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This article deals with the modeling of the trading activity on the European electricity intraday market by a self-exciting point process (also known as Hawkes process). It gives some empirical evidence of self-excitement, and discuss the time-homogeneity of the baseline of the process. The question of the functional shape of the intensity kernel is also adressed. Finally, a parameter estimation procedure is derived for the model with a non-constant baseline.

Introduction

Although electricity markets are quite different from other financial markets (due to strong technical constraints, and a few number of companies acting on them), observations of the intraday electricity market suggest that there exists clusters of operations during the trading period. Our aim is to give empirical 5 evidence of this phenomenon, and study the statistical properties of a model based on a self-exciting process process for the dates of realized trades.

Indeed, the trading activity on intraday electricity market has significantly increased over the last years [START_REF] Kiesel | Econometric analysis of 15-minute intraday electricity prices[END_REF]). This may be driven by in increasing connectivity of networks, a diversification of sources (e.g. re-
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Email address: benjamin.favetto@insee.fr (Benjamin Favetto) newable ones), and an evolution of the demand. Therefore, it shed light on the necessity of improving the knowledge of the intraday electricity market, in order to give more interest on endogeneous mechanisms which can also drive the market activity.

From this point of view, it is important to be able to compare the market characteristics for different hours of the day, and eventually to detect changes in these characteristics on a long timescale (e.g. one year).

The article of [START_REF] Becker | Modeling electricity price events as point processes[END_REF] models the price events on the Australian market, and focuses on the spot price spikes. The model is based on a selfexciting process, also known as Hawkes process. This class of point processes allows the intensity of jumps to depend on previous ones, as an extension of the Poisson process.

Although it is based on a self-exciting process, the framework of this article is quite different from what we want to study : first of all, it deals with the price process and looks for exogenous variables which could explain variations in the intensity of price spikes, then one of its aims is to identify seasonality and patterns at a weekly and daily level. Our study focus on the dates of trades, to give an evidence of the influcence of past trades on the current activity, and some statistical properties of the memory of such a process.

Theoretical properties of the Hawkes process have been widely investigated, and it is of major interest for financial modeling (Bacry et al. (2013a)), criminology [START_REF] Lewis | Selfexciting point process models of civilian deaths in iraq[END_REF]) and earthquake analysis [START_REF] Ogata | Statistical models for earthquake occurrences and residual analysis for point processes[END_REF]). Moreover, several asymptotic results lead to derive estimating procedures for high frequency financial data [START_REF] Da Fonseca | Hawkes process: Fast calibration, application to trade clustering, and diffusive limit[END_REF][START_REF] Da Fonseca | Clustering and mean reversion in a hawkes microstructure model[END_REF], [START_REF] Bacry | Hawkes model for price and trades highfrequency dynamics[END_REF]) and genome analysis (Reynaud-Bouret et al.

(2010)). However, and even if the Hawkes process appears to be an efficient natural extension of the Poisson process, few models based on its properties can be found in the field of energy econometrics [START_REF] Becker | Modeling electricity price events as point processes[END_REF] is the main one).

Then, our goal is to justify the interest of taking into account trade clustering in the intraday market, with a modeling based on a point process for the dates of trades. We mainly focus on the dates of the realized trades in a given period of the day, in order to try to enlighten the specific features of this market.

This article presents the goals of the study, the theoretical issues, and the numerical results on simulated and real datasets.

1. The Hawkes process : a tractable self-exciting point process Some properties of the univariate Hawkes process are briefly recalled here.

Definition 1. Let pΩ, F, Pq a probability space. A Hawkes process X t " pλptq, N ptqq is a stochastic process on the state space D " R `ˆN, where N p¨q is a simple point process adapted to F determined by its intensity process λp¨q:

PpN pt `hq ´N ptq " 1|F t q " λptqh `ophq

PpN pt `hq ´N ptq ą 1|F t q " ophq PpN pt `hq ´N ptq " 0|F t q " 1 ´λptqh `ophq and λptq (given F t q is definded by:

λptq " µptq `ż t 0 ϕpt ´sqdN psq (1)
where µ is a positive function called baseline and ϕ is a non-increasing and non-negative function called kernel.

The knowledge of µ and ϕ determines λp.q and then the distribution of N p¨q.

To give some details about the notations of Equation 1, ş t 0 ϕpt ´sqdN psq " ř tiăt ϕpt ´ti q where tt i u is the collection of ordered times of a unitary jump of N . Hence a jump of N p¨q at time t i will increase the intensity for the dates t ą t i : this explains the use of the term " self-exciting process". Furthermore, the memory of former jumps depends on the tail of the kernel function.

. In the literature of the applications of self-exciting processes, two types of kernels are mostly considered :

• the exponential kernel (i.e. ϕptq " α expp´βtq1 p0,`8q ptq )

• the power-law kernel (i.e. ϕptq " α pc`tq β 1 p0,`8q ptq )

For these kernels, the parameter β is the decay parameter : it determines the tail of the kernel function. Moreover, if }ϕ} 1 ă 1, the Hawkes process admits a version with stationary increments.

The European intraday electricity market data

Description of the data

A database of intraday prices is available, based on the EPEX SPOT Market.

EPEX SPOT market is an European exchange place for power spot trading in Germany, France, the United Kingdom, the Netherlands, Belgium, Austria, Switzerland and Luxembourg. It currently connects markets representing 85% of the European power consumption.

Intraday markets, which are organized by continuous trading-orders of the members, are entered perpetually into the order book. As soon as two orders are compatible, the trade is executed. Contracts for hourly quantities of power can be traded up to 30 minutes before physical fulfillment. Figure 2 shows that the QQ-plot of inter-arrival times of trades against an exponential distribution and rejects clearly the homogeneous Poisson-process as a data-generating process for the order flow. In addition, a self-exciting point process shows positive covariance between collections of events in time [START_REF] Lewis | Selfexciting point process models of civilian deaths in iraq[END_REF]) : for t 1 ă t 2 ă t 3 , CovpN t2 ´Nt1 , N t3 ´Nt2 q ą 0 Furthermore, the histogram of the dates (Figure 3) underpins time-inhomogeneity, as the number of ticks per bin of the histogram strongly varies over the time.

This variation can be explained by :

• Time-inhomogeneity of the baseline (i.e. µ depends on t and the underlying model is an inhomogeneous Poisson-process),

• Self-excitement phenomenon.

As an univariate Hawkes-process based model can recover both sources of variation, a model based on such a process is chosen for the dates of executed trades on the intraday electricity market for a given hour. In addition, a model based on a Hawkes process can handle data generated by a Poisson process, considering ϕ as the null function. Then, the models are embedded.

Theoretical properties of self-exciting point processes

We deal with n independent and identically distributed sets of observations N 1 p¨q, . . . , N n p¨q of a data-generating process N which is assumed to be a Hawkes process observed over a finite time interval ( r0, 1s for sake of simplicity). This corresponds to n observations of the trades concerning a trading period related to a fixed hour of the day, during consecutive trading days. We assume that these observations are i.i.d., even if seasonality, weather or position of the day in the week could be taken into account in a more refined model. This choice is not the most common one : several seminal papers deal with a unique stationary process observed on a long time range, but we can not assume that for one observed period, because of the low number of trades during the trading period3 on the intraday electricity market.

As the length of the time interval is fixed4 , for the theoretical properties of the estimation we consider observations on r0, 1s (which has no impact, up to a rescaling). Moreover, we can observe a sample of n days, assumed independent and identically distributed (typically n " 30 to deal with one month observations). This determines the choice of our asymptotic framework.

Hence, we have :

• n sets of ordered dates tt i j u, observations of independent point process N i

(1 ď i ď nq over r0, 1s,

• the common baseline intensity µptq, which may vary during the trading period,

• the common kernel is ϕ (non-negative and non-increasing function)

The intensity of N i ptq (given the information F t at time t) is :

λ i ptq " µptq `ż t 0 ϕpt ´sqdN i psq for t P r0, 1s
As an increasing number of ticks can be observed as t Ñ 1, we may test if µ could be considered as a constant or an increasing function. We insist on the fact that the " memory size" (determined by the decay parameter) is of major interest. As a property of the intraday market, it gives a better understanding of the self-exciting property, in comparison with a Poisson process.

Remark 1. Even if the exponential and the power law kernel have an unbounded support, their mass is concentrated on a small interval when the decay parameter is large.

Covariance of the Hawkes process

We recall here some properties of the Hawkes process, in the general context of a time-varying baseline function. Some of the proofs are gathered at the end of the report in the Appendix.

Proposition 1. Let M ptq " N ptq ´şt 0 λpsqds. Then

• tM ptq, 0 ď t ď 1u is a zero-mean square integrable martingale with respect to the filtration pF t q

• drM s t " dN t , where r.s is the quadratic variation of the martingale ( i.e. rM s t " ř sďt pM psq ´M ps´qq 2 )

• N ptq " M ptq `şt 0 µpsqds `şt 0 ş s 0 ϕps ´uqdN puqds for t P r0, 1s

(See, for instance, [START_REF] Chen | Inference for a nonstationary self-exciting point process with an application in ultra-high frequency financial data modeling[END_REF].)

. Here is recalled a simple but important result for the further asymptotics. The mean of the process can be expressed as the solution of an integral equation.

Lemma 1. (Integration by parts and convolution formula)

Let mptq " ş t 0 µpsqds. For t P r0, 1s : [START_REF] Bacry | Some limit theorems for hawkes processes and application to financial statistics[END_REF].)

• ż t 0 ż s 0 ϕps ´uqdN puqds " ż t 0 ϕpt ´sqN psqds • Hptq " EpN ptqq " mptq `ż t 0 ϕpt ´sqEpN psqqds (See Lemma 2 in

150

. Let define ϕ n " ϕ ‹ ¨¨¨‹ ϕ (n times -convolution product) and ψ " ř ně1 ϕ n . The idea of using integral equations and convolution product leads to useful and tractable computations, as in [START_REF] Bacry | Non-parametric kernel estimation for symmetric hawkes processes. application to high frequency financial data[END_REF] or [START_REF] Bacry | Some limit theorems for hawkes processes and application to financial statistics[END_REF]. Notice that the key quantities of the distribution of N ptq are expressed with µ, ψ and M .

155

Proposition 2. (Formulas based on the convolution product) For t P r0, 1s :

• Hptq " mptq `ż t 0 ψpt ´sqmpsqds " mptq `pψ ‹ mqptq • N ptq " mptq `pψ ‹ mqptq `M ptq `pψ ‹ M qptq • λptq " µptq `pψ ‹ µqptq `pψ ‹ dM qptq with pψ ‹ dM qptq " ş t 0 ψpt ´sqdM psq.
(See Lemma 4 in [START_REF] Bacry | Some limit theorems for hawkes processes and application to financial statistics[END_REF].)

The covariance of the process (on which some estimators are build, see [START_REF] Bacry | Non-parametric kernel estimation for symmetric hawkes processes. application to high frequency financial data[END_REF] and [START_REF] Bacry | First-and second-order statistics characterization of hawkes processes and non-parametric estimation[END_REF]) can be computed in the non-stationary case.

Proposition 3. For t 1 ă t 2 and t 3 ă t 4 , Cov pN pt 2 q ´N pt 1 q, N pt 4 q ´N pt 3 qq " E The last formula ensures that, in the case of a self-exciting process, the covariance of the number of jumps during two non-overlapping intervals is positive.

However, building an estimator based on deconvolution with this quantity seems to be untractable. The interest is theoretical yet : it validates our numerical justification of self-excitation (Table 1).

Parameter estimation : maximum likelihood estimators

This subsection presents the asymptotic results for the maximum likelihood estimator in both asymptotic frameworks, under classical regularity assumptions. We will see in Section 6 that, for our data, supplementary material is needed, because of the occurrence of a change-point in the baseline, but the basis results are essential to provide convergence rate and asymptotic confidence intervals.

As the log-likelihood of a Hawkes process has a closed form, up to the specification of a functional form for µp¨; θq and ϕp¨; θq, it is possible to perform maximum likelihood estimation.

Let pX t q be an univariate simple point process on r0, 1s and 0 ď t 1 ă ¨¨¨ă t N ď 1 denote an observation set of ordered dates of jumps of pN t q. Then the log-likelihood of pX t q (written, up to a constant, with respect to a Poisson process measure of intensity 1, [START_REF] Ogata | Statistical models for earthquake occurrences and residual analysis for point processes[END_REF]) is:

"

ż 1 0 lnpλpsqqdN s ´ż 1 0 λpsqds (2) Then " ÿ ti ln ˜µpt i q `ÿ tj ăti ϕpt i ´tj q ¸´ż 1 0 µpsqds ´ÿ ti ż 1 ti ϕpt ´ti qdt
From this expression, a maximum-likelihood estimator (MLE) can be derived [START_REF] Ogata | Statistical models for earthquake occurrences and residual analysis for point processes[END_REF]).

Assuming that n i.i.d Hawkes processes N 1 , . . . , N n are observed (with respective intensities λ i ptq ) over r0, 1s, the log-likelihood is:

n pθq " n ÿ i"1 piq pθq
where piq pθq is the log-likelihood associated with the set of observations tN i ptq, t P r0, 1su. Then

n pθq " n ÿ i"1 ˆż 1 0 lnpλ i pt; θqqdN i ptq ´ż 1 0 λ i pt; θqdt ˙(3)
Definition 2. The score function is:

S n pθq " B n pθq " n ÿ i"1 ˆż 1 0 B θ λ i pt; θq λ i pt; θq dM i pt; θq ˙(4)
where dM i pt; θq " dN i ptq ´λi pt; θq.

First, denoting Hpt; θ 0 q " E θ0 pN ptqq, the uniform law of large numbers holds

(Proposition 7) : sup tPr0,1s ˇˇˇˇ1 n n ÿ i"1 N i ptq ´Hpt; θ 0 q ˇˇˇˇP ÝÑ 0 
Then, the score function converges at rate n:

1 n S n pθq P ÝÑ spθ, θ 0 q " E θ0
ˆż 1 0 B θ λpt; θq λpt; θq tdN ptq ´λpt, θqdtu ȧnd the limit function only depends on the intensity of the process: spθ, θ 0 q " E θ0 ˆż 1 0 B θ λpt; θq λpt; θq pλpt; θ 0 q ´λpt; θqqdt Ṫhis limit is slightly different from those of [START_REF] Chen | Inference for a nonstationary self-exciting point process with an application in ultra-high frequency financial data modeling[END_REF]. Indeed, in their framework, λpt, θq is replaced by its expectation. Moreover, the MLE is asymptotically Gaussian, with a different asymptotic variance.

Theorem 1. Under the following conditions :

(C1) µp.; θq and ϕp.; θq are positive and continuous on r0, 1s for all θ P Θ ;

(C2) The parameter space Θ is compact and its interior is connected and con- As n Ñ `8, with probability tending to 1, the maximum likelihood estimator θ exists as a solution to the score equation Spθq " 0 and θ tends to θ 0 in probability. In addition,

? n ´θ ´θ0 ¯d ÝÑ N p0, Ipθ 0 q ´1q
where the information matrix is defined by:

Ipθ 0 q " E θ0 ˆż 1 0 pB θ λpt, θ 0 qq 2 λpt, θ 0 q dt Ṁoreover,
when n Ñ 8,

1 n n ÿ k"1 # ż 1 0 B θ λ k pt; θq b2 λ k pt; θq 2 dN k ptq ´ż 1 0 B 2 θ λ k pt; θq λ k pt; θq dM k pt; θq + P ÝÑ Ipθ 0 q
These results still require regularity assumptions on the baseline and kernel functions with respect to the parameter, therefore they cannot be used if there is an abrupt change-point in the baseline. But they are relevant both in theory and in practice : they give the rate of convergence for the MLE, and they provide asymptotic confidence regions for the parameters.

Empirical evidence of a non-constant baseline modeling

In this section we propose a test to give the evidence of using a non-constant baseline in the model : the intensity of the point process is increasing over the time not only by the self-excitement part but also due to a change in the baseline.

In the literature, few papers investigate this case. For instance, Rambaldi et al.

(2018) deals for instance with intensity bursts, defined as a short time period during which the number of counts is larger than the typical count rate. This case is different from a permanent change in the intensity but suggests to use a parametric approach to estimate the model and an information criterion to discriminate whether there is a change-point or not.

At this point, a change-point estimation is performed as a preliminary work to the estimation of a self-exciting process including a non-constant baseline, in order to justify a more complex modeling (with respect to the usual assumptions in the literature).

First, an empirical evidence of a non-constant baseline is given from the data.

Indeed, in this section, a procedure is proposed to detect a change-point in the baseline, and to estimate its date and its magnitude, without any assumption on the shape of the kernel function. This aims to justify to deal with nonstationarity for the data-generating process.

Detection of a changepoint based on a kernel estimation

The detection of a rough variation in the baseline function is based on a kernel estimation.

Proposition 4. For t P r0, 1s, let N n ptq " ř n i"1 N i ptq be the sum-process, and Λ n ptq " ř n i"1 λ i ptq. The process pN n ptqq is a Hawkes process on r0, 1s, with intensity pΛ n ptqq. Moreover,

Λ n ptq " nµptq `ż t 0 ϕpt ´sqdN n psq
Remark 2. From a theoretical point of view, a single point process can be considered, with a baseline intensity depending on n. This is precisely a particular case of the asympotic assumption described in [START_REF] Chen | Inference for a nonstationary self-exciting point process with an application in ultra-high frequency financial data modeling[END_REF], Section 3, for the consistency and the asymptotic normality of the Maximum Likelihood Estimator (MLE) for a non-stationary Hawkes process. In this case, the intensity is increasing to infinity, which increases the number of points over r0, 1s.

Lemma 2. For t P r0, 1s, let hptq " µptq `ż t 0 ψpt ´sqµpsqds

Then H 1 ptq " hptq.

Proposition 5. For every continuous function f defined over r0, 1s, the following convergence in probability holds:

1 n ż 1 0 f ptqdN ptq P ÝÑ ż 1 0 f ptqhptqdt
A kernel estimator of h can be derived from this proposition. Hence, let K a positive symmetric bounded kernel and b ą 0 a bandwith and define for t P r0, 1s

ĥptq "

1 n ż 1 0 1 b K ˆt ´s b ˙dN psq (5)
The convergence of our estimator is granted by the following result of convergence for the mean-square error of a kernel-estimator. For the sake of simplicity, and because we are looking for a decision whether µ could be considered as constant (which is the case for stationary processes) Remark 4. In [START_REF] Chen | Nonparametric estimation for self-exciting point processes -a parsimonious approach[END_REF], a kernel estimator of h is introduced, while the kernel ϕ is specified up to a parameter. However, our problem adresses the question of the distinction of exponential and power-law kernel, that justifies to look forward more investigations about the kernel estimation.

We focus from now on the following test problem to detect if the baseline might be considered as constant over the time or not :

H 0 µptq " µ 0 for t P r0, 1s 
H 1 pδq µptq " µ 0 `pµ 1 ´µ0 q1 ttěδu with µ 1 ą µ 0
Hence, rejecting H 0 for H 1 pδq means that there exists a date δ P p0, 1q such that the baseline is piecewise constant on r0, δq and rδ, 1s and increases with a step of size µ 1 ´µ0 . The following lemma gives details about the regularity of h when a change-point occurs.

Lemma 3. Under H 1 pδq, for t P r0, 1s

hptq " µ 0 ˆ1 `ż t 0 ψpsqds ˙`pµ 1 ´µ0 q ˜1 `ż t´δ 0 ψpsqds ¸1ttěδu

We can perform a simulation study and underline that an abrupt change in ĥ relies on change point detection (there is a discontinuity point). Hence the values of δ and µ 1 ´µ0 can be estimated. This method is applied to the market data, first with a graphical approach.

In Figure 6, a kernel estimation of h is performed with a Gaussian kernel (even if, in the theory, results are given for a kernel with compact support). Due to side effects, values close to 0 and 1 cannot be taken into account.

A clear change at 80% of the trading period is observed, of order of magnitude " 200. This fact agrees with the hypothesis that the intensity of the point process increases at the end of the trading period, and not only because of the self exciting effect.

. To the end of this section, we give a more precise statement for the test performed on h. Let pj∆, j " 0, . . . , N q be a regular grid on r0, 1s. Under assumption H 0 , h is a Lipschitz function of Lipschitz constant L (due to the regularity of ψ, inherited from those of ϕ), then the difference hppj`1q∆q´hpj∆q must be lower than L∆.
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The following lemma states that, under H 0 , the observation of a big gap between two consecutive values of ĥ over the grid is an event of low probability.

Lemma 4. Under H 0 , for ε ą L∆, there exists a positive constant C (depending on the kernel K) such that, for all 0 ď j ď N ´1, Pp| ĥppj `1q∆q ´ĥpj∆q| ě εq ď C n 4{5 pε ´L∆q 2 Up to the knowledge of C and L, ε can be chosen such that Pp| ĥppj `1q∆q hpj∆q| ě εq " α, for a fixed α P p0, 1q. Then, if for a given j, | ĥppj `1q∆q hpj∆q| ą ε, we can reject H 0 at level 1 ´α. (Proof in the Appendix.)
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Example 1. Assume that ϕptq " αe ´βt for t ą 0. Then for k ě 1 and t ą 0

we have (by induction) :

ϕ ‹k ptq " α k t k´1 pk ´1q! e ´βt
and ψptq " ř kě1 ϕ ‹k ptq " αe ´pβ´αqt . If we assume the condition }ϕ} 1 " α β ă 1, then β ´α ą 0. Moreover, with a constant baseline µ 0 , hptq " µ 0 p1 `şt 0 ψpsqdsq and L ď sup r0,1s |h 1 ptq| " µ 0 α.

Estimation on different hours

The estimation procedures are performed on different hours of the day. The datasets come from April 2015, and consecutive days give, for each hour, 30 independent and identically distributed observations of a trajectory of the datagenerating process. We may underline that the trading period varies for the different hours : it starts at 3pm the day before and ends 45 minutes before the hour of delivery.

Figure 7 presents the results of the non-parametric estimation of h for each hour : the estimator ĥ is strongly increasing in the last 20% of the period. We conclude that, for each hour, there may exist a change-point in the baseline at the end of the trading period.

Non-parametric estimation of the kernel based on splines

One major issue about the electricity intraday market is to make inference about the shape and the decay of the kernels, to have a preliminary result.

Hence, this motivates a non-parametric approach, and estimate ϕ as a function.

Once the shape of the kernel is guessed, a parameter estimation would give more accurate results (and we expect to derive the asymptotic distribution of the estimator under mild assumptions).

Other applications of the Hawkes process have discussed these types of kernel. [START_REF] Bacry | Non-parametric kernel estimation for symmetric hawkes processes. application to high frequency financial data[END_REF] find a slowly decaying kernel shape (heavy-tailed powerlaw kernel) in the case of a one-dimensional model for the point process of incoming market orders of the Bund futures. [START_REF] Errais | Affine point processes and portfolio credit risk[END_REF] underlines the computational tractability of an exponential kernel in the context of portfolio credit risk. In the case of earthquakes, which is one of the original applications of Hawkes processes, the goodness-of-fit of power-law kernel has been enlighten by [START_REF] Ogata | Statistical models for earthquake occurrences and residual analysis for point processes[END_REF].

In the context of criminality (analysis of a dataset providing civilian deaths due to insurgent activity in Iraq), [START_REF] Lewis | A nonparametric em algorithm for multiscale hawkes processes[END_REF] model the dates of combine them with kernel estimation in the case of a marked point process.

All of these strategies have to be reconsidered due to another asymptotic framework, because dates of trades, assumed to be observations of a point process, are observed on a time interval of fixed length.

The non-parametric procedure, presented in this section, is devoted to the estimation of the kernel, and derived from [START_REF] Bai | Semiparametric estimation of a selfexciting regression model with an application in recurrent event data analysis[END_REF] with a slight modification to take into account the piecewise constant baseline. In this section, we assume that we have preliminary estimated δ. The idea is to write the log-likelihood

n pµ 0 , µ 1 , ϕq " ř n k"1 !´ř t k i ăδ lnpµ 0 `řt k j ăt k i ϕpt k i ´tk j qq ´δµ 0 řt k i ěδ lnpµ 1 `řt k j ăt k i ϕpt k i ´tk j qq ´p1 ´δqµ 1 řt k i ş 1´t k i 0 ϕpuqdu )
and built an estimator pμ 0 , μ1 , φq by maximizing it, assuming that φ is a B-spline approximation of the function ϕ. Hence, the problem is reduced to a finite-dimensional optimization problem for the computation of the estimator (a B-spline is a linear combination of basis functions, so only the vector of coefficients has to be estimated).

A B-spline basis is characterized by the regularity r of the functions, d ě r`1 the order of the spline basis functions and κ n (depending on the sample size)

the size of the basis. A knot sequence ξ is a sequence of length κ n `d such that

0 " ξ 1 " ¨¨¨" ξ d ă ξ d`1 ă ¨¨¨ă ξ κn`1 " ¨¨¨" ξ κn`d " 1
and in practice, we will assume that the internal knots (distinct values of ξ) are regularly spaced. Let Bptq " pB 1 ptq, . . . , B κn ptqq 1 the B-spline basis functions associated with this knot sequence.

Definition 3. The set of B-spline basis functions

B d i ptq of order d (1 ď i ď κ n ) is defined recursively by B k i ptq " t ´ξi ξ i`k´1 ´ξi B k´1 i ptq `ξi`k ´t ξ i`k ´ξi`1 B k´1 i`1 ptq
and the initial condition B 1 i ptq " 1 rξi,ξi`1q ptq.

One important result about B-splines is that, for γ P R κn such that γ 1 ě ¨¨¨ě γ κn ě 0 (positive decreasing sequence), the function S defined by Sptq " γ 1 Bptq is a non-negative and non-increasing function over r0, 1s. Then, a Bspline estimator of the kernel has these properties.

Remark 5. One of the advantage of the B-spline method is to simplify the computation of the integrals involved in the log-likelihood by an evaluation of a linear combination of B-spline functions of order d `1. Hence, the evaluation of the log-likelihood is very fast once the basis functions are computed.

Figures 8 and9 present the results of the semi-parametric estimation of pµ 0 , µ 1 , ϕq, using B-splines of order d " 3 and 16 internal nodes in r0, 1s (a grid of stepsize 1 16 ) o, simulations. In both cases, the values of µ 0 and µ 1 are 

Estimation on different hours

In a second step of the study started in Section 4.2, a non-parametric estimation of the kernel is performed for each hour using the B-spline method. As we don't have a precise estimation of δ 0 at this time, and because the value of δ chosen for the baseline estimation does not give a real impact on the kernel estimation, we let δ " 0.85 for sake of simplicity. Figure 10 shows the results.

For each hour, the shape of the estimated kernel is a fast decreasing function, which vanishes during the second part of the period. For this reason, we prefer to deal with an exponential kernel in the sequel. 

Parametric estimation and comparison of the results

The aim of this section is to compare the results obtained by a non-parametric method to those obtained for the maximum-likelihood estimator. Due to the detection of a change-point in the baseline function, the question of a likelihood ratio test is addressed at a first look. The discussion is about two different rates of convergence : a ? n rate for the parameters for which the log-likelihood is twice differentiable, and a n rate for the estimation of δ. Numerical results are provided, based on a Python library.

Likelihood ratio for testing and estimation

In a recent article [START_REF] Chernoyarov | On multiple changepoint estimation for poisson process[END_REF]), a problem of change-point detection for inhomogeneous Poisson processes is presented. We follow the lines of this article to study the asymptotic properties of the change-point test in the case of a Hawkes process observed on r0, 1s. The likelihood ratio is of major interest, both for the the asymptotic properties of the MLE, and for testing if a change-point occurs.

The parameter δ is supposed to be unknown, but other parameters (involved in µ and ϕ) are assumed to be known. We discuss later about a joint estimation on numerical studies. For one observation N i of the Hawkes process, the intensity is

λ i ptq " µ 0 `ż t 0 ϕpt ´sqdN i psq `pµ 1 ´µ0 q1 ptěδq " λ 0 i ptq `pµ 1 ´µ0 q1 ptěδq
Let ln ´dP δ dP δ 1 pN i q ¯the logarithm of the likelihood ratio between the distribution of one process with a change-point at time δ and one with a change-point at

time δ 1 . With θ 1 " µ 1 ´µ0 , ln ˆdP δ dP δ1 pN i q ˙" ż 1 0 ln ˆλ0 i ptq `θ1 1 ptěδq λ 0 i ptq `θ1 1 ptěδ1q ˙dN i ptq ´ż 1 0 θ 1 p1 ptěδq ´1ptěδ1q qdt " ż 1 0 ln ˆλ0 i ptq `θ1 1 ptěδq λ 0 i ptq `θ1 1 ptěδ1q ˙dN i ptq ´θ1 pδ 1 ´δq
This is slightly different from the log-likelihood of Equation 2, where the likelihood is written with respect to a homogeneous Poisson process of intensity 1.

Then, with n i.i.d. observations, the test statistics becomes Lpδq "

n ÿ i"1 ln ˆdP δ dP 1 pN i q
(with dP 1 the distribution of a process with constant baseline, but any arbitrary value can be chosen). Let δ the MLE defined by δ P arg max δPp0,1q

Lpδq

From a numerical point of view, and because L is not a regular function, the maximization is performed over a grid. Therefore, testing if the baseline is constant, or not, can be decided from the values of this ratio : under the null hypothesis H 0 , Lpδq ď 0 for δ P r0, 1s, whereas under H 1 pδ 0 q, Lpδq reaches its 385 maximum for δ " δ 0 . Figure 11 illustrates this fact with simulated data (for these simulations, an exponential kernel has been chosen). (2018)). In particular, the rate of convergence of the change-point estimator is faster than the other parameters when the likelhood is not smooth. To be pre-cise, if dP pδ0`u n q dP pδ0q has a limit in distribution as n Ñ 8, then np δn ´δq converges in distribution, with δ the MLE estimator of δ. To assess the limit for a selfexciting process, we performed simulations (100 replications of 30 independent trajectories with δ 0 " 0.8 and an exponential kernel) to draw an histogram of the empirical distribution of np δ ´δ0 q and confirm empirically the rate of convergence. Figure 12 shows the histogram of the limit distribution. Unfortunately, the complete proof is beyond our reaching. 

Numerical results

In order to perform the numerical maximization of the log-likelihood including a change-point detection,

• for fixed values of δ P tj∆, j " 1, . . . , N u, the MLE estimation of other parameters is done by a classical algorithm (method 'L-BFGS-B' from scipy.optimize.minimize),

• these estimated values are stored, with the value of the log-likelihood,

• δ P arg max Lpδq is computed, with the associated values of the other parameters.

. On simulated datasets, this method gives positive results. In Figure 13, the data is simulated with

• an exponential kernel (β 0 " 80 and β 1 " 100)

• a changepoint in the baseline at δ 0 " 0.8 (µ 0 " 5 and µ 1 " 50)

The estimated values are :

μ0 " 4.62 , μ1 " 45.09 , β0 " 81.20 , β1 " 100.37 and the values of the log-likelihood belong to r10196, 10200s. Hence, it is easy to distinguish if there is a change point or not (i.e. if there is a clear spike in Lpδq or not).

Figure 15 shows that in the case of an exponential kernel, the opposite of the log-likelihood (which is provided to the minimizer of Scipy) is convex around its minimum. Hence, the computation of the MLE is well performed. However, in the case of a power-law kernel, the opposite of the log-likelihood is flat around its minimum, as shown in Figure 16. Then, the computation of the MLE is harder, and the numerical errors of approximation lead to important errors for the MLE. increases from the first to the last hour, the estimated values of α and β cannot be compared between different hours). However, the ratio α{β is equal to }ϕ} 1 in any case.

Asymptotic confidence intervals in Table 2 are based on an approximation of the Fisher information matrix (see Theorem 1) and the multivariate central limit theorem, assuming that we can replace δ 0 by δ (due to a faster rate of convergence) and apply the theorem for regular cases.

These confidence intervals reported in Table 2 show that the parameters of the baseline (µ 0 , µ 1 ) and the decay parameter (β) are estimated with a halflength of the interval which is about 10% of the value of the estimator. Hence these estimations (with 30 observed trajectories) are not of good precision. Conversely, the estimation of α is very good, and the ratio α{β is quite stable.

Conclusion

As a self-excitement phenomenon has been enlighten in the intraday electricity market, the question of the understanding of its causes is now a perspective.

It is plausible to consider economic reasons (convergence of prices in the order book at the end of the trading period due to an adjustment of supply and demand). Technical implications may also be considered, as electricity production requires a fine adjustment : a better forecasting of the weather or the supply capacities of renewable producers may be obtained at the end of the period. These computations are useful to derive the positivity of the covariance matrix of the observations, and assert a model with self-excitement.

. First, a uniform law of large numbers is established for n ´1N n . where Ψ is an antiderivative of ψ.

. The limit in distribution of the martingale part of N can be determined using Proposition 8, and a Central Limit Theorem.
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Theorem 2. For ps, tq P r0, 1s 2 , From now on, the properties of the limit distribution are investigated. The idea is to consider a Gaussian process with the same marginal distributions.

1 ? n ¨Mn psq ψ ‹ M n psq M n ptq ψ ‹ M n ptq ‹ ‹ ‹ ‹ ‹ ‹ ' d ÝÑ N ¨0; 1 ‹ hpsq Ψ ‹ hpsq 1 ‹ hps ^tq paq Ψ ‹ hpsq Ψ 2 ‹ hpsq pbq pcq 1 ‹ hps ^tq pbq 1 ‹ hptq Ψ ‹ hptq paq pcq Ψ ‹ hptq Ψ 2 ‹ hptq ‹ ‹ ‹ ‹ ‹ ‹ ' with 
Definition 4. Let pB t q, t P r0, 1s a standard Brownian motion on r0, 1s, and

Y t " ż t 0 a hpuqdB u (.1)
Lemma 5. We have :

• dxY y t " hptqdt • Y t " N p0, ş t 0 hpuqduq • for ps, tq P r0, 1s 2 CovpY s , Y t q " ż s^t 0 hpuqdu
Hence, the diffusion process pY t q has the same properties as the limiting distribution of n ´1{2 M n ptq.

Proposition 9. For t P r0, 1s, let

Z t " Y t `pψ ‹ Y qptq " Y t `ż t 0 ψpt ´uqY u du
Then pZ t q is a centered Gaussian process with covariance cps, tq. Furthermore,

@t P r0, 1s, Z t " Y t `ż t 0 ϕpt ´uqZ u du
These results imply :

• n ´1N n ptq converges to Hptq " mptq `şt 0 ϕpt ´sqHpsqds in L 2
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• n ´1{2 pM n ptq `ψ ‹ M n ptqq converges to Z t " Y t `şt 0 ϕpt ´sqZ s ds in distribution and we can draw the analogy between pM t q and pY t q. This is strongly linked with Proposition 5 (Auto-Regressive projection) of [START_REF] Bacry | Hawkes processes in finance[END_REF].

Proof of Proposition 4.. Let N 1 , . . . , N n n independent Hawkes processes on 550 r0, 1s, of respective intensities λ 1 , . . . , λ n . Let N ptq " N 1 ptq `¨¨¨`N n ptq.

For h ą 0, using independent events, PpN pt `hq ´N ptq " 0|F t q " Pp n č i"1 tN i pt `hq ´Ni ptq " 0u|F t q " n ź i"1 PpN i pt `hq ´Ni ptq " 0|F t q " n ź i"1 p1 ´λi ptqh `ophqq In addition, B θ spθ, θ 0 q " E θ0 ˆż 1 0 ˆB2 θθ 1 λpt; θq λpt; θq ´Bθ λpt; θq b2 λpt; θq 2 ˙λpt; θ 0 qdt ˙´E θ0 ˆż 1 0 B 2 θθ 1 λpt; θqdt ȧnd B θ spθ 0 , θ 0 q " ´Eθ0 ˆż 1 0 B θ λpt; θ 0 q b2 λpt; θ 0 q dt ˙.

Then ´Bθ spθ 0 , θ 0 q " Ipθ 0 q and this matrix is semi-definite negative in a neighborhood of θ 0 , by assumption.

As the processes N i are i.i.d., The proof is complete with Proposition 6.
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Figure 1 :

 1 Figure 1: Timestamps from the database (executed trades)

Figure 2 :

 2 Figure 2: QQ-plot of inter-trade durations against exponential distribution

Figure 3 :

 3 Figure 3: Distribution of the dates of executed trades (April 2015)

  Kpuqdu ă 8 and K has a compact support. If the number of observations n Ñ `8, and the bandwith b " b n Ñ 0 with nb n Ñ 8, then there exists a positive constant C such that, for all t P p0, 1q, h can be easily recovered by ĥ, except if a changepoint occurs close to 0 or 1, due to side effects. Remark 3. Furthermore, an optimal b n can be derived from the last inequality: taking b n 9n ´1{5 ensures that the MSE is minimal (up to a constant). In this case, the MSE is of order n ´4{5 .. On a simulation study, the asymptotic behaviors of n ´1N ptq with different baselines (constant, piecewise affine and piecewise constant) are presented.

Figure 4 :

 4 Figure 4: Asymptotic behaviour of n ´1N ptq with different baselines

Figure 5 :

 5 Figure 5: Changepoint detection with kernel estimation (simulation study)

Figure 6 :

 6 Figure 6: Changepoint detection based on a kernel estimation of h (market data, April 2015)

Figure 7 :

 7 Figure 7: Non-parametric detection of a change-point (kernel estimator ĥ)

Figure 8 :

 8 Figure 8: Exponential kernel and its non-parametric spline estimation (simulation)

Figure 9 :

 9 Figure 9: Power-law kernel and its non-parametric spline estimation (simulation)

Figure 10 :

 10 Figure 10: Non-parametric estimation of the kernel (B-splines, δ 0 " 0.85))

Figure 11 :

 11 Figure 11: Values of Lpδq (left : change-point at 0.8, right : constant baseline)
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Figure 12 :

 12 Figure 12: Empirical distribution of np δn ´δq (simulated data)

Figure 13 :

 13 Figure 13: Maximization of the log-likelihood with respect to δ (true value = 0.8)

Figure 14 :

 14 Figure 14: Left : Maximization of the log-likelihood with respect to δ. Right : Likelihood ratio. (exponential kernel, April 2015)

Figure 16 :

 16 Figure 16: Influence of the values of the kernel parameters on the log-likelihood (power law kernel)

Figure 17 :

 17 Figure 17: Maximum Likelihood Estimation of δ (value of Lpδq)

530Proposition 7 .

 7 For t P r0, 1s N n ptq n P ÝÑ EpN ptqq " Hptq Moreover, the convergence is uniform in t : sup tPr0,1sˇˇˇN n ptq n ´Hptq ˇˇˇP ÝÑ 0The following proposition is the key of further computations for the convergence in distribution of the martingale part.Proposition 8. Let f and g two continuous functions defined on r0, 1s, and denote by F and G their antiderivatives. For ps, tq P r0, 1s 2 , VpM ptq `ψ ‹ M ptqq " p1 `Ψq 2 ‹ hptq " ż t 0 p1 r0,ts pt ´uq `Ψpt ´uqq 2 hpuqdu

  For ps, tq P r0, 1s 2 , 1 ? n ¨Mn psq `ψ ‹ M n psq M n ptq `ψ ‹ M n ptq ' d ÝÑ N ¨0; ¨cps, sq cps, tq cpt, sq cpt,

0 1s^t 0 F

 00 ts pt ´uqGpt ´uqdM puq Using the Itô's isometry and drM spuq " dN puq, Cpf ps ´.q, gpt ´.qq " E ˆż 1 r0,ss ps ´uq1 r0,ts pt ´uqF ps ´uqGpt ´uqdN puq " ż ps ´uqGpt ´uqhpuqdu Proof of Theorem 2.. Based on the multivariate CLT and the result of Propo-560 sition 8.Proof of Proposition 7.. Using the martingale decomposition dN psq " dM psq λpsqds, pλpt; θ 0 q ´λpt; θqqdt ˙.

Table 1 :

 1 Empirical covariance of the number of transactions N ppk `1q∆q ´N pk∆q

	8.55e-01	-3.45e-02	1.24e-01	-6.90e-03	1.20e+00	-1.31e-01	2.48e-01	2.55e-01	1.72e-01	3.06e+00
	-3.45e-02	1.44e-01	-5.75e-03	5.75e-03	-8.05e-02	5.75e-02	-2.13e-01	-2.41e-01	-4.02e-02	8.39e-01
	1.24e-01	-5.75e-03	2.54e-01	8.39e-02	4.46e-01	6.46e-01	2.26e-01	-1.79e-01	2.82e-01	-1.77e-01
	-6.90e-03	5.75e-03	8.39e-02	7.23e-01	6.37e-01	6.44e-02	-6.78e-02	3.93e-01	1.24e+00	-6.92e-01
	1.20e+00 -8.05e-02	4.46e-01	6.37e-01	3.15e+00	9.89e-02	7.77e-01	1.19e+00 2.05e+00	5.89e+00
	-1.31e-01	5.75e-02	6.46e-01	6.44e-02	9.89e-02	6.40e+00	2.49e+00 1.06e+00 2.32e+00 -2.84e+00
	2.48e-01	-2.13e-01	2.26e-01	-6.78e-02	7.77e-01	2.49e+00	5.55e+00 4.23e+00 4.45e+00	-6.87e-01
	2.55e-01	-2.41e-01 -1.79e-01	3.93e-01	1.19e+00	1.06e+00	4.23e+00 1.17e+01 8.48e+00	3.37e+00
	1.72e-01	-4.02e-02	2.82e-01	1.24e+00 2.05e+00	2.32e+00	4.45e+00 8.48e+00 2.98e+01	7.30e+00
	3.06e+00	8.39e-01	-1.77e-01	-6.92e-01	5.89e+00 -2.84e+00	-6.87e-01	3.37e+00 7.30e+00	1.72e+02
	Table 1 gives the empirical covariance of N ppk `1q∆q ´N pk∆q, 0 ď k ă 10, for		
	∆ " 0.1, computed for the first hour of the day with 30 observations in April		
	2015. Most of the values are significantly positive.					

(A close formula for this covariance can be found in

[START_REF] Bacry | Non-parametric kernel estimation for symmetric hawkes processes. application to high frequency financial data[END_REF] 

for the stationary case, and in Proposition 3 for the general case). Conversely, for a Poisson process, independents increments entail that this covariance vanishes.

Table 2 :

 2 Estimated values of the parameters for various hours of the day (exponential kernel)

  ĥptqq " 1 Kpvq 2 dv as b n Ñ 0 Hence, there exists a positive constant C 1 such that Then, the bias-variance decomposition for the mean-square error (MSE) is : Assuming that the support of K is r´1, 1s without loss of generality, for a large enough n, Kpvq thpt ´bn vq ´hptqu dv Using a Taylor expansion, there exists τ P p0, 1q such that

		Ep ĥptqq ´hptq "	ż	n ş 1 0 Kpvq ř n i"1 E 1 bn K ´t´u ´ş1 0 bn ¯hpuqdu 1 bn K ´t´u bn ¯dN i puq " ´bn vh 1 ptq `b2 n v 2 2 h 2 pt ´τ b n vq " * dv
	As K is symmetric,	ş	vKpvqdv " 0 and there exists a positive constant C 2 such
	and that	Vp ĥptqq "	1 pnbnq 2 V pEp ĥptqq ´hptqq 2 ď C 2 b 4 ¨ş1 0 K ´t´u bn ¯¨d N puq ´nhpuqdu loooooooooomoooooooooon ‹ ' ‹ '
					"dMpuq
				"	1 pnbnq 2 ˆnV	´ş1 0 K ´t´u bn ¯dM puq	"
					1 nbn	ş 1 0	1 bn K ´t´u bn ¯2 hpuqdu
	where the last equality comes from the Itô's isometry. Then,
		ş 1 0	1 bn K ´t´u bn ¯2 hpuqdu "	bn ş t bn t´1	Kpvq 2 hpt ´bn vqdv
					ş `8 C 1 ´8 Vp ĥptqq ď Ñ hptq nb n
			E ˆ´ĥ ptq ´hptq	¯2˙"	Vp ĥptqq `´Ep ĥptqq ´hptq	¯2
					loooooooooomoooooooooon
					bias 2
	and, for a given t P p0, 1q, the bias term is :
			Ep ĥptqq ´hptq "	ż t bn	Kpvqhpt ´bn vqdv ´hptq
					t´1
					bn
	If b n Ñ 0, t bn Ñ `8 and t´1 bn Ñ ´8. Ep ĥptqq ´hptq " ż

n Proof of Lemma 4.. Under H 0 , by triangular inequality, p1q " Pp| ĥppj `1q∆q ´ĥpj∆q| ě εq ď Pppaq `pbq `pcq ě εq with paq " | ĥppj `1q∆q ´hppj `1q∆q| pbq " |hppj `1q∆q ´hpj∆q| pcq " | ĥpj∆q ´hpj∆q| Then, denote by L the Lipschitz constant of h and assume that L∆ ă ε. Therefore p1q ď Pppaq `pcq ě ε ´L∆q ď Pppaq ě ε´L∆ 2 q `Pppcq ě ε´L∆ 2 q Let ε " ε´L∆ 2 , then by Markov inequality, Pp| ĥpj∆q ´hpj∆q| ě εq ď Epp ĥpj∆q ´hpj∆qq 2 q ε2

This correspond to the hour 00:00:00 of

2015-04-01 in France and Germany.2 Add two hours for the time in the countries which act on the intraday market.

" 8 hours for the first hour of the day, and up to more than 20 hours

The trading period for hourly quantities had a duration of 8 hours 15 minutes in 2015, and 8 hours 30 minutes now, for the first hour of the day. As all trading periods start at 15pm, the results can be impacted. Then we maily focus on the first hour of the day in numerical applications.

Finally, this work focused on the dates of trades, especially with self-excitation as a source of endogeneity, and the last perspective would be to analyze the price process on the European market, taking into account exogenous variables and seasonality, as in [START_REF] Becker | Modeling electricity price events as point processes[END_REF].

In conclusion, I would like to thank Prof. Rüdiger Kiesel and his team for his welcoming during my visit in Essen, and the discussions we had about the electricity market.

Appendix

In this section, the proofs of some results are gathered to ease the reading of the report.

Appendix.1. Asymptotic properties of the sum-process

This section provides asymptotic properties of the sum-process. The most important idea to keep in mind is that two types of convergence occur, at different rates :

1. A law-of-large-numbers result for n ´1N n , with a deterministic limit ; 2. A central-limit-theorem result for n ´1{2 M n , with a Gaussian limit. and, using disjunct events,

Hence, N is a Hawkes process with intensity Λ "

Proof of Lemma 2.. Let t P r0, 1s. As

Hptq "

we have (by interchanging the integral and the derivative)

H 1 ptq " µptq `ψptqmp0q `ż t 0 ψpsqm 1 pt ´sqds " hptq since mp0q " 0.
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Proof of Proposition 7.. For t P r0, 1s,

and by the law of large numbers, as n Ñ 8,

ÝÑ EpN ptqq and the integral formula for EpN ptqq is given by Lemma 1. For the uniform convergence, see for example [START_REF] Chen | Nonparametric estimation for self-exciting point processes -a parsimonious approach[END_REF].

normalized score function, in a sense that sup }θ´θ0}ąε }Spθq} ą }Spθ 0 q} " 0 for all ε ą 0.

To prove the uniform convergence

it is sufficient to prove the convergence for every θ P Θ and conclude with the compactness of Θ. Then, for every θ, by the law of large numbers, 1 n S n pθq śpθ, θ 0 q Ñ 0 in probability. (See [START_REF] Chen | Nonparametric estimation for self-exciting point processes -a parsimonious approach[END_REF] and Z-estimation theory in [START_REF] Van Der Vaart | Asymptotic statistics volume 3[END_REF].)

. For the convergence in distribution, we consider a Taylor expansion around

Assuming that B θ S n pθ ˚q is invertible,

Hence, by the multivariate CLT, as the processes are i.i.d.,

And by continuity with respect to θ, 1 n B θ S n pθ ˚q Ñ ´Ipθ 0 q in probability.
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The conclusion comes from Slutsky's lemma.

Proof of Proposition 6.. We follow the idea of [START_REF] Chen | Nonparametric estimation for self-exciting point processes -a parsimonious approach[END_REF]. Let tt i u the ordered collection of jumps of N . Then