1 ↔ q′1 ∧ q2 ∧ ¬q

′
2))? ;⊤?)) ;

(

− q1 ;−q2 ;−q
′
1 ;−q

′
2 ;(p12? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1) ∪ (¬q2? ;+q2 ;−q1))) ∪ (¬p12? ;(¬(q

′
1 ∧ q

′
2)? ;

(¬q′1? ;+q
′
1) ∪ (¬q′2? + q′2 ;−q

′
1)) ;(p22? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1) ∪ (¬q2? ;+q2 ;−q1))) ∪ (¬p22? ;

(¬(q′1 ∧ q
′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? + q′2 ;−q

′
1))) ;(p32? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1)∪

(¬q2? ;+q2 ;−q1))) ∪ (¬p32? ;(¬(q
′
1 ∧ q

′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? + q′2 ;−q

′
1))) ;

((((q1 ∧ ¬q
′
1) ∨ (q1 ↔ q′1 ∧ q2 ∧ ¬q

′
2))? ;+p2) ∪ (¬((q1 ∧ ¬q

′
1) ∨ (q1 ↔ q′1 ∧ q2 ∧ ¬q

′
2))? ;⊤?)) ;

(

− q1 ;−q2 ;−q
′
1 ;−q

′
2 ;(p13? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1) ∪ (¬q2? + q2 ;−q1))) ∪ (¬p13? ;(¬(q

′
1 ∧ q

′
2)? ;

(¬q′1? ;+q
′
1) ∪ (¬q′2? ;+q

′
2 ;−q

′
1))) ;(p23? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1) ∪ (¬q2? + q2 ;−q1))) ∪ (¬p23? ;

(¬(q′1 ∧ q
′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? ;+q

′
2 ;−q

′
1))) ;(p33? ;(¬(q1 ∧ q2)? ;(¬q1? ;+q1)∪

(¬q2? ;+q2 ;−q1)) ∪ (¬p33? ;(¬(q
′
1 ∧ q

′
2)? ;(¬q

′
1? ;+q

′
1) ∪ (¬q′2? + q′2 ;−q

′
1))) ;

((((q1 ∧ ¬q
′
1) ∨ (q1 ↔ q′1 ∧ q2 ∧ ¬q

′
2))? ;+p3) ∪ (¬((q1 ∧ ¬q

′
1) ∨ (q1 ↔ q′1 ∧ q2 ∧ ¬q

′
2))? ;⊤?)) ;

(p1? ;+p
′
1) ∪ (¬p1? ;−p

′
1) ;(p2? ;+p

′
2) ∪ (¬p2? ;−p

′
2) ;(p3? ;+p

′
3) ∪ (¬p3? ;−p

′
3) ;

((+p1 ∪ −p1) ;(+p2 ∪ −p2) ∪ (+p3 ∪ −p3)) ;(p1 ↔ (p2 ∧ p3))? ;

[(p1 ⊕ p
′
1? ;(p

′
1? ;+p1) ∪ (¬p′1? ;−p1)) ;(p2 ⊕ p

′
2? ;(p

′
2? ;+p2) ∪ (¬p′2? ;−p2)) ;

(p3 ⊕ p
′
3? ;(p

′
3? ;+p3) ∪ (¬p′3? ;−p3)) ;(⊤? ∪ (p′1? ;+p1) ∪ (¬p′1? ;−p1)) ;

(⊤? ∪ (p′2? ;+p2) ∪ (¬p′2? ;−p2)) ;(⊤? ∪ (p′3? ;+p3) ∪ (¬p′3? ;−p3))]¬(p1 ↔ (p2 ∧ p3))?

As shown above, the full specification in DL-PA of the msaIC program, even for a small

profile of 3 agents and 3 issues, turns out to be indeed rather long. Nevertheless, observe

that the propositional formula expressing this rule, constructed following the proof of Theorem

1, needs to specify the outcome for all the 23 × 23 × 23 possible profiles, which results in a

significantly longer formula.
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