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The European intraday electricity market : a modeling
based on the Hawkes process

Benjamin Favetto1

Abstract

This article deals with the modeling of the trading activity on the European elec-

tricity intraday market by a self-exciting point process (also known as Hawkes

process). It gives some empirical evidence of self-excitement, and discuss the

time-homogeneity of the baseline of the process. The question of the functional

shape of the intensity kernel is also adressed. Finally, a parameter estimation

procedure is derived for the model with a non-constant baseline.

Keywords: European electricity intraday market, Self-exciting point process,

change-point detection, parameter estimation

2010 MSC: 00-01, 99-00

Introduction

Although electricity markets are quite different from other financial markets

(due to strong technical constraints, and a few number of companies acting on

them), observations of the intraday electricity market suggest that there exists

clusters of operations during the trading period. Our aim is to give empirical5

evidence of this phenomenon, and study the statistical properties of a model

based on a self-exciting process process for the dates of realized trades.

Indeed, the trading activity on intraday electricity market has significantly

increased over the last years (Kiesel & Paraschiv (2017)). This may be driven

by in increasing connectivity of networks, a diversification of sources (e.g. re-10
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newable ones), and an evolution of the demand. Therefore, it shed light on

the necessity of improving the knowledge of the intraday electricity market, in

order to give more interest on endogeneous mechanisms which can also drive

the market activity.

From this point of view, it is important to be able to compare the market15

characteristics for different hours of the day, and eventually to detect changes

in these characteristics on a long timescale (e.g. one year).

The article of Becker et al. (2013) models the price events on the Australian

market, and focuses on the spot price spikes. The model is based on a self-

exciting process, also known as Hawkes process. This class of point processes20

allows the intensity of jumps to depend on previous ones, as an extension of the

Poisson process.

Although it is based on a self-exciting process, the framework of this article

is quite different from what we want to study : first of all, it deals with the

price process and looks for exogenous variables which could explain variations25

in the intensity of price spikes, then one of its aims is to identify seasonality and

patterns at a weekly and daily level. Our study focus on the dates of trades,

to give an evidence of the influcence of past trades on the current activity, and

some statistical properties of the memory of such a process.

Theoretical properties of the Hawkes process have been widely investigated,30

and it is of major interest for financial modeling(Bacry et al. (2013a)), crimi-

nology (Lewis et al. (2012)) and earthquake analysis (Ogata (1988)). Moreover,

several asymptotic results lead to derive estimating procedures for high fre-

quency financial data (Da Fonseca & Zaatour (2014), Da Fonseca & Zaatour

(2015), Bacry & Muzy (2014)) and genome analysis (Reynaud-Bouret et al.35

(2010)). However, and even if the Hawkes process appears to be an efficient

natural extension of the Poisson process, few models based on its properties can

be found in the field of energy econometrics (Becker et al. (2013) is the main

one).

Then, our goal is to justify the interest of taking into account trade clustering40

in the intraday market, with a modeling based on a point process for the dates
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of trades. We mainly focus on the dates of the realized trades in a given period

of the day, in order to try to enlighten the specific features of this market.

This article presents the goals of the study, the theoretical issues, and the

numerical results on simulated and real datasets.45

1. The Hawkes process : a tractable self-exciting point process

Some properties of the univariate Hawkes process are briefly recalled here.

Definition 1. Let pΩ,F ,Pq a probability space. A Hawkes process Xt “ pλptq, Nptqq

is a stochastic process on the state space D “ R` ˆ N, where Np¨q is a simple

point process adapted to F determined by its intensity process λp¨q:

PpNpt` hq ´Nptq “ 1|Ftq “ λptqh` ophq

PpNpt` hq ´Nptq ą 1|Ftq “ ophq

PpNpt` hq ´Nptq “ 0|Ftq “ 1´ λptqh` ophq

and λptq (given Ftq is definded by:

λptq “ µptq `

ż t

0

ϕpt´ sqdNpsq (1)

where µ is a positive function called baseline and ϕ is a non-increasing and

non-negative function called kernel.

The knowledge of µ and ϕ determines λp.q and then the distribution of Np¨q.50

To give some details about the notations of Equation 1,
şt

0
ϕpt ´ sqdNpsq “

ř

tiăt
ϕpt ´ tiq where ttiu is the collection of ordered times of a unitary jump

of N . Hence a jump of Np¨q at time ti will increase the intensity for the dates

t ą ti : this explains the use of the term ” self-exciting process”. Furthermore,

the memory of former jumps depends on the tail of the kernel function.55

. In the literature of the applications of self-exciting processes, two types of

kernels are mostly considered :
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• the exponential kernel (i.e. ϕptq “ α expp´βtq1p0,`8qptq )

• the power-law kernel (i.e. ϕptq “ α
pc`tqβ

1p0,`8qptq )

For these kernels, the parameter β is the decay parameter : it determines the60

tail of the kernel function. Moreover, if }ϕ}1 ă 1, the Hawkes process admits a

version with stationary increments.

2. The European intraday electricity market data

2.1. Description of the data

A database of intraday prices is available, based on the EPEX SPOT Market.65

EPEX SPOT market is an European exchange place for power spot trading in

Germany, France, the United Kingdom, the Netherlands, Belgium, Austria,

Switzerland and Luxembourg. It currently connects markets representing 85%

of the European power consumption.

Intraday markets, which are organized by continuous trading-orders of the70

members, are entered perpetually into the order book. As soon as two orders

are compatible, the trade is executed. Contracts for hourly quantities of power

can be traded up to 30 minutes before physical fulfillment.

Figure 1: Timestamps from the database (executed trades)

Figure 1 represents the tick dates on the electricity spot market, for a given
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delivery date (2015-03-31 22:00:00 UTC1), with trading start at 2015-03-3175

13:00:00 UTC2 and trading end at 2015-03-31 21:15:00 UTC. (At this date,

contracts for hourly quantities could be traded up to 45 minutes before fulfill-

ment. Now, they can be traded up to 30 minutes before fulfillment.)

2.2. Descriptive statistics: empirical evidence of trade clustering

Some justifications of the use of Hawkes process as tool for modeling the80

intraday electricity market trading activity are presented in this section. First,

inter-arrival times of trades are studied to shed light on clustering phenomenon,

as Da Fonseca & Zaatour (2014) did for the stock market.

Figure 2 shows that the QQ-plot of inter-arrival times of trades against an

exponential distribution and rejects clearly the homogeneous Poisson-process as85

a data-generating process for the order flow.

Figure 2: QQ-plot of inter-trade durations against exponential distribution

In addition, a self-exciting point process shows positive covariance between

collections of events in time (Lewis et al. (2012)) : for t1 ă t2 ă t3,

CovpNt2 ´Nt1 , Nt3 ´Nt2q ą 0

1This correspond to the hour 00:00:00 of 2015-04-01 in France and Germany.
2Add two hours for the time in the countries which act on the intraday market.
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8.55e-01 -3.45e-02 1.24e-01 -6.90e-03 1.20e+00 -1.31e-01 2.48e-01 2.55e-01 1.72e-01 3.06e+00
-3.45e-02 1.44e-01 -5.75e-03 5.75e-03 -8.05e-02 5.75e-02 -2.13e-01 -2.41e-01 -4.02e-02 8.39e-01
1.24e-01 -5.75e-03 2.54e-01 8.39e-02 4.46e-01 6.46e-01 2.26e-01 -1.79e-01 2.82e-01 -1.77e-01
-6.90e-03 5.75e-03 8.39e-02 7.23e-01 6.37e-01 6.44e-02 -6.78e-02 3.93e-01 1.24e+00 -6.92e-01
1.20e+00 -8.05e-02 4.46e-01 6.37e-01 3.15e+00 9.89e-02 7.77e-01 1.19e+00 2.05e+00 5.89e+00
-1.31e-01 5.75e-02 6.46e-01 6.44e-02 9.89e-02 6.40e+00 2.49e+00 1.06e+00 2.32e+00 -2.84e+00
2.48e-01 -2.13e-01 2.26e-01 -6.78e-02 7.77e-01 2.49e+00 5.55e+00 4.23e+00 4.45e+00 -6.87e-01
2.55e-01 -2.41e-01 -1.79e-01 3.93e-01 1.19e+00 1.06e+00 4.23e+00 1.17e+01 8.48e+00 3.37e+00
1.72e-01 -4.02e-02 2.82e-01 1.24e+00 2.05e+00 2.32e+00 4.45e+00 8.48e+00 2.98e+01 7.30e+00
3.06e+00 8.39e-01 -1.77e-01 -6.92e-01 5.89e+00 -2.84e+00 -6.87e-01 3.37e+00 7.30e+00 1.72e+02

Table 1: Empirical covariance of the number of transactions Nppk ` 1q∆q ´Npk∆q

(A close formula for this covariance can be found in Bacry et al. (2012) for the

stationary case, and in Proposition 3 for the general case). Conversely, for a

Poisson process, independents increments entail that this covariance vanishes.

Table 1 gives the empirical covariance of Nppk` 1q∆q´Npk∆q, 0 ď k ă 10, for90

∆ “ 0.1, computed for the first hour of the day with 30 observations in April

2015. Most of the values are significantly positive.

Furthermore, the histogram of the dates (Figure 3) underpins time-inhomogeneity,

as the number of ticks per bin of the histogram strongly varies over the time.

This variation can be explained by :95

• Time-inhomogeneity of the baseline (i.e. µ depends on t and the under-

lying model is an inhomogeneous Poisson-process),

• Self-excitement phenomenon.

As an univariate Hawkes-process based model can recover both sources of

variation, a model based on such a process is chosen for the dates of executed100

trades on the intraday electricity market for a given hour. In addition, a model

based on a Hawkes process can handle data generated by a Poisson process,

considering ϕ as the null function. Then, the models are embedded.

3. Theoretical properties of self-exciting point processes

We deal with n independent and identically distributed sets of observations105

N1p¨q, . . . , Nnp¨q of a data-generating process N which is assumed to be a Hawkes
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Figure 3: Distribution of the dates of executed trades (April 2015)

process observed over a finite time interval ( r0, 1s for sake of simplicity). This

corresponds to n observations of the trades concerning a trading period related

to a fixed hour of the day, during consecutive trading days. We assume that these

observations are i.i.d., even if seasonality, weather or position of the day in the110

week could be taken into account in a more refined model. This choice is not the

most common one : several seminal papers deal with a unique stationary process

observed on a long time range, but we can not assume that for one observed

period, because of the low number of trades during the trading period3 on the

intraday electricity market.115

As the length of the time interval is fixed4, for the theoretical properties

of the estimation we consider observations on r0, 1s (which has no impact, up

to a rescaling). Moreover, we can observe a sample of n days, assumed inde-

pendent and identically distributed (typically n „ 30 to deal with one month

observations). This determines the choice of our asymptotic framework.120

Hence, we have :

• n sets of ordered dates ttiju, observations of independent point process Ni

3„ 8 hours for the first hour of the day, and up to more than 20 hours
4The trading period for hourly quantities had a duration of 8 hours 15 minutes in 2015,

and 8 hours 30 minutes now, for the first hour of the day. As all trading periods start at 15pm,
the results can be impacted. Then we maily focus on the first hour of the day in numerical
applications.
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(1 ď i ď nq over r0, 1s,

• the common baseline intensity µptq, which may vary during the trading

period,125

• the common kernel is ϕ (non-negative and non-increasing function)

The intensity of Niptq (given the information Ft at time t) is :

λiptq “ µptq `

ż t

0

ϕpt´ sqdNipsq for t P r0, 1s

As an increasing number of ticks can be observed as t Ñ 1, we may test if

µ could be considered as a constant or an increasing function. We insist on the

fact that the ” memory size” (determined by the decay parameter) is of major

interest. As a property of the intraday market, it gives a better understanding130

of the self-exciting property, in comparison with a Poisson process.

Remark 1. Even if the exponential and the power law kernel have an unbounded

support, their mass is concentrated on a small interval when the decay parameter

is large.

3.1. Covariance of the Hawkes process135

We recall here some properties of the Hawkes process, in the general context

of a time-varying baseline function. Some of the proofs are gathered at the end

of the report in the Appendix.

Proposition 1. Let Mptq “ Nptq ´
şt

0
λpsqds. Then

• tMptq, 0 ď t ď 1u is a zero-mean square integrable martingale with respect140

to the filtration pFtq

• drM st “ dNt, where r.s is the quadratic variation of the martingale ( i.e.

rM st “
ř

sďtpMpsq ´Mps´qq
2)

• Nptq “Mptq `
şt

0
µpsqds`

şt

0

şs

0
ϕps´ uqdNpuqds for t P r0, 1s

(See, for instance, Chen & Hall (2013).)145
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. Here is recalled a simple but important result for the further asymptotics. The

mean of the process can be expressed as the solution of an integral equation.

Lemma 1. (Integration by parts and convolution formula)

Let mptq “
şt

0
µpsqds. For t P r0, 1s :

•
ż t

0

ż s

0

ϕps´ uqdNpuqds “

ż t

0

ϕpt´ sqNpsqds

•

Hptq “ EpNptqq “ mptq `

ż t

0

ϕpt´ sqEpNpsqqds

(See Lemma 2 in Bacry et al. (2013b).)150

. Let define ϕn “ ϕ ‹ ¨ ¨ ¨ ‹ ϕ (n times -convolution product) and ψ “
ř

ně1 ϕn.

The idea of using integral equations and convolution product leads to useful and

tractable computations, as in Bacry et al. (2012) or Bacry et al. (2013b). Notice

that the key quantities of the distribution of Nptq are expressed with µ, ψ and

M .155

Proposition 2. (Formulas based on the convolution product)

For t P r0, 1s :

•

Hptq “ mptq `

ż t

0

ψpt´ sqmpsqds “ mptq ` pψ ‹mqptq

•

Nptq “ mptq ` pψ ‹mqptq `Mptq ` pψ ‹Mqptq

•

λptq “ µptq ` pψ ‹ µqptq ` pψ ‹ dMqptq

with pψ ‹ dMqptq “
şt

0
ψpt´ sqdMpsq.

(See Lemma 4 in Bacry et al. (2013b).)
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The covariance of the process (on which some estimators are build, see Bacry160

et al. (2012) and Bacry & Muzy (2016)) can be computed in the non-stationary

case.

Proposition 3. For t1 ă t2 and t3 ă t4,

Cov pNpt2q ´Npt1q, Npt4q ´Npt3qq “ E

ˆ
ż t2

t1

ż t4

t3

dNpsqdNpuq

˙

´

ż t2

t1

ż t4

t3

hpsqhpuqdsdu

“

ż t2^t4

t1_t3

hpsqds`

ż t2

t1

ż t4

t3

γps, uqdsdu

with

γps, uq “ ψps´ uqhpuq ` ψpu´ sqhpsq `

ż s^u

0

ψps´ vqψpu´ vqhpvqdv

The last formula ensures that, in the case of a self-exciting process, the co-

variance of the number of jumps during two non-overlapping intervals is positive.165

However, building an estimator based on deconvolution with this quantity seems

to be untractable. The interest is theoretical yet : it validates our numerical

justification of self-excitation (Table 1).

3.2. Parameter estimation : maximum likelihood estimators

This subsection presents the asymptotic results for the maximum likelihood170

estimator in both asymptotic frameworks, under classical regularity assump-

tions. We will see in Section 6 that, for our data, supplementary material is

needed, because of the occurrence of a change-point in the baseline, but the ba-

sis results are essential to provide convergence rate and asymptotic confidence

intervals.175

As the log-likelihood of a Hawkes process has a closed form, up to the spec-

ification of a functional form for µp¨; θq and ϕp¨; θq, it is possible to perform

maximum likelihood estimation.

Let pXtq be an univariate simple point process on r0, 1s and 0 ď t1 ă ¨ ¨ ¨ ă

tN ď 1 denote an observation set of ordered dates of jumps of pNtq. Then
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the log-likelihood of pXtq (written, up to a constant, with respect to a Poisson

process measure of intensity 1, Ogata (1988)) is:

` “

ż 1

0

lnpλpsqqdNs ´

ż 1

0

λpsqds (2)

Then

` “
ÿ

ti

ln

˜

µptiq `
ÿ

tjăti

ϕpti ´ tjq

¸

´

ż 1

0

µpsqds´
ÿ

ti

ż 1

ti

ϕpt´ tiqdt

From this expression, a maximum-likelihood estimator (MLE) can be derived

(Ogata (1988)).180

Assuming that n i.i.d Hawkes processes N1, . . . , Nn are observed (with re-

spective intensities λiptq ) over r0, 1s, the log-likelihood is:

`npθq “
n
ÿ

i“1

`piqpθq

where `piqpθq is the log-likelihood associated with the set of observations tNiptq, t P

r0, 1su. Then

`npθq “
n
ÿ

i“1

ˆ
ż 1

0

lnpλipt; θqqdNiptq ´

ż 1

0

λipt; θqdt

˙

(3)

Definition 2. The score function is:

Snpθq “ B`npθq “
n
ÿ

i“1

ˆ
ż 1

0

Bθλipt; θq

λipt; θq
dMipt; θq

˙

(4)

where dMipt; θq “ dNiptq ´ λipt; θq.

First, denoting Hpt; θ0q “ Eθ0pNptqq, the uniform law of large numbers holds

(Proposition 7) :

sup
tPr0,1s

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Niptq ´Hpt; θ0q

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0
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Then, the score function converges at rate n:

1

n
Snpθq

P
ÝÑ spθ, θ0q “ Eθ0

ˆ
ż 1

0

Bθλpt; θq

λpt; θq
tdNptq ´ λpt, θqdtu

˙

and the limit function only depends on the intensity of the process:

spθ, θ0q “ Eθ0

ˆ
ż 1

0

Bθλpt; θq

λpt; θq
pλpt; θ0q ´ λpt; θqqdt

˙

This limit is slightly different from those of Chen & Hall (2013). Indeed, in

their framework, λpt, θq is replaced by its expectation. Moreover, the MLE is

asymptotically Gaussian, with a different asymptotic variance.

Theorem 1. Under the following conditions :185

(C1) µp.; θq and ϕp.; θq are positive and continuous on r0, 1s for all θ P Θ ;

(C2) The parameter space Θ is compact and its interior is connected and con-

tains a d-dimensional non empty open ball which contains the true param-

eter ;

(C3) For each t P r0, 1s, the functions µpt; θq and ϕpt; θq are twice continuously190

differentiable in θ and their partial derivatives up to order 2 with respect

to θ are uniformly equicontinuous when regarded as families of functions

of θ ;

(C4) For each θ, Bθϕpt, θq and B2
θθ1ϕpt; θq are continuously differentiable in t.

(C5) The matrix-valued function :

γpθq “

ż 1

0

tBθµpt; θq `
şt

0
Bθϕpt´ s; θqhpu; θqduub2

µpt; θq `
şt

0
ϕpt´ u; θqhpu; θqdu

dt

is non singular at θ0.195

As n Ñ `8, with probability tending to 1, the maximum likelihood estimator

θ̂ exists as a solution to the score equation Spθq “ 0 and θ̂ tends to θ0 in
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probability. In addition,

?
n
´

θ̂ ´ θ0

¯

d
ÝÑ N p0, Ipθ0q

´1q

where the information matrix is defined by:

Ipθ0q “ Eθ0

ˆ
ż 1

0

pBθλpt, θ0qq
2

λpt, θ0q
dt

˙

Moreover, when nÑ8,

1

n

n
ÿ

k“1

#

ż 1

0

Bθλkpt; θ̂q
b2

λkpt; θ̂q2
dNkptq ´

ż 1

0

B2
θλkpt; θ̂q

λkpt; θ̂q
dMkpt; θ̂q

+

P
ÝÑ Ipθ0q

These results still require regularity assumptions on the baseline and kernel

functions with respect to the parameter, therefore they cannot be used if there

is an abrupt change-point in the baseline. But they are relevant both in theory

and in practice : they give the rate of convergence for the MLE, and they provide

asymptotic confidence regions for the parameters.200

4. Empirical evidence of a non-constant baseline modeling

In this section we propose a test to give the evidence of using a non-constant

baseline in the model : the intensity of the point process is increasing over the

time not only by the self-excitement part but also due to a change in the baseline.

In the literature, few papers investigate this case. For instance, Rambaldi et al.205

(2018) deals for instance with intensity bursts, defined as a short time period

during which the number of counts is larger than the typical count rate. This

case is different from a permanent change in the intensity but suggests to use

a parametric approach to estimate the model and an information criterion to

discriminate whether there is a change-point or not.210

At this point, a change-point estimation is performed as a preliminary work

to the estimation of a self-exciting process including a non-constant baseline, in
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order to justify a more complex modeling (with respect to the usual assumptions

in the literature).

First, an empirical evidence of a non-constant baseline is given from the data.215

Indeed, in this section, a procedure is proposed to detect a change-point in the

baseline, and to estimate its date and its magnitude, without any assumption

on the shape of the kernel function. This aims to justify to deal with non-

stationarity for the data-generating process.

4.1. Detection of a changepoint based on a kernel estimation220

The detection of a rough variation in the baseline function is based on a

kernel estimation.

Proposition 4. For t P r0, 1s, let Nnptq “
řn
i“1Niptq be the sum-process, and

Λnptq “
řn
i“1 λiptq. The process pNnptqq is a Hawkes process on r0, 1s, with

intensity pΛnptqq. Moreover,

Λnptq “ nµptq `

ż t

0

ϕpt´ sqdNnpsq

Remark 2. From a theoretical point of view, a single point process can be con-

sidered, with a baseline intensity depending on n. This is precisely a particular

case of the asympotic assumption described in Chen & Hall (2013), Section 3,225

for the consistency and the asymptotic normality of the Maximum Likelihood Es-

timator (MLE) for a non-stationary Hawkes process. In this case, the intensity

is increasing to infinity, which increases the number of points over r0, 1s.

Lemma 2. For t P r0, 1s, let

hptq “ µptq `

ż t

0

ψpt´ sqµpsqds

Then H 1ptq “ hptq.

14



Proposition 5. For every continuous function f defined over r0, 1s, the follow-

ing convergence in probability holds:

1

n

ż 1

0

fptqdN ptq P
ÝÑ

ż 1

0

fptqhptqdt

A kernel estimator of h can be derived from this proposition. Hence, let

K a positive symmetric bounded kernel and b ą 0 a bandwith and define for

t P r0, 1s

ĥptq “
1

n

ż 1

0

1

b
K

ˆ

t´ s

b

˙

dN psq (5)

The convergence of our estimator is granted by the following result of con-230

vergence for the mean-square error of a kernel-estimator.

Proposition 6. (Mean Square Error)

Assume that
ş

u2Kpuqdu ă 8 and K has a compact support. If the number

of observations n Ñ `8, and the bandwith b “ bn Ñ 0 with nbn Ñ 8, then

there exists a positive constant C such that, for all t P p0, 1q,

E

ˆ

´

ĥptq ´ hptq
¯2
˙

ď C

ˆ

1

nbn
` b4n

˙

Hence, the behavior of h can be easily recovered by ĥ, except if a change-

point occurs close to 0 or 1, due to side effects.

Remark 3. Furthermore, an optimal bn can be derived from the last inequality:235

taking bn9n
´1{5 ensures that the MSE is minimal (up to a constant). In this

case, the MSE is of order n´4{5.

. On a simulation study, the asymptotic behaviors of n´1N ptq with different

baselines (constant, piecewise affine and piecewise constant) are presented (Fig-

ure 4).240

For the sake of simplicity, and because we are looking for a decision whether

µ could be considered as constant (which is the case for stationary processes)
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Figure 4: Asymptotic behaviour of n´1N ptq with different baselines

or not, we choose to consider only the piecewise constant case. Indeed, few

difference can be observed in h between a piecewise constant and a piecewise

affine baseline, depending on the values of the parameters (which can rely on245

identification problems). Moreover, a piecewise constant baseline leads to easier

computations.

Remark 4. In Chen & Hall (2016), a kernel estimator of h is introduced, while

the kernel ϕ is specified up to a parameter. However, our problem adresses the

question of the distinction of exponential and power-law kernel, that justifies to250

look forward more investigations about the kernel estimation.

We focus from now on the following test problem to detect if the baseline

might be considered as constant over the time or not :

H0 µptq “ µ0 for t P r0, 1s

H1pδq µptq “ µ0 ` pµ1 ´ µ0q1ttěδu with µ1 ą µ0255

Hence, rejecting H0 for H1pδq means that there exists a date δ P p0, 1q such

that the baseline is piecewise constant on r0, δq and rδ, 1s and increases with a

step of size µ1 ´ µ0. The following lemma gives details about the regularity of

h when a change-point occurs.
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Lemma 3. Under H1pδq, for t P r0, 1s

hptq “ µ0

ˆ

1`

ż t

0

ψpsqds

˙

` pµ1 ´ µ0q

˜

1`

ż t´δ

0

ψpsqds

¸

1ttěδu

We can perform a simulation study and underline that an abrupt change in260

ĥ relies on change point detection (there is a discontinuity point). Hence the

values of δ and µ1 ´ µ0 can be estimated.

Figure 5: Changepoint detection with kernel estimation (simulation study)

This method is applied to the market data, first with a graphical approach.

In Figure 6, a kernel estimation of h is performed with a Gaussian kernel (even

if, in the theory, results are given for a kernel with compact support). Due to265

side effects, values close to 0 and 1 cannot be taken into account.

A clear change at 80% of the trading period is observed, of order of magnitude

„ 200. This fact agrees with the hypothesis that the intensity of the point

process increases at the end of the trading period, and not only because of the

self exciting effect.270

. To the end of this section, we give a more precise statement for the test

performed on h. Let pj∆, j “ 0, . . . , Nq be a regular grid on r0, 1s. Under

assumption H0, h is a Lipschitz function of Lipschitz constant L (due to the

regularity of ψ, inherited from those of ϕ), then the difference hppj`1q∆q´hpj∆q
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Figure 6: Changepoint detection based on a kernel estimation of h (market data, April 2015)

must be lower than L∆.275

The following lemma states that, under H0, the observation of a big gap

between two consecutive values of ĥ over the grid is an event of low probability.

Lemma 4. Under H0, for ε ą L∆, there exists a positive constant C (depending

on the kernel K) such that, for all 0 ď j ď N ´ 1,

Pp|ĥppj ` 1q∆q ´ ĥpj∆q| ě εq ď
C

n4{5pε´ L∆q2

Up to the knowledge of C and L, ε can be chosen such that Pp|ĥppj`1q∆q´

ĥpj∆q| ě εq “ α, for a fixed α P p0, 1q. Then, if for a given j, |ĥppj ` 1q∆q ´

ĥpj∆q| ą ε, we can reject H0 at level 1´ α. (Proof in the Appendix.)280

Example 1. Assume that ϕptq “ αe´βt for t ą 0. Then for k ě 1 and t ą 0

we have (by induction) :

ϕ‹kptq “ αk
tk´1

pk ´ 1q!
e´βt

and ψptq “
ř

kě1 ϕ
‹kptq “ αe´pβ´αqt.

If we assume the condition }ϕ}1 “
α
β ă 1, then β ´ α ą 0. Moreover, with

a constant baseline µ0, hptq “ µ0p1`
şt

0
ψpsqdsq and L ď supr0,1s |h

1ptq| “ µ0α.
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4.2. Estimation on different hours

The estimation procedures are performed on different hours of the day. The285

datasets come from April 2015, and consecutive days give, for each hour, 30

independent and identically distributed observations of a trajectory of the data-

generating process. We may underline that the trading period varies for the

different hours : it starts at 3pm the day before and ends 45 minutes before the

hour of delivery.290

Figure 7 presents the results of the non-parametric estimation of h for each

hour : the estimator ĥ is strongly increasing in the last 20% of the period. We

conclude that, for each hour, there may exist a change-point in the baseline at

the end of the trading period.

5. Non-parametric estimation of the kernel based on splines295

One major issue about the electricity intraday market is to make inference

about the shape and the decay of the kernels, to have a preliminary result.

Hence, this motivates a non-parametric approach, and estimate ϕ as a function.

Once the shape of the kernel is guessed, a parameter estimation would give

more accurate results (and we expect to derive the asymptotic distribution of300

the estimator under mild assumptions).

Other applications of the Hawkes process have discussed these types of ker-

nel. Bacry et al. (2012) find a slowly decaying kernel shape (heavy-tailed power-

law kernel) in the case of a one-dimensional model for the point process of in-

coming market orders of the Bund futures. Errais et al. (2010) underlines the305

computational tractability of an exponential kernel in the context of portfolio

credit risk. In the case of earthquakes, which is one of the original applications

of Hawkes processes, the goodness-of-fit of power-law kernel has been enlighten

by Ogata (1988).

In the context of criminality (analysis of a dataset providing civilian deaths310

due to insurgent activity in Iraq), Lewis & Mohler (2011) model the dates of
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Figure 7: Non-parametric detection of a change-point (kernel estimator ĥ)
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crimes with a Hawkes process, and use a nonparametric EM algorithm to es-

timate the baseline intensity µ and the kernel ϕ. They assume the timescale

over which µ is changing is larger than the timescale over which ϕ decays. For

the electricity market, Becker et al. (2013) uses an exponential kernel with few315

discussion about this choice (except that is very tractable for the computations).

Several strategies were investigated to perform a non-parametric estimation

of the kernel assuming that the point process is stationary and observed on

a long time range. Reynaud-Bouret et al. (2010) uses a penalized contrast to

derive an adaptive estimation of the kernel using piecewise constant functions.320

(However, in practice, computations involved in the implementation are quite

costly in time.) In Kirchner (2016), a stationary Hawkes process is approxi-

mated in distribution by a INAR(8) process. Then, in the companion paper

(Kirchner (2017)), a nonparametric estimation of ϕ is derived by the estima-

tion of the coefficients of an autoregressive process. Finally, Bacry et al. (2012)325

use deconvolution methods to estimate the kernel, and Bacry & Muzy (2016)

combine them with kernel estimation in the case of a marked point process.

All of these strategies have to be reconsidered due to another asymptotic

framework, because dates of trades, assumed to be observations of a point pro-

cess, are observed on a time interval of fixed length.330

The non-parametric procedure, presented in this section, is devoted to the

estimation of the kernel, and derived from Bai et al. (2015) with a slight mod-

ification to take into account the piecewise constant baseline. In this section,

we assume that we have preliminary estimated δ. The idea is to write the

log-likelihood

`npµ0, µ1, ϕq “
řn
k“1

!´

ř

tkiăδ
lnpµ0 `

ř

tkjăt
k
i
ϕptki ´ t

k
j qq ´ δµ0

¯

`

´

ř

tkiěδ
lnpµ1 `

ř

tkjăt
k
i
ϕptki ´ t

k
j qq ´ p1´ δqµ1

¯

´
ř

tki

ş1´tki
0

ϕpuqdu
)

and built an estimator pµ̂0, µ̂1, ϕ̂q by maximizing it, assuming that ϕ̂ is a

B-spline approximation of the function ϕ. Hence, the problem is reduced to a
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finite-dimensional optimization problem for the computation of the estimator

(a B-spline is a linear combination of basis functions, so only the vector of

coefficients has to be estimated).335

A B-spline basis is characterized by the regularity r of the functions, d ě r`1

the order of the spline basis functions and κn (depending on the sample size)

the size of the basis. A knot sequence ξ is a sequence of length κn` d such that

0 “ ξ1 “ ¨ ¨ ¨ “ ξd ă ξd`1 ă ¨ ¨ ¨ ă ξκn`1 “ ¨ ¨ ¨ “ ξκn`d “ 1

and in practice, we will assume that the internal knots (distinct values of ξ) are

regularly spaced. Let Bptq “ pB1ptq, . . . , Bκnptqq
1 the B-spline basis functions

associated with this knot sequence.

Definition 3. The set of B-spline basis functions Bdi ptq of order d (1 ď i ď κn)

is defined recursively by

Bki ptq “
t´ ξi

ξi`k´1 ´ ξi
Bk´1
i ptq `

ξi`k ´ t

ξi`k ´ ξi`1
Bk´1
i`1 ptq

and the initial condition B1
i ptq “ 1rξi,ξi`1qptq.

One important result about B-splines is that, for γ P Rκn such that γ1 ě340

¨ ¨ ¨ ě γκn ě 0 (positive decreasing sequence), the function S defined by Sptq “

γ1Bptq is a non-negative and non-increasing function over r0, 1s. Then, a B-

spline estimator of the kernel has these properties.

Remark 5. One of the advantage of the B-spline method is to simplify the

computation of the integrals involved in the log-likelihood by an evaluation of a345

linear combination of B-spline functions of order d ` 1. Hence, the evaluation

of the log-likelihood is very fast once the basis functions are computed.

Figures 8 and 9 present the results of the semi-parametric estimation of

pµ0, µ1, ϕq, using B-splines of order d “ 3 and 16 internal nodes in r0, 1s (a

grid of stepsize 1
16 ) o, simulations. In both cases, the values of µ0 and µ1 are350
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Figure 8: Exponential kernel and its non-parametric spline estimation (simulation)

correctly estimated (and a theoretical result for the rate of convergence can be

found in Bai et al. (2015)). The optimization of the log-likelihood is performed

with the Python library scipy.optimize and the computation of the B-splines

is based on the Python function scipy.interpolate.BSpline.

Figure 9: Power-law kernel and its non-parametric spline estimation (simulation)

5.1. Estimation on different hours355

In a second step of the study started in Section 4.2, a non-parametric esti-

mation of the kernel is performed for each hour using the B-spline method. As

we don’t have a precise estimation of δ0 at this time, and because the value of

δ chosen for the baseline estimation does not give a real impact on the kernel

estimation, we let δ “ 0.85 for sake of simplicity. Figure 10 shows the results.360

For each hour, the shape of the estimated kernel is a fast decreasing function,

which vanishes during the second part of the period. For this reason, we prefer

to deal with an exponential kernel in the sequel.
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Figure 10: Non-parametric estimation of the kernel (B-splines, δ0 “ 0.85))
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6. Parametric estimation and comparison of the results

The aim of this section is to compare the results obtained by a non-parametric365

method to those obtained for the maximum-likelihood estimator. Due to the

detection of a change-point in the baseline function, the question of a likelihood

ratio test is addressed at a first look. The discussion is about two different rates

of convergence : a
?
n rate for the parameters for which the log-likelihood is

twice differentiable, and a n rate for the estimation of δ. Numerical results are370

provided, based on a Python library.

6.1. Likelihood ratio for testing and estimation

In a recent article (Chernoyarov et al. (2018)), a problem of change-point

detection for inhomogeneous Poisson processes is presented. We follow the lines

of this article to study the asymptotic properties of the change-point test in the375

case of a Hawkes process observed on r0, 1s. The likelihood ratio is of major

interest, both for the the asymptotic properties of the MLE, and for testing if

a change-point occurs.

The parameter δ is supposed to be unknown, but other parameters (involved

in µ and ϕ) are assumed to be known. We discuss later about a joint estima-

tion on numerical studies. For one observation Ni of the Hawkes process, the

intensity is

λiptq “ µ0 `

ż t

0

ϕpt´ sqdNipsq ` pµ1 ´ µ0q1ptěδq “ λ0
i ptq ` pµ1 ´ µ0q1ptěδq

Let ln
´

dPδ
dPδ1

pNiq
¯

the logarithm of the likelihood ratio between the distribution

of one process with a change-point at time δ and one with a change-point at380

time δ1. With θ1 “ µ1 ´ µ0,

ln

ˆ

dPδ

dPδ1

pNiq

˙

“

ż 1

0

ln

ˆ

λ0
i ptq ` θ11ptěδq

λ0
i ptq ` θ11ptěδ1q

˙

dNiptq ´

ż 1

0

θ1p1ptěδq ´ 1ptěδ1qqdt

“

ż 1

0

ln

ˆ

λ0
i ptq ` θ11ptěδq

λ0
i ptq ` θ11ptěδ1q

˙

dNiptq ´ θ1pδ1 ´ δq
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This is slightly different from the log-likelihood of Equation 2, where the likeli-

hood is written with respect to a homogeneous Poisson process of intensity 1.

Then, with n i.i.d. observations, the test statistics becomes

Lpδq “
n
ÿ

i“1

ln

ˆ

dPδ

dP1
pNiq

˙

(with dP1 the distribution of a process with constant baseline, but any arbitrary

value can be chosen). Let δ̂ the MLE defined by

δ̂ P arg max
δPp0,1q

Lpδq

From a numerical point of view, and because L is not a regular function,

the maximization is performed over a grid. Therefore, testing if the baseline is

constant, or not, can be decided from the values of this ratio : under the null

hypothesis H0, Lpδq ď 0 for δ P r0, 1s, whereas under H1pδ0q, Lpδq reaches its385

maximum for δ “ δ0. Figure 11 illustrates this fact with simulated data (for

these simulations, an exponential kernel has been chosen).

Figure 11: Values of Lpδq (left : change-point at 0.8, right : constant baseline)

Moreover, in the literature of change-point estimation, asymptotic properties

of the estimators are often derived from the asymptotic behaviour of the nor-

malized likelihood ratio (Ibragimov & Has’minskii (1981) , Chernoyarov et al.390

(2018)). In particular, the rate of convergence of the change-point estimator is

faster than the other parameters when the likelhood is not smooth. To be pre-
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cise, if
dP pδ0`

u
n q

dP pδ0q
has a limit in distribution as nÑ8, then npδ̂n ´ δq converges

in distribution, with δ̂ the MLE estimator of δ. To assess the limit for a self-

exciting process, we performed simulations (100 replications of 30 independent395

trajectories with δ0 “ 0.8 and an exponential kernel) to draw an histogram of

the empirical distribution of npδ̂´δ0q and confirm empirically the rate of conver-

gence. Figure 12 shows the histogram of the limit distribution. Unfortunately,

the complete proof is beyond our reaching.

Figure 12: Empirical distribution of npδ̂n ´ δq (simulated data)

6.2. Numerical results400

In order to perform the numerical maximization of the log-likelihood includ-

ing a change-point detection,

• for fixed values of δ P tj∆, j “ 1, . . . , Nu, the MLE estimation of other

parameters is done by a classical algorithm (method ’L-BFGS-B’ from

scipy.optimize.minimize),405

• these estimated values are stored, with the value of the log-likelihood,

• δ̂ P arg maxLpδq is computed, with the associated values of the other

parameters.
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. On simulated datasets, this method gives positive results. In Figure 13, the

data is simulated with410

• an exponential kernel (β0 “ 80 and β1 “ 100)

• a changepoint in the baseline at δ0 “ 0.8 (µ0 “ 5 and µ1 “ 50)

The estimated values are :

µ̂0 “ 4.62 , µ̂1 “ 45.09 , β̂0 “ 81.20 , β̂1 “ 100.37

Figure 13: Maximization of the log-likelihood with respect to δ (true value = 0.8)

In the case of data simulated with constant baseline (µ0 “ 5), the estimated

values are

µ̂0 “ 5.21 , β̂0 “ 80.21 , β̂1 “ 97.24

and the values of the log-likelihood belong to r10196, 10200s. Hence, it is easy

to distinguish if there is a change point or not (i.e. if there is a clear spike in

Lpδq or not).415

Figure 15 shows that in the case of an exponential kernel, the opposite of the

log-likelihood (which is provided to the minimizer of Scipy) is convex around its

minimum. Hence, the computation of the MLE is well performed. However, in

the case of a power-law kernel, the opposite of the log-likelihood is flat around

its minimum, as shown in Figure 16. Then, the computation of the MLE is420
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harder, and the numerical errors of approximation lead to important errors for

the MLE.

Figure 14: Left : Maximization of the log-likelihood with respect to δ. Right : Likelihood
ratio. (exponential kernel, April 2015)

Figure 15: Influence of the values of the kernel parameters on the log-likelihood (exponential
kernel)

6.3. Estimation on different hours

Figure 17 shows for each hour the value of the log-likelihood, as a function

of δ, where the other parameters are estimated by a classical method of max-425

imization. Pictures show a clear maximum on the grid, and we have chosen

a thinner grid between 0.7 and 0.9. Due to the previous studies on simulated

datasets, MLE estimators for the parameters of a model based on an exponen-

tial kernel are given in Table 2. (Warning : as the length of the trading period
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Figure 16: Influence of the values of the kernel parameters on the log-likelihood (power law
kernel)

increases from the first to the last hour, the estimated values of α and β cannot430

be compared between different hours). However, the ratio α{β is equal to }ϕ}1

in any case.

Asymptotic confidence intervals in Table 2 are based on an approximation

of the Fisher information matrix (see Theorem 1) and the multivariate central

limit theorem, assuming that we can replace δ0 by δ̂ (due to a faster rate of435

convergence) and apply the theorem for regular cases.

These confidence intervals reported in Table 2 show that the parameters of

the baseline (µ0, µ1) and the decay parameter (β) are estimated with a half-

length of the interval which is about 10% of the value of the estimator. Hence

these estimations (with 30 observed trajectories) are not of good precision. Con-440

versely, the estimation of α is very good, and the ratio α{β is quite stable.

7. Conclusion

As a self-excitement phenomenon has been enlighten in the intraday electric-

ity market, the question of the understanding of its causes is now a perspective.

It is plausible to consider economic reasons (convergence of prices in the order445

book at the end of the trading period due to an adjustment of supply and de-

mand). Technical implications may also be considered, as electricity production

requires a fine adjustment : a better forecasting of the weather or the supply

capacities of renewable producers may be obtained at the end of the period.
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Figure 17: Maximum Likelihood Estimation of δ (value of Lpδq)
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Hour µ̂0 (˘ 1.96σ?
n

) µ̂1 (˘ 1.96σ?
n

) α̂ (˘ 1.96σ?
n

) β̂ (˘ 1.96σ?
n

) α̂{β̂ δ̂

0 9.24 (1.20) 120.58 (10.98) 1042.93 (1.37) 3046.76 (400.02) 0.34 0.85
1 6.21 (1.04) 86.29 (7.19) 1092.30 (0.84) 2955.33 (346.44) 0.37 0.75
2 12.10 (1.34) 149.64 (13.60) 1372.76 (1.82) 4282.14 (560.11) 0.32 0.88
3 10.75 (1.28) 135.79 (11.61) 1456.00 (1.59) 4482.46 (589.64) 0.32 0.85
4 7.65 (1.13) 109.80 (8.57) 1693.60 (0.97) 4481.37 (492.68) 0.38 0.78
5 8.16 (1.16) 109.20 (8.61) 2116.55 (1.04) 5646.01 (614.23) 0.37 0.79
6 12.01 (1.34) 148.84 (12.92) 2238.90 (1.47) 5587.76 (579.94) 0.40 0.87
7 14.09 (1.43) 196.01 (17.15) 2176.80 (1.63) 5359.41 (579.66) 0.41 0.90
8 8.40 (1.12) 204.08 (16.19) 2423.27 (0.92) 5492.96 (517.73) 0.44 0.88
9 7.04 (1.02) 238.33 (18.42) 2194.51 (0.72) 4470.30 (422.32) 0.49 0.88
10 8.13 (1.10) 336.96 (21.31) 2996.66 (0.74) 6641.72 (546.85) 0.45 0.88
11 5.95 (0.95) 300.22 (17.61) 3440.93 (0.54) 7787.35 (625.70) 0.44 0.85
12 3.98 (0.80) 241.54 (14.05) 3309.39 (0.35) 7204.63 (560.89) 0.46 0.81
13 4.13 (0.84) 216.32 (12.03) 3405.75 (0.35) 7637.79 (573.39) 0.46 0.77
14 6.17 (1.02) 221.68 (12.05) 3582.57 (0.52) 8236.99 (608.84) 0.43 0.77
15 3.17 (0.76) 160.73 (8.94) 3219.25 (0.28) 7369.48 (576.16) 0.44 0.70
16 6.02 (1.00) 177.16 (10.98) 3425.26 (0.53) 7477.16 (576.09) 0.46 0.78
17 4.09 (0.83) 142.32 (10.09) 2066.99 (0.35) 3900.27 (294.16 ) 0.53 0.77
18 7.80 (1.09) 229.72 (15.35) 2900.38 (0.78) 6875.13 (599.48) 0.42 0.85
19 7.42 (1.09) 184.69 (12.50) 2525.62 (0.72) 5799.84 (488.55) 0.44 0.82
20 7.08 (1.07) 186.55 (12.19) 3018.46 (0.65) 6913.67 (541.54) 0.44 0.81
21 5.45 (0.95) 141.72 (10.06) 2012.92 (0.54) 4443.72 (380.92) 0.45 0.78
22 9.37 (1.22) 187.69 (12.24) 3910.28 (1.03) 10881.17 (1032.8) 0.36 0.82
23 9.24 (1.23) 153.88 (10.26) 3405.85 (0.98) 9086.60 (897.83) 0.37 0.79

Table 2: Estimated values of the parameters for various hours of the day (exponential kernel)
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Finally, this work focused on the dates of trades, especially with self-excitation450

as a source of endogeneity, and the last perspective would be to analyze the price

process on the European market, taking into account exogenous variables and

seasonality, as in Becker et al. (2013).

In conclusion, I would like to thank Prof. Rüdiger Kiesel and his team for

his welcoming during my visit in Essen, and the discussions we had about the455

electricity market.
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Appendix

In this section, the proofs of some results are gathered to ease the reading520

of the report.

Appendix.1. Asymptotic properties of the sum-process

This section provides asymptotic properties of the sum-process. The most

important idea to keep in mind is that two types of convergence occur, at dif-

ferent rates :525

1. A law-of-large-numbers result for n´1Nn, with a deterministic limit ;

2. A central-limit-theorem result for n´1{2Mn, with a Gaussian limit.
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These computations are useful to derive the positivity of the covariance matrix

of the observations, and assert a model with self-excitement.

. First, a uniform law of large numbers is established for n´1Nn.530

Proposition 7. For t P r0, 1s

Nnptq
n

P
ÝÑ EpNptqq “ Hptq

Moreover, the convergence is uniform in t :

sup
tPr0,1s

ˇ

ˇ

ˇ

ˇ

Nnptq
n

´Hptq

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0

The following proposition is the key of further computations for the conver-

gence in distribution of the martingale part.

Proposition 8. Let f and g two continuous functions defined on r0, 1s, and

denote by F and G their antiderivatives. For ps, tq P r0, 1s2,

E

ˆ
ż s

0

fps´ uqMpuqdu

˙

“ 0

and

Cpfps´.q, gpt´.qq “ E

ˆ
ż s

0

fps´ uqMpuqdu

˙ˆ
ż t

0

gpt´ uqMpuqdu

˙

“

ż s^t

0

F ps´uqGpt´uqhpuqdu

In particular,

VpMptq ` ψ ‹Mptqq “ p1`Ψq2 ‹ hptq “

ż t

0

p1r0,tspt´ uq `Ψpt´ uqq2hpuqdu

where Ψ is an antiderivative of ψ.

. The limit in distribution of the martingale part of N can be determined using

Proposition 8, and a Central Limit Theorem.535
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Theorem 2. For ps, tq P r0, 1s2,

1
?
n

¨

˚

˚

˚

˚

˚

˚

˝

Mnpsq

ψ ‹Mnpsq

Mnptq

ψ ‹Mnptq

˛

‹

‹

‹

‹

‹

‹

‚

d
ÝÑ N

¨

˚

˚

˚

˚

˚

˚

˝

0;

1 ‹ hpsq Ψ ‹ hpsq 1 ‹ hps^ tq paq

Ψ ‹ hpsq Ψ2 ‹ hpsq pbq pcq

1 ‹ hps^ tq pbq 1 ‹ hptq Ψ ‹ hptq

paq pcq Ψ ‹ hptq Ψ2 ‹ hptq

˛

‹

‹

‹

‹

‹

‹

‚

with

paq “

ż s^t

0

Ψpt´ uqhpuqdu

pbq “

ż s^t

0

Ψps´ uqhpuqdu

pcq “

ż s^t

0

Ψps´ uqΨpt´ uqhpuqdu

Corollary 1. For ps, tq P r0, 1s2,

1
?
n

¨

˝

Mnpsq ` ψ ‹Mnpsq

Mnptq ` ψ ‹Mnptq

˛

‚

d
ÝÑ N

¨

˝0;

¨

˝

cps, sq cps, tq

cpt, sq cpt, tq

˛

‚

˛

‚

with

cps, tq “

ż s^t

0

p1`Ψps´ uqqp1`Ψpt´ uqqhpuqdu

From now on, the properties of the limit distribution are investigated. The

idea is to consider a Gaussian process with the same marginal distributions.

Definition 4. Let pBtq, t P r0, 1s a standard Brownian motion on r0, 1s, and

Yt “

ż t

0

a

hpuqdBu (.1)

Lemma 5. We have :

• dxY yt “ hptqdt540

• Yt „ N p0,
şt

0
hpuqduq
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• for ps, tq P r0, 1s2

CovpYs, Ytq “

ż s^t

0

hpuqdu

Hence, the diffusion process pYtq has the same properties as the limiting

distribution of n´1{2Mnptq.

Proposition 9. For t P r0, 1s, let

Zt “ Yt ` pψ ‹ Y qptq “ Yt `

ż t

0

ψpt´ uqYudu

Then pZtq is a centered Gaussian process with covariance cps, tq. Furthermore,

@t P r0, 1s, Zt “ Yt `

ż t

0

ϕpt´ uqZudu

These results imply :

• n´1Nnptq converges to Hptq “ mptq `
şt

0
ϕpt´ sqHpsqds in L2

545

• n´1{2pMnptq ` ψ ‹Mnptqq converges to Zt “ Yt `
şt

0
ϕpt ´ sqZsds in

distribution

and we can draw the analogy between pMtq and pYtq. This is strongly linked

with Proposition 5 (Auto-Regressive projection) of Bacry et al. (2015).

Proof of Proposition 4.. Let N1, . . . , Nn n independent Hawkes processes on550

r0, 1s, of respective intensities λ1, . . . , λn. Let N ptq “ N1ptq ` ¨ ¨ ¨ `Nnptq.

For h ą 0, using independent events,

PpN pt` hq ´N ptq “ 0|Ftq “ Pp
n
č

i“1

tNipt` hq ´Niptq “ 0u|Ftq

“

n
ź

i“1

PpNipt` hq ´Niptq “ 0|Ftq

“

n
ź

i“1

p1´ λiptqh` ophqq

“ 1´ p
n
ÿ

i“1

λiptqqh` ophq
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and, using disjunct events,

PpN pt` hq ´N ptq “ 1|Ftq “ Pp
n
ď

i“1

tNipt` hq ´Niptq “ 1u
č

j‰i

tNjpt` hq ´Njptq “ 0u|Ftq

“

n
ÿ

i“1

PptNipt` hq ´Niptq “ 1u
č

j‰i

tNjpt` hq ´Njptq “ 0u|Ftq

“

n
ÿ

i“1

pλiptqh` ophqq
ź

j‰i

p1´ λjptqh` ophqq

“

n
ÿ

i“1

λiptqqh` ophq

Hence, N is a Hawkes process with intensity Λ “
řn
i“1 λi.

Proof of Lemma 2.. Let t P r0, 1s. As

Hptq “

ż t

0

µpsqds`

ż t

0

ψpsqmpt´ sqds

we have (by interchanging the integral and the derivative)

H 1ptq “ µptq ` ψptqmp0q `

ż t

0

ψpsqm1pt´ sqds “ hptq

since mp0q “ 0.555

Proof of Proposition 7.. For t P r0, 1s,

1

n
N ptq “ 1

n

n
ÿ

i“1

Niptq

and by the law of large numbers, as nÑ8,

1

n

n
ÿ

i“1

Niptq
L2

ÝÑ EpNptqq

and the integral formula for EpNptqq is given by Lemma 1. For the uniform

convergence, see for example Chen & Hall (2016).
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Proof of Proposition 8.. With integrations by parts,

Cpfps´.q, gpt´.qq “ E

ˆ
ż 1

0

1r0,ssps´ uqF ps´ uqdMpuq

˙ˆ
ż 1

0

1r0,tspt´ uqGpt´ uqdMpuq

˙

Using the Itô’s isometry and drM spuq “ dNpuq,

Cpfps´ .q, gpt´ .qq “ E

ˆ
ż 1

0

1r0,ssps´ uq1r0,tspt´ uqF ps´ uqGpt´ uqdNpuq

˙

“

ż s^t

0

F ps´ uqGpt´ uqhpuqdu

Proof of Theorem 2.. Based on the multivariate CLT and the result of Propo-560

sition 8.

Proof of Proposition 7.. Using the martingale decomposition dNpsq “ dMpsq`

λpsqds, we have :

ż t2

t1

ż t4

t3

pdMpsq ` λpsqdsqpdMpuq ` λpuqduq “

ż t2

t1

ż t4

t3

dMpsqdMpuq `

ż t2

t1

dMpsq

ż t4

t3

λpuqdu

`

ż t2

t1

λpsqds

ż t4

t3

dMpuq `

ż t2

t1

ż t4

t3

λpsqλpuqdsdu

By Itô’s isometry,

E

ˆ
ż t2

t1

dMpsq

ż t4

t3

dMpuq

˙

“

ż t2^t4

t1_t3

hpsqds

As λptq “ hptq ` ψ ‹ dMptq,565

E

ˆ
ż t2

t1

dMpsq

ż t4

t3

λpuqdu

˙

“ E

ˆ
ż t2

t1

dMpsq

ż t4

t3

ψ ‹ dMpuqdu

˙

“

ż t2

t1

ż t4

t3

ψpu´ sqhpsqdsdu

using Fubini’s theorem and Itô’s isometry.
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Finally,

E

ˆ
ż t2

t1

ż t4

t3

λpsqλpuqdsdu

˙

“

ż t2

t1

ż t4

t3

hpsqhpuqdsdu

`

ż t2

t1

ż t4

t3

E

ˆ
ż s

0

ψps´ vqdMpvq

ż u

0

ψpu´ wqdMpwq

˙

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“γps,uq

dsdu

and the conclusion comes from :

γps, uq “

ż

s^u

ψps´ vqψpu´ vqhpvqdv.

Proof of Theorem 1.. We consider the normalized score function

1

n
Snpθq “

1

n

n
ÿ

k“1

ż 1

0

Bθλkpt; θq

λkpt; θq
dMkpt; θq

By the law of large numbers,

1

n
Snpθq

P
ÝÑ spθ, θ0q “ Eθ0

ˆ
ż 1

0

Bθλpt; θq

λpt; θq
pdNptq ´ λpt; θqdtq

˙

and

spθ, θ0q “ Eθ0

ˆ
ż 1

0

Bθλpt; θq

λpt; θq
pλpt; θ0q ´ λpt; θqqdt

˙

.

In addition,

Bθspθ, θ0q “ Eθ0

ˆ
ż 1

0

ˆ

B2
θθ1λpt; θq

λpt; θq
´
Bθλpt; θq

b2

λpt; θq2

˙

λpt; θ0qdt

˙

´Eθ0

ˆ
ż 1

0

B2
θθ1λpt; θqdt

˙

and

Bθspθ0, θ0q “ ´Eθ0

ˆ
ż 1

0

Bθλpt; θ0q
b2

λpt; θ0q
dt

˙

.

Then ´Bθspθ0, θ0q “ Ipθ0q and this matrix is semi-definite negative in a neigh-

borhood of θ0, by assumption.570

It is sufficient to show that θ0 is a separated zero of the limit Spθq of the
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normalized score function, in a sense that

sup
}θ´θ0}ąε

}Spθq} ą }Spθ0q} “ 0 for all ε ą 0.

To prove the uniform convergence

sup
θPΘ

›

›

›

›

1

n
Snpθq ´ spθ, θ0q

›

›

›

›

P
ÝÑ 0

it is sufficient to prove the convergence for every θ P Θ and conclude with the

compactness of Θ. Then, for every θ, by the law of large numbers, 1
nSnpθq ´

spθ, θ0q Ñ 0 in probability. (See Chen & Hall (2016) and Z-estimation theory

in Van der Vaart (2000).)

. For the convergence in distribution, we consider a Taylor expansion around

θ0 :

0 “
1
?
n
Snpθ̂q “

1
?
n
Snpθ0q `

1

n
BθSnpθ

˚q ˆ
?
npθ̂ ´ θ0q

Assuming that BθSnpθ
˚q is invertible,

?
npθ̂ ´ θ0q “ ´

ˆ

1

n
BθSnpθ

˚q

˙´1
1
?
n
Snpθ0q

Hence, by the multivariate CLT, as the processes are i.i.d.,

1
?
n
Snpθ0q

d
ÝÑ N p0, Ipθ0qq

And by continuity with respect to θ, 1
nBθSnpθ

˚q Ñ ´Ipθ0q in probability.575

The conclusion comes from Slutsky’s lemma.

Proof of Proposition 6.. We follow the idea of Chen & Hall (2016). Let ttiu the

ordered collection of jumps of N . Then

ĥptq “
1

nbn

ÿ

ti

K

ˆ

t´ ti
bn

˙

“
1

nbn

ż 1

0

K

ˆ

t´ u

bn

˙

dN puq
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As the processes Ni are i.i.d.,

Epĥptqq “ 1
n

řn
i“1 E

´

ş1

0
1
bn
K

´

t´u
bn

¯

dNipuq
¯

“
ş1

0
1
bn
K

´

t´u
bn

¯

hpuqdu

and

Vpĥptqq “ 1
pnbnq2

V

¨

˚

˝

ş1

0
K

´

t´u
bn

¯

¨

˚

˝

dN puq ´ nhpuqdu
loooooooooomoooooooooon

“dMpuq

˛

‹

‚

˛

‹

‚

“ 1
pnbnq2

ˆ nV
´

ş1

0
K

´

t´u
bn

¯

dMpuq
¯

“ 1
nbn

ş1

0
1
bn
K

´

t´u
bn

¯2

hpuqdu

where the last equality comes from the Itô’s isometry. Then,

ş1

0
1
bn
K

´

t´u
bn

¯2

hpuqdu “
ş

t
bn
t´1
bn

Kpvq2hpt´ bnvqdv

Ñ hptq
ş`8

´8
Kpvq2dv as bn Ñ 0

Hence, there exists a positive constant C1 such that

Vpĥptqq ď
C1

nbn

Then, the bias-variance decomposition for the mean-square error (MSE) is :

E

ˆ

´

ĥptq ´ hptq
¯2
˙

“ Vpĥptqq `
´

Epĥptqq ´ hptq
¯2

loooooooooomoooooooooon

bias2

and, for a given t P p0, 1q, the bias term is :

Epĥptqq ´ hptq “

ż t
bn

t´1
bn

Kpvqhpt´ bnvqdv ´ hptq

If bn Ñ 0, t
bn
Ñ `8 and t´1

bn
Ñ ´8. Assuming that the support of K is r´1, 1s

without loss of generality, for a large enough n,

Epĥptqq ´ hptq “

ż

Kpvq thpt´ bnvq ´ hptqu dv
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Using a Taylor expansion, there exists τ P p0, 1q such that

Epĥptqq ´ hptq “

ż

Kpvq

"

´bnvh
1ptq ` b2n

v2

2
h2pt´ τbnvq

*

dv

As K is symmetric,
ş

vKpvqdv “ 0 and there exists a positive constant C2 such

that

pEpĥptqq ´ hptqq2 ď C2b
4
n

Proof of Lemma 4.. Under H0, by triangular inequality,

p1q “ Pp|ĥppj ` 1q∆q ´ ĥpj∆q| ě εq ď Pppaq ` pbq ` pcq ě εq

with

paq “ |ĥppj ` 1q∆q ´ hppj ` 1q∆q|

pbq “ |hppj ` 1q∆q ´ hpj∆q|

pcq “ |ĥpj∆q ´ hpj∆q|

Then, denote by L the Lipschitz constant of h and assume that L∆ ă ε. There-

fore

p1q ď Pppaq ` pcq ě ε´ L∆q

ď Pppaq ě ε´L∆
2 q `Pppcq ě ε´L∆

2 q

Let ε̃ “ ε´L∆
2 , then by Markov inequality,

Pp|ĥpj∆q ´ hpj∆q| ě ε̃q ď
Eppĥpj∆q ´ hpj∆qq2q

ε̃2

The proof is complete with Proposition 6.
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