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Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference orders), when consolidating conflicting views regarding the relationships between arguments in a debate (graphs as abstract argumentation frameworks), or when computing a consensus between several alternative clusterings of a given dataset (graphs as equivalence relations). Other potential applications include belief merging, data integration, and social network analysis. In this short paper, we review a recently introduced formal framework for graph aggregation that is grounded in social choice theory. Our focus is on understanding which properties shared by the individual input graphs will transfer to the output graph returned by a given aggregation rule. Our main result is a powerful impossibility theorem that generalises Arrow's seminal result regarding the aggregation of preference orders to a large collection of different types of graphs. We also provide a discussion of existing and potential applications of graph aggregation.

INTRODUCTION

Suppose each of the members of a group of autonomous agents provides us with a different directed graph that is defined on a common set of vertices. Graph aggregation is the task of computing a single graph over the same set of vertices that, in some sense, represents a good compromise between the various individual views expressed by the agents. Graphs are ubiquitous in computer science and articial intelligence (AI). For example, in the context of decision support systems, an edge from vertex x to vertex might indicate that alternative x is preferred to alternative . In the context of modelling interactions taking place on an online debating platform, an edge from x to might indicate that argument x undercuts or otherwise attacks argument . And in the context of social network analysis, an edge from x to might express that person x is in uenced by person . How to best perform graph aggregation is a relevant question in these three domains, as well as in any other domain where particular graphs may be supplied by di erent agents or originate from di erent sources. For example, in an election, we have to aggregate the preferences of several voters. In a debate, we sometimes have to aggregate the views of the individual participants in the debate. And when trying to understand the dynamics within a community, we sometimes have to aggregate information coming from several di erent social networks.

In recent work [START_REF] Endriss | Graph Aggregation[END_REF], we introduced a formal framework for studying graph aggregation in general abstract terms and demonstrated its relevance to a wide range of applications. The present paper provides a compact exposition of this contribution. Our framework provides tools for evaluating what constitutes a "good" method of aggregation and it allows us to ask questions regarding the existence of methods that meet a certain set of requirements. Our approach is inspired by work in social choice theory [START_REF]Handbook of Social Choice and Welfare[END_REF], which o ers a rich framework for the study of aggregation rules for preferences-a very speci c class of graphs. Our technical results focus on the conditions under which an aggregation rule will preserve certain attractive properties of graphs during aggregation. Related work. Our work builds on and is related to contributions in the eld of social choice theory, starting with the seminal contribution of Arrow [START_REF] Kenneth | Social Choice and Individual Values[END_REF]. This concerns, in particular, contributions to the theory of voting and preference aggregation [START_REF]Handbook of Social Choice and Welfare[END_REF][START_REF] Silvia Pini | Aggregating Partially Ordered Preferences[END_REF][START_REF] Amartya | Social Choice Theory[END_REF], but also judgment aggregation [START_REF] Dokow | Aggregation of Binary Evaluations[END_REF][START_REF] Grandi | Lifting Integrity Constraints in Binary Aggregation[END_REF][START_REF] List | Aggregating Sets of Judgments: An Impossibility Result[END_REF]. In computer science, these frameworks are studied in the eld of computational social choice [START_REF]Handbook of Computational Social Choice[END_REF]. As we shall discuss in some detail, graph aggregation is an abstraction of several more speci c forms of aggregation taking place in a wide range of di erent domains. Aggregation of speci c types of graphs has been studied, for instance, in nonmonotonic reasoning [START_REF] Doyle | Impediments to Universal Preferencebased Default Theories[END_REF], belief merging [START_REF] Maynard | Representing and Aggregating Con icting Beliefs[END_REF], social network analysis [START_REF] Harrison | Social Structure from Multiple Networks I: Blockmodels of Roles and Positions[END_REF], clustering [START_REF] Peter | Aggregation of Equivalence Relations[END_REF], and argumentation in multiagent systems [START_REF] Coste-Marquis | On the Merging of Dung's Argumentation Systems[END_REF].

Paper overview. Section 2 introduces our framework of graph aggregation. Section 3 presents our main technical results, showing that certain desirable properties of aggregation rules are impossible to realise simultaneously. Section 4, nally, discusses applications.

In this section, we present the basic de nitions of our model, and some examples for aggregation rules and axiomatic properties.

Basic Notation and Terminology

Fix a nite set of vertices V. A (directed) graph G = V , E based on V is de ned by a set of edges E ⊆ V ×V . We write xE for ( x, ) ∈ E. AsV is xed, G is in fact fully determined by E. We therefore identify sets of edges E ⊆ V × V with the graphs G = V , E they de ne. For any kind of set S, we use 2 S to denote the powerset of S. So 2 V ×V is the set of all graphs. We use E(x ) := { ∈ V | (x, ) ∈ E} to denote the set of successors of a vertex x in a set of edges E.

A given graph may or may not satisfy a speci c property, such as transitivity, re exivity, or more complex properties coming from speci c application domains, such as negative transitivity used in economics or the Euclidean property familiar from modal logic. We are going to be interested in families of graphs that all satisfy several of these properties. It will often be useful to think of a graph property P, such as transitivity, as a subset of 2 V ×V .

Let N = {1, . . . , n} be a nite set of (two or more) individuals (or agents). We are going to refer to subsets of N as coalitions. Suppose every individual i ∈ N speci es a graph E i ⊆ V ×V. This gives rise to a pro le E = (E 1 , . . . , E n ) . We use N e E : = { i ∈ N | e ∈ E i } to denote the coalition of individuals accepting edge e under pro le E. An aggregation rule is a function F : (2 V ×V ) n → 2 V ×V , mapping any pro le of individual graphs into a single graph. An example for an aggregation rule is the majority rule, accepting a given edge if and only if more than half of the individuals accept it.

Speci c Aggregation Rules

Under a quota rule, an edge will be included in the graph returned by the rule, if the number of individuals accepting it meets a certain quota. Formally, a quota rule is a rule F q de ned via a function q : V × V → {0, 1, . . . , n+1}, associating each edge with a quota:

F q : E → {e ∈ V × V : |N e E | q(e)}
F q is called a uniform quota rule in case q is a constant function. The uniform quota rules include three simple and well-known rules: the (strict) majority rule F maj is the uniform quota rule with q = ⌈ n+1 ⌉, the intersection rule F ∩ is the uniform quota rule with q = n, and the union rule F ∪ is the uniform quota rule with q = 1. The idea of using quota rules is natural and widespread. For example, quota rules have been studied in judgment aggregation [START_REF] Dietrich | Judgment Aggregation by Quota Rules: Majority Voting Generalized[END_REF].

Next, we present a new class of aggregation rules speci cally designed for graphs that is inspired by approval voting [START_REF] Brams | Approval Voting[END_REF]. Imagine we associate each vertex with an election in which all the possible successors of that vertex are the candidates (and in which there may be more than one winner). Each agent votes by stating which vertices she considers acceptable successors. Based on this information, a choice function : (2 V ) n → 2 V selects which edges to include in the outcome graph. Formally, the successor-approval rule based on is the aggregation rule F de ned by stipulating:

F : E → {(x, ) ∈ V × V | ∈ (E 1 (x ), . . . , E n (x ))}
For example, such a rule might accept exactly those successors of a given vertex x that receive above-average support.

Axiomatic Properties

When choosing an aggregation rule, we need to consider its properties. In social choice theory, such properties are called axioms [START_REF] Amartya | Social Choice Theory[END_REF]. We now introduce three basic axioms for graph aggregation.

First, we introduce an independence condition that requires that the decision of whether or not a given edge e is to be accepted by a rule should only depend on which of the individual graphs include e. This corresponds to well-known axioms in preference and judgment aggregation [START_REF] Kenneth | Social Choice and Individual Values[END_REF][START_REF] List | Judgment Aggregation: A Survey[END_REF]. Formally, an aggregation rule F is called independent of irrelevant edges

(IIE) if N E e = N E ′ e implies e ∈ F (E) ⇔ e ∈ F (E ′ ).
That is, if exactly the same individuals accept e under pro les E and E ′ , then F should either accept e in both cases or it should reject e in both cases.

Next, the fundamental economic principle of unanimity requires that an edge should be accepted by a group in case all individuals in that group accept it. Formally, an aggregation rule F is called unanimous if it is always the case that

F (E) ⊇ E 1 ∩ • • • ∩ E n .
Finally, a requirement that, in some sense, is dual to unanimity is to ask that the outcome graph should only include edges that are part of at least one of the individual graphs. In the context of ontology aggregation this axiom has been introduced under the name groundedness [START_REF] Porello | Ontology Merging as Social Choice: Judgment Aggregation under the Open World Assumption[END_REF]. Formally, an aggregation F is called grounded if it is always the case that

F (E) ⊆ E 1 ∪ • • • ∪ E n .
Whether or not to insist on a given axiom depends on the application at hand. Unanimity and groundedness are uncontroversial and certainly desirable in most contexts. Independence is much harder to satisfy, but very useful when it can be guaranteed, as it greatly simpli es the process of aggregation. For example, all quota rules are independent, but (for most natural choices of ) successor-approval rules are not.

Collective Rationality

To what extent can a given aggregation rule ensure that a given property that is satis ed by each of the individual input graphs will be preserved during aggregation? This question relates to a wellstudied concept in social choice theory, often referred to as collective rationality [START_REF] Kenneth | Social Choice and Individual Values[END_REF][START_REF] List | Aggregating Sets of Judgments: An Impossibility Result[END_REF]. In the literature, collective rationality is usually de ned w.r.t. a speci c property that should be preserved (e.g., the transitivity of preferences or the logical consistency of judgments). Here, instead, we formulate a de nition that is parametric w.r.t. a given graph property.

Formally, an aggregation rule F is called collectively rational w.r.t. a graph property P if F (E) satis es P whenever all of the individual graphs in a given pro le E = (E 1 , . . . , E n ) do. If we apply the majority rule, then we obtain the graph to the right of the arrow. Thus, the majority rule is not collectively rational w.r.t. seriality (the property of every vertex having a successor), as each individual graph is serial, but the graph returned by the rule is not. The property of symmetry, on the other hand, is preserved in this case.

In social choice theory, an impossibility theorem states that it is not possible to devise an aggregation rule that satis es certain axioms and that is also collectively rational w.r.t. a certain combination of properties of the structures being aggregated (which in our case are graphs). In this section, we present two powerful impossibility theorems for graph aggregation, the Oligarchy Theorem and the Dictatorship Theorem, derived in the original paper [START_REF] Endriss | Graph Aggregation[END_REF].

The Dictatorship Theorem is inspired by-and signi cantly generalises-the seminal impossibility result for preference aggregation due to Arrow, rst published in 1951 [START_REF] Kenneth | Social Choice and Individual Values[END_REF]. Our proof technique makes use of winning coalitions, i.e., sets of individuals who can force the acceptance or rejection of a given edge, and it hinges on the de nition of three meta-properties for classifying graph properties: contagiousness, implicativeness, and disjunctiveness. Intuitively speaking, a graph property P is contagious if, under certain conditions, acceptance of one edge forces us to also accept one of the edges adjacent to that rst edge; P is implicative if, again under certain conditions, the acceptance of two speci c edges e 1 and e 2 forces us to also accept a third edge e 3 ; nally, P is disjunctive if there are two speci c edges e 1 and e 2 such that, under certain conditions, we always need to accept at least one of them. We refer to the original paper for the precise de nition of these meta-properties [START_REF] Endriss | Graph Aggregation[END_REF].

An aggregation rule F is called oligarchic (on nonre exive edges)

if there exists a coalition C ⋆ ⊆ N (the "oligarchs") such that any given nonre exive edge e is accepted by F if and only if all of the members of C ⋆ accept e. Thus, oligarchic rules are highly restrictive and unattractive for most applications.

T 3.1 (O T

). Let P be a graph property that is contagious and implicative. Then, for |V | 3, any unanimous, grounded, and IIE aggregation rule F that is collectively rational w.r.t. P must be oligarchic on nonre exive edges.

An aggregation rule F is called dictatorial (on nonre exive edges) if there exists an individual i ⋆ ∈ N (the "dictator") such that any given edge e is accepted by F if and only if i ⋆ accepts e.

T 3.2 (D T

). Let P be a graph property that is contagious, implicative, and disjunctive. Then, for |V | 3, any unanimous, grounded, and IIE aggregation rule F that is collectively rational w.r.t. P must be dictatorial on nonre exive edges. Arrow's Theorem, which states the impossibility of aggregating preference orders (i.e., graphs that are re exive, transitive, and complete), is a corollary of Theorem 3.2, since transitivity is a graph property that is contagious and implicative, while completeness is a graph property that is disjunctive. In general, any combination of graph properties that together hit all three meta-properties, by Theorem 3.2, gives rise to an impossibility theorem saying that all relevant aggregation rules are dictatorial. Similarly, any combination of graph properties that together hit the rst two meta-properties, by Theorem 3.1, gives rise to an impossibility theorem saying that the only relevant aggregation rules are oligarchic.

APPLICATIONS AND DISCUSSION

Directed graphs are ubiquitous in computer science and beyond. They have been used as modelling devices for a wide range of applications. In this section, we sketch a number of di erent application scenarios for graph aggregation, each requiring di erent types of graphs (satisfying di erent properties) to model relevant objects of interest, and each requiring di erent types of aggregation rules.

We are also going to hint at how our impossibility theorems can be put to good use, to help clarify what is and what is not achievable in di erent application domains. Some of the results we have been able to obtain in this manner are new, while others demonstrate how our approach can be used to clarify known results and to obtain signi cantly simpler proofs for them [START_REF] Endriss | Graph Aggregation[END_REF].

Bounded rationality in preference aggregation. The most immediate example for a graph aggregation problem is preference aggregation as classically studied in social choice theory [START_REF] Kenneth | Social Choice and Individual Values[END_REF]. In this context, vertices are interpreted as alternatives available in an election and the graphs considered-interpreted as preference orders-are reexive, transitive, and complete. Aggregation rules then reduce to so-called social welfare functions. While the types of preferences typically considered in classical social choice theory are required to be complete, recent work in AI has also addressed the aggregation of partial preference orders, to account for the bounded rationality of agents. That is, agents may be unable to rank all alternatives. A prominent example in this literature is the work of Pini et al. [START_REF] Silvia Pini | Aggregating Partially Ordered Preferences[END_REF]. Their main result is a variant of Arrow's Theorem for partial preference orders with maxima or minima, a result that can be obtained with a simple proof as a corollary of our Theorem 3.2.

Knowledge. If we think of V as a set of possible worlds, then a graph on V that is re exive and transitive (and possibly also symmetric) can be used to model an agent's knowledge: (x, ) being an edge means that, if x is the actual world, then our agent will consider a possible world [START_REF] Hintikka | Knowledge and Belief: An Introduction to the Logic of the Two Notions[END_REF]. If we aggregate the graphs of several agents by taking their intersection, then the resulting collective graph represents the distributed knowledge of the group, i.e., the knowledge the members of the group can infer by pooling all their individual resources. If, on the other hand, we aggregate by taking the union of the individual graphs, then we obtain what is sometimes called the shared or mutual knowledge of the individual agents, i.e., the part of the knowledge available to each and every individual on their own. Finally, if we aggregate by computing the transitive closure of the union of the individual graphs, then we obtain a model of the group's common knowledge. These concepts play a role in disciplines as diverse as epistemology [START_REF] Lewis | Elusive Knowledge[END_REF], game theory [START_REF] Aumann | Agreeing to Disagree[END_REF], and distributed systems [START_REF] Halpern | Knowledge and Common Knowledge in a Distributed Environment[END_REF]. Nonmonotonic reasoning and belief merging. When an intelligent agent attempts to update her beliefs or to decide what action to take, she may resort to several patterns of common-sense inference that will sometimes be in con ict with each other. To take a famous example, we may wish to infer that Nixon is a paci st, because he is a Quaker and Quakers by default are paci sts, and we may at the same time wish to infer that Nixon is not a paci st, because he is a Republican and Republicans by default are not paci sts. In a popular approach to nonmonotonic reasoning in AI, such default inference rules are modelled as graphs that encode the relative plausibility of di erent conclusions [START_REF] Shoham | Reasoning about Change: Time and Causation from the Standpoint of Arti cial Intelligence[END_REF]. Thus, here the possible conclusions are the vertices and we obtain a graph by linking one vertex with another, if the former is considered at least as plausible as the latter. Con ict resolution between di erent rules of inference then requires us to aggregate such plausibility orders, to be able to determine what the ultimately most plausible state of the world might be. In this context, we were able to show that a well-known impossibility result from this literature, due to Doyle and Wellman [START_REF] Doyle | Impediments to Universal Preferencebased Default Theories[END_REF], is a straightforward corollary of our Theorem 3.2. Our results also allow us to clarify the underlying reasons for a possibility result established by Maynard-Zhang and Lehmann [START_REF] Maynard | Representing and Aggregating Con icting Beliefs[END_REF].

Argumentation. In a so-called abstract argumentation framework, arguments are taken to be vertices in a graph and attacks between arguments are modelled as directed edges between them [START_REF] Minh | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF]. A graph property of interest in this context is acyclicity, as that makes it easier to decide which arguments to ultimately accept. If we think of V as the collection of arguments proposed in a debate, a pro le E = (E 1 , . . . , E n ) speci es an attack relation for each of a number of agents that we may wish to aggregate into a collective attack relation before attempting to determine which of the arguments might be acceptable to the group. Recent work has addressed the challenge of aggregating several abstract argumentation frameworks from a number of angles [START_REF] Coste-Marquis | On the Merging of Dung's Argumentation Systems[END_REF][START_REF] Dunne | Argument Aggregation: Basic Axioms and Complexity Results[END_REF]. Our approach has already proved useful in obtaining novel results in this setting [START_REF] Chen | Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frameworks[END_REF].

Social networks. We may also think of each of the graphs in a pro le as a di erent social network relating members of the same population. One of these networks might describe work relations, another might model family relations, and a third might have been induced from similarities in online purchasing behaviour. Social networks are often modelled using undirected graphs, which we can simulate in our framework by requiring all graphs to be symmetric. Aggregating individual graphs then amounts to nding a single meta-network that describes relationships at a global level. Alternatively, we may wish to aggregate several graphs representing snapshots of the same social network at di erent points in time. The meta-network obtained can be helpful when studying the social structures within the population under scrutiny [START_REF] Harrison | Social Structure from Multiple Networks I: Blockmodels of Roles and Positions[END_REF].

Consensus clustering. Clustering is the attempt of partitioning a given set of data points into several clusters. The intention is that the data points in the same cluster should be more similar to each other than each of them is to data points belonging to one of the other clusters. While this is useful in many disciplines, the eld is lacking a precise de nition of what constitutes a "correct" partitioning of the data and there are many di erent clustering algorithms, such as k-means or single-linkage clustering, and even more parameterisations of those basic algorithms [START_REF] Tan | Introduction to Data Mining[END_REF]. Observe that every partitioning that might get returned by a clustering algorithm induces an equivalence relation (i.e., a graph that is re exive, symmetric, and transitive): two data points are equivalent if and only if they belong to the same cluster. Finding a compromise between the solutions suggested by several clustering algorithms is what is known as consensus clustering [START_REF] Gionis | Clustering Aggregation[END_REF]. This thus amounts to aggregating several graphs that are equivalence relations. One of the classical results in this area, due to Fishburn and Rubinstein [START_REF] Peter | Aggregation of Equivalence Relations[END_REF], is an immediate corollary to our Theorem 3.1 . Data integration. A promising direction for future research in graph aggregation, in the area of the Semantic Web, concerns XML data integration [START_REF] Halevy | Data Integration: The Teenage Years[END_REF]. The basic structure underlying documents encoded in XML is that of a tree, i.e., a special kind of graph. Thus, if we want to combine information encoded using XML that has been obtained from di erent sources on the Semantic Web, we need to use some form of graph aggregation as well.

Example 2 . 1 (

 21 Collective rationality). Suppose three individuals provide us with three graphs over the same set V = {x, , z, w }: