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Abstract— Analog/RF built-in test (BIT) techniques are essen-

tial for reducing the very high costs of specification-based tests

and for high-safety applications. The adoption of a BIT technique

needs to be decided at the design stage, and this can be facilitated

by estimating the test quality in terms of errors such as Test

Escapes (TE) and Yield Loss (YL). Test quality estimation at the

design stage has been traditionally very difficult for analog/RF

circuits due to the lack of fault models that properly cover

parametric faulty behavior. In recent years, statistical simulation

has been considered in combination with learning techniques

for the estimation of parametric test metrics. Extreme Value

Theory (EVT) has provided a rigorous tool for the computation

of parametric test metrics. However, test metrics estimation has

been limited to the use of a univariate model. In this paper,

we extend this approach by using a multivariate extreme value

model. We illustrate this for the evaluation of a RF LNA BIT

technique using a bivariate model.

I. INTRODUCTION

The design and development of embedded analog/RF test
techniques is essential for tackling the large costs required
for testing mixed-signal/RF blocks in today SoCs. Testing
these blocks represents a disproportionate share of the total
test cost, given the small area these circuits occupy in a SoC.
Many different approaches have been presented for common
blocks such as signal converters, frequency synthesizers or
RF front-ends. However, the lack of structured integrated
test solutions for these circuits has prevented widespread
development. Indeed, each mixed-signal or RF block requires
customized BIT solutions that are hard to evaluate before
production. Without tools for an adequate evaluation at the
design stage, it is not possible to explore the most convenient
solutions, and it becomes often impossible to convince design
and product managers to embed any of them.

The difficulties for test metrics estimation at the design stage
for mixed-signal/RF circuits stem from the lack of adequate
analog/RF fault models that properly cover parametric faulty
behavior. This type of faulty behavior is in general due to
multiple process and design parameters that are varying simul-
taneously. We do not consider in this work defects that modifiy
the topology of the circuit since this is most often treated in
the litterature following an approach similar to catastrophic
faults for digital circuits. For parametric faults, Monte Carlo
circuit level simulation can be considered to generate a sample

of circuit instances under process variations. Each circuit
instance is represented by a vector of its output parameters
(the performances specified in the data sheet and the actual
test measures). A circuit instance is functional if all the
performances meet the specifications. A circuit instance passes
the test if all the test measures are within their pre-defined
limits. A test error occurs when either a faulty circuit escapes
the test (i.e., Test Escapes, TE) or a functional circuit fails the
test (i.e., Yield Loss, YL). Parametric test metrics estimation
with ppm precision requires a very large sample of circuits
(> 106 circuits). Unfortunately, Monte Carlo circuit simulation
is time consuming and can only generate a relatively small
sample in reasonable time. In the literature, several methods
have been proposed to overcome this limitation. They can be
divided into two types [1].

The first type of methods requires an estimation of the joint
probability density function (PDF) of the output parameters
using an initial small sample of circuits generated via Monte
Carlo simulation. Next, by sampling this statistical model,
it is possible to numerically generate an arbitrarily large
sample of circuits that follows the same distribution. This large
sample will contain a representative set of parametric defective
devices, and test metrics can be calculated using relative
frequencies. This type of methods is simple to apply since
only the output parameters of the circuit are considered and
there are multiple techniques to estimate the joint PDF. In [2],
the statistical model is assumed to be a multivariate Gaussian.
As a general parametric approach, [3] proposes the use of
copulas. A copula is a multivariate distribution that models the
dependence between the output parameters, separately from
the marginal distributions of these parameters. However, the
copula model may be not be easy to find in all cases. When
the copula model cannot be found, [4] proposes the use of
a general non-parametric density estimation technique. The
major problem with these techniques is that the estimated PDF
of the output parameters may be inaccurate at the tails of the
distribution, where parametric defective circuits are found.

The second type of methods use statistical learning to
accelerate Monte Carlo simulation [5] so that devices in the
distribution tail can be more easily generated. A multidimen-
sional classifier is first trained to learn a boundary within



the input parameter space that separates devices with output
parameters in the bulk of the distribution from devices with
output parameters at the tails of this distribution. Next, during
Monte Carlo electrical simulation, the simulation of a circuit
instance is blocked if the classifier predicts from the input
parameter vector that the output parameters will fall in the
bulk of the distribution. Otherwise, the circuit instance is
simulated. This type of methods is more difficult to apply since
a multivariate classifier in the input parameter space must be
trained. However, it provides a population of extreme circuits
from which test metrics can be computed using an estimation
of the tail density following a univariate Extreme Value Theory
(EVT) model [5] [6] [7]. In [8], a multidimensional problem
for test metrics estimation is considered using EVT although it
is transformed to a one-dimensional problem and a univariate
model is used.

In this paper, we consider the second type of approaches
with a multivariate extreme value model. The paper is or-
ganized as follows. Section II formulates the computation
of test metrics. The multivariate EVT model is presented in
Section III. Next, Section IV describes two different proce-
dures for test metrics estimation using extreme circuits: the
first is based on the computation of relatives frequencies
and the second is based on the multivariate EVT model.
For the validation of the proposed techniques, an RF LNA
BIT technique is presented in Section V. The validation is
facilitated by the fact that a database with 106 simulated
instances has been made available. The results of the test
metrics estimation with the new techniques are presented in
Section VI. Finally, conclusions are presented in Section VII.

II. TEST METRICS

In this section we first present the definitions of the test
metrics and next we describe the analytical equations to
compute them.

A. Test metrics definition

In this paper, we will consider the test metrics Test Escapes
(TE) and Yield Loss (YL). TE represents the proportion of
the faulty circuits that pass the test and YL the proportion of
the circuits failing the test within those that are functional. In
terms of probabilities, test metrics are defined as follows:

TE = Pr(circuit is faulty | it passes the test)
= 1− Pr(circuit is functional | it passes the test), (1)

YL = Pr(circuit fails the test | it is functional)
= 1− Pr(circuit passes the test | it is functional). (2)

Let us consider a circuit with n performances P =
(P1, P2, . . . , Pn) and n specifications s = (s1, s2, . . . , sn).
This circuit is designed such that each performance Pi satisfies
the specification si (i.e. Pi ≤ si, i = 1, ..., n), consider-
ing without lack of generality a unilateral specification to
simplify the notation. For this circuit we consider a set of
m test measures T = (T1, T2, . . . , Tm) and m test limits

l = (l1, l2, . . . , lm). The circuit passes the test if each test
measure Tj satisfies the test limit lj (i.e. Tj ≤ lj , j =
1, ...,m), considering again a unilateral test limit to simplify
the notation. The test metrics are then written as

TE = 1− Pr(P1 ≤ s1, . . . , Pn ≤ sn, T1 ≤ l1, . . . , Tm ≤ lm)

Pr(T1 ≤ l1, . . . , Tm ≤ lm)

= 1− FPT (s1, s2, . . . , sn, l1, l2, . . . , lm)

FT (l1, l2, . . . , lm)
, (3)

YL = 1− Pr(P1 ≤ s1, . . . , Pn ≤ sn, T1 ≤ l1, . . . , Tm ≤ lm)

Pr(P1 ≤ s1, . . . , Pn ≤ sn)

= 1− FPT (s1, s2, . . . , sn, l1, l2, . . . , lm)

FP (s1, s1, . . . , sn)
(4)

where FP (s1, s2, · · · , sn) is the joint Cumulative
Distribution Function (CDF) of the performances,
FT (t1, t2, · · · , tm) is the joint CDF of the test measures, and
FPT (s1, s2, · · · , sn, t1, t2, · · · , tm) is the joint CDF of the
performances and the test measures.

B. Definition of test metrics for extreme data analysis

Let us now consider circuit instances that have output
parameters exceeding a large threshold for the performances
u = (u1, u2, . . . , un), where ui < si, (i = 1, . . . , n), for
the case of n specifications, and/or a large threshold for the
test measures v = (v1, v2, . . . , vm) where vj < lj , (j =
1, . . . ,m), for the case of m test limits. We can then define
test metrics considering threshold exceedances, so that extreme
value data analysis can be applied [6].

We consider first the case of test escapes TE as defined by
Equation (1). If we only consider the population of circuits
that pass the test, TE becomes the probability that a circuit is
faulty, i.e., the probability to violate at least one specification
as follows:

TE = Pr(P1 > s1 ∨ P2 > s2 ∨ . . . ∨ Pn > sn). (5)

Let us define condition A = (P1 > s1∨P2 > s2∨. . .∨Pn >

sn) and condition B = (P1 > u1 ∨P2 > u2 ∨ . . .∨Pn > un)
such that A implies B (A ⊆ B), and where Pr(A) is the
probability that the circuit is faulty and Pr(B) the probability
that the circuit is extreme. Then TE can be formulated as
follows:

TE = Pr(A)

= Pr(A ∧B)

= Pr(A | B)× Pr(B). (6)

We replace A and B in Equation (6) and obtain:

TE = Pr((P1 > s1 ∨ P2 > s2 ∨ · · · ∨ Pn > sn) |
(P1 > u1 ∨ P2 > u2 ∨ · · · ∨ Pn > un))×
Pr(P1 > u1 ∨ P2 > u2 ∨ · · · ∨ Pn > un). (7)

EVT allows an estimation of the conditional probability that
appears as a first term in Equation (7), while the second term



is estimated via standard probability theory. Similarly as for
TE , we can estimate YL considering only the population of
circuits that are functional. We obtain in this case:

YL = Pr((T1 > l1 ∨ T2 > l2 ∨ · · · ∨ Tm > lm) |
(T1 > v1, T2 > v2 ∨ · · · ∨ Tm > vm))×
Pr(T1 > v1 ∨ T2 > v2 ∨ · · · ∨ Tm > vm). (8)

III. MULTIVARIATE EXTREME VALUE MODEL

Multivariate EVT provides a mathematical framework to
deal with the case when the largest values of multiple variables
of interest tend to occur simultaneously. The probability of
multiple variables being simultaneously large are thus esti-
mated by means of a Multivariate Extreme Value Distribution
(MEVD). There are two main methods to obtain this distribu-
tion:

• The Block Maxima method considers large blocks of
independent data samples and then estimates the distri-
bution of the maxima of the blocks. These maxima fit a
Generalized Extreme Value Distribution (GEVD).

• The Peaks Over Threshold method considers the ex-
ceedances of the data samples over a large threshold.
These exceedances fit a Generalized Pareto Distribution
(GPD).

We will use in this work the second type of methods since
we are interested in modeling circuit output parameters that
exceed a large threshold defined by a parameter specification
or a test limit. In this Section, we first describe the estimation
of the threshold of extreme exceedances. Next, we present
the modeling of multivariate exceedances using a multivariate
GPD. Finally, we show how to estimate the parameters of this
model.

A. Estimating the threshold of exceedances

The choice of the threshold u that defines the exceedances
of a random variable X is crucial in EVT. The threshold must
be sufficiently high so that the distribution can be correctly
approximated in the extreme by a GPD distribution with
probability density function h(x) given by

h(x) =
1

σ

!
1 +

ξ(x− µ)

σ

"(− 1
ξ−1)

(9)

where µ,σ and ξ represent, respectively, the mean, the stan-
dard deviation and the shape parameter. It must be noted that if
the threshold is too high, the data set of extreme exceedances
will be too small, leading to an inaccurate estimation of the
GPD model parameters.

There are several methods to estimate the threshold of
exceedances. The method based on the Mean Excess Function

(MEF) is very common. Assuming that the extreme data
follows a GPD distribution with shape parameter ξ < 1, the
MEF e(u) follows the linear function

e(u) = E[X − u | X > u] =
σ + ξu

1− ξ
. (10)

For a set of n exceedances, the function e(u) is estimated by

ên(u) =

#n
i=1(Xi − u)IXi>u#n

i=1 IXi>u
(11)

which must be linear beyond the selected threshold u, with
u being as low as possible. Figure 1 shows an example for
the selection of a threshold for the case study that will be
described later.

Fig. 1. Estimation of the threshold of exceedances by the Mean Excess
Function.

B. Modeling of multivariate threshold exceedances

For the sake of simplicity, we consider a bivariate case.
Let (Z1, Z2) be the observed random vector, (u1, u2) a given
threshold vector and (X,Y ) = (Z1−u1, Z2−u2) the random
vector of the exceedances of the random vector beyond the
threshold. There exist two definitions of Bivariate Generalized
Pareto Distributions (BGPD) for the exceedances: BGPD-
I and BGPD-II. The distributions of the first type consider
values that jointly exceed the thresholds of all variables. The
distributions of the second type consider values that exceed
the thresholds for at least one variable and we will use them
in this work. The BGPD-II is given by

H(x, y) =
−1

logG(0, 0)
log

G(x, y)

G(min{x, 0},min{y, 0}) (12)

where the marginal distributions of X and Y must be Gener-
alized Pareto Distributions [9], and G so that 0 < G(0, 0) < 1
is a Bivariate Extreme Value Distribution (BEVD) with non-
degenerate margins. As mentionned, this distribution provides
a model for observations that are extreme in at least one
variable. Following [10], this distribution can be written as

G(x, y) = exp[−V (x, y)]. (13)

Note that there exist several families of functions G depend-
ing on the parametric function V (see for example [10]). As
an example, Figure 2(a) shows 1000 samples generated from
a BEVD G in our case-study, and Figure 2(b) shows 1000
samples generated from the corresponding BGPD-II H .



(a) (b)

Fig. 2. (a) 1000 samples generated from the BEVD G in our case-study,
and (b) 1000 samples generated from the corresponding BGPD-II H .

C. Estimation of the BGPD-II model

1) The dependence in the extremes: The estimation of the
BGPD-II model requires first to estimate the dependence in
the extremes of the multivariate distribution. Figure 3 shows
the procedure to follow.

Fig. 3. The dependence in the extremes (α).

First we extract only the extreme samples that verify x >

u1 and y > u2 (the samples of the box A in Figure 3).
Next, we calculate the empirical copula of theses samples
(the samples of the box B in Figure 3) [3]. The dependence
parameter α of these samples depends on the type of the
obtained copula. In the case of the Gumbel copula which
belongs to the family of extreme copulas, α is estimated as
follows:

α̂ =
1

1− τ̂
(14)

where τ̂ is Kendall’s tau factor estimated as follows [12][13]:

τ̂ =
2

n(n− 1)

$

i<j

sgn[(xi − xj)(yi − yj)], i, j = 1, ..., n

(15)
where

sgn(z) =

%
1 if z ≥ 0
−1 if z < 0

and (x1, y1), . . . , (xn, yn) are n observations from a vector
(X,Y ) of continuous random variables.

2) The Negative Logistic model: The MGPD model is de-
fined by the underlying Multivariate Extreme Value Distribu-
tion (MEVD) model, and practical MEVD models are defined
by the dependence structure. In order to choose the most
adequate model, it is necessary to visualize the dependence
in the extremes. After the model is validated visually, it must
be statistically validated with a corresponding goodness of fit
test. In this paper we describe the Negative Logistic model [10]
because it fits our case-study data. We use the EVT package
of the R software [11] for validation. This model is given by
the function

V (x, y) =
1

x
+

1

y
− (xα + y

α)
− 1

α , α > 0 (16)

where α is the dependence on the extremes as estimated
by Equation (14). Figure 4 shows the contour plot of the
probability density function (PDF) of this distribution with
the Negative Logistic model, for different values of the de-
pendence parameter α.

(a) (b)

(c) (d)

Fig. 4. Contour plot of the BGPD PDF with the Negative Logistic model
for dependencies (a) α = 1.2, (b) α = 2, (c) α = 2.5 and (d) α = 3.5 and
for different marginal distributions.

IV. TEST METRICS ESTIMATION USING MULTIVARIATE
EXTREME DATA ANALYSIS

In this Section, we will first describe the estimation of
test metrics using empirical relative frequencies of extreme
circuits. Next, we will present the BGPD-II model for their
estimation.

A. Estimation of test metrics using relative frequencies of

extreme circuits

By using Equations (7) and (8), we can attempt a direct esti-
mation of test metrics using relative frequencies on a sample of



circuits generated using Monte Carlo electrical simulation and
statistical learning. A first Monte Carlo simulation of the CUT
is required to find the threshold vector u of the performances
and the threshold vector v of the test measures, to estimate
the probability of extreme circuits and to obtain a classifier
for speeding up the generation of extreme circuits. A second
Monte Carlo simulation takes into account this classifier for
the generation of extreme circuits and the estimation of test
errors.

Considering first the case of test escapes as given by
Equation (7), TE is defined, within the set of circuits that pass
the test, as the probability that the circuit is faulty knowing that
it is extreme, times the probability that the circuit is extreme.
This can be written as follows:

T̂E =
Ned

Ne
× Nu

Np
(17)

where Ne is the number of extreme circuits (in the second
Monte Carlo circuit simulation), Ned is the number of the
faulty extreme circuits (in the second Monte Carlo circuit
simulation), Nu is the number of extreme circuits (those
exceeding the high threshold u in the first Monte Carlo circuit
simulation), and Np is the number of circuits that pass the test
(in the first Monte Carlo circuit simulation). These parameters
are illustrated in Figure 5.

Fig. 5. Parameters used to estimate test metrics using relative frequencies
of extreme circuits.

In the same way, for the case of yield loss as given by
Equation (8), YL is defined within the set of circuits that
are functional as the probability that the circuit fails the test
knowing that it is extreme, times the probability that the circuit
is extreme. This can be written as follows:

ŶL =
Nef

Ne
× Nv

Ng
(18)

where Ne is the number of extreme circuits (in the second
Monte Carlo circuit simulation), Nef is the number of the
extreme circuits that fail the test (in the second Monte Carlo
circuit simulation), Nv is the number of extreme circuits (those
exceeding the high thresholds v in the first Monte Carlo

circuit simulation), and Ng is the number of circuits that are
functional (in the first Monte Carlo circuit simulation).

In summary, the procedure to estimate TE according to
Equation (7) is as follows:

1) Run a first Monte Carlo circuit simulation in order to
generate N circuits, and build a classifier as in [5].

2) Consider Np ≤ N circuits p1, p2, ..., pNp
that pass the

test with n performances (i.e., pi = (p1i , p
2
i , ..., p

n
i )

where i = 1, ..., Np).
3) Calculate thresholds uj for each performance Pj . Each

threshold can be calculated in a precise manner using
the Mean Excess Function (MEF) as shown in Section
III-A if sufficient extreme values have been generated
in the first Monte Carlo simulation (Notice that if the
threshold is set automatically at a given q-quantile of the
distribution like 97%, 3% of the values p

j
i , i = 1, ..., Np

will be greater than uj and thus extreme, but it will not
be ensured that they will follow a GPD).

4) Run a second Monte Carlo circuit simulation in order to
generate Ne extreme circuits using the classifier learnt
in the first simulation.

5) From this new sample, select the Ned circuits that are
faulty, that is, those that violate at least one specification.

6) Estimate TE using Equation (17).
A similar procedure is used to estimate YL using Equation

(18).

B. Estimation of test metrics with a BGPD-II model

We develop next the BGPD-II model for test metrics esti-
mation. From Equation (7) we can write:

TE = Pr((P1 > s1 ∨ P2 > s2, · · · , Pn > sn) |
(P1 > u1 ∨ P2 > u2, · · · , Pn > un))×
Pr (P1 > u1 ∨ P2 > u2, · · · , Pn > un)

= [1− Pr((P1 ≤ s1 ∨ P2 ≤ s2, · · · , Pn ≤ sn) |
(P1 > u1 ∨ P2 > u2, · · · , Pn > un))]×
[1− Pr (P1 ≤ u1 ∨ P2 ≤ u2, · · · , Pn ≤ un)]

= [1− FA(s1, s2, · · · , sn)]×
[1− FB(u1, u2 · · · , un)] (19)

where FA(s1, s2, · · · , sn) is a MGPD-II calculated using
Equation (12), so that

FA(s1, s2, · · · , sn) = H(s1, s2, · · · , sn). (20)

FB(u1, u2, · · · , un) can be expressed in terms of the copula
CP of the performances as

FB(u1, · · · , un) = CP (FP1
(u1), · · · , FPn

(un)) . (21)

Figure 6 (a) shows the distributions FB(u1, u2) and (1 −
FB(u1, u2)) and Figure 6 (b) shows the distributions
FA(s1, s2) and (1 − FA(s1, s2)) in the bivariate case. The
Test escapes TE is calculated as

TE = [1−H(s1, s2)]× [1− CP (FP1(u1), FP2(u2))]

=

!
1−

"
−1

logG(0, 0)
log

G(s1, s2)

G(min{s1, 0},min{s2, 0})

#$
×

[1− CP (FP1(u1), FP2(u2))] . (22)



(a)

(b)

Fig. 6. (a) Distributions FB(u1, u2) and (1−FB(u1, u2)), (b) Distributions
FA(s1, s2) and (1− FA(s1, s2)).

In the same way, we can calculate the Yield Loss YL with
the extreme value model as

YL = [1− FC(l1, l2, · · · , lm)]×
[1− FD(v1, v2 · · · , vm)] (23)

where FC(l1, l2, · · · , lm) is a MGPD-II) calculated using
Equation (12). FD(v1, v2, · · · , vm) can be expressed in terms
of the copula CT of the test measures as

FB(v1, · · · , vm) = CT (FP1(v1), · · · , FPn(vm)) (24)

and the Yield loss YL is calculated as

YL = [1−H(l1, l2)]× [1− CT (FT1(v1), FT2(v2))]

=

!
1−

"
−1

logG(0, 0)
log

G(l1, l2)

G(min{l1, 0},min{l2, 0})

#$
×

[1− CT (FT1(v1), FT2(v2))] . (25)

V. TEST VEHICLE

Our case study is an RF Low Noise Amplifier (LNA) that
operates at 2.4 GHz and which is commonly used in narrow
band applications like Wifi and Bluetooth. The schematic is
shown in Figure 7.

Two sensors have been studied for a low-cost BIT solution.
First, an envelope detector (ED) is considered at the output of
the LNA. This sensor consists of a half-wave rectifier followed
by a low-pass filter that extracts the DC component from
the rectified signal [14]. The output of this sensor is directly

Fig. 7. CMOS inductive degeneration cascode LNA

Fig. 8. Layout of the chip.

related to the RF output amplitude of the LNA. Second, a
built-in current sensor (BICS) is used. It takes advantage of
the small resistance of the power line that connects the core
of the LNA to the power supply pad. Whenever a current
ICUT flows into the LNA, it generates a small voltage drop
across the resistor. This drop is processed by the sensor in
order to extract an output voltage proportional to the dynamic
power supply current. For measurement, the BICS output is
connected to the input of the envelop detector to extract the
DC component.

The chip design and layout are realised with a 0.25µm
BiCMOS process technology provided by NXP semiconduc-
tors. The layout of the LNA and the BIT sensors is shown in
Figure 8. Special care is taken to account for layout-induced
parasitics, including capacitive, resistive, inductive, as well
as mutual inductance effects. The extraction of parasitics is
carried out using the Assura tool and the circuits are re-sized
to meet the performance requirements. Post-layout simulations
using Spectre RF show that the nominal main performances
of the LNA are: NF = 2.72 dB, S11 = -22 dB, Gain = 16.4
dB, IIP1 = -7.5 dBm and IIP3 = 3 dBm.

We have a data set of a Monte Carlo circuit simulation
that contais 106 samples with the LNA performances and
the BIT sensor outputs [15]. For each sample, we have as
output parameters {NF, S11, Gain} and the test measures



{TED, TCS}. IIP1 and IIP3 are not available since their
simulation takes a very long time and it is not feasible for 106

circuits. This simulation took about three months. In order to
use the bivariate extreme value model described in this work
for the estimation of TE and YL, we select two out of the three
performances. We have also the two test measures. We notice
that the three-dimensional problem with three performances
needs to consider all pairs of performances and a more
complex model that is beyond the scope of this paper. The
performances that we have considered for illustration in this
work are Gain and NF , but it could have been any other pair.
The specifications of the two performances are set at k1σ, i.e.,

Gain ≥ sGain = µGain − k1 · σGain

NF ≤ sNF = µNF + k1 · σNF .

The test limits on TED and TCS are set at k2, i.e.,

TED ≥ lTED
= µTED

− k2 · σTED

TCS ≥ lTCS
= µTCS

− k2 · σTCS
.

VI. TEST METRICS ESTIMATION

In this Section, we will use the BGPD-II model to evaluate
the test metrics of the RF LNA BIT technique presented above
using a reduced number of extreme samples and we will
compare the results with those obtained using the full data
set.

A. Direct estimation using the full data set

Since we have a set of 106 samples, we can directly estimate
test metrics with ppm precision using the estimators given by
Equations (1) and (2). Figure 9 shows a scatterplot of 105

LNA samples from the full data set.

Fig. 9. 105 samples of LNAs generated from the Monte Carlo circuit level
simulation.

We have fixed the specifications at k1 = 4, whereas the test
limits are set at k2 ranging from 2 to 6 with a step of 0.1. The
obtained results for the TE and the YL are illustrated by the
curves represented by the circular markers in Figure 10.

Fig. 10. Comparison of the test metrics (TE and YL) obtained by the direct
estimation and by the estimation over the set of 38 · 103 extreme circuits.

B. Estimation using relative frequencies of extreme circuits

We estimate here the test metrics considering the procedure
presented in Section IV-A based on relative frequencies of ex-
treme circuits, and we will compare them with those obtained
using the direct estimation with 106 circuits.

We first consider N = 5000 Monte Carlo circuit simulations
(in practice, we pick up the first 5000 instances from the set
of 106). For different values of the test limits, from k2 = 2
to k2 = 6 with a step of 0.1, we select in each iteration only
circuits that pass the test. For example, for k2 = 4 the number
of the circuits that pass the test is equal to Np = 5000. Then,
this set is used to calculate the thresholds uNF = 2.78dB and
uGain = 15.47dB using the MEF function presented in III-A.
With these thresholds, we consider the second Monte Carlo
circuit simulation that requires a classifier in order to generate
a set of Ne = 38 ·103 extreme circuits. In practice, we pick up
the first 38 · 103 extreme circuits from the set of 106. Among
these, we select Ned circuits that are faulty, that is, those that
violate at least one specification. In the case where k1 = 4 and
k2 = 4 the value of Ned equals 147. The test metrics can then
be estimated for each value of k2 as mentioned above using
Equations (17) and (18). To estimate the YL we start with the
circuits that are functional instead of those that pass the test.
The obtained results of the TE and the YL are illustrated by
the curves represented by the squared markers in Figure 10.

We can see that the results obtained using Ne = 38 · 103
extreme circuits are very close to those obtained for the full
set of 106 circuits, which represents a reduction of 96%. In
summary, an accurate estimation of test metrics is obtained
with a fast Monte Carlo simulation. Figure 11 shows the
tolerance intervals [m̂ − 3σ̂, m̂ + 3σ̂] that are obtained by
repeating the computation 100 times for different data sets
and by estimating the mean m̂ and the standard deviation σ̂
of each test metric.

Note that these results are obtained with extreme circuits
obtained from the full data set. This corresponds to the case
of having an ideal classifier. In general, we will not have



Fig. 11. Tolerance intervals for the test metrics (TE and YL) as a function
of k1 = 4 and k2 = 2 to 6 with a step of 0.1 (estimated from a set of
38 · 103 extreme circuits).

a full data set and the required classifier will make errors,
biasing the distributions for the calculation of both terms in
Equations (17) and (18). It must be noticed that it was not
possible for us to build an actual classifier since we only have
the data set. Alternatively, we have considered the injection of
errors by randomly selecting a set of extreme and non extreme
circuits and changing the status of the selected extreme circuits
to non extreme circuits, and the status of the selected non
extreme circuits to extreme circuits. We consider the case of
1000, 2000, 3000, 4000, 5000 and 10000 misclassified extreme
circuits and we analyze the effect for the case of the Test
Escapes TE only, for simplicity, as shown in Figure 12. For
the case of the test limits placed at 4σ, Figure 13 shows the
mean error in the estimation of the test metrics for each level
of misclassified circuits.

Fig. 12. Estimation of the mean Test Escapes for different error levels of
misclassified extreme circuits using relative frequencies.

C. Estimation using the BGPD-II model

We estimate now the test metrics by constructing the model
presented in Section IV-B and will compare the results of
the different approaches. As before, we first run N = 5000
Monte Carlo circuit simulations for extracting the threshold of
exceedances and the copula functions required in Equations

Fig. 13. Mean estimation error of the Test Escapes as a function of the level
of misclassified extreme circuits using relative frequencies for the test limits
placed at 4σ.

(22) and (25). In practice, we pick up the first 5000 instances
from the set of 106 and we select only circuits that pass the
test for the case of TE . For example, for k2 = 4 the number
of the circuits that pass the test is equal to Np = 5000. The
obtained values of the thresholds are already calculated before
uNF = 2.78dB and uGain = 15.47dB.

Figure 14 shows the marginal distributions FNF (x) and
FGain(x) that fit a GPD. The parameters of these distributions
are given in Table I and they have been validated by the
Kolmogorov-Smirnov test. Figure 15 shows the empirical
copula CP (FNF (x), FGain(x)) which is Gaussian with a
correlation factor ρ = −0.84. With all these parameters we
calculate the second term of Equation (22) that gives

1− CGauss (FNF (uNF ), FPGain
(uGain)) = 0.04008141.

(a) (b)

Fig. 14. The marginal distributions for NF (a) and Gain (b) for the circuits
that pass the test (exceedances beyond threshold u).

We calculate next the first term of the TE . Considering the
thresholds found in the previous step, we run the second Monte
Carlo circuit simulation that requires a classifier in order to
generate a set of 38 ·103 extreme circuits. In practice, we pick
up the first 38 · 103 extreme circuits from the set of 106 that



TABLE I
THE PARAMETERS OF THE MARGINAL DISTRIBUTIONS OF NF AND Gain

Marginal location scale shape
Distribution µ σ ξ

NF 0 0.0249576 −0.0904312
Gain 0 0.011563367 0.0249576

Fig. 15. The empirical copula CP (Gain(x), NF (x)).

verify Gain < uGain or NF > uNF . The obtained circuits
are presented in Figure 16.

Fig. 16. Extreme circuits that pass the test.

By comparing Figures 16 and 4(b), we see that the model is
likely a BGPD, the marginal distributions have already proven
to be GPDs, and the extreme dependence model V (x, y) is
the Negative Logistic model given by Equation (16). This has
been validated using the test proposed in [10]. This model
depends on the dependence parameter α which is estimated
from the copula of the extreme samples that verify NF >

uNF and Gain < uGain as illustrated in Section III-C.1.
Figure 17(a) shows these samples and Figure 17(b) shows their
empirical copula. This copula is a Gumbel copula and has been
validated with the Cramér-Von Mises test [16]. Therefore, α
is estimated using Equation (14).

We can now calculate the BEVD G(x, y) given by Equation
(13) and with this the first term of Equation (22). For example,

(a) (b)

Fig. 17. (a) Extreme samples that verify NF > uNF and Gain < uGain,
(b) their empirical copula.

for the test limit k2 = 3.5, the obtained value is

1−
"

−1

logG(0, 0)
log

G(s1, s2)

G(min{s1, 0},min{s2, 0})

#
= 0.00883411

and the value of the Test escapes TE for this test limit is

TE = 0.04008141× 0.00883411 = 0.000354 (354ppm).

We have calculated the TE for different values of the test
limits, from k2 = 2 to k2 = 6 with a step of 0.1 as shown
with circular markers in Figure 18.

Fig. 18. Comparison of the test metrics (TE and YL) obtained by the direct
estimation with the full data set and by the estimation using the BGPD-II
model with 38 · 103 extreme circuits.

The same procedure is used to estimate the YL with the
following changes:

• Replace the set of circuits that pass the test by circuits
that are functional.

• The YL is calculated with Equation (25), where the
threshold u1 must be replaced by the threshold v1 =
−0.4109976 and the threshold u2 by v2 = −0.4176371.

• Replace the copula CP by CT . We found that the copula
CT is Gaussian with a correlation factor ρ = 0.188215.

• The marginal distributions FTED(x) and FTCS(x) are the
Generalized Pareto Distributions. Their histograms fit a



(a) (b)

Fig. 19. The marginal distributions of the exceedances of the test measures
TED (a) and TCS (b).

TABLE II
THE PARAMETERS OF THE MARGINAL DISTRIBUTIONS OF TED AND TCS

Marginal location scale shape
Distribution µ σ ξ

TED 0 0.0117069 −0.02050995
TCS 0 0.0130899 −0.182502

GPD as shown in Figure 19 with the parameters given in
Table II validated by the Kolmogorov-Smirnov test.

As an example, for a test limit of k2 = 3.5, the first term
of Equation (25) is equal to 0.006193789, the second term is
equal to 0.05097219, and YL = 0.006193789×0.05097219 =
0.000315711 (316ppm). We have calculated YL for different
values of the test limits, from k2 = 2 to k2 = 6 with a
step of 0.1 as shown in Figure 18. In summary, we can see
that the results obtained with the BGPD-II are very close to
those obtained with the full set of 106 circuits. The tolerance
intervals are shown in Figure 20.

Fig. 20. Tolerance intervals for TE and YL as a function of limits k1 = 4
and k2 = 2 to 6 with a step of 0.1 (estimated using the BGPD-II model with
38 · 103 extreme circuits).

Here again, we note that these results are obtained with
extreme circuits from the full data set which correponds to
the case of an ideal classifier. As for the previous Section, we
consider next the case of 1000, 2000, 3000, 4000, 5000 and

10000 misclassified extreme circuits as shown in Figure 21
for the case of TE . For the case of the test limits placed at
4σ, Figure 22 shows the model mean error in the estimation
for each level of misclassified circuits with square markers
that we can compare with the mean error obtained with direct
relative frequencies. The mean error in the estimation using
the relative frequencies of extreme circuits is higher when
the level of misclassified circuits is below 2500. In other
words, the BGPD-II model is more accurate when the level of
misclassified circuits is below 6.6% which is a very reasonable
assumption.

Fig. 21. Estimation of the mean Test Escapes for different error levels of
misclassified extreme circuits using the BGPD-II model.

Fig. 22. Comparison of the TE mean estimation error as a function of
the level of misclassified extreme circuits for the two approaches (relative
frequencies and the BGPD-II model) and the test limits placed at 4σ.

As future work, we expect to develop the MGPD-II model
beyond two dimensions which will allow a study of the effet
of the number of dimensions in the estimation error. Also, we
will be able to compare the use of the MGPD-II approach
described here with the technique proposed in [8], where the
multidimensional problem has been transformed into a one-
dimensional problem with the use of a univariate EVT model.
This comparison could be done in terms of the number of
extreme random variables, the test metrics estimation error
and the number of extreme circuit samples required. We note,



however, that in our approach we do not require all variables to
exceed the threshold at the same time as in the case of [8], and
since we take advantage of the estimation of tail dependencies,
it is likely that our approach will require a lower number of
extreme samples with the corresponding reduction in electric
circuit simulation time.

VII. CONCLUSION

A multivariate EVT method to estimate analog test metrics
such as TE and YL has been presented in this paper. To
our knowledge, this is the first time that test metrics are
estimated using a multivariate extreme value model. An RF
LNA BIT technique is used as a case-study, showing very
accurate results for the estimation of test metrics. With the
specifications set at 4σ, a set of only 38 · 103 extreme circuits
is considered instead of the full set of 106 circuits required to
obtain ppm precision, which represents a reduction of 96%.
This set of 38 · 103 extreme circuits can easily be generated
by Monte Carlo circuit simulation, in combination with a
statistical learning technique. We have presented two ways to
estimate the test metrics using the extreme circuits. The first
one is based on the direct estimation of relative frequencies
over the set of extreme circuits. The second method is based on
estimating a BGPD-II model from the set of extreme circuits.
The estimation error is mostly dependent on the level of errors
that the statiscal learning classifier will produce. We have
been able to show the advantage of the EVT model over a
direct estimation under the presence of a reasonable number
of misclassified extreme circuits. Futher work will be directed
to develop a multivariate model of higher dimensionality and
to evaluate the quality of the estimation in terms of the number
of extreme random variables and the number of extreme circuit
samples required.
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