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Background: Multifractal analysis of human heartbeat dynamics has been demonstrated to provide promising markers of congestive heart failure (CHF). Yet, it crucially builds on the interpolation of RR interval series which has been generically performed with limited links to CHF pathophysiology. Objective: We devise a novel methodology estimating multifractal autonomic dynamics from heartbeat-derived series defined in the continuous time. We hypothesize that markers estimated from our novel framework are also effective for mortality prediction in severe CHF. Methods: We merge multifractal analysis within a methodological framework based on inhomogeneous point process models of heartbeat dynamics. Specifically, wavelet coefficients and wavelet leaders are computed over measures extracted from instantaneous statistics of probability density functions characterizing and predicting the time until the next heartbeat event occurs. The proposed approach is tested on data from 94 CHF patients aiming at predicting survivor and nonsurvivor individuals as determined after a four years follow up. Results and Discussion: Instantaneous markers of vagal and sympathovagal dynamics display power-law scaling for a large range of scales, from ≃0.5 to ≃100 s. Using standard support vector machine algorithms, the proposed inhomogeneous point-process representation-based multifractal analysis achieved the best CHF mortality prediction accuracy of 79.11% (sensitivity 90.48%, specificity 67.74%). Conclusion: Our results suggest that heartbeat scaling and multifractal properties in CHF patients are not generated at the sinus-

I. INTRODUCTION

N ONLINEAR dynamics of human cardiovascular oscilla- tions has long been recognized throughout the past two decades [START_REF] Sunagawa | Dynamic nonlinear vago-sympathetic interaction in regulating heart rate[END_REF]- [START_REF] Schäfer | Heartbeat synchronized with ventilation[END_REF]. In fact, because of the multiple dynamical interplay with other physiological systems (e.g., endocrine, neural, and respiratory), as well as multiple biochemical processes, combined sympathetic and vagal stimulations on heart rate control are not simply additive [START_REF] Sunagawa | Dynamic nonlinear vago-sympathetic interaction in regulating heart rate[END_REF]. Consequently, standard estimates from heartbeat dynamics defined in the time and frequency domains [START_REF] Acharya | Heart rate variability: A review[END_REF], which intrinsically assume that the magnitude of cardiac responses is proportional to the strength/amplitude of the autonomic stimuli, need complementary nonlinear/multiscale metrics (see [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF], [START_REF] Acharya | Heart rate variability: A review[END_REF]- [START_REF] Nakamura | Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications[END_REF] and references therein for reviews). Among others, fractal theory has been giving a major contribution in understanding complex cardiovascular dynamics especially involving nonlinear cardiovascular control and related autonomic nervous system (ANS) activity [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF], [START_REF] Yamamoto | On the fractal nature of heart rate variability in humans: Effects of data length and beta-adrenergic blockade[END_REF], [START_REF] Captur | The fractal heart-embracing mathematics in the cardiology clinic[END_REF]- [START_REF] Wendt | Multiscale wavelet p-leader based heart rate variability analysis for survival probability assessment in CHF patients[END_REF]. Recently, a robust and efficient procedure relying on the use of multiscale representation and wavelet leaders, has been proposed to conduct multifractal analysis [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF] and tested on heartbeat series [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF], [START_REF] Wendt | Multiscale wavelet p-leader based heart rate variability analysis for survival probability assessment in CHF patients[END_REF].

A paradigmatic clinical application of these metrics refers to severe congestive heart failure (CHF) [START_REF] Kiyono | Non-gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF], [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]. Indeed, nonlinear measures derived from bispectral, entropy, and non-Gaussian analyses have been proven effective in discerning healthy subjects from CHF patients at a group-wise level [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF], [START_REF] Acharya | Heart rate variability: A review[END_REF], [START_REF] Yamamoto | On the fractal nature of heart rate variability in humans: Effects of data length and beta-adrenergic blockade[END_REF], [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]- [START_REF] Valenza | Estimation of instantaneous complex dynamics through lyapunov exponents: A study on heartbeat dynamics[END_REF]. Also in CHF patients, departures from Gaussianity were used to evaluate increased mortality risk [START_REF] Kiyono | Non-gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF], and compared against fractal exponent [START_REF] Mäkikallio | Fractal analysis and time-and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure[END_REF]. Leveraging on the socalled cardiovascular fractal complexity at many spatial and temporal scales, multifractal analyses were successfully employed to model ANS regulatory actions and related temporal fluctuations in CHF heartbeat dynamics [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF], [START_REF] Acharya | Heart rate variability: A review[END_REF], [START_REF] Yamamoto | On the fractal nature of heart rate variability in humans: Effects of data length and beta-adrenergic blockade[END_REF], [START_REF] Kiyono | Critical scale-invariance in healthy human heart rate[END_REF], [START_REF] Sassi | Multifractality and heart rate variability[END_REF]. Additionally, in discerning the healthy from CHF patients, Dutta [START_REF] Dutta | Multifractal properties of ECG patterns of patients suffering from congestive heart failure[END_REF] reported on the dependency of parameters on multifractal spectra, whereas Galaska et al. [START_REF] Galaska | Comparison of wavelet transform modulus maxima and multifractal detrended fluctuation analysis of heart rate in patients with systolic dysfunction of left ventricle[END_REF] pointed on advantages of multifractal detrended fluctuation analysis.

Nevertheless, several limitations can be pointed out in dealing with current multiscale approaches: i) the intrinsic discrete nature of the unevenly sampled R-R interval series can lead to estimation errors; considering the series as inter-events does not allow for matching time scales, and may be missing intrinsic generative properties as reflected in complex dynamics; ii) the application of preliminary interpolation procedures could affect complexity estimates, with a bias from the specific interpolation function (e.g., linear, polynomial, etc.); iii) multifractal analysis has always been performed over series of heartbeat dynamics exclusively; therefore it is unknown whether scale-free properties arise from the nonlinear/complex interactions between sympathetic and parasympathetic activity at the level of the sinoatrial node (as thoroughly reported in [START_REF] Sunagawa | Dynamic nonlinear vago-sympathetic interaction in regulating heart rate[END_REF]), or whether there are already intrinsic multifractal properties in each autonomic dynamics per se; iv) specifically for CHF, an effective prediction of mortality risk, as well as risk stratification, at a single-subject level with enough accuracy for a direct application in clinical practice [START_REF] Kiyono | Non-gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF], [START_REF] Wendt | Multiscale wavelet p-leader based heart rate variability analysis for survival probability assessment in CHF patients[END_REF], [START_REF] Nolan | Prospective study of heart rate variability and mortality in chronic heart failure: Results of the United Kingdom heart failure evaluation and assessment of risk trial[END_REF], [START_REF] Mäkikallio | Fractal analysis and time-and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure[END_REF] is still missing.

To overcome these limitations, in this study we propose a novel methodology combining multifractal analysis and inhomogeneous point-process models, which have been specifically devised for cardiovascular dynamics [START_REF] Valenza | Point-process nonlinear models with Laguerre and Volterra expansions: Instantaneous assessment of heartbeat dynamics[END_REF], [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF]. Specifically, we propose multiscale representation and the so-called wavelet p-leaders, i.e., local ℓ p norms of wavelet coefficients [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF], [START_REF] Leonarduzzi | p-exponent and p-leaders, part ii: Multifractal analysis. relations to detrended fluctuation analysis[END_REF] of moments derived from probability density functions (PDFs) characterizing and predicting the time until the next heartbeat event occurs. To this extent, we proposed the use of inhomogeneous point-processes to effectively characterize the probabilistic generative mechanism of heartbeat events, even considering short recordings under nonstationary conditions [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF]. The unevenly spaced heartbeat intervals are then represented as multiscale quantities of a state-space point process model defined at each moment in time, thus allowing to estimate instantaneous measures without using any interpolation method, therefore overcoming limitations i) and ii). We demonstrate how to capture fluctuations of regularity in heartbeat data by scanning all details finer than the chosen analysis scale [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF], [START_REF] Wendt | Multiscale wavelet p-leader based heart rate variability analysis for survival probability assessment in CHF patients[END_REF]. To compare our method against a more standard approach, we also investigate the use of a non-informative standard spline-based interpolation. Finally, we here study multiscale properties of heartbeat-derived series with high resolution in time, including long-term instantaneous mean heart rate, standard deviation, and low-frequency (LF) and high-frequency (HF) spectral powers, which correspond to time-varying vagal activity estimates [START_REF] Acharya | Heart rate variability: A review[END_REF], thus overcoming limitation iii). Application of these metrics is then performed on experimental data gathered from 94 CHF patients by evaluating the recognition accuracy in predicting survivor and non-survivor patients after a 4 years follow up, demonstrating how to overcome limitation iv). Of note, preliminary results associated with this study were presented in [START_REF] Valenza | Point-process high-resolution representations of heartbeat dynamics for multiscale analysis: A CHF survivor prediction study[END_REF], [START_REF] Valenza | Multiscale properties of instantaneous parasympathetic activity in severe congestive heart failure: A survivor vs non-survivor study[END_REF], in which a wavelet leader-based multiscale representation was applied to instantaneous heartbeat series as well as to instantaneous vagal activity series. Here, we significantly expand on these results by generalizing the development of the methodology to be suitable for generic inhomogeneous point processderived heartbeat dynamics series defined in continuous time, as well as by increasing the number of patients involved in the experiment, and accounting for their clinical characteristics. Furthermore, the scale dependent features resulting from the proposed methodology have been exploited through nonlinear support vector machines and related feature selection procedures.

II. MATERIALS AND METHODS

In this Section, we provide theoretical and methodological details on the proposed multifractal approach for inhomogeneous point-processes of heartbeat dynamics. The overall processing chain is shown in Fig. 1. Specifically, automatic R-peak detection is performed on artifact-free ECG series from each CHF patient enrolled in this study. Recognition and correction of eventual algorithmic (e.g., R-peak mis-detection) and/or physiological artifacts (e.g., ectopic beats) was performed through our recently proposed log-likelihood point process-based method [START_REF] Citi | A real-time automated point-process method for the detection and correction of erroneous and ectopic heartbeats[END_REF]. Then, for each RR interval series from each subject, a continuous PDF in time, in the form of inverse-Gaussian distribution, is estimated for each heartbeat event considering the long-term past events. From such continuous PDFs, multiscale representations of a number of instantaneous estimates defined in the time (e.g., mean heart rate and standard deviation) and frequency domains (e.g., LF and HF powers) are derived. Finally, these and further features are fed into a standard Support Vector Machine (SVM) to predict mortality in CHF patients at a single- subject level. Validation was performed through a leave-one-out procedure. Mathematical details of each processing stage follow below.

A. Experimental Data

24-hour Holter ECG recordings from a cohort of 94 patients suffering from CHF were made available by the Fujita Health University Hospital, Japan. Of these patients, 31 died within 33 ± 17 months (range, 1-49 months) after hospital discharge, whereas 61 survived for a longer time. The former group is referred to as non-survivors (NS) and the latter as survivors (SV). Further clinical details can be found in [START_REF] Kiyono | Non-gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF]. For each patient, R peak arrival times were carefully extracted from 24-hour Holter ECG recordings. Missing data and outliers stemming from atrial or ventricular premature complexes were handled by our preprocessing automated tools [START_REF] Citi | A real-time automated point-process method for the detection and correction of erroneous and ectopic heartbeats[END_REF]. All RR interval series were also checked by visual inspection analysis. Subjects with sustained tachyarrhythmias were excluded from the study. Baseline clinical characteristics of the patients enrolled in this study are shown in Table I. The study was approved by the ethics committee of Fujita Health University and conformed to the principles outlined in the Declaration of Helsinki. All patients provided written informed consent.

B. Multiscale Analysis

1) Self-Similarity and Wavelets: Classical multiscale analysis relies on the estimation of wavelet coefficients, which are obtained by comparing the cumulated sum of a series of RR intervals {R R} to the collection {ψ j,k (t) = 2 -j ψ(2 -j tk)} ( j,k)∈N 2 of dilated and translated templates of a mother wavelet ψ via inner products, d {R R} ( j, k) = ψ j,k |{R R} (see, e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] for details on wavelet transforms).

For self-similar processes {R R} such as fractional Brownian motion, which are commonly used models for heartbeat dynamics series [START_REF] Kiyono | Critical scale-invariance in healthy human heart rate[END_REF], the so-called wavelet structure functions S(q, j) display power laws with respect to scale j and order of sample moments q: S(q, j) =

n j k=1 |d {R R} ( j, k)| q ≃ K q 2 jq H (1)
with n j the number of d {R R} ( j, k) available at scale 2 j . The Hurst parameter H and the function S(q = 2, j) are directly related to the distribution of energy along frequencies (i.e., to the Fourier spectrum or autocorrelation of {R R}). They are hence linear features of {R R} that can be efficiently estimated using wavelets [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF], [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF].

2) Multifractal Models and Wavelet p-Leaders: It has been demonstrated that self-similar models describe only parts of the scaling properties in HRV data and that multifractal models could provide more complete descriptions (see, e.g., [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF], [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF]). These models essentially imply that the linear scaling exponents q H in (3) should be replaced with a more flexible, concave function ζ (q), and that the parameter H alone can no longer account for all scaling properties in HRV data. To correctly estimate ζ (q), wavelet coefficients must be replaced with non-linear multiscale quantities that sense the local regularity fluctuations in data across all finer scales [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]. In this study, we employ the wavelet p-leaders, which have recently renewed the state-of-the-art for the estimation of multifractal models [START_REF] Leonarduzzi | p-exponent and p-leaders, part ii: Multifractal analysis. relations to detrended fluctuation analysis[END_REF], for the primitive {R R} ′ (t) = t {R R}(s)ds of {R R}. They are defined as ℓ p -norms, computed in a narrow time neighborhood over all finer scales, of the wavelet coefficients of {R R} ′ ,

L ( p) {R R} ′ ( j, k) = 2 j λ ′ ⊂3λ j,k |d {R R} ′ (λ ′ )| p 2 -j ′ 1/ p , (2) 
with λ j,k = [k2 j , (k + 1)2 j ) and 3λ j,k = m∈{-1,0,1} λ j,k+m . The parameter p > 0 must be chosen to ensure minimal regularity constraints (cf. [START_REF] Leonarduzzi | p-exponent and p-leaders, part ii: Multifractal analysis. relations to detrended fluctuation analysis[END_REF] and references therein for details on multifractal analysis, beyond the scope of this contribution).

Below, we use p = 1, which have been shown to yield lowest variance [START_REF] Leonarduzzi | p-exponent and p-leaders, part ii: Multifractal analysis. relations to detrended fluctuation analysis[END_REF]. it has been shown that the multifractal properties of {R R} are well described by a multiscale representation consisting of the sample cumulants Cum m of the logarithm of p-leaders ln L ( p)

{R R} ′ ( j, •) [10] C m ( j) ≡ Cum m ln L ( p) {R R} ′ ( j) ≃ c 0 m + c m ln 2 j . (3) 
In particular, the coefficients c m are related to ζ (q) via the polynomial expansion ζ (q) ≡ m≥1 c m q m /m! (and hence to the multifractal spectrum, cf., [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF] for details). Consequently, the leading coefficients c 1 and C 1 ( j) are closely related to H and S(2, j), respectively, and constitute linear features associated to the autocorrelation of {R R} [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF], [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF], while C 2 ( j), C 3 ( j) and C 4 ( j) (the variance, skewness and kurtosis of ln

L ( p)
{R R} ′ ( j), respectively) and c 2 , c 3 and c 4 (related to the multifractal properties of {R R}) are nonlinear features that capture information beyond correlation.

C. Instantaneous Autonomic Features for Multifractals

1) Point Process Models:

We model the unevenly sampled RR interval series through inverse-Gaussian PDFs whose firstorder moment (the mean µ R R (t, H t , ξ (t)), with H t as the history of past RR intervals, ξ (t) the vector of the time-varying parameters, and ξ 0 (t) the shape parameters of the inverse-Gaussian) has an autoregressive formulation. Importantly, the use of an inverse Gaussian distribution f (t|H t , ξ (t)) is physiologically motivated, as it models the integrate-and-fire mechanism of the cardiac contraction [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF]).

The inverse Gaussian is defined as:

f (t|H t , ξ (t)) = ξ 0 (t) 2π (t -u j ) 3 1 2 × exp - 1 2 ξ 0 (t)[t -u j -µ(t, H t , ξ (t))] 2 µ(t, H t , ξ (t)) 2 (t -u j ) (4) 
with j = N (t) the index of the previous R-wave event before time t, and:

µ R R (t, H t , ξ (t)) = γ 0 + p i=1 γ 1 (i, t) R R N (t)-i (5) 
where

H t = (u j , R R j , R R j-1 , ..., R R j-p+1 ), ξ (t) = [ξ 0 (t), γ 0 (t), γ 1 (1, t), ..., γ 1 ( p, t)],
and ξ 0 (t) > 0. Since these PDFs are defined at each moment in time, it is possible to obtain an instantaneous estimate of µ R R (t) at a very fine time scale (with an arbitrarily small bin size ), which requires no interpolation between the arrival times of two beats, therefore addressing the problem of dealing with unevenly sampled observations. This key advantage, particularly useful when dealing with multifractality, applies also for the derivation of spectral measures, following the estimation of µ R R (t, H t , ξ (t)).

2) Model Identification: We estimate the parameter vectors ξ (t) at each time interval = 5 ms using a Newton-Raphson procedure to compute the local maximum-likelihood estimate [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF] using observations within a time window of 90 s. Because there is significant overlap between adjacent local likelihood intervals, we start the Newton-Raphson procedure at t with the previous local maximum-likelihood estimate at time t -, where defines the time interval shift to compute the next parameter update. We determine the optimal model order { p} by pre-fitting the point process model to a subset of the data. Model goodness-of-fit is based on the Kolmogorov-Smirnov (KS) test and associated KS statistics. The recursive, causal nature of the estimation allows to predict each new observation, given the previous history independently at each iteration. The model and all its parameters are therefore also updated at each iteration, without priors. In other words, each test point R R k is tested against one instance of a time-varying model trained with points {R R j } with j < k. Autocorrelation plots are also considered to test the independence of the model-transformed intervals. Once the order { p} is determined, the initial model coefficients are estimated by the method of least squares. Extensive details on all these steps can be found in [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF].

3) Feature Selection: Our framework allows for a quantitative characterization of autonomic features based on instantaneous time-and frequency-domain estimations. Time-domain indices are based on the first and the second order moments of the underlying probability structure. Namely, given the time-varying parameter set ξ (t), the instantaneous estimates

of mean µ R R (t, H t , ξ (t)), R-R interval standard deviation σ 2 R R (t, H t , ξ (t)), mean heart rate µ H R (t, H t , ξ (t))
, and heart rate standard deviation σ H R (t, H t , ξ (t)) can be derived at each moment in time as follows [START_REF] Valenza | Point-process nonlinear models with Laguerre and Volterra expansions: Instantaneous assessment of heartbeat dynamics[END_REF], [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF]:

σ 2 R R (t, H t , ξ (t)) = µ 3 R R (t)/ξ 0 (t). (6) 
µ H R(t,H t ,ξ (t)) = μ R R -1 + ξ 0 (t) -1 (7) σ H R (t, H t , ξ (t)) = 2 μ R R + ξ 0 (t) μ R R ξ 0 2 (t) 1/2 (8) 
Linear power spectrum estimation allows for selection of autonomic features in the frequency domain. In particular, given the model of µ R R (t, H t , ξ (t)), we can compute the time-varying parametric (linear) autospectrum [START_REF] Valenza | Point-process nonlinear models with Laguerre and Volterra expansions: Instantaneous assessment of heartbeat dynamics[END_REF], [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF] as follows:

Q( f, t) = σ 2 R R H 1 ( f, t)H 1 (-f, t) (9) 
where H 1 represents the Fourier transform of the γ 1 terms (see ( 5)). By integrating [START_REF] Kiyono | Non-gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF] in each frequency band, we compute the indices within the very low frequency (VLF = 0 + -0.04 Hz), low frequency (LF = 0.04-0.15 Hz), and high frequency (HF = 0.14-0.45 Hz) ranges, along with their ratio (L F/H F). In the end, the instantaneous feature set considered for further analyses is as follows:

µ R R (t), ξ 0 (t), σ 2 R R (t), V L F(t)

, L F(t), H F(t), L F/H F(t).

The information about the long-term, time-varying dynamics of each given instantaneous feature can then be summarized using a subset of exponents ζ (2), c 1 , c 2 , c 3 , c 4 , estimated for each range of scales j = 1, . . . , 8, as well as a subset of multiscale representation log 2 S(2, j), C 1 ( j), C 2 ( j), C 3 ( j), C 4 ( j) for j ∈ [ j m , j M ], estimated for each range of scales j = 5, . . . , 19.

D. Statistical Testing and Pattern Recognition

First, from the heartbeat series, we investigated the scaling properties and predictive value in the frame of CHF for: i) heartbeat series as interpolated using the informative Point Process model, i.e., µ R R (t); ii) heartbeat series as interpolated using a standard non informative Spline-based interpolation, referred to as the Spline Interpolated time series.

The analysis is conducted using Daubechies3 wavelets.

As mentioned in Feature Selection, for each feature µ R R (t), We then evaluated between-group differences (NS vs. SV) for every feature using bivariate non parametric statistics (Mann-Whitney test) under the null hypothesis that the between-subject medians of the two groups are equal.

ξ 0 (t), σ 2 R R (t), V L F(t), L F(t), H F(t), L F/H F(t),
Furthermore, we employed an automatic classification algorithm based on well-known SVM in order to automatically discern NS vs. SV at a single subject level. To this extent, a multidimensional point in a given feature set was considered an outlier if z-scores associated to its dimensions were greater than 2.58 (i.e., p < 0.01). To assess the out-of-sample predictive accuracy of the system, we adopted a Leave-One-Out (LOO) procedure based on a SVM-based classifier. Specifically, we employed a ν-SVM (ν = 0.5) with a sigmoid kernel function with γ = n -1 , where n is equal to the number of features. Within the LOO scheme, the training set was normalized by subtracting the median value and dividing by the median absolute deviation over each dimension. These values were then used to normalize the example belonging to the test set. During the LOO procedure, this normalization step was performed on each fold.

In order to optimize the number of features to be used for the NS vs. SV classification and to provide meaningful information for the physiopathology-related discussion of results, we applied a support vector machine recursive feature elimination (SVM-RFE) procedure. Such a procedure was carried out on the training set at each LOO fold. Then, the mode of all ranks was considered for further analyses. Note that SVM-RFE includes a correlation bias reduction strategy into the feature elimination procedure [START_REF] Yan | Feature selection and analysis on correlated gas sensor data with recursive feature elimination[END_REF]. All analyses were performed using Matlab (MathWorks, Natick, Massachusetts, USA) v8.4 and an additional toolbox for pattern recognition (LIBSVM [START_REF] Chang | Libsvm: A library for support vector machines[END_REF]). Classification results are summarized as balanced recognition accuracy, sensitivity and specificity.

III. RESULTS

Between SV and NS patients, there were no significant differences with regard to age, sex, disease severity according to New York Heart Association classification, left ventricular ejection fraction, use of beta-blockers, angiotensin-converting enzyme inhibitor, and number of ventricular premature beats per hour. NS patients exhibited higher prevalence of ischemic events, higher plasma brain natriuretic peptide, blood urea nitrogen, and creatinine, lower hemoglobin, and were treated more frequently with diuretics during Holter recording (see Table I). 

A. Comparison Between Multifractals of Point-Process and Standard Interpolation

The wavelet coefficient-based representations log 2 S(2, j) and C 1 ( j) (related to self-similarity) and p-leader based representations C 2 ( j), C 3 ( j), C 4 ( j) (quantifying multifractality) for the informative point-process time series µ R R (t), for noninformative cubic spline interpolation time-series, as well as for raw RR interval data R R, are shown in Fig. 2 as a function of scale 2 j . Scales have been translated to physical units (seconds) using the inverse of the central frequency of the wavelet. Because of the intrinsic ambiguity in the unevenly sampled raw RR interval series, associated scales are qualitatively matched using the average over RR inter-arrival times for all NS or SV subjects, respectively. This enables us to compare multiscale representations obtained from each method, as functions of equivalent scales, for NS and SV subjects. The blue shaded area indicates the finer resolution time scales that cannot be assessed for the raw RR interval data (for the mother wavelet used here, smaller than ≃ 2 s).

Results clearly show that the multiscale representations for the three time series are essentially identical at large time scales (i.e., above ≃10 s), therefore not altering actual coarse time scales. This is to be expected for the spline interpolation, and validates the proposed physiologically-informative quantification strategy.

The finer scales below ∼ 2 s do not exist for original R R series but can be computed for the interpolated data. Important differences between physiologically-informative point processderived heartbeat series and smooth deterministic spline interpolated series are shown, confirming the difference in the two approaches. For the finest two time scales of RR intervals (∼ 2 -10 s), the scaling behaviour is broken and departs from that observed at intermediary ≥10 s. For these scales, Fig. 3. Scaling and multifractal properties of physiologically-informative point process-derived series of heartbeat dynamics between SV and NS patients with severe CHF. The blue shaded areas indicate time scales not directly available from raw RR intervals. The red shaded areas represent scales for which statistically significant differences between SV and NS patients exist.

the spline interpolated time series show scaling in agreement with coarser scales for the (linear) self-similar representations log 2 S(2, j), C 1 ( j), but they suffer from the same drawback as R R for C 2 ( j), C 3 ( j), C 4 ( j).

In contrast, the physiologically-informative point-process model leads to a clean continuation of the scaling behaviour that is manifested at coarser scales for log 2 S(2, j), C 1 ( j) as well as for the multifractal representations C 2 ( j), C 3 ( j), C 4 ( j). This is particularly striking for C 4 ( j), for which scaling is continued to one order of magnitude finer times scales than what can be observed on R R.

B. Scaling Properties Between CHF Survivors and Non-Survivors

The favourable comparison of the observed scale invariance properties for the informative point process-derived time-series µ R R (t) motivates a closer investigation of the scaling and multifractal properties of other instantaneous estimates provided by this model. Since S(2, j) and C 1 ( j) quantify essentially the same information, we discard S(2, j) here and focus on the representations C 1 ( j), C 2 ( j), C 3 ( j), C 4 ( j) for the sake of conciseness.

Fig. 3 reports these representations (from top to bottom) for the time series µ RR (t), ξ 0 (t), σ 2 R R (t), H F(t), L F(t), V L F(t), L F/H F(t) (from left to right), as a function of scale. In addition, scales for which the difference between NS and SV is significant (Wilcoxon rank-sum p-values below the value 0.05) are shaded in red (uncorrected p-values). Results indicate that the time series µ R R (t), ξ 0 (t), σ 2 R R (t), H F(t) display power law scaling from ∼ 0.5 s to ∼ 82 s. These scaling properties are observed both for the NS and SV groups. For ξ 0 (t), the shape parameter of inverse-Gaussian PDFs, scale invariance appears to be perturbed for scales ∼ 2 -10 s. Within this interval, significant discerning between SV and NS patients with CHF are associated with multifractal representations C 3 ( j), C 4 ( j). This is consistent with previous evidences reporting that parasympa-thetic activity affects complexity at short and long time scales, with maximum at precisely the range of scales ∼ 2 -10 s [START_REF] Silva | The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics[END_REF].

A second, different scaling regime is observed for coarse time scales beyond 82 s, yet is apparently non-informative for CHF clinical application, because the multiscale representations similarly converge for NS and SV. In contrast, the difference between NS and SV are almost systematically significant for finer scales for the multifractal representation C 3 ( j), C 4 ( j).

Importantly, such significant differences are not observed for the original RR time series. Also, interestingly, for ξ 0 (t), these scales with significant differences largely overlap with those where scaling is observed to be perturbed.

For the time series V L F(t), L F(t) and L F/H F(t) of instantaneous spectral measures, scale invariance in form of power laws is evidenced exclusively for scales larger than ∼100 s, again both for NS and SV. This indicates that the scaling properties of combined (because of the overlap in the LF band) instantaneous sympathetic and parasympathetic activities can be considered a signature of slower physiological phenomena than those observed for the other time series. This is consistent with previous evidences reporting that sympathetic activity affects complexity only at long time scales [START_REF] Silva | The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics[END_REF], constituting best predictors of mortality following myocardial infarct or heart failure (see [START_REF] Silva | The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics[END_REF] and references therein).

These observations suggest that it is meaningful to estimate self-similar and multifractal exponents c 1 and c 2 , c 3 , c 4 , respectively, for scales faster than ∼ 82 s for the time series µ R R (t), ξ 0 (t), σ 2 R R (t), H F(t). Results are reported in Table II, together with those obtained for R R for comparison with µ R R (t). The instantaneous time series µ R R (t), ξ 0 (t), σ 2 R R (t), σ 2 H R (t), H F(t) can be well described by a multifractal model since c m = 0 for m ≥ 2, both for NS and SV.

As discussed above, µ R R (t) and R R lead to similar results, with the exception of c 4 for which µ R R (t) yields a reduction of cross-subject variability by a factor 3 to 4. The time series ξ 0 (t), σ 2 R R (t) (and to a lesser extent H F(t)) are further characterized by a long-range persistence type autocorrelation with c 1 > 0.5. Yet, none of the exponents c m , considered individually, can be directly translated into the clinical practice for risk stratification between NS and SV. Consistently with the fact that autonomic nervous system linear and nonlinear dynamics cannot be fully explained by a single measure only, in the next paragraph we show how to combine the aforementioned multifractal pointprocess measures for SV vs. NS discrimination in CHF at a single subject level.

C. SV Versus NS Classification

Leveraging on the aforementioned results performed at a group-wise level and with inferential significance only, we moved beyond statistical analysis to automatically discern SV from NS patients with CHF at a single-subject level. Scaling and multifractal features of point process-derived heartbeat dynamics are then combined throughout a nonlinear discriminant function, allowing therefore for a direct clinical translation. Following the methodology description, we considered instantaneous

dynamics of µ R R (t), ξ 0 (t), σ 2 R R (t), σ 2 H R (t), V L F(t), L F(t), H F(t), L F/H F(t)
, and condensed the information about the long-term, time-varying dynamics using the α and β sets of exponents and multiscale representations defined in Section II-D. Throughout the LOO-SVM procedure, prediction accuracy, sensitivity and specificity in discerning SV vs. NS patients were evaluated for feature sets α and β, whose results are shown in Tables III andIV, respectively. For each scale, these tables report the best classification accuracy using a proper combination of features, as identified by the SVM-RFE algorithm. Considering the two CHF classes, accuracy of 50% is the change.

Using the subset of exponents ζ (2), c 1 , c 2 , c 3 , c 4 , an accuracy of 72.66% was obtained for exponents estimated over scales 27.3 s ± 2 octaves. Nevertheless, specificity was barely beyond the chance level (54.84%), being therefore not suitable for an actual clinical application.

Using the subset of multiscale representation log 2 S(2, j), C 1 ( j), C 2 ( j), C 3 ( j), C 4 ( j), best classification accuracy of 79.11% was obtained at scale 6.83 s, with satisfactory sensitivity of 90.48% and specificity 67.74%. The trend of classification accuracy as a function of the number of features is shown in Fig. 4. Particularly, the following four features were selected as best candidate for the prediction of survivors in patients with CHF: log 2 S(2, j), C 3 ( j), C 4 ( j) calculated over V L F(t), and log 2 S(2, j) calculated over L F/H F(t), at scale j = 10 (∼ 7 s) at which the precise choice of interpolation (here, using the informative point process model) has significant impact. Merging the proposed multifractal features of α and β sets did not straightforwardly improve the aforementioned best classification accuracy of 79.11%.

IV. DISCUSSION AND CONCLUSION

We proposed a novel methodology combining multifractal analysis with instantaneous (time resolution of 5 ms) physiological estimates derived from inhomogeneous point-process models of cardiovascular dynamics. As previous evidences demonstrated that autonomic nervous system dynamics affects heartbeat complexity at all scales [START_REF] Silva | The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics[END_REF], we hypothesized that our methodology would provide a good predictor of mortality following congestive heart failure with single-patient specific prognostic capabilities.

All instantaneous series derived from our physiologicallyinformative model show a clear scaling behaviour at coarser scales over all indices of self-similarity and multifractality. Conversely, considering multifractal indices C 2 ( j), C 3 ( j), C 4 ( j) for the scales ∼ 2 -10 s, the scaling behaviour of splineinterpolated series of RR intervals is broken and departs from the behaviour observed at scales ≥10 s. This is particularly evident for multifractal index C 4 ( j). Note that self-similar models describe only parts of the scaling properties of the heartbeat interval series, whereas multifractal models provide a more comprehensive description (e.g., [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF], [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF]). Therefore, we demonstrated that scaling and multiscale representations of RR interval series is biased by the interpolating method employed (e.g., linear, spline, etc.). Therefore, more informative ad-hoc physiologically plausible models, such as the inhomogeneous point-process [START_REF] Valenza | Point-process nonlinear models with Laguerre and Volterra expansions: Instantaneous assessment of heartbeat dynamics[END_REF], [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF], are strongly recommended. This result is in agreement with our previous investigations [START_REF] Valenza | Point-process nonlinear models with Laguerre and Volterra expansions: Instantaneous assessment of heartbeat dynamics[END_REF], [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF] demonstrating that the use of an inverse-Gaussian distribution, characterized at each moment in time, inherits both physiological (the integrate-and-fire initiating the cardiac contraction [START_REF] Barbieri | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability[END_REF]) and methodological information.

Additionally, we found that series of purely vagal dynamics, i.e., H F(t), display power law scaling from ∼ 0.5 s to ∼ 82 s, whereas series of sympatho-vagal dynamics (e.g., L F(t) and L F/H F(t)) are associated with scale invariance in form of power laws exclusively for scales larger than ∼100 s. This is also in agreement with previous evidences reporting that sympathetic activity affects complexity at long time scales [START_REF] Silva | The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics[END_REF] only.

Scaling and multifractal properties of circadian heartbeat dynamics in CHF patients, therefore, do not arise at a sinus-node level, but seem to be already intrinsically present in vagal and sympatho-vagal dynamics. At a speculative level, this can be due to dysfunctional acetylcholine release on adrenergic receptors on the vagal terminals, and/or dysfunctional cytosolic adenosine 3,5-cyclic monophosphate release in post-junctions, and/or dysfunctional acetylcholine release on muscarinic receptors [START_REF] Sunagawa | Dynamic nonlinear vago-sympathetic interaction in regulating heart rate[END_REF].

Using these measures, we were able to predict survivor and non-survivor CHF patients (4 year follow-up) with a satisfactory accuracy of 79.11% (sensitivity 90.48% and specificity 67.74%), considering newly-derived heartbeat variables. To the best of our knowledge, the majority of the previous studies dealing with CHF mortality prediction evaluated the predictive power of novel HRV markers using p-values and statistical inference only. Since results from statistical inference refer to a group-level analysis, whereas our classification results deal with single subject-level analysis, a proper comparison of the proposed multifractal point-process methodology with these studies cannot be performed. To give an idea of the significance of our results, here we mention few studies that quantified accuracy, specificity, and sensitivity of an HRV-based methodology for the mortality prediction in CHF. In particular, our results show higher statistical performances than Yang et Here, it is important to highlight again that our study is associated with a significantly higher statistical power than others, given our sample of 94 patients. Also, it must be noted that methods proposed by Guidi et al. [START_REF] Guidi | Heart failure artificial intelligence-based computer aided diagnosis telecare system[END_REF], and Yang et al. [START_REF] Yang | A heart failure diagnosis model based on support vector machine[END_REF] need some parameters as input that should be gathered directly from physicians, while the adoption of only HRV measures, as in the current study, enables a completely automatic assessment.

We found that optimal predictors of mortality in this kind of pathology are associated with multifractal quantification of very low frequency oscillations (< 0.04 Hz) of heartbeat dynamics. Although precise physiological correlates of such VLF are not well-defined yet [START_REF] Acharya | Heart rate variability: A review[END_REF], it is reasonable to associate proper diagnostic and prognostic value to multifractal changes in cardiovascular nonlinear oscillations with period between 25 s and 100 s. Accordingly, other studies involving circadian cardiovascular rhythms or long-term sleep recordings highlighted such clinical value of VLF dynamics, also as a powerful predictor of clinical prognosis in patients with CHF [START_REF] Bernardi | Physical activity influences heart rate variability and very-low-frequency components in holter electrocardiograms[END_REF]- [START_REF] Patel | Association of holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study[END_REF]. In particular, testing on a large cohort of asymptomatic participants undergoing 24 h Holter ECG recordings, the short-term fractal scaling exponent of heartbeat dynamics and VLF power have been recently selected as best candidate for the prediction of CHF onset on follow-up [START_REF] Patel | Association of holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study[END_REF]. To this extent, using the same standard clinical recordings, our study makes a scientific step forward, providing an effective methodology predicting mortality in CHF within a 4 years period at a single-patient level.

The number of subjects (94) has provided solid ground for validation of our multifractal framework. Nevertheless, we are planning a new prospective clinical trial study devoted to the collection of long-term cardiovascular data from CHF patients, including mortality follow-up evaluations. Moreover, we are aware that the classification results shown in Tables III and IV cannot be considered "optimal". While in the initial phases of this study we performed some exploratory analyses including different classifiers such as Linear and Quadratic Discriminant Classifiers, K-Nearest Neighbors, Artificial Neural Network, and others, a rigorous/unbiased comparison between classifiers would require proper parameter optimization to be performed at each step of the leave one out procedure within a nested-cross validation framework, which should also include parameter optimization for each classifier. This kind of optimization would call for a larger sample size (see limitation above) and, most importantly, is beyond the scope of this study, whose primary aim is to demonstrate that novel multifractals for inhomogeneous point-process models carry very discriminant power and are associated with prediction of CHF mortality. Indeed, the obtained accuracy, with associated specificity and sensitivity, may increase with a proper optimization of the classification algorithm. Future works will also focus on the investigation of combined scaling and multifractal analysis, and instantaneous nonlinear/complex heartbeat dynamics including time-varying bispectra [START_REF] Valenza | Point-process nonlinear models with Laguerre and Volterra expansions: Instantaneous assessment of heartbeat dynamics[END_REF], time-varying Lyapunov spectra [START_REF] Valenza | Complexity variability assessment of nonlinear timevarying cardiovascular control[END_REF], and timevarying monovariate and multivariate cardiac entropy [START_REF] Valenza | Inhomogeneous point-process entropy: An instantaneous measure of complexity in discrete systems[END_REF], [START_REF] Valenza | Instantaneous transfer entropy for the study of cardiovascular and cardio-respiratory nonstationary dynamics[END_REF], extending therefore to higher-order statistics the recently proposed complexity variability framework [START_REF] Valenza | Complexity variability assessment of nonlinear timevarying cardiovascular control[END_REF] (which is currently defined through second-order moments).

In conclusion, this study poses a solid methodological basis for devising a tool capable of performing accurate assessments of CHF morbidity and sudden mortality, which still remain unacceptably high despite effective ongoing drug therapies. We suggest that, in case of severe CHF, dysfunctional, multidimensional power-law scaling of instantaneous sympatho-vagal dynamics, as estimated through physiologically-plausible probabilistic models of heartbeat generation, should be considered as a high-mortality risk factor in a 4-year follow-up.
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 1 Fig. 1. Overall data processing chain.

  we considered r α set: a subset of exponents ζ (2), c 1 , c 2 , c 3 , c 4 , obtained as local slopes estimated over 4 octaves centred at {1.71, 3.41, 6.83, 13.7, 27.3, 54.6, 109.2, 218.5} s. r β set: a subset of multiscale representation log 2 S(2, j), C 1 ( j), C 2 ( j), C 3 ( j), C 4 ( j) for dyadic scales 2 j ∈ [0.21, 3495] s.
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 2 Fig. 2. Multiscale representations for the 3 different data modeling, for SV an NS subjects (median values ; the blue shaded areas indicate time scales not directly available from raw RR intervals).

Fig. 4 .

 4 Fig.[START_REF] Acharya | Heart rate variability: A review[END_REF]. Recognition accuracy in discerning NS vs. SV patients as a function of the feature rank estimated through the SVM-RFE procedure, considering feature set β comprising log 2 S(2, j), C 1 ( j), C 2 ( j), C 3 ( j), C 4 ( j) at scale 6.83 s.

TABLE II SCALING

 II AND MULTIFRACTAL EXPONENTS c 1 , c 2 , c 3 , c 4 ESTIMATED OVER SCALES [2.6, 81.9] S-MEDIAN (MED) AND MEDIAN ABSOLUTE DEVIATION (MAD)-P-VALUES FROM MANN-WHITNEY TEST

	RR	NS: med	(mad)	SV: med	(mad)	p-value
	c 1	0.104	(0.164)	0.156	(0.171)	0.07
	c 2	-0.007	(0.049)	0.004	(0.054)	0.60
	c 3	0.007	(0.040)	0.003	(0.037)	0.68
	c 4	-0.045	(0.275)	-0.030	(0.298)	0.33
	µ RR	NS: med	(mad)	SV: med	(mad)	p-value
	c 1	0.147	(0.155)	0.200	(0.175)	0.11
	c 2	-0.027	(0.044)	-0.019	(0.060)	0.74
	c 3	-0.019	(0.050)	-0.007	(0.048)	0.76
	c 4	-0.068	(0.096)	-0.030	(0.064)	0.04
	ξ 0	NS: med	(mad)	SV: med	(mad)	p-value
	c 1	0.766	(0.062)	0.744	(0.095)	0.35
	c 2	-0.192	(0.094)	-0.133	(0.118)	0.05
	c 3	0.124	(0.254)	0.071	(0.207)	0.19
	c 4	-0.340	(0.773)	-0.228	(0.423)	0.24
	σ 2 RR	NS: med	(mad)	SV: med	(mad)	p-value
	c 1	0.773	(0.058)	0.732	(0.093)	0.36
	c 2	0.026	(0.120)	-0.009	(0.098)	0.23
	c 3	0.016	(0.149)	0.033	(0.125)	0.91
	c 4	-0.109	(0.489)	0.015	(0.538)	0.33
	σ 2 HR	NS: med	(mad)	SV: med	(mad)	p-value
	c 1	0.759	(0.066)	0.715	(0.096)	0.49
	c 2	0.016	(0.118)	-0.008	(0.116)	0.24
	c 3	-0.017	(0.186)	0.025	(0.164)	0.71
	c 4	-0.155	(0.876)	-0.008	(0.705)	0.23
	H F	NS: med	(mad)	SV: med	(mad)	p-value
	c 1	0.549	(0.074)	0.526	(0.105)	0.88
	c 2	-0.164	(0.122)	-0.197	(0.130)	0.19
	c 3	-0.137	(0.243)	-0.080	(0.252)	0.82
	c 4	-0.611	(0.883)	-0.488	(1.449)	0.35

TABLE III CLASSIFICATION

 III PERFORMANCES IN % USING THE α SET OF EXPONENTS ESTIMATED OVER 4 OCTAVES

	Center scale (s)	Accuracy Sensitivity	Specificity	N. Feature
	1.71	63.02	46.03	80.00	3
	3.41	54.05	71.43	36.67	15
	6.83	58.02	79.37	36.67	28
	13.7	67.90	80.95	54.84	2
	27.3	72.66	90.48	54.84	30
	54.6	64.52	77.42	51.61	18
	109.2	57.26	72.58	41.94	2
	218.5	62.90	77.42	48.39	2
	Bold indicates best accuracy set.			

  al. (accuracy: 74.4%) [34], Bigger et al. (sensitivity 58%, specificity of 71%) [35], and are comparable with Pecchia et al. (79.3%) [36]. An indirect quantitative reference to our results with other relevant reports would point at an accuracy rate lower than Melillo et al. (85.4%) [37], Guidi et al. (86%, sensitivity and sensibility not reported) [38], and Shahbazi et al. (100%) [39], although Melillo et al.'s method is with a specificity rate of 63.6%, and results from Melillo et al., Guidi et al., and Shahbazi et al. are from 41, 50, and 44 patients, respectively.
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