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• Cloud framework-based DLV approaches [5], [15], [19]

aim at installing a software framework on CSP. Such a

framework is in charge of guaranteeing data location by

forbidding data moves to unauthorized locations.

• Hardware-based DLV approaches [1], [3], [14] aim at

providing a tamper-proof hardware root of trust. Such a

hardware is physically connected to the CSP’s machines,

thus guaranteeing its own location and the connected

machines.

• Landmark-based DLV approaches [4], [6], [7], [8], [9],

[13], [17], [18] aim at providing communication-based

solutions. Such solutions allow users to estimate data lo-

cation using landmarks, which are hosts connected to the

Internet whose physical locations are known and that can

interact with the user and with the CSP. Prior to launching

the DLV process, landmarks are deployed by the user, in

a way such that he/she tries to surround location in which

data are supposed to be located. Then, landmarks interact

with each other, building a model predicting distance,

generally based on the Round-Trip Times (RTTs) mea-

sured during these interactions. Afterwards, when the user

requests location verification, landmarks probe the CSP.

Feeding CSP-related RTTs to built model of distance

prediction allows to derive a geographic zone, reflecting

the CSP estimated location according to the measured

RTTs. Location agreed from the SLA should be included

in the estimated zone, otherwise it is very likely that data

were moved from the agreed location.

In the sequel, we address landmark-based DLV approaches

and compare their location accuracy. For performance reasons,

including data access delay and robustness, the data may be

stored at different locations by the CSP and the users are aware

of the distribution or duplication of their data. Without loss of

generality, we assume that the entire data for which DLV is

run are in a single location. Indeed, iterating the verification

process described in the following sections would contribute

to consider multi-location CSPs. The objective of the paper is

to present results of experimentation based on a platform of

data collection. DLV approaches are evaluated with the same

dataset.

The rest of this paper is organized as follows. Section

II presents the compared DLV approaches. In Section III,

dataset collecting and preprocessing are described as well as

assessment methodology. Section IV concludes the paper.

Abstract—Data storage in the Cloud became a very popular 
service. However, delegation of data management results in 
loss of control from user perspective, in particular regarding 
the real location where data are stored. Thus, data location 
verification in the Cloud is a challenging issue. Among the 
huge methods proposed to consider data location verification, 
this paper focuses on machine learning based methods, which 
use network Round Trip Times as main metric. In particular, 
it provides experimental results based on country-wide dataset 
collected through Grid’5000 platform. Results show the capacities 
of regression-based methods to support data location verification 
at specific accuracy depending on user requirements.

I. INTRODUCTION

Nowadays companies, administrations, and individuals let 
data storage be handled by large-scale distributed storage 
systems, called Cloud services. Thus, they are relieved of 
management and maintenance of equipment used for data 
storage. Doing so, users have to trust their Cloud Service 
Provider (CSP) as they lose control over their data. To make 
Cloud services more widely accepted users can implement 
requirements in QoS clauses, including clauses about data 
location in the Service Level Agreement (SLA). Legal issues 
[10], privacy [13], and performance [8] are the main reasons 
for data location requirements.

Limitations about data location are often enforced by gov-

ernments, which require some data to be stored in certified data 
centers with a location clause provided in the SLA [10], [11],

[16]. That is why Cloud services users need to have means 
to verify their data location. However, Cloud infrastructure 
virtualization makes location verification a challenging issue, 
as data location cannot easily be known, even by the CSP 
in some cases. Moreover, even when SLA includes an initial 
clause about location and the clause is initially honored, the 
CSP is still able to change data location by moving them to 
another country to cut costs, by mistake or maliciously.

When a location clause exists in the SLA, the CSP agrees on 
it and should store the data at the specified location. Users can 
either trust the CSP and there is no data location verification 
problem, or assume that the CSP can be malicious and store 
data in an inappropriate location and they have to deploy 
mechanisms enabling data location verification at any time. 
Huge approaches addressing this problem were proposed in lit-
erature [12]. Three DLV (data location verification) approaches 
classes are commonly distinguished:
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II. OVERVIEW OF DLV APPROACHES

Most of the landmark-based DLV approaches are based on

the same principle under the assumption that there is a relation-

ship between RTT and distance. First, all the landmarks whose

positions are known interact with each other, sending requests

to each other and measure the RTTs of requests-responses.

Hop count may also be collected. Using measurements, a ma-

chine learning model is built to estimate the distance according

to measurements. After training phase, learning model can be

evaluated by making measurements between landmarks and

CSP to infer CSP location. Multilateration is used to calculate

the zone of intersection where data is expected to be stored.

In the sequel, N denotes the number of measures used in

training and ril,k and dil,k the ith training RTT measure from

landmark l to another landmark k and the associated distance,

respectively. The distinctive feature between DLV approaches

is the distance model they use. A distance is associated to

RTT value. Among the proposed DLV approaches, we select

three, which are representative in the field of data location

verification [12].

A. Bestline-based approach

Distance models used in Fotouhi et al. [8] and Gondre

and Peterson [9] approaches are based on bestline. The latter

is the highest linear function lower than all points in the

Distance-RTT graph. Bestline-based model results in distance

overestimate; depending on the dataset coverage, the returned

area should include the real location. Each landmark builds

its own function to describe the bestline, which represents

distance in function of RTT, as follows:

d̂ bestl = a bestl × r + b bestl

where variable r is associated with RTT value; slope al and

intercept bl of l landmark’s bestline are calculated according

to bestline definition.

B. Linear regression-based approach

Watson et al. [18] and Benson et al. [4] used a linear func-

tion obtained through linear regression as distance model. The

slope al and intercept bl , associated with any landmark l, are

computed using linear regression. Consequently, inaccuracy in

the result grows according to the spread of RTT values for a

given distance.

̂d linregl = a linregl × r + b linregl

C. Polynomial regression-based approach

Eskandari et al. [7] proposed to use a polynomial function to

estimate the distance in function of RTT. It should be noticed

that, in Eskandari’s approach, all landmarks use the same

coefficients. Assuming M is the degree of the polynomial

function, distance estimation model is:

̂d polyreg =

M∑

j=1

a polyregj × r
j
+ b polyreg

aj coefficients and b are obtained through polynomial

regression. As mentioned for previous approach, when regres-

sion is used, uncertainty in the result grows according to the

spread of RTTs for a given distance. In machine learning

practice, degree M is selected depending on the shape of

measurements. In our experimentation, polynomial degree is

increased until no improvement in results is observed.

III. METHODOLOGY AND EXPERIMENTATION SETUP

A. Dataset collection

Authors of DLV approaches provided some simulation or

experimentation results, which were obtained through specific

real or simulated environments and hypotheses, to empha-

size the performance of their approaches. Unfortunately, the

diversity of simulation/experimentation environments makes

comparison between results either infeasible or unfair. Our

first contribution is to design and implement a distributed

framework to collect credible and representative dataset at

country level, France in our work. Then, the same data is used

to evaluate all three DLV approaches we selected. Our data

collection was run over a long period (in month), while many

authors evaluate their solutions using data collected online

during a short period of simulation (in second).

Fig. 1: Grid’5000 Map and nodes connection

To collect the dataset, we used Grid’5000 platform [2].

The latter is a french distributed infrastructure composed

of nodes located at main french cities including Grenoble,

Lille, Lyon, Nancy, Nantes, Rennes, and Sophia and one site

in Luxembourg. Grid’5000 nodes are connected through 10

Gigabits dedicated links as shown on Figure 1.

On each node, a script was activated to send requests to all

the other nodes each 5 minutes from May 22nd 2018 to June

22nd 2018. We collected a total of 614,244 samples between

all Grid’5000 nodes. A sample consists of a timestamp, an

RTT, and a hop count obtained with traceroute command.

Statistics (mean, standard deviation, and dataset size) re-

garding collected data are shown on Table I. Overall, collected

data were quasi-symmetrical, i.e. measures from node A to



TABLE I: Statistics summary of raw RTTs collected in Grid’5000

Destination

Grenoble Lille Luxembourg Lyon
µ σ size µ σ size µ σ size µ σ size

O
ri

g
in

Grenoble 0.02 0.01 9627 13.42 3.17 9629 17.63 3.63 9628 4.30 3.88 9629
Lille 14.12 3.72 10813 0.04 0.08 10813 12.05 1.76 10813 11.53 3.71 10813

Luxembourg 18.47 8.10 10839 12.04 6.88 10839 0.04 0.02 10839 15.79 7.93 10839
Lyon 3.95 0.60 7228 10.36 2.69 7227 14.51 3.07 7227 0.06 0.03 7228

Nancy 16.65 4.14 7258 9.66 0.81 7258 2.67 0.99 7258 14.06 4.08 7258
Nantes 16.65 0.67 10838 24.12 3.86 10837 28.41 4.33 10837 14.03 0.64 10837
Rennes 17.97 1.28 9337 25.75 4.00 9340 30.16 8.94 9338 15.34 0.97 9339
Sophia 10.29 0.63 10839 17.72 3.89 10839 22.01 4.56 10840 7.68 0.60 10839

Destination

Nancy Nantes Rennes Sophia
µ σ size µ σ size µ σ size µ σ size

O
ri

g
in

Grenoble 15.91 5.75 9629 16.72 0.91 9628 18.18 1.39 9629 10.26 0.97 9628
Lille 10.29 3.71 10813 24.20 4.22 10813 25.53 4.36 10813 17.75 4.21 10813

Luxembourg 3.35 4.66 10839 28.51 8.19 10839 29.84 8.16 10839 22.07 8.20 10839
Lyon 12.98 4.44 7226 13.91 0.42 7229 15.28 1.08 7228 7.45 0.89 7226

Nancy 0.02 0.01 7258 26.72 4.30 7258 28.03 4.44 7258 20.35 4.27 7258
Nantes 26.27 4.13 10838 0.03 0.01 10837 1.94 1.42 10837 20.22 0.43 10837
Rennes 27.90 4.49 9339 1.97 1.72 9339 0.06 0.04 9337 21.53 0.90 9338
Sophia 20.08 4.56 10839 20.30 0.50 10839 21.65 0.80 10839 0.03 0.02 10839

another node B are similar to those from node B to node A as it

can be seen on Table I. Also, we did not consider collected hop

counts in location verification, because their values are static

due to dedicated connections established through Grid’5000

platform: hop count is either 1 when a front-end server interact

with itself or 3 when it interacts with another node.

B. Dataset preprocessing

Being a free public research platform, some frontend nodes

on which our scripts were running could be rebooted without

any warning. Consequently, some measures were missing

leading to different sizes in subsets associated with different

couples of nodes as shown on Table I. To provide the same

conditions for evaluated VDL approaches, we first discarded

measures for some nodes (Lyon and Nancy nodes, because

the ratio of missing measures is high; see Table I). Then, we

discarded outliers, like those samples with hop count greater

than 3 or RTT values higher than 100 ms, which result in

abnormal routing in Grid’5000. Finally, we synchronized the

remaining measures for each originating city. Synchronization

is based on sample timestamps, with a certain error margin due

to the scripts being distributed. Measures are kept when they

are sampled in the same time interval for all the city nodes.

After preprocessing, the dataset included 172,392 samples.

C. Learning algorithms comparison

Supervised machine learning is based on two steps: training

to build a model and prediction to provide results to user.

DLV approaches mainly differ in their learning process. The

prediction is similar for approaches we considered, it consists

in feeding data—i.e. collected RTTs without location, i.e.

without labels—to built model and let it return a result, i.e. a

predicted location.

Training in bestline-based and linear regression-based ap-

proaches consists in building the distance prediction functions

using bestline and linear regression functions, respectively.

One function is produced per node, using all requests issued

by such a node to probe other nodes.

In the polynomial-based approach, a single prediction func-

tion is needed; it is obtained by polynomial regression on the

entire dataset, as done in [7].

In prediction step, distance estimate model is applied to

new samples collected from known origins. Returned estimate

distance is mapped to a circle for each node, which collected

test data. Circle centers are location coordinates of nodes.

Then, approximation of circles as polygons of 10,000 points

are derived and intersections of all polygons are calculated.

The final result is a polygon representing a geographic zone

in which the data are expected to be located. When multilat-

eration result is perfect, all circles intersect at a single point,

which is the location of CSP. However, due to fluctuations in

collected RTTs, we address estimated distances as a maximum

boundary, thus the intersection is a zone.

To use DLV methods, one has to specify the zone where

data are accepted to be located, which is called accepted

zone. There are different ways to describe accepted zone

including names (of cities, countries, states... ), geometric

forms, geographic points... To apply multilateration in our

context, we associate a circle to each node in Grid’5000

platform; circle centers are coordinates of buildings hosting

Grid’5000 nodes in considered cities.

In order to give smart output, we use Google Maps to



TABLE II: Statistics summary of preprocessed RTTs (Dataset with 172,392 samples)

Destination

Grenoble Lille Luxembourg
µ σ µ σ µ σ

O
ri

g
in

Grenoble 0.02 0.01 13.54 3.16 17.73 3.19
Lille 13.51 3.20 0.04 0.03 11.93 0.33

Luxembourg 17.58 3.22 11.80 0.28 0.04 0.02
Nantes 16.63 0.28 23.44 3.18 27.67 3.21
Rennes 17.93 0.20 24.79 3.19 28.94 3.21
Sophia 10.24 0.34 17.05 3.26 21.23 3.29

Destination

Nantes Rennes Sophia
µ σ µ σ µ σ

O
ri

g
in

Grenoble 16.73 0.25 18.10 0.36 10.27 0.37
Lille 23.54 3.22 24.87 3.20 17.09 3.30

Luxembourg 27.63 3.23 28.97 3.23 21.16 3.31
Nantes 0.03 0.01 1.88 0.19 20.20 0.39
Rennes 1.91 1.09 0.06 0.04 21.47 0.42
Sophia 20.26 0.34 21.61 0.32 0.03 0.01

display multilateration result as shown on Figures 2, 3, and

4. In blue is estimate zone, in red is accepted zone, and in

green is the intersection of both zones.
To assess estimate results, we use three scores:

• Verification consensus score, a verification consensus

score vcsi is associated with each prediction test i; it

equals the ratio of the maximum of number of intersect-

ing estimated zones to the total number of landmarks

participating in the verification. vcsi equals 0 means

that landmarks failed a have any consensus on common

estimated zone. Then, an average success score, denoted

VCS, is computed for all tests for each DLV approach;

Nt is the number of tests:

vcsi =
Maximum number of intersecting estimated zones

Number of landmarks participating in verification

V CS =
1

Nt

Nt∑

i=1

vcsi

• Inclusion ratio score, denoted IRS, is ratio of the inter-

section between predicted and accepted zones to accepted

zone. IRS indicates the proportion of accepted zone

covered by estimated zone.

IRS =
Accepted zone ∩ Estimated zone

Accepted zone

• Estimate accuracy score, denoted EAS, is the ratio of

the intersection between predicted and accepted zones to

predicted zone. EAS indicates the proportion of estimated

zone covered by accepted zone.

EAS =
Accepted zone ∩ Estimated zone

Estimated zone

VCS, IRS, and EAS together provide useful details to assess

DLV algorithms. VCS alone reflects the percentage of land-

marks, which agreed on a common zone. Unfortunately, they

may agree on a zone without intersection with the expected

zone. IRS alone is not enough. Let us take an example.

Imagine that accepted zone is a 1km-radium-circle entirely

included in an estimated zone covered by a 10km-radium-

circle. In this case, IRS equals 1.00. However, as the size of

estimated zone is 100 times the one of accepted zone, the data

could be located out of the accepted zone. EAS is 1%, which

means that the location verification accuracy is very low. EAS

alone also is not enough. Let us take the following scenarios:

i) estimated and accepted zones are 100 km2 and intersect at

50%, resulting in a zone of 50 km2 of unauthorized zone where

the data may be located, ii) if both zone sizes are heightened

with a factor F, EAS remains 50%, but the unauthorized zone

is heightened with the same factor. Consequently, in addition

to scores, the size of estimated zone is useful to user to assess

the verification result. User derives the estimated zone from

IRS, EAS, and accepted zone.

D. Experimentation scenarios

To provide significant results to assess DLV approaches, we

carried out multiple scenarios designed as follows:

• Varying ratio between training and test sets: three alter-

natives for splitting the dataset into training and test sets

are considered: 0.8/0.2, 0.5/0.5, and 0.2/0.8.

• Varying accepted zone scale: four alternatives of ac-

cepted zone size are considered: 10 km (city scale), 50

km (metropolis-and-surroundings scale), 200 km (region

scale), and 500 km (country scale).

• Varying the degree in polynomial regression until no

result improvement is observed.

Experimentation results for 0.5/0.5 train/test ratio are sum-

marized in Figure 5. Notice that histograms are associated

with VCS with unanimity (i.e. all estimated zones intersect in

a common non-empty zone).



Fig. 2: Example of output for bestline-based DLV. The green

polygon is the intersection between the predicted zone us in

blue, and the accepted zone around Lille in red.

Fig. 3: Example of output for linear regression based DLV.

The blue zone is the predicted one. In this case it did not

succeed in predicting location (Lille)

IV. CONCLUSION

In this paper, we report on an experimentation of data loca-

tion verification approaches based on regression and bestline.

Experimentation is based on Grid5000, which is a national

communication infrastructure connecting the main cities in

France. During a month, measurements of RTTs have been

collected by landmarks located at different cities. Then, three

verification approaches (bestline, linear regression, and poly-

Fig. 4: Example of output for polynomial regression based

DLV. There is no resulting zone because circles do not

intersect. Circles are denoted in grey with a location marker

at their centers, there is one in Sophia (the big one) and one

in Rennes. As there is no resulting zone, it fails to prediction

location (Nantes)

nomial regression) have been assessed. Hopeful results have

been observed, meaning that landmark-based verification ap-

proaches are credible solutions to locate data at country-scale.

Bestline-based approach has a high Verification consensus

score (because it overestimates distance) but a low accuracy,

because of the size of estimated zone. Linear regression-based

approach outperforms polynomial regression-based approach

when all landmarks use the same polynomial. Whenever each

landmark uses its own polynomial the reverse performance

is observed. Regression-based approaches tend to optimize

the distance estimate model, which, unfortunately, results in

smaller estimated zones, which are unlikely to intersect in

a common zone. Even when the expected zone is large, the

localization success may be low.

In our current work, we are analyzing the compromise

between accuracy of distance model of individual landmarks

and the size of expected zone for which the localization

success would be high. For future work, we are extending our

analysis by collecting and experimenting a worldwide dataset.

We would also like to include classification-based approaches

in our performance analysis.
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