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Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international initiative, which organizes the evaluation of the increasing number of ontology matching systems [START_REF] Euzenat | Ontology alignment evaluation initiative: six years of experience[END_REF][START_REF] Euzenat | Ontology matching[END_REF]. The main goal of OAEI is to compare systems and algorithms on the same basis and to allow anyone for drawing conclusions about the best matching strategies. Our ambition is that, from such evaluations, tool developers can improve their systems.

Two first events were organized in 2004: (i) the Information Interpretation and Integration Conference (I3CON) held at the NIST Performance Metrics for Intelligent Systems (PerMIS) workshop and (ii) the Ontology Alignment Contest held at the Evaluation of Ontology-based Tools (EON) workshop of the annual International Semantic Web Conference (ISWC) [START_REF]Proc. ISWC Workshop on Evaluation of Ontology-based Tools (EON)[END_REF]. Then, a unique OAEI campaign occurred in 2005 at the workshop on Integrating Ontologies held in conjunction with the International Conference on Knowledge Capture (K-Cap) [START_REF]Proc. K-Cap Workshop on Integrating Ontologies[END_REF]. Starting from 2006 through 2013 the OAEI campaigns were held at the Ontology Matching workshops collocated with ISWC [13, 11, 4, 8-10, 1, 6]. In 2014, the OAEI results were presented again at the Ontology Matching workshop2 collocated with ISWC, in Riva del Garda, Italy.

Since 2011, we have been using an environment for automatically processing evaluations ( §2.2), which has been developed within the SEALS (Semantic Evaluation At Large Scale) project 3 . SEALS provided a software infrastructure, for automatically executing evaluations, and evaluation campaigns for typical semantic web tools, including ontology matching. For OAEI 2014, almost all of the OAEI data sets were evaluated under the SEALS modality, providing a more uniform evaluation setting.

This paper synthetizes the 2014 evaluation campaign and introduces the results provided in the papers of the participants. The remainder of the paper is organised as follows. In Section 2, we present the overall evaluation methodology that has been used. Sections 3-10 discuss the settings and the results of each of the test cases. Section 12 overviews lessons learned from the campaign. Finally, Section 13 concludes the paper.

General methodology

We first present the test cases proposed this year to the OAEI participants ( §2.1). Then, we discuss the resources used by participants to test their systems and the execution environment used for running the tools ( §2.2). Next, we describe the steps of the OAEI campaign ( §2.3-2.5) and report on the general execution of the campaign ( §2.6).

Tracks and test cases

This year's campaign consisted of 7 tracks gathering 9 test cases and different evaluation modalities:

The benchmark track ( §3): Like in previous campaigns, a systematic benchmark series has been proposed. The goal of this benchmark series is to identify the areas in which each matching algorithm is strong or weak by systematically altering an ontology. This year, we generated a new benchmark based on the original bibliographic ontology and two new benchmarks based on different ontologies. The expressive ontology track offers real world ontologies using OWL modelling capabilities: Anatomy ( §4): The anatomy real world test case is about matching the Adult Mouse Anatomy (2744 classes) and a small fragment of the NCI Thesaurus (3304 classes) describing the human anatomy. Conference ( §5): The goal of the conference test case is to find all correct correspondences within a collection of ontologies describing the domain of organizing conferences. Results were evaluated automatically against reference alignments and by using logical reasoning techniques. Large biomedical ontologies ( §6): The Largebio test case aims at finding alignments between large and semantically rich biomedical ontologies such as FMA, SNOMED-CT, and NCI. The UMLS Metathesaurus has been used as the basis for reference alignments.

Multilingual

Multifarm ( §7): This test case is based on a subset of the Conference data set, translated into eight different languages (Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish) and the corresponding alignments between these ontologies. Results are evaluated against these alignments.

Directories and thesauri

Library ( §8): The library test case is a real-world task to match two thesauri. The goal of this test case is to find whether the matchers can handle such lightweight ontologies including a huge amount of concepts and additional descriptions.

Results are evaluated both against a reference alignment and through manual scrutiny.

Interactive matching

Interactive ( §9): This test case offers the possibility to compare different interactive matching tools which require user interaction. Its goal is to show if user interaction can improve matching results, which methods are most promising and how many interactions are necessary. All participating systems are evaluated on the conference data set using an oracle based on the reference alignment. Ontology Alignment For Query Answering OA4QA ( §10): This test case offers the possibility to evaluate alignments in their ability to enable query answering in an ontology based data access scenario, where multiple aligned ontologies exist. In addition, the track is intended as a possibility to study the practical effects of logical violations affecting the alignments, and to compare the different repair strategies adopted by the ontology matching systems. In order to facilitate the understanding of the dataset and the queries, the conference data set is used, extended with synthetic ABoxes. 

Instance matching Identity ( §11):

The identity task is a typical evaluation task of instance matching tools where the goal is to determine when two OWL instances describe the same real-world entity. Similarity( §11): The similarity task focuses on the evaluation of the similarity degree between two OWL instances, even when they describe different realworld entities. Similarity recognition is new in the instance matching track of OAEI, but this kind of task is becoming a common issue in modern web applications where large quantities of data are daily published and usually need to be classified for effective fruition by the final user.

Table 1 summarizes the variation in the proposed test cases.

The SEALS platform

Since 2011, tool developers had to implement a simple interface and to wrap their tools in a predefined way including all required libraries and resources. A tutorial for tool wrapping was provided to the participants. It describes how to wrap a tool and how to use a simple client to run a full evaluation locally. After local tests are passed successfully, the wrapped tool had to be uploaded on the SEALS portal 4 . Consequently, the evaluation was executed by the organizers with the help of the SEALS infrastructure. This approach allowed to measure runtime and ensured the reproducibility of the results. As a side effect, this approach also ensures that a tool is executed with the same settings for all of the test cases that were executed in the SEALS mode.

Preparatory phase

Ontologies to be matched and (where applicable) reference alignments have been provided in advance during the period between June 15 th and July 3 rd , 2014. This gave potential participants the occasion to send observations, bug corrections, remarks and other test cases to the organizers. The goal of this preparatory period is to ensure that the delivered tests make sense to the participants. The final test base was released on July 3 rd , 2014. The (open) data sets did not evolve after that.

Execution phase

During the execution phase, participants used their systems to automatically match the test case ontologies. In most cases, ontologies are described in OWL-DL and serialized in the RDF/XML format [START_REF] David | The alignment API 4.0[END_REF]. Participants can self-evaluate their results either by comparing their output with reference alignments or by using the SEALS client to compute precision and recall. They can tune their systems with respect to the non blind evaluation as long as the rules published on the OAEI web site are satisfied. This phase has been conducted between July 3 rd and September 1 st , 2014.

Evaluation phase

Participants have been encouraged to upload their wrapped tools on the SEALS portal by September 1 st , 2014. For the SEALS modality, a full-fledged test including all submitted tools has been conducted by the organizers and minor problems were reported to some tool developers, who had the occasion to fix their tools and resubmit them. First results were available by October 1 st , 2014. The organizers provided these results individually to the participants. The results were published on the respective web pages by the organizers by October 15 st . The standard evaluation measures are usually precision and recall computed against the reference alignments. More details on evaluation measures are given in each test case section.

Comments on the execution

The number of participating systems has regularly increased over the years: 4 participants in 2004, 7 in 2005, 10 in 2006, 17 in 2007, 13 in 2008, 16 in 2009, 15 in 2010, 18 in 2011, 21 in 2012, 23 in 2013. However, 2014 has suffered a significant decrease with only 14 systems. However, participating systems are now constantly changing. In 2013, 11 (7 in 2012) systems had not participated in any of the previous campaigns. The list of participants is summarized in Table 2. Note that some systems were also evaluated with different versions and configurations as requested by developers (see test case sections for details).

Finally, some systems were not able to pass some test cases as indicated in Table 2.

The result summary per test case is presented in the following sections.

System

AML AOT AOTL InsMT InsMTL LogMap LogMap-Bio LogMapLt LogMap-C MaasMatch OMReasoner RiMOM-IM RSDLWB XMap Total=14 Confidence √ √ √ √ √ √ √ √ 8 benchmarks √ √ √ √ √ √ √ √ √ √ 10 anatomy √ √ √ √ √ √ √ √ √ √ 10 conference √ √ √ √ √ √ √ √ √ √ 10 multifarm √ √ √ 3 library √ √ √ √ √ √ √ 7 interactive √ √ 2 large bio √ √ √ √ √ √ √ √ √ √ √ 11 OA4QA √ √ √ √ √ √ √ √ √ √ 10 instance √ √ √ √ √ 5 
total 8 5 5 1 1 9 2 6 7 6 4 1 6 7 68

Table 2. Participants and the state of their submissions. Confidence stands for the type of results returned by a system: it is ticked when the confidence is a non boolean value.

Benchmark

The goal of the benchmark data set is to provide a stable and detailed picture of each algorithm. For that purpose, algorithms are run on systematically generated test cases.

Test data

The systematic benchmark test set is built around a seed ontology and many variations of it. Variations are artificially generated by discarding and modifying features from a seed ontology. Considered features are names of entities, comments, the specialization hierarchy, instances, properties and classes. This test focuses on the characterization of the behavior of the tools rather than having them compete on real-life problems. Full description of the systematic benchmark test set can be found on the OAEI web site. Since OAEI 2011.5, the test sets are generated automatically by the test generator described in [START_REF] Euzenat | Ontology matching benchmarks: generation, stability, and discriminability[END_REF] from different seed ontologies. This year, we used three ontologies: biblio The bibliography ontology used in the previous years which concerns bibliographic references and is inspired freely from BibTeX; cose COSE 5 is the Casas Ontology for Smart Environments; dog DogOnto6 is an ontology describing aspects of intelligent domotic environments. The characteristics of these ontologies are described in Table 3.

The test cases were not available to participants. They still could test their systems with respect to previous year data sets, but they have been evaluated against newly generated tests. The tests were also blind for the organizers since we did not looked into them before running the systems. The reference alignments are still restricted to named classes and properties and use the "=" relation with confidence of 1.

Results

Evaluations were run on a Debian Linux virtual machine configured with four processors and 8GB of RAM running under a Dell PowerEdge T610 with 2*Intel Xeon Quad Core 2.26GHz E5607 processors and 32GB of RAM, under Linux ProxMox 2 (Debian).

All matchers where run under the SEALS client using Java 1.7 and a maximum heap size of 8GB (which has been necessary for the larger tests, i.e., dog). No timeout was explicitly set.

Reported figures are the average of 5 runs. As has already been shown in [START_REF] Euzenat | Ontology matching benchmarks: generation, stability, and discriminability[END_REF], there is not much variance in compliance measures across runs. This is not necessarily the case for time measurements so we report standard deviations with time measurements.

Participation From the 13 systems participating to OAEI this year, 10 systems participated in this track. A few of these systems encountered problems:

-RSDLWB on cose -OMReasoner on dog We did not investigate these problems. We tried another test with many more ontologies an all matchers worked but AML.

Compliance Table 4 presents the harmonic means of precision, F-measure and recall for the test suites for all the participants, along with their confidence-weighted values. It also shows measures provided by edna, a simple edit distance algorithm on labels which is used as a baseline. Some systems have had constant problems with the most strongly altered tests to the point of not outputing results: LogMap-C, LogMap, MaasMatch. Problems were also encountered to a smaller extent by XMap2. OMReasoner failed to return any answer on dog, and RSDLWB on cose.

Concerning F-measure results, the AOTL system seems to achieve the best results before RSDLWB. AOTL is also well balanced: it always achieve more than 50% recall with still a quite high precision. RSDLWD is slightly better than AOTL on two tests but did not provide results on the third one. AOT is a close follower of AOTL. AML had very good results on dog and OMReasoner on biblio. The three systems showing the best performances at benchmarks (AOT, AOTL and RSDLWD) also preformed systematicly worse than other systems (AML, LogMap, XMap) at other tasks. This may reveal some degree of overfitting. . . either of the former to benchmarks, or of the latter to the other tests.

In general, results of the best matchers are largely lower than those of the best matchers in the previous year.

We can consider that we have high-precision matchers (XMap2: 1.0, RSDLWB: .99, MaasMatch: .92-.98; AML: (.46)-.98). LogMap-C, LogMap achieve also very high precision in dog (their other bad precision are certainly due to LogMap returning matched instances which are not in reference alignments). Of these high-precision matchers, RSDLWB is remarkable since it achieves a 50% recall (when it works).

The recall of systems is generally high with figures around 50% but this may be due to the structure of benchmarks.

Confidence-weighted measures reward systems able to provide accurate confidence values. Using confidence-weighted F-measures usually increase F-measure of systems showing that they are able to provide a meaningful assessment of their correspondences. The exception to this rule is LogMap whose weighted values are lower. Again, this may be due to the output of correspondences out of the ontology namespace or instance correspondences.

speed Table 5 provides the average time and standard deviation and F-measure point provided per second by matchers. The F-measure point provided per second shows that efficient matchers are XMap2 and LogMapLite followed by AML (these results are consistent on cose and dog, biblio is a bit different but certainly due to errors reported above). The time taken by systems on the two first test sets is very stable (and short); it is longer and less stable on the larger dog test set. 5. Aggregated benchmark results: Time (in second), standard deviation on time and points of F-measure per second spent on the three data sets (*: uncompleted results).

Comparison Figure 1 shows the triangle graphs for the three tests. It confirms the impressions above: systems are very precision-oriented but AOT which stands in the middle of the graph. AOTL has, in general, good results.

Conclusions

This year, matcher performance has been lower than in previous years, even on the genuine biblio dataset. The systems are able to process the test set without problem, even if some of them return many empty alignments. They are, as usual, very oriented towards precision at the expense of recall. The anatomy test case confronts matchers with a specific type of ontologies from the biomedical domain. We focus on two fragments of biomedical ontologies which describe the human anatomy 7 and the anatomy of the mouse 8 . This data set has been used since 2007 with some improvements over the years.

Experimental setting

We conducted experiments by executing each system in its standard setting and we compare precision, recall, F-measure and recall+. The recall+ measure indicates the amount of detected non-trivial correspondences. The matched entities in a non-trivial correspondence do not have the same normalized label. The approach that generates only trivial correspondences is depicted as baseline StringEquiv in the following section.

As last year, we run the systems on a server with 3.46 GHz (6 cores) and 8GB RAM allocated to the matching systems. Further, we used the SEALS client to execute our evaluation. However, we slightly changed the way precision and recall are computed, i.e., the results generated by the SEALS client vary in some cases by 0.5% compared to the results presented below. In particular, we removed trivial correspondences in the oboInOwl namespace such as http://...oboInOwl#Synonym = http://...oboInOwl#Synonym as well as correspondences expressing relations different from equivalence. Using the Pellet reasoner we also checked whether the generated alignment is coherent, i.e., there are no unsatisfiable concepts when the ontologies are merged with the alignment.

Results

In Table 6, we analyze all participating systems that could generate an alignment in less than ten hours. The listing comprises 10 entries. There were 2 systems which participated with different versions. These are AOT with versions AOT and AOTL, LogMap with four different versions LogMap, LogMap-Bio, LogMap-C and a lightweight version, LogMapLite, that uses only some core components. In addition to LogMap and LogMapLite, 3 more systems which participated in 2013 and now participated with new versions (AML, MaasMatch, XMap). For more details, we refer the reader to the papers presenting the systems. Thus, 10 different systems generated an alignment within the given time frame. There were four participants (InsMT, InsMTL, OMReasoner and RiMOM-IM) that threw an exception or produced an empty alignment and are not considered in the evaluation.

We have 6 systems which finished in less than 100 seconds, compared to 10 systems in OAEI 2013 and 8 systems in OAEI 2012. This year we have 10 out of 13 systems which generated results which is comparable to last year when [START_REF] Kazakov | Concurrent classification of EL ontologies[END_REF] Depending on the specific version of the systems, they require between 5 and 30 seconds to match the ontologies. The table shows that there is no correlation between quality of the generated alignment in terms of precision and recall and required runtime. This result has also been observed in previous OAEI campaigns. Table 6 also shows the results for precision, recall and F-measure. In terms of Fmeasure, the top ranked systems are AML, LogMap-Bio, LogMap and XMap. The latter two generate similar alignments. The results of these four systems are at least as good as the results of the best systems in OAEI 2007-2010. AML has the highest Fmeasure up to now. Other systems in earlier years that obtained an F-measure that is at least as good as the fourth system this year are AgreementMaker (predecessor of AML) (2011, F-measure: 0.917), GOMMA-bk (2012/2013, F-measure: 0.923/0.923), YAM++ (2012/2013, F-measure 0.898/0.905), and CODI (2012, F-measure: 0.891).

This year we have 7 out of 10 systems which achieved an F-measure that is higher than the baseline which is based on (normalized) string equivalence (StringEquiv in the table). This is a better result (percentage-wise) than the last year but still lower than in OAEI 2012 when 13 out of 17 systems produced alignments with F-measure higher than the baseline. Both systems, XMap and MaasMatch, which participated in the last year and had results below the baseline, achieved better results than the baseline this year.

Moreover, nearly all systems find many non-trivial correspondences. Exceptions are RSDLWB and AOTL that generate an alignment that is quite similar to the alignment generated by the baseline approach.

There are 5 systems which participated in the last year, AML, LogMap, LogMapLite, MaasMatch and XMap. From these systems LogMap and LogMapLite achieved identical results as last year, while AML, MaasMatch and XMap improved their results. Maas-Match and XMap showed a considerable improvement. In the case of MaasMatch, its precision was improved from 0.359 to 0.914 (and the F-measure from 0.409 to 0.803) while XMap which participated with two versions in the last year increased its precision from 0.856 to 0.94 (and F-measure from 0.753 to 0.893) compared to the XMapSig version which achieved a better F-measure last year.

A positive trend can be seen when it comes to coherence of alignments. Last year only 3 systems out of 20 produced a coherent alignment while this year half of the systems produced coherent alignment.

Conclusions

This year 14 systems participated in the anatomy track out of which 10 produced results. This is a significant decrease in the number of participating systems. However, the majority of the systems which participated in the last year significantly improved their results.

As last year, we have witnessed a positive trend in runtimes as all the systems which produced an alignment finished execution in less than an hour. Same as the last year, the AML system set the top result for the anatomy track by improving the result from the last year. The AML system improved in terms of all measured metrics.

Conference

The conference test case introduces matching several moderately expressive ontologies. Within this test case, participant alignments were evaluated against reference alignments (containing merely equivalence correspondences) and by using logical reasoning. The evaluation has been performed with the SEALS infrastructure.

Test data

The data set consists of 16 ontologies in the domain of organizing conferences. These ontologies have been developed within the OntoFarm project 9 .

The main features of this test case are:

-Generally understandable domain. Most ontology engineers are familiar with organizing conferences. Therefore, they can create their own ontologies as well as evaluate the alignments among their concepts with enough erudition. -Independence of ontologies. Ontologies were developed independently and based on different resources, they thus capture the issues in organizing conferences from different points of view and with different terminologies. -Relative richness in axioms. Most ontologies were equipped with OWL DL axioms of various kinds; this opens a way to use semantic matchers.

Ontologies differ in their numbers of classes, of properties, in expressivity, but also in underlying resources.

Results

We provide results in terms of F 0.5 -measure, F 1 -measure and F 2 -measure, comparison with baseline matchers and results from previous OAEI editions, precision/recall triangular graph and coherency evaluation.

Evaluation based on reference alignments

We evaluated the results of participants against blind reference alignments (labelled as ra2 on the conference web page). This includes all pairwise combinations between 7 different ontologies, i.e. 21 alignments.

These reference alignments have been generated as a transitive closure computed on the original reference alignments. In order to obtain a coherent result, conflicting correspondences, i.e., those causing unsatisfiability, have been manually inspected and removed by evaluators. As a result, the degree of correctness and completeness of the new reference alignment is probably slightly better than for the old one. However, the differences are relatively limited. Whereas the new reference alignments are not open, the old reference alignments (labeled as ra1 on the conference web-page) are available. These represent close approximations of the new ones. 7. The highest average F [0.5|1|2] -measure and their corresponding precision and recall for each matcher with its F1-optimal threshold (ordered by F1-measure). Average size of alignments, number of incoherent alignments and average degree of incoherence. The mark * is added when we only provide lower bound of the degree of incoherence due to the combinatorial complexity of the problem.

Table 7 shows the results of all participants with regard to the reference alignment. F 0.5 -measure, F 1 -measure and F 2 -measure are computed for the threshold that provides the highest average F 1 -measure. F 1 is the harmonic mean of precision and recall where both are equally weighted; F 2 weights recall higher than precision and F 0.5 weights precision higher than recall. The matchers shown in the table are ordered according to their highest average F 1 -measure. We employed two baseline matchers. edna (string edit distance matcher) is used within the benchmark test case and with regard to performance it is very similar as previously used baseline2 in the conference track; StringEquiv is used within the anatomy test case. These baselines divide matchers into three groups. Group 1 consists of matchers (AML, LogMap, LogMap-C, XMap and AOT) having better (or the same) results than both baselines in terms of highest average F 1 -measure. Group 2 consists of matchers (RSDLWB, LogMapLite and OMReasoner) performing better than baseline StringEquiv. Other matchers (AOTL and MaasMatch) performed slightly worse than both baselines.

Performance of all matchers regarding their precision, recall and F 1 -measure is visualized in Figure 2. Matchers are represented as squares or triangles. Baselines are represented as circles. Comparison with previous years Five matchers also participated in this test case in OAEI 2013. The largest improvement was achieved by MaasMatch (precision from .27 to .52, while recall decreased from .53 to .49), AML (precision decreased from .82 to .80, but recall increased from .51 to .58) and XMap (precision from .68 to .82, whereas recall remains the same, .44).

Runtimes

We measured the total time of generating 21 alignments. It was executed on a laptop under Ubuntu running on Intel Core i5, 2.67GHz and 8GB RAM except MaasMatch run which was run on Intel Core i7, 2.10GHz x 4 and 16GB RAM. This year all matchers finished all 21 testcases within 70 seconds. Four matchers finished all 21 test cases within 16 seconds (OMReasoner: 10s, LogMapLite: 11s, AML: 14s and AOT: 16s). Next, five matchers needed less than 1 minute (LogMap: 26s, XMap: 26s, RSDLWB: 36s, LogMap-C: 44s, AOTL: 45s). Finally, one matcher (MaasMatch) needed 69 seconds to finish all 21 test cases.

In conclusion, regarding performance we can see (clearly from Figure 2) that almost all participants managed to achieve a higher performance than baseline matcher. Three matchers (AML, LogMap and LogMap-C) exceeded a 0.6 F1-measure and all other matchers are above 0.5. On the other side no matcher achieved a 0.7 F1-measure. Regarding runtime, the four fastest matchers this year managed to be faster than the fastest matcher last year (measured on the same machine) and no matcher needed more than 70 seconds which is much faster than last year (40 minutes).

Evaluation based on alignment coherence As in the previous years, we apply the Maximum Cardinality measure to evaluate the degree of alignment incoherence. Details on this measure and its implementation can be found in [START_REF] Meilicke | Alignment Incoherence in Ontology Matching[END_REF].

We computed the average for all 21 test cases of the conference track for which there exists a reference alignment. In two cases (marked with an asterisk) we could not compute the exact degree of incoherence due to the combinatorial complexity of the problem, however we were still able to compute a lower bound for which we know that the actual degree is not lower.

The systems AML, LogMap (excluding LogMapLite, where reasoning option is disabled), and XMap generate coherent alignments. However, these systems generated coherent alignments already in 2013. The other systems generate results with highly varying degree of incoherence. The degree of incoherence is correlated with the size of the generated alignments. This can be expected because smaller alignments are usually more precise and logical conflicts will occur only rarely. However, there are systems with relatively small alignments that cannot ensure coherence (e.g., OMReasoner and RSDLWB). Overall, the field has not improved compared to last year with respect to generating coherent alignments respecting the logical constraints implied by the axioms of the matched ontologies.

Large biomedical ontologies (largebio)

The Largebio test case aims at finding alignments between the large and semantically rich biomedical ontologies FMA, SNOMED-CT, and NCI, which contains 78,989, 306,591 and 66,724 classes, respectively.

Test data

The test case has been split into three matching problems: FMA-NCI, FMA-SNOMED and SNOMED-NCI; and each matching problem in 2 tasks involving different fragments of the input ontologies.

The UMLS Metathesaurus [START_REF] Bodenreider | The unified medical language system (UMLS): integrating biomedical terminology[END_REF] has been selected as the basis for reference alignments. UMLS is currently the most comprehensive effort for integrating independentlydeveloped medical thesauri and ontologies, including FMA, SNOMED-CT, and NCI. Although the standard UMLS distribution does not directly provide alignments (in the sense of [START_REF] Euzenat | Ontology matching[END_REF]) between the integrated ontologies, it is relatively straightforward to extract them from the information provided in the distribution files (see [START_REF] Jiménez-Ruiz | Logicbased assessment of the compatibility of UMLS ontology sources[END_REF] for details).

It has been noticed, however, that although the creation of UMLS alignments combines expert assessment and auditing protocols they lead to a significant number of logical inconsistencies when integrated with the corresponding source ontologies [START_REF] Jiménez-Ruiz | Logicbased assessment of the compatibility of UMLS ontology sources[END_REF].

Since alignment coherence is an aspect of ontology matching that we aim to promote in the Large BioMed track, in previous editions we provided coherent reference alignments by refining the UMLS mappings using Alcomo (alignment) debugging system [START_REF] Meilicke | Alignment Incoherence in Ontology Matching[END_REF], LogMap's (alignment) repair facility [START_REF] Jiménez | LogMap: Logic-based and scalable ontology matching[END_REF], or both [START_REF] Jiménez-Ruiz | Evaluating mapping repair systems with large biomedical ontologies[END_REF].

However, concerns were raised about the validity and fairness of applying automated alignment repair techniques to make reference alignments coherent [START_REF] Pesquita | To repair or not to repair: reconciling correctness and coherence in ontology reference alignments[END_REF]. It is clear that using the original (incoherent) UMLS alignments would be penalizing to ontology matching systems that perform alignment repair. However, using automatically repaired alignments would penalize systems that do not perform alignment repair and also systems that employ a repair strategy that differs from that used on the reference alignments [START_REF] Pesquita | To repair or not to repair: reconciling correctness and coherence in ontology reference alignments[END_REF].

Thus, for this year's edition of the largebio track we arrived at a compromising solution that should be fair to all ontology matching systems. Instead of repairing the reference alignments as normal, by removing correspondences, we flagged the incoherencecausing correspondences in the alignments by setting the relation to "?" (unknown). These "?" correspondences will neither be considered as positive nor as negative when evaluating the participating ontology matching systems, but will simply be ignored. This way, systems that do not perform alignment repair are not penalized for finding correspondences that (despite causing incoherences) may or may not be correct, and systems that do perform alignment repair are not penalized for removing such correspondences.

To ensure that this solution was as fair as possible to all alignment repair strategies, we flagged as unknown all correspondences suppressed by any of Alcomo, LogMap or AML [START_REF] Santos | Ontology alignment repair through modularization and confidence-based heuristics[END_REF], as well as all correspondences suppressed from the reference alignments of last year's edition (using Alcomo and LogMap combined). Note that, we have used the (incomplete) repair modules of the above mentioned systems.

The flagged UMLS-based reference alignment for the OAEI 2014 campaign is summarised as follows:

-FMA-NCI reference alignment: 2,686 "=" mappings, 338 "?" mappings -FMA-SNOMED reference alignment: 6,026 "=" mappings, 2,982 "?" mappings -SNOMED-NCI reference alignment: 17,210 "=" mappings, 1,634 "?" mappings

Evaluation setting, participation and success

We have run the evaluation in a Ubuntu Laptop with an Intel Core i7-4600U CPU @ 2.10GHz x 4 and allocating 15Gb of RAM. Precision, Recall and F-measure have been computed with respect to the UMLS-based reference alignment. Systems have been ordered in terms of F-measure.

In the largebio test case, 11 out of 14 participating systems have been able to cope with at least one of the tasks of the largebio test case. It is surprising, but for the first year the largebio track had the largest participation with respect to the other tracks. RiMOM-IM, InsMT and InsMTL are systems focusing in the instance matching track and they did not produce any alignment for the largebio track.

Regarding the use of background knowledge, LogMap-Bio uses BioPortal as mediating ontology provider, that is, it retrieves from BioPortal the most suitable top-5 ontologies for the matching task.

Alignment coherence

Together with Precision, Recall, F-measure and Runtimes we have also evaluated the coherence of alignments. We report [START_REF] Luis Aguirre | Results of the ontology alignment evaluation initiative 2012[END_REF] the number of unsatisfiabilities when reasoning with the input ontologies together with the computed alignments, and (2) the ratio of unsatisfiable classes with respect to the size of the union of the input ontologies.

We have used the OWL 2 reasoner HermiT [START_REF] Motik | Hypertableau reasoning for description logics[END_REF] to compute the number of unsatisfiable classes. For the cases in which MORe could not cope with the input ontologies and the alignments (in less than 2 hours) we have provided a lower bound on the number of unsatisfiable classes (indicated by ≥) using the OWL 2 EL reasoner ELK [START_REF] Kazakov | Concurrent classification of EL ontologies[END_REF].

In this OAEI edition, only two systems have shown alignment repair facilities, namely: AML and LogMap (including LogMap-Bio and LogMap-C variants). Tables 9101112(see last two columns) show that even the most precise alignment sets may lead to a huge amount of unsatisfiable classes. This proves the importance of using techniques to assess the coherence of the generated alignments if they are to be used in tasks involving reasoning.

Runtimes and task completion

Table 8 shows which systems were able to complete each of the matching tasks in less than 10 hours and the required computation times. Systems have been ordered with respect to the number of completed tasks and the average time required to complete them. Times are reported in seconds. The last column reports the number of tasks that a system could complete. For example, 6 system were able to complete all six tasks. The last row shows the number of systems that could finish each of the tasks. The tasks involving SNOMED were also harder with respect to both computation times and the number of systems that completed the tasks.

Results for the FMA-NCI matching problem

Table 9 summarizes the results for the tasks in the FMA-NCI matching problem. The following tables summarize the results for the tasks in the FMA-NCI matching problem.

LogMap-Bio and AML provided the best results in terms of both Recall and Fmeasure in Task 1 and Task 2, respectively. OMReasoner provided the best results in terms of precision, although its recall was below average. From the last year participants, XMap and MaasMatch improved considerably their performance with respect to both runtime and F-measure. AML and LogMap obtained again very good results. LogMap-Bio improves LogMap's recall in both tasks, however precision is damaged specially in Task 2. Note that efficiency in Task 2 has decreased with respect to Task 1. This is mostly due to the fact that larger ontologies also involves more possible candidate alignments and it is harder to keep high precision values without damaging recall, and vice versa. Furthermore, AOT, AOTL, RSDLWB and MaasMatch could not complete Task 2. The first three did not finish in less than 10 hours while MaasMatch rose an "out of memory" exception.

Results for the FMA-SNOMED matching problem

Table 10 summarizes the results for the tasks in the FMA-SNOMED matching problem. AML provided the best results in terms of F-measure on both Task 3 and Task 4. AML also provided the best Recall and Precision in Task 3 and Task 4, respectively; while LogMapLite provided the best Precision in Task 3 and LogMap-Bio the best Recall in Task 4.

Overall, the results were less positive than in the FMA-NCI matching problem. As in the FMA-NCI matching problem, efficiency also decreases as the ontology size increases. The most important variations were suffered by LogMapLite and XMap in terms of precision. Furthermore, AOT, AOTL, RSDLWB could not complete neither Task 3 nor Task 4 in less than 10 hours. MaasMatch rose an "out of memory" exception in Task 4, while OMReasoner could not complete Task 4 within the allowed time. 

Results for the SNOMED-NCI matching problem

Table 11 summarizes the results for the tasks in the SNOMED-NCI matching problem.

AML provided the best results in terms of both Recall and F-measure in Task 5, while OMReasoner provided the best results in terms of precision. Task 6 was completely dominated by AML.

As in the previous matching problems, efficiency decreases as the ontology size increases. Furthermore, AOT, AOTL, RSDLWB could not complete Task 5 nor Task 6 in less than 10 hours. MaasMatch rose a "stack overflow" exception in Task 5 and an "out of memory" exception in Task 6, while OMReasoner could not complete Task 6 within the allocated time.

Summary results for the top systems

Table 12 summarizes the results for the systems that completed all 6 tasks of largebio track. The table shows the total time in seconds to complete all tasks and averages for Precision, Recall, F-measure and Incoherence degree. The systems have been ordered according to the average F-measure and Incoherence degree.

AML was a step ahead and obtained the best average Recall and F-measure, and the second best average Precision. LogMap-C obtained the best average Precision while LogMap-Bio obtained the second best average Recall. Regarding alignment incoherence, AML also computed, on average, the correspondence sets leading to the smallest number of unsatisfiable classes. LogMap variants also obtained very good results in terms of alignment coherence.

Finally, LogMapLite was the fastest system. The rest of the tools were also very fast and only needed between 21 and 144 minutes to complete all 6 tasks.

Conclusions

Although the proposed matching tasks represent a significant leap in complexity with respect to the other OAEI test cases, the results have been very promising and 6 systems completed all matching tasks with very competitive results. Furthermore, 11 systems completed at least one of the tasks.

There is, as in previous OAEI campaigns, plenty of room for improvement: (1) most of the participating systems disregard the coherence of the generated alignments; (2) the size of the input ontologies should not significantly affect efficiency, and (3) recall in the tasks involving SNOMED should be improved while keeping precision values.

The alignment coherence measure was the weakest point of the systems participating in this test case. As shown in Tables 9101112, even highly precise alignment sets may lead to a huge number of unsatisfiable classes (e.g. LogMapLite and OMReasoner alignments in Task 5). The use of techniques to assess alignment coherence is critical if the input ontologies together with the computed alignments are to be used in practice. Unfortunately, only a few systems in OAEI 2014 have shown to successfully use such techniques. We encourage ontology matching system developers to develop their own repair techniques or to use state-of-the-art techniques such as Alcomo [START_REF] Meilicke | Alignment Incoherence in Ontology Matching[END_REF], the repair module of LogMap (LogMap-Repair) [START_REF] Jiménez | LogMap: Logic-based and scalable ontology matching[END_REF] or the repair module of AML [START_REF] Santos | Ontology alignment repair through modularization and confidence-based heuristics[END_REF], which have shown to work well in practice [START_REF] Jiménez-Ruiz | Evaluating mapping repair systems with large biomedical ontologies[END_REF][START_REF] Faria | Towards Annotating Potential Incoherences in BioPortal Mappings[END_REF].

MultiFarm

The MultiFarm data set [START_REF] Meilicke | MultiFarm: A benchmark for multilingual ontology matching[END_REF] aims at evaluating the ability of matching systems to deal with ontologies in different natural languages. This data set results from the translation of 7 Conference track ontologies (cmt, conference, confOf, iasted, sigkdd, ekaw and edas), into 8 languages: Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish (+ English). These translations result in 36 pairs of languages. For each pair, taking into account the alignment direction (cmt en -confOf de and cmt de -confOf en , for instance, as two distinct matching tasks), we have 49 matching tasks. Hence, MultiFarm is composed of 36 × 49 matching tasks.

Experimental setting

For the 2014 campaign, part of the data set has been used for a kind of blind evaluation. This subset include all the pairs of matching tasks involving the edas and ekaw ontologies (resulting in 36 × 24 matching tasks), which were not used in previous campaigns 10 . We refer to evaluation as edas and ekaw based evaluation in the following. Participants were able to test their systems on the freely available sub-set of matching tasks (open evaluation) (including reference alignments), available via the SEALS repository, which is composed of 36 × 25 tasks.

We can distinguish two types of matching tasks in MultiFarm : (i) those tasks where two different ontologies (cmt-confOf, for instance) have been translated into different languages; and (ii) those tasks where the same ontology (cmt-cmt, for instance) has been translated into different languages. For the tasks of type (ii), good results are not directly related to the use of specific techniques for dealing with ontologies in different natural languages, but on the ability to exploit the fact that both ontologies have an identical structure.

This year, only 3 systems (out of 14 participants, see Table 2) use specific crosslingual11 methods: AML, LogMap and XMap. This number drastically decreased with respect to the last two campaigns: 7 systems in 2013 and 7 in 2012. All of them integrate a translation module in their implementations. LogMap uses Google Translator API and pre-compiles a local dictionary in order to avoid multiple accesses to the Google server within the matching process. AML and XMap use Microsoft Translator, and AML adopts the same strategy of LogMap computing a local dictionary. The translation step is performed before the matching step itself.

Execution setting and runtime

The systems have been executed on a Debian Linux VM configured with four processors and 20GB of RAM running under a Dell PowerEdge T610 with 2*Intel Xeon Quad Core 2.26GHz E5607 processors, under Linux ProxMox 2 (Debian). With respect to runtime, we compare all systems on the basis of the open data set and their runtimes can be found in Table 13. All measurements are based on a single run. Systems not listed in Table 13 have not been executed in this track -InsMT, InsMTL, RiMOM-IM (dedicated to the IM track) and LogMapBio (dedicated to LargeBio track) -or have encountered problems to parse the ontologies (OMReasoner). Some exceptions were observed for MaasMatch, which was not able to be executed under the same setting than the other systems. Thus, we do not report on execution time for this system.

We can observe large differences between the time required for a system to complete the 36 × 25 matching tasks. While AML takes around 8 minutes, XMap requires around 24 hours. Under a same setting LogMap took around 18 minutes in 2013 and around 2 hours this year. This is due to the fact that the local dictionaries are incomplete and accesses to Google Translator server have to be performed for some pairs, what may explain the increase in the execution time.

Evaluation results

Open evaluation results Before discussing the results for the edas and ekaw based evaluation, we present the aggregated results for the open subset of MultiFarm, for the test cases of type (i) and (ii) (Table 13). The results have been computed using the Alignment API 4.6. We did not distinguish empty and erroneous alignments. We observe significant differences between the results obtained for each type of matching task, specially in terms of precision, for all systems, with lower differences in terms of recall. As expected, all systems implementing specific cross-lingual techniques generate the best results for test cases of type (i). A similar behavior has also been observed for the tests cases of type (ii), even if the specific strategies could have less impact due to the fact that the identical structure of the ontologies could also be exploited instead by the other systems. For cases of type (i), while LogMap has the best precision (at the expense of recall), AML has similar results in terms of precision and recall and outperforms the other systems in terms of F-measure (what is the case for both types of tasks). With respect to the specific pairs of languages for test cases of type (i), for the sake of brevity, we do not detail them here. The reader can refer to the OAEI results web page for detailed results for each of the 36 pairs of languages. As expected and already reported above, systems that apply specific strategies to match ontology entities described in different natural languages outperform all other systems. As already observed for the best system last year (YAM++), the best results in terms of F-measure for AML has been observed for the pairs involving Czech -cz-en (.63), cz-ru (.63), cz-es (.61), cz-nl (.60) -followed of pairs involving English and Russian -en-ru (.60). In the case of LogMap, for pairs involving English, Spanish -en-es (.61) -and Czech -cz-en (.60) -it generates its best scores, followed by en-pt (.56) and de-en (.56). As AML, top F-measure results for XMap are observed for the pair involving Czech -cz-es (.50), cz-fr (.47), cz-pt (.46). However, when dealing with cases of type (ii), these systems generate best results for the pairs involving English, French, Portuguese and Spanish (including Dutch for LogMap).

For non-specific systems, most of them cannot deal with Chinese and Russian languages. All of them generate their best results for the pairs es-pt and de-en: AOT (es-pt .10), AOTL (de-en . [START_REF] Jiménez-Ruiz | Evaluating mapping repair systems with large biomedical ontologies[END_REF]), LogMap-C (de-en .20), LogMapLite (es-pt .23) MaasMatch (deen .37) and RSDLWB (es-pt .23), followed by es-fr, en-es and fr-nl. These systems take advantage of similarities in the vocabulary for these languages in the matching task, in the absence of specific strategies. A similar result has been observed last year for nonspecific systems, where 7 out of 10 cross-lingual systems generated their best results for the pair es-pt, followed by the pair de-en. On the other hand, although it is likely harder to find correspondences between cz-pt than es-pt, for some systems Czech is present in the top-5 F-measure (cz-pt, for LogMap-C, LogMapLite and RSDLWB or cz-es for AOTL, LogMapLite and RSDLWB). It can be explained by the specific way systems combine their internal matching techniques (ontology structure, reasoning, coherence, linguistic similarities, etc).

Edas and Ekaw based evaluation

In the first year of MultiFarm evaluation, we have used a subset of the whole data set, where we omitted the ontologies edas and ekaw, and suppressed the test cases where Russian and Chinese were involved. Since 2012, we have included Russian and Chinese translations, and this year we have included edas and ekaw in a (pseudo) blind setting, as explained above. We evaluate this subset on the systems implementing specific cross-lingual strategies. The tools run in the SEALS platform using locally stored ontologies. Table 14 presents the results for AML and LogMap. Using this setting, XMap has launched exceptions for most pairs and its results are not reported for this subset. These internal exceptions were due to the fact that the system exceeded the limit of accesses to the translator and could not generate any translation for most pairs. While AML includes in its local dictionaries the automatic translations for the two ontologies, it is not the case for LogMap (real blind case). This can explain the similar results obtained by AML in both settings. However, LogMap has encountered many problems for accessing Google translation server from our server, what explain the decrease in its results and the increase in runtime (besides the fact that this data set is slightly bigger than the open data set in terms of ontology elements).

Overall, for cases of type (i) -remarking the particular case of AML -the systems maintained their performance with respect to the open setting. Its good performance in (ii) may be explained by the implementation of new similarity aggregations reflecting similarity values even when few overlaps exist.

Conclusion

As we could expect, systems implementing specific methods for dealing with ontologies in different languages outperform non specific systems. However, since the first campaign MultiFarm is proposed, the absolute results are still not very good, if compared to the top results of the original Conference data set (approximatively 74% F-measure for the best matcher). Although only 3 systems have implemented specific strategies this year, in terms of overall results, one of them has outperformed the best systems in previous campaigns. However, the adopted strategies are rather limited to translations steps before the matching step itself. Again, all systems privilege precision rather than recall. Both in terms of matching strategies and results, there is still room for improvements. As future work, we plan to provide a new version of the data set, correcting as well some typos identified in the translations. We envisage as well to add the Italian translations as (real) blind evaluation.

The library test case was established in 2012 12 . The test case consists of matching two real-world thesauri: The Thesaurus for the Social Sciences (TSS, maintained by GESIS) and the Standard Thesaurus for Economics (STW, maintained by ZBW). The reference alignment is based on a manually created alignment in 2006. As additional benefit from this test case, the reference alignment is constantly updated by the maintainers with the generated correspondences that are checked manually when they are not part of the reference alignment. 13

Test data

Both thesauri used in this test case are comparable in many respects. They have roughly the same size (6,000 resp. 8,000 concepts), are both originally developed in German, are both translated into English, and, most important, despite being from two different domains, they have significant overlapping areas. Not least, both are freely available in RDF using SKOS. 14 To enable the participation of all OAEI matchers, an OWL version of both thesauri is provided, effectively by creating a class hierarchy from the concept hierarchy. Details are provided in the report of the 2012 campaign [START_REF] Luis Aguirre | Results of the ontology alignment evaluation initiative 2012[END_REF]. For the first time, we also created an OWL version containing SKOS annotations like preferred and alternative label as OWL annotations. As stated above, we updated the reference alignment with all correct correspondences found during the last campaigns. It now consists of 3161 correspondences.

Experimental setting

All matching processes have been performed on a Debian machine with one 2.4GHz core and 7GB RAM allocated to each system. The evaluation has been executed by using the SEALS infrastructure. Each participating system uses the OWL version, two systems make use of the additional SKOS annotations.

To compare the created alignments with the reference alignment, we use the Alignment API. For this evaluation, we only included equivalence relations (skos:exactMatch). We computed precision, recall and F 1 -measure for each matcher. Moreover, we measured the runtime, the size of the created alignment, and checked whether a 1:1 alignment has been created. To assess the results of the matchers, we developed three straightforward matching strategies, using the original SKOS version of the thesauri:

-MatcherPrefDE: Compares the German lower-case preferred labels and generates a correspondence if these labels are completely equivalent. -MatcherPrefEN: Compares the English lower-case preferred labels and generates a correspondence if these labels are completely equivalent.

-MatcherPref: Creates a correspondence, if either MatcherPrefDE or Matcher-PrefEN or both create a correspondence. -MatcherAllLabels: Creates a correspondence whenever at least one label (preferred or alternative, all languages) of an entity is equivalent to one label of another entity.

Results

Of all 12 participating matchers (or variants), 7 were able to generate an alignment within 8 hours. The results can be found in Table 15. The best systems in terms of F-measure are AML and LogMap. AML* and LogMap* are the matching systems performed on the OWL-dataset with SKOS annotations. For both systems, using this ontology version increases the F-measure up to 7% which shows that the additional information is useful. Except for AML, all systems are below the MatcherPrefDE and MatcherAllLabels strategies. A group of matchers including LogMap, LogMapLite, and XMap2 are above the MatcherPrefEN baseline. Compared to the evaluation conducted last year, the results are similar: The baselines with preferred labels are still very good and can only be beaten by one system. AML* has a better F-Measure than any other system before (4% increase compared to the best matcher of last year).

Like in previous years, an additional intellectual evaluation of the alignments established automatically was done by a domain expert to further improve the reference alignment. Since the competing ontology matching tools predominantly apply lexical approaches for matching the two vocabularies they foremost establish new correspondences on the character level. The main approaches that are applied here are Levenshtein distance or string recognition where character strings could consist of up to a whole part of a compound word, partly used as an adjective. Together with the three above described straightforward matching strategies, these character respectively string matching approaches lead to different types of systematic mismatches. Especially in the case of short terms, Levensthein distance could lead to wrong correspondences, e.g., "Ziege" (Eng. goat) and "Zeuge" (Eng. witness) or "Dumping" (Eng. dumping) and "Doping" (Eng. doping). Mere string matching often leads to wrong correspondences. Typical cases include partial matchings at the beginning, in the middle, or at the end of a word, like "Monopson" (Eng. monopsony) and "Monotonie" (Eng. monotony), "Zession" (Eng. cession) and "Rezession" (Eng. recession), or "Rohrleitungsbau" (Eng. pipeline construction) and "Jugendleiter" (Eng. youth leader). Mismatches also happen when the longest string consists of an independently occurring word, e.g., "Kraftfahrtversicherung" (Eng. motor-vehicle insurance) and "Zusatzversicherung" (Eng. supplementary insurance) or the longest occurring word is an adjective, e.g., "Arabisch" (Eng. Arab) and "Arabische Liga" (Eng. Arab League). Both sources of mismatch, Levensthein distance and string match, could also occur in one single correspondence, e.g., "Leasinggesellschaft" (Eng. leasing company) and "Leistungsgesellschaft" (Eng. achieving society). Since the translations were equally used to build up correspondences they could also lead to a number of mismatches, e.g., "Brand" (Eng. incendiary) and "Marke" (Eng. brand). The same applies to indications of homonyms, e.g. "Samen (Volk)" (Eng. sami (people)) and "Volk" (Eng. people).

Conclusion

In this challenge, the overall improvement of the performance is encouraging. While it might not look impressive to beat simple baselines as ours at first sight, it is actually a notable achievement. The baselines are not only tailored for very high precision, benefitting from the fact that in many cases a consistent terminology is used, they also exploit additional knowledge about the labels. The matchers are general-purpose matchers that have to perform well in all challenges of the OAEI. Using the SKOS properties as annotation properties is a first step in order to make use of the many concept hierarchies provided on the Web.

In this regard, the improvement of F-measure for AML* is encouraging, since SKOS annotations may influence the matching result positively. The intellectual evaluation of new correspondences which have been created automatically has shown that matching tools are apparently still based exclusively on lexical approaches (comparison at string level). It becomes obvious that, instead, context knowledge is needed to avoid false correspondences. This context knowledge must clearly go beyond the mere consideration of translations and synonyms. One approach could be the consideration of the classification schemes of the Thesauri before establishing new correspondences. Taking into account the reference alignment, the highest confidence values should be assigned to the candidate correspondences that come from those classification schemes which have been most commonly mapped in the reference alignment.

Interactive matching

The interactive matching test case was evaluated at OAEI 2014 for the second time. The goal of this evaluation is to simulate interactive matching [START_REF] Paulheim | Towards evaluating interactive ontology matching tools[END_REF], in which a human expert is involved to validate correspondences found by the matching system. In the evaluation, we look at how user interaction may improve matching results.

For the evaluation, we use the conference data set (see 5) with the ra1 alignment, where there is quite a bit of room for improvement, with the best fully automatic, i.e., non-interactive matcher achieving an F-measure below 80%. The SEALS client was modified to allow interactive matchers to ask an oracle, which emulates a (perfect) user. The interactive matcher can present a correspondence to the oracle, which then tells the user whether the correspondence is right or wrong.

All matchers participating in the interactive test case support both interactive and non-interactive matching. This allows us to analyze how much benefit the interaction brings for the individual matchers.

Results

Overall, four matchers participated in the interactive matching track: AML, Hertuda, LogMap, and WeSeE-Match. The systems AML and LogMap have been further developed compared to last year, the other two ones are the same as last year. All of them implement interactive strategies that run entirely as a post-processing step to the automatic matching, i.e., take the alignment produced by the base matcher and try to refine it by selecting a suitable subset.

AML asks the oracle if the similarity variance between the matching algorithms AML employs is significant. Further, an alignment repair step is also performed interactively. Last year, AML presented all correspondences below a certain confidence threshold to the oracle, starting with the highest confidence values. LogMap checks all questionable correspondences using the oracle. Hertuda and WeSeE-Match try to adaptively set an optimal threshold for selecting correspondences. They perform a binary search in the space of possible thresholds, presenting a correspondence of average confidence to the oracle first. If the result is positive, the search is continued with a higher threshold, otherwise with a lower threshold. 16. Results on the interactive matching task. The numbers in parantheses denote the results achieved without interaction. Significant differences between the interactive and non-interactive results are marked with * (p < 0.05) and ** (p < 0.01).

The results are depicted in Table 16. The largest improvement in F-measure, as well as the best overall result is achieved by AML, which increases its F-measure by seven percentage points (compared to the non-interactive results). Furthermore, AML shows a statistically significant increase in recall as well as precision, while all the other tools except for Hertuda show a significant increase in precision. The increase in precision is in all cases, except for AML, higher than the increase of recall. On the other hand, Hertuda, shows a decrease in recall, which cannot compensate for the increase in precision, and WeSeE shows a decrease in both recall and precision. Thus, we conclude that the interaction strategy used by those matchers is not as effective than those of the other participants.

When comparing to the results of last year [START_REF] Bernardo Cuenca Grau | Results of the ontology alignment evaluation initiative 2013[END_REF], AML improved its F-measure by almost 10%. On the other hand, LogMap shows a slight decrease in recall, and hence, in F-measure. Compared to the results of the non-interactive conference track, the best interactive matcher (in terms of F-measure) is better than all non-interactive matching systems. Furthermore, the comparison to the non-interactive results show that there is a clear benefit of interactive matching -there, AML is also the best matching system, and still there is a significant improvement in both precision and recall when using interaction.

For further analyzing the effects of interaction and the efficiency at which the oracle is used, we also traced the number of interactions, both in absolute numbers and in relation to the size of the reference alignment. These measures are relevant in a practical setting, since the time of a domain expert validating is usually scarce, so an interactive matching tool should limit the number of interactions as much as possible. The results are depicted in Table 17.

It can be observed that LogMap has the lowest number of interactions with the oracle, while HerTUDA has the highest number, exposing roughly as many correspondences to the oracle as there are correspondences in the reference alignment. These observations show that, when comparing the tools, there is no clear trend showing that the number of interactions has a direct effect on the result quality -on the contrary, it is possible to build well performing tools using only few interactions. 17. Interactions of the individual matchers. The table depicts the average number of interactions used by the matchers (each interaction is the validation of one correspondence), the average number of positive and negative examples, and the relative number of interactions, i.e., divided by the size of the reference alignment.

Looking at the tools, it can be observed that current interactive matching tools mainly use interaction as a means to post-process an alignment found with fully automatic means. There are, however, other interactive approaches that can be thought of, which include interaction at an earlier stage of the process, e.g., using interaction for parameter tuning [START_REF] Ritze | Towards an automatic parameterization of ontology matching tools based on example mappings[END_REF], or determining anchor elements for structure-based matching approaches using interactive methods. The maximum F-measure of 0.801 achieved shows that there is still room for improvement. Furthermore, different variations of the evaluation method can be thought of, including different noise levels in the oracle's responses, i.e., simulating errors made by the human expert, or allowing other means of interactions than the validation of single correspondences, e.g., providing a random positive example, or providing the corresponding element in one ontology, given an element of the other one.

Ontology matching systems rely on lexical and structural heuristics and the integration of the input ontologies and the alignments may lead to many undesired logical consequences. In [START_REF] Jiménez-Ruiz | Logicbased assessment of the compatibility of UMLS ontology sources[END_REF] three principles were proposed to minimize the number of potentially unintended consequences, namely: (i) consistency principle, the alignment should not lead to unsatisfiable classes in the integrated ontology; (ii) locality principle, the correspondences should link entities that have similar neighborhoods; (iii) conservativity principle, the alignments should not introduce alterations in the classification of the input ontologies. The occurrence of these violations is frequent, even in the reference alignments sets of the Ontology Alignment Evaluation Initiative (OAEI) [START_REF] Solimando | Detecting and Correcting Conservativity Principle Violations in Ontology-to-Ontology Mappings[END_REF][START_REF] Solimando | A multi-strategy approach for detecting and correcting conservativity principle violations in ontology alignments[END_REF].

Violations to these principles may hinder the usefulness of ontology matching. The practical effect of these violations, however, is clearly evident when ontology alignments are involved in complex tasks such as query answering [START_REF] Meilicke | Alignment Incoherence in Ontology Matching[END_REF]. The traditional tracks of OAEI evaluate ontology matching systems w.r.t. scalability, multi-lingual support, instance matching, reuse of background knowledge, etc. Systems' effectiveness is, however, only assessed by means of classical information retrieval metrics, i.e., precision, recall and f-measure, w.r.t. a manually-curated reference alignment, provided by the organizers. OA4QA track [START_REF] Solimando | Evaluating ontology alignment systems in query answering tasks[END_REF], introduced in 2014, evaluates those same metrics, with respect to the ability of the generated alignments to enable the answer of a set of queries in an ontology-based data access (OBDA) scenario, where several ontologies exist. Our target scenario is an OBDA scenario where one ontology provides the vocabulary to formulate the queries (QF-Ontology) and the second is linked to the data and it is not visible to the users (DB-Ontology). Such OBDA scenario is presented in realworld use cases, e.g., Optique project 15 [START_REF] Kharlamov | Optique 1.0: Semantic access to big data: The case of norwegian petroleum directorate's factpages[END_REF][START_REF] Solimando | Detecting and Correcting Conservativity Principle Violations in Ontology-to-Ontology Mappings[END_REF]. The integration via ontology alignment is required since only the vocabulary of the DB-Ontology is connected to the data. The OA4QA will also be key for investigating the effects of logical violations affecting the computed alignments, and evaluating the effectiveness of the repair strategies employed by the matchers.

Dataset

The set of ontologies coincides with that of the conference track ( §5), in order to facilitate the understanding of the queries and query results. The dataset is however extended with synthetic ABoxes, extracted from the DBLP dataset. 16Given a query q expressed using the vocabulary of ontology O 1 , another ontology O 2 enriched with synthetic data is chosen. Finally, the query is executed over the aligned ontology O 1 ∪ M ∪ O 2 , where M is an alignment between O 1 and O 2 . Here O 1 plays the role of QF-Ontology, while O 2 that of DB-Ontology.

Query Evaluation Engine

The evaluation engine considered is an extension of the OWL 2 reasoner HermiT, known as OWL-BGP 17 [START_REF] Kollia | SPARQL query answering over OWL ontologies[END_REF]. OWL-BGP is able to process SPARQL queries in the SPARQL-OWL fragment, under the OWL 2 Direct Semantics entailment regime [START_REF] Kollia | SPARQL query answering over OWL ontologies[END_REF]. The queries employed in the OA4QA track are standard conjunctive queries, that are fully supported by the more expressive SPARQL-OWL fragment. SPARQL-OWL, for instance, also support queries where variables occur within complex class expressions or bind to class or property names.

Evaluation Metrics and Gold Standard

The evaluation metrics used for the OA4QA track are the classic information retrieval ones, i.e., precision, recall and f-measure, but on the result set of the query evaluation. In order to compute the gold standard for query results, the publicly available reference alignments ra1 has been manually revised. The aforementioned metrics are then evaluated, for each alignment computed by the different matching tools, against the ra1, and manually repaired version of ra1 from conservativity and consistency violations, called rar1 (not to be confused with ra2 alignment of the conference track).

Three categories of queries are considered in OA4QA: (i) basic queries: instance retrieval queries for a single class or queries involving at most one trivial correspondence (that is, correspondences between entities with (quasi-)identical names), (ii) queries involving (consistency or conservativity) violations, (iii) advanced queries involving nontrivial correspondences.

For unsatisfiable ontologies, we tried to apply an additional repair step, that consisted in the removal of all the individuals of incoherent classes. In some cases, this allowed to answer the query, and depending on the classes involved in the query itself, sometimes it did not interfere in the query answering process.

Impact of the Mappings in the Query Results

The impact of unsatisfiable ontologies, related to the consistency principle, is immediate. The conservativity principle, compared to the consistency principle, received less attention in literature, and its effects in a query answering process is probably less known. For instance, consider the aligned ontology O U computed using confof and ekaw as input ontologies (O conf of and O ekaw , respectively), and the ra1 reference alignment between them. O U entails ekaw:Student ekaw:Conf P articipant, while O ekaw does not, and therefore this represents a conservativity principle violation [START_REF] Solimando | Detecting and Correcting Conservativity Principle Violations in Ontology-to-Ontology Mappings[END_REF]. Clearly, the result set for the query q(x) ← ekaw:Conf P articipant(x) will erroneously contain any student not actually participating at the conference. The explanation for this entailment in O U is given below, where Axioms 1 and 3 are corre-spondences from the reference alignment. 

In what follows, we provide possible (minimal) alignment repairs for the aforementioned violation:

-the weakening of Axiom 1 into conf of :Scholar ekaw:Student, -the weakening of Axiom 3 into conf of :P articipant ekaw:Conf P articipant.

Repair strategies could disregard weakening in favor of complete mapping removal, in this case the removal of either Axiom 1, or Axiom 3 could be possible repairs. Finally, for stategies including the input ontologies as a possible repair target, the removal of Axiom 2 can be proposed as a legal solution to the problem.

Results

Table 18 shows the average precision, recall and f-measure results for the whole set of queries: AML, LogMap, LogMap-C and XMap were the only matchers whose alignments allowed to answer all the queries of the evaluation.

LogMap was the best performing tool for what concerns averaged precision, recall and f-measure, closely followed by LogMap-C and AML. XMap, despite being able to produce an alignment not leading to unsatifiability during query answering, did not perform as well.

Considering Table 18, the difference in results between the publicly available reference alignment of the Conference track (ra1) and its repaired version (rar1) was not significant and, as expected, affected precision. Most of the differences between ra1 and rar1 are related to conservativity violations, and this is reflected by a reduced precision employing rar1 w.r.t. ra1. However, the f-measure ranking between the two reference alignments is (mostly) preserved. If we compare Table 18 (the results of the present track) and Table 7 (the results of Conference track) we can see that the top-4 matcher ranking coincides, even if with a slight variation. But, considering rar1 alignment, the gap between the top-4 matcher and the others is highlighted, and it also allows to differentiate more among the least performing matchers, and seems therefore more suitable as a reference alignment in the context of OA4QA track evaluation.

Comparing Table 18 and Table 19 (measuring the degree of incoherence of the computed alignments of the Conference track) it seems that a negative correlation between the ability of answering queries and the average degree of incoherence of the matchers do exists. For instance, taking into account the different positions in the ranking of AOT, we can see that logical violations are definitely penalized more in our test case than in the traditional Conference track, due to its target scenario. MaasMatch, instead, even if presenting many violations and even if most of its alignment is suffering from incoherences, is in general able to answer enough of the test queries (5 out of 18).

LogMap-C, to the best of our knowledge the only ontology matching systems fully addressing conservativity principle violations, did not outperform LogMap, because some correspondences removed by its extended repair capabilities prevented to answer to one of the queries (the result set was empty as an effect of correspondence removal).

Table 18. OA4QA track, averaged precision and recall (over the single queries), for each matcher. F-measure, instead, is computed using the averaged precision and recall. Matchers are sorted on their f-measure values for ra1. [START_REF] Pesquita | To repair or not to repair: reconciling correctness and coherence in ontology reference alignments[END_REF] for incoherence alignment debugging.

Matcher

The results we presented depend on the considered set of queries. What clearly emerges is that the role of logical violations is playing a major role in our evaluation, and a possible bias due to the set of chosen queries can be mitigated by an extended set of queries and synthetic data. We hope that this will be useful in the further exploration of the findings of this first edition of OA4QA track.

As a final remark, we would like to clarify that the entailment of new knowledge, obtained using the alignments, is not always negative, and conservativity principle violations can be false positives. Another extension to the current set of queries would target such false positives, with the aim of penalizing the indiscriminate repairs in presence of conservativity principle violations.

Instance matching

The instance matching track evaluates the performance of matching tools when the goal is to detect the degree of similarity between pairs of items/instances expressed in the form of OWL Aboxes. The track is organized in two independent tasks, namely the identity recognition task (id-rec task) and the similarity recognition task (sim-rec task).

In both tasks, participants received two datasets called source and target, respectively. The datasets contain instances describing famous books with different genres and topics. We asked the participants to discover the matching pairs, i.e., links or mappings, among the instances in the source dataset and the instances in the target dataset. Both tasks are blind, meaning that the set of expected mappings, i.e., reference link-set, is not known in advance by the participants.

Results of the identity recognition task

The id-rec task is a typical evaluation task of instance matching tools where the goal is to determine when two OWL instances describe the same real-world entity. The datasets of the id-rec task have been produced by altering a set of original data with the aim to generate multiple descriptions of the same real-world entities where different languages and representation formats are employed. We stress that an instance in the source dataset can have none, one, or more than one matching counterparts in the target dataset. The source dataset is an Abox containing 1330 instances described through 4 classes, 5 datatype properties, and 1 annotation property. The target dataset contains 2649 instances described through 4 classes, 4 datatype properties, 1 object property, and 1 annotation property.

We asked the participants to match the instances of the class http:// www.instancematching.org/ontologies/oaei2014#Book in the source dataset against the instances of the corresponding class in the target dataset. We expected to receive a set of links denoting the pairs of matching instances that they found to refer to the same real-world entity.

The participants to the identity recognition task are InsMT, InsMTL, LogMap, LogMap-C, and RiMOM-IM. For evaluation, we built a ground truth containing the set of expected links where an instance i 1 in the source dataset is associated with all the instances in the target dataset that has been generated as an altered description of i 1 .

The evaluation has been performed by calculating precision, recall, and F-measure and results are provided in Figure 3. A first comment on the id-rec results is that the quality of the alignment is in general not very high, especially concerning the recall. Basically, the main kind of transformation that we performed is to transform the structured information into an unstructured version of the same information. As an example, for many instances we substitute labels and book titles with a set of keywords taken from the instance description. The result of this kind of transformation is that we have a second instance where it is possible to retrieve the same terms appearing in the label and titles but with no reference to the corresponding metadata. Moreover, a further challenge was the substitution of the original English terms with the corresponding Italian translation. We empirically proved that human users are able to capture the correct links also in case of these transformations, but automatic tools still have problems in several cases. We also note a very different behavior of RiMOM-IM and LogMap/LogMap-C with respect to InsMT/InsMTL. The former two tools produce links that are quite often correct (resulting in a good precision) but they fail in capturing a large number of the expected links (resulting in a low recall), especially in the case of LogMap/LogMap-C. Instead, InsMT/InsMTL have the opposite behavior. This is due to the fact that InsMT/InsMTL produces a large number of links having more or less the same similarity value. This means that the probability of capturing a correct link is high, but the probability of a retrieved link to be correct is low, resulting then in a high recall, but a very low precision. A) This year indicated again that requiring participants to implement a minimal interface was not a strong obstacle to participation. Moreover, the community seems to get used to the SEALS infrastructure introduced for OAEI 2011. B) As already proposed last year, it would be good to set the preliminary evaluation results by the end of July to avoid last minute errors and incompatibilities with the SEALS client. C) Now that all tools are run in exactly the same configuration across all test cases, some discrepancies appear across such cases. For instance, benchmarks expect only class correspondences in the name space of the ontologies, some other cases expect something else. This is a problem, which could be solved either by passing parameters to the SEALS client (this would make its implementation heavier), by specifying a flag in test descriptions that can be tested by matcher interfaces, or by post processing results (which may be criticized). D) In the OAEI 2013, [START_REF] Pesquita | To repair or not to repair: reconciling correctness and coherence in ontology reference alignments[END_REF] raised and documented objections (on validity and fairness) to the way reference alignments are made coherent with alignment repair techniques. This year we created a new reference alignment in the largebio track that mitigates this issue. E) Last years we reported that we had many new participants. This year we got new participants as well, however the overall participation has decreased. F) Again, given the high number of publications on data interlinking, it is surprising to have so few participants to the instance matching track, although this number has increased. G) Last year we proposed to include provenance information in reference alignments.

Identity Recognition Task

We did not achieved this goal mostly due to the heaviness of the prov-o ontology. This is, anyway, a goal worth pursuing. H) The SEALS repositories are still hosted by STI because moving them to Madrid revealed more difficult than expected. A solution has to be found for this transfer.

OAEI 2014 saw a decreased number of participants. We hope to see a different trend next year. Most of the test cases are performed on the SEALS platform, including the instance matching track. This is good news for the interoperability of matching systems. The fact that the SEALS platform can be used for such a variety of tasks is also a good sign of its relevance. Again, we observed improvements of runtimes. For example, for the first year, all systems participating in the anatomy track finished in less than 1 hour. As usual, most of the systems favour precision over recall. In general, participating matching systems do not take advantage of alignment repairing system and return sometimes incoherent alignments. This is a problem if their result has to be taken as input by a reasoning system.

A novelty of this year was the evaluation of ontology alignment systems in query answering tasks. The track was not fully based on SEALS but it reused the computed alignments from the Conference track, which runs in the SEALS client. This new track shed light on the performance of ontology matching systems with respect to the coherence of their computed alignments.

Most of the participants have provided a description of their systems and their experience in the evaluation. These OAEI papers, like the present one, have not been peer reviewed. However, they are full contributions to this evaluation exercise and reflect the hard work and clever insight people put in the development of participating systems. Reading the papers of the participants should help people involved in ontology matching to find what makes these algorithms work and what could be improved. Sometimes participants offer alternate evaluation results.

The Ontology Alignment Evaluation Initiative will continue these tests by improving both test cases and testing methodology for being more accurate. Matching evaluation still remains a challenging topic, which is worth further research in order to facilitate the progress of the field [START_REF] Shvaiko | Ontology matching: state of the art and future challenges[END_REF]. More information can be found at: http://oaei.ontologymatching.org.
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 1 Fig. 1. Triangle view on the three benchmark data sets (non present systems have too low Fmeasure).

Fig. 2 .

 2 Fig. 2. Precision/recall triangular graph for the conference test case. Dotted lines depict level of precision/recall while values of F1-measure are depicted by areas bordered by corresponding lines F1-measure=0.[5|6|7].
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 3 Fig. 3. Results of the id-rec task
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 5 Fig. 5. Results of the sim-rec task: analysis by range-of-gap

Table 1 .

 1 Characteristics of the test cases (open evaluation is made with already published reference alignments and blind evaluation is made by organizers from reference alignments unknown to the participants).

	test formalism relations confidence modalities benchmark OWL = [0 1] blind anatomy OWL = [0 1] open conference OWL =, <= [0 1] blind+open large bio OWL = [0 1] open multifarm OWL = [0 1] open	language EN EN EN EN CZ, CN, DE, EN,	SEALS √ √ √ √ √
	library interactive	OWL OWL	= =, <=	[0 1] [0 1]	open open	ES, FR, NL, RU, PT EN, DE EN	√ √
	OA4QA im-identity im-similarity	OWL OWL OWL	=, <= = <=	[0 1] [0 1] [0 1]	open blind blind	EN EN, IT EN, IT	√ √

Table 3 .

 3 Characteristics of the three seed ontologies used in benchmarks.

	Test set	biblio cose dog
	classes+prop 33+64 196 842
	instances	112 34	0
	entities	209 235 848
	triples	1332 690 10625

Table 4 .

 4 Aggregated

	edna .35(.58) .41(.54) .50 .44(.72) .47(.59) .50 .50(.74) .50(.60) .50
	AML .92(.94) .55(.56) .39 .46(.59) .46(.51) .46(.45) .98(.96) .73(.71) .58(.57)
	AOT .80(.90) .64(.67) .53 .69(.84) .58(.63) .50 .62(.77) .62(.68) .61
	AOTL .85(.89) .65(.66) .53 .94(.95) .65(.65) .50	.97 .74(.75) .60
	LogMap .40(.40) .40(.39) .40(.37) .38(.45) .41(.40) .45(.37) .96(.91) .15(.14) .08(.07)
	LogMap-C .42(.41) .41(.39) .40(.37) .39(.45) .41(.40) .43(.35) .98(.92) .15(.13) .08(.07)
	LogMapLite	.43	.46	.50	.37	.43	.50	.86	.71	.61
	MaasMatch	.97	.56	.39	.98	.48	.31	.92	.55	.39
	OMReasoner	.73	.59	.50	.08	.14	.50	*	*	*
	RSDLWB	.99	.66	.50	*	*	*	.99	.75	.60
	XMap2	1.0	.57	.40	1.0	.28	.17	1.0	.32	.20

benchmark results: Harmonic means of precision, F-measure and recall, along with their confidence-weighted values (*: uncompleted results).

Table 6 .

 6 Comparison, ordered by F-measure, against the reference alignment, runtime is measured in seconds, the "size" column refers to the number of correspondences in the generated alignment. generated results within the given time frame. The top systems in terms of runtimes are LogMap, XMap and AML.

	out of 24 systems

Table 8 .

 8 System runtimes (s) and task completion.

	System	FMA-NCI Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 FMA-SNOMED SNOMED-NCI Average #
	LogMapLite	5	44	13	90	76	89	53	6
	XMap	17	144	35	390	182	490	210	6
	LogMap	14	106	63	388	263	917	292	6
	AML	27	112	126	251	831	497	307	6
	LogMap-C	81	289	119	571	2,723 2,548	1,055	6
	LogMap-Bio	975	1,226	1,060	1,449	1,379 2,545	1,439	6
	OMReasoner	82	36,369	691	-	5,206	-	10,587 4
	MaasMatch	1,460	-	4,605	-	-	-	3,033	2
	RSDLWB	2,216	-	-	-	-	-	2,216	1
	AOT	9,341	-	-	-	-	-	9,341	1
	AOTL	20,908	-	-	-	-	-	20,908 1
	# Systems	11	7	8	6	7	6	4,495 45

Table 9 .

 9 Results for the FMA-NCI matching problem.

		Task 1: small FMA and NCI fragments		
	System	Time (s) # Corresp.	Scores Prec. F-m. Rec. Unsat. Degree Incoherence
	AML	27	2,690	0.96 0.93 0.90	2	0.02%
	LogMap	14	2,738	0.95 0.92 0.90	2	0.02%
	LogMap-Bio	975	2,892	0.91 0.92 0.92	467	4.5%
	XMap	17	2,657	0.93 0.89 0.85 3,905	38.0%
	LogMapLite	5	2,479	0.97 0.89 0.82 2,103	20.5%
	LogMap-C	81	2,153	0.96 0.83 0.72	2	0.02%
	MaasMatch	1,460	2,981	0.81 0.82 0.84 8,767	85.3%
	Average	3,193	2,287	0.91 0.76 0.70 2,277	22.2%
	AOT	9,341	3,696	0.66 0.75 0.85 8,373	81.4%
	OMReasoner	82	1,362	0.99 0.63 0.47	56	0.5%
	RSDLWB	2,216	728	0.96 0.38 0.24	22	0.2%
	AOTL	20,908	790	0.90 0.38 0.24 1,356	13.2%
		Task 2: whole FMA and NCI ontologies		
	System	Time (s) # Corresp.	Scores Prec. F-m. Rec. Unsat. Degree Incoherence
	AML	112	2,931	0.83 0.84 0.86	10	0.007%
	LogMap	106	2,678	0.86 0.83 0.81	13	0.009%
	LogMap-Bio	1,226	3,412	0.72 0.79 0.87	40	0.027%
	XMap	144	2,571	0.83 0.79 0.75 9,218	6.3%
	Average	5,470	2,655	0.82 0.77 0.75 5,122	3.5%
	LogMap-C	289	2,124	0.88 0.75 0.65	9	0.006%
	LogMapLite	44	3,467	0.67 0.74 0.82 26,441	18.1%
	OMReasoner	36,369	1,403	0.96 0.63 0.47	123	0.084%

Table 10 .

 10 Results for the FMA-SNOMED matching problem.

		Task 3: small FMA and SNOMED fragments		
	System	Time (s) # Corresp.	Scores Prec. F-m. Rec.	Incoherence Unsat. Degree
	AML	126	6,791	0.93 0.82 0.74	0	0.0%
	LogMap-Bio	1,060	6,444	0.93 0.81 0.71	0	0.0%
	LogMap	63	6,242	0.95 0.80 0.70	0	0.0%
	XMap	35	7,443	0.86 0.79 0.74 13,429	56.9%
	LogMap-C	119	4,536	0.96 0.66 0.51	0	0.0%
	MaasMatch	4,605	8,117	0.65 0.66 0.67 21,946	92.9%
	Average	839	5,342	0.87 0.64 0.55	4,578	19.4%
	LogMapLite	13	1,645	0.97 0.34 0.21	773	3.3%
	OMReasoner	691	1,520	0.71 0.26 0.16	478	2.0%
	Task 4: whole FMA ontology with SNOMED large fragment	
	System	Time (s) # Corresp.	Scores Prec. F-m. Rec.	Incoherence Unsat. Degree
	AML	251	6,192	0.89 0.75 0.65	0	0.0%
	LogMap	388	6,141	0.83 0.71 0.62	0	0.0%
	LogMap-Bio	1,449	6,853	0.76 0.70 0.65	0	0.0%
	Average	523	5,760	0.79 0.62 0.54 11,823	5.9%
	LogMap-C	571	4,630	0.85 0.61 0.48	98	0.049%
	XMap	390	8,926	0.56 0.59 0.63 66,448	33.0%
	LogMapLite	90	1,823	0.85 0.33 0.21	4,393	2.2%

Table 11 .

 11 Results for the SNOMED-NCI matching problem.

		Task 5: small SNOMED and NCI fragments		
	System	Time (s) # Corresp.	Scores Prec. F-m. Rec.	Incoherence Unsat. Degree
	AML	831	14,131	0.92 0.81 0.72	≥0	≥0.0%
	LogMap-Bio	1,379	14,360	0.88 0.79 0.71	≥23	≥0.031%
	LogMap	263	14,011	0.89 0.78 0.70	≥23	≥0.031%
	XMap	182	14,223	0.85 0.75 0.66	≥65,512	≥87.1%
	Average	1,522	12,177	0.91 0.72 0.61	≥23,078	≥30.7%
	LogMapLite	76	10,962	0.95 0.71 0.57	≥60,426	≥80.3%
	LogMap-C	2,723	10,432	0.91 0.67 0.53	≥0	≥0.0%
	OMReasoner	5,206	7,120	0.98 0.55 0.38	≥35,568	≥47.3%
		Task 6: whole NCI ontology with SNOMED large fragment	
	System	Time (s) # Corresp.	Scores Prec. F-m. Rec.	Incoherence Unsat. Degree
	AML	497	12,626	0.91 0.76 0.65	≥0	≥0.0%
	LogMap-Bio	2,545	12,507	0.85 0.70 0.60	≥37	≥0.020%
	LogMap	917	12,167	0.86 0.70 0.59	≥36	≥0.019%
	XMap	490	12,525	0.84 0.69 0.58 ≥134,622	≥71.1%
	Average	1,181	12,024	0.86 0.69 0.57	≥47,578	≥25.1%
	LogMapLite	89	12,907	0.80 0.66 0.57 ≥150,776	≥79.6%
	LogMap-C	2,548	9,414	0.88 0.61 0.46	≥1	≥0.001%

Table 12 .

 12 Summary results for the top systems.

	System	Total Time (s)	Average Prec. F-m. Rec. Inc. Degree
	AML	1,844	0.91 0.82 0.75	0.004%
	LogMap	1,751	0.89 0.79 0.72	0.013%
	LogMap-Bio	8,634	0.84 0.78 0.74	0.8%
	XMap	1,258	0.81 0.75 0.70	48.7%
	LogMap-C	6,331	0.91 0.69 0.56	0.013%
	LogMapLite	317	0.87 0.61 0.53	34.0%

Table 13 .

 13 MultiFarm aggregated results per matcher (average), for each type of matching taskdifferent ontologies (i) and same ontologies (ii). Time is measured in minutes (time for completing the 36 × 25 matching tasks). Size indicates the average of the number of generated correspondences for each test type.

				Type (i)			Type (ii)	
	System	Time	Size Prec. F-m. Rec.	Size Prec. F-m. Rec.
	AML	8	11.40	.57	.54	.53	54.89	.95	.62	.48
	LogMap	128	5.04	.80	.40	.28	36.07	.94	.41	.27
	XMap	1455	110.79	.31	.35	.43	67.75	.76	.50	.40
	AOT	21	106.29	.02	.04	.17	109.79	.11	.12	.12
	AOTL	48	1.86	.10	.03	.02	2.65	.27	.02	.01
	LogMap-C	25	1.30	.15	.04	.02	3.52	.31	.02	.01
	LogMapLite	6	1.73	.13	.04	.02	3.65	.25	.02	.01
	MaasMatch	-	3.16	.27	.15	.10	7.71	.52	.10	.06
	RSDLWB	18	1.31	.16	.04	.02	2.41	.34	.02	.01

Table 14 .

 14 MultiFarm aggregated results per matcher for the edas and ekaw based evaluation, for each type of matching task -different ontologies (i) and same ontologies (ii). Time, in minutes, for completing the 36 × 24 matching task.

				Type (i)			Type (ii)	
	System	Time	Size Prec. F-m. Rec.	Size Prec. F-m. Rec.
	AML	14	12.82	.55	.47	.42	64.59	.94	.62	.46
	LogMap	219	5.21	.77	.33	.22	71.13	.19	.14	.11

Comparison with previous campaigns In the first year of evaluation of MultiFarm (2011.5 campaign), 3 participants (out of 19) used specific techniques. In 2012, 7 systems (out of 24) implemented specific techniques for dealing with ontologies in different natural languages. We had the same number of participants in 2013. This year, none of these systems has participated. However, we count with 3 systems implementing cross-lingual strategies (AML, LogMap and XMap), as extensions of versions participating in previous campaigns. Comparing 2013 and 2012 F-measure results (on the same basis -type (ii)), this year AML (.54) outperformed the best system in 2013 and 2012 -YAM++ (.40) -while LogMap (.40) had similar results. In overall, we observe a global improvement in performance this year for systems implementing specific matching strategies. With respect to non-specific systems, MaasMatch increased F-measure for tests of type (i) -from .01 up to .15 -and decreased that of cases (ii) -.29 to .10.

Table 15 .

 15 Results of the Library test case (ordered by F-measure).

	Matcher	Precision F-Measure Recall Time (ms)	Size	1:1
	AML*	0.82	0.80	0.78	68489	2983	-
	MatcherPref	0.91	0.74	0.63	-	2190	-
	AML	0.72	0.73	0.75	71070	3303	-
	MatcherPrefDE	0.98	0.73	0.58	-	1885	-
	MatcherAllLabels	0.61	0.72	0.89	-	4605	-
	LogMap*	0.74	0.71	0.68	222668	2896	-
	LogMap	0.78	0.71	0.65	73964	2642	-
	LogMapLite	0.64	0.70	0.77	9329	3782	-
	XMap2	0.51	0.65	0.89	12652823 5499	-
	MatcherPrefEN	0.88	0.57	0.42	-	1518	-
	MaasMatch	0.50	0.57	0.66	14641118 4117	x
	LogMap-C	0.48	0.34	0.26	21859	1723	-
	RSDLWB	0.78	0.07	0.04	32828314	155	x

Table 19 .

 19 Incoherences in the alignment computed by the participants to the Conference track. The values in the "Alignment size" and "Inc. Degre" columns represent averages over the 21 computed alignments.Alignment repair does not only affect precision and recall while comparing the computed alignment w.r.t. a reference alignment, but it can enable or prevent the capability of an alignment to be used in a query answering scenario. As experimented in the evaluation, the conservativity violations repair technique of LogMapC on one hand improved its performances on some queries w.r.t. LogMap matcher, but in one cases it actually prevented to answer a query due to a missing correspondence. This conflicting effect in the process of query answering imposes a deeper reflection on the role of ontology alignment debugging strategies, depending on the target scenario, similarly to what already discussed in

	Answered queries	Prec.	ra1 F-m	Rec.	Prec.	rar1 F-m	Rec.
	LogMap	18/18		0.750 0.750 0.750 0.729 0.739 0.750
	AML	18/18		0.722 0.708 0.694 0.701 0.697 0.694
	LogMap-C	18/18		0.722 0.708 0.694 0.722 0.708 0.694
	XMap	18/18		0.556 0.519 0.487 0.554 0.518 0.487
	RSDLWB	15/18		0.464 0.471 0.479 0.407 0.431 0.458
	OMReasoner	15/18		0.409 0.432 0.458 0.407 0.431 0.458
	LogMapLite	11/18		0.409 0.416 0.423 0.351 0.375 0.402
	MaasMatch	5/18		0.223 0.247 0.278 0.203 0.235 0.278
	AOTL	6/18		0.056 0.056 0.056 0.056 0.056 0.056
	AOT	0/18		0.000 0.000 0.000 0.000 0.000 0.000
	Matcher	Alignment size Inc. alignments Inc. Degree
	AML		10.95		0/21	0%
	AOT		59.17	18/21	40.4%
	AOTL		14.67	17/21	15.1%
	LogMap		10.71		0/21	0%
	LogMap-C		10.24		0/21	0%
	LogMapLite	9.91			7/21	5.4%
	MaasMatch	33.00	19/21	21%
	OMReasoner	8.10			4/21	2.5%
	RSDLWB		8.33			4/21	2.5%
	XMap		8.14			0/21	0%
	10.6 Conclusions						

http://oaei.ontologymatching.org

http://om2014.ontologymatching.org

http://www.seals-project.eu

http://www.seals-project.eu/join-the-community/

http://casas.wsu.edu/owl/cose.owl

http://elite.polito.it/ontologies/dogont.owl

http://www.cancer.gov/cancertopics/cancerlibrary/ terminologyresources/

http://nb.vse.cz/ ˜svatek/ontofarm.html

In fact, this subset was, two years ago, by error, available on the MultiFarm web page. Since that, we have removed it from there and it is not available as well for the participants via the SEALS repositories. However, we cannot guarantee that the participants have not used this data set for their tests.

As already reported in the last campaign, we have revised the definitions of multilingual and cross-lingual matching. Initially, as reported in[START_REF] Meilicke | MultiFarm: A benchmark for multilingual ontology matching[END_REF], MultiFarm was announced as a benchmark for multilingual ontology matching, i.e., multilingual in the sense that we have a set of ontologies in 8 languages. However, it is more appropriate to use the term cross-lingual ontology matching. Cross-lingual ontology matching refers to the matching cases where each ontology uses a different natural language (or a different set of natural languages) for entity naming, i.e., the intersection of sets is empty. It is the case of matching tasks in MultiFarm.

There has already been a library test case from 2007 to 2009 using different thesauri, as well as other thesaurus test cases like the food and the environment test cases.

With the reasonable exception of XMapGen, which produces almost 40.000 correspondences.

http://www.w3.org/TR/skos-reference/

http://www.optique-project.eu/

http://dblp.uni-trier.de/xml/
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Results of the similarity recognition task

The sim-rec task focuses on the evaluation of the similarity degree between two OWL instances, even when the two instances describe different real-world entities. Similarity recognition is new in the instance matching track of OAEI, but this kind of task is becoming a common issue in modern web applications where large quantities of data are daily published and usually need to be classified for effective fruition by the final user.

The datasets of the sim-rec task have been produced through crowdsourcing by employing the Argo system 18 [START_REF] Castano | Leveraging Crowdsourced Knowledge for Web Data Clouds Empowerment[END_REF]. More than 250 workers have been involved in the crowdsourcing process to evaluate the degree of similarity between pairs of instances describing books. Crowdsourcing activities have been organized into a set of HITs (Human Intelligent Task) assigned to workers for execution. A HIT is a question where the worker is asked to evaluate the degree of similarity of two given instances. The worker exploits the instances, i.e., book descriptions, "at a glance" and she/he has to specify her/his own perceived similarity by assigning a degree in the range [0,1].

We asked the participants to match the instances of the class http:// www.instancematching.org/ontologies/oaei2014#Book in the source dataset against the instances of the corresponding class in the target dataset. we asked to produce a complete set of links/mappings between any pair of instances. The source dataset contains 173 book instances and the target dataset contains 172 book instances, then we expected to receive a set of 173 * 172 = 29756 links as a result, each one featured by a degree of similarity in the range [0, 1].

The participants to the similarity recognition task are InsMT and RiMOM-IM. For evaluation, we call reference alignment the link-set obtained through crowdsourcing, where each link l c (i 1 , i 2 , σ c 12 ) denotes that workers assigned a similarity degree σ c ij to the pair of instances i 1 and i 2 . The cardinality of the reference alignment is 4104 links. In the analysis, we are interested in comparing the similarity degree σ c of a link l c against the similarity degree σ i and σ r calculated by InsMT and RiMOM-IM, respectively (see Figure 4). The goal of this comparison is to analyze how different is the human perception of similarity with respect to the automatic matching tools.

In the diagram, for a link l c (i 1 , i 2 , σ c 12 ), we plot i) a red line to represent the gap between the similarity degree of the reference link-set and and the corresponding value calculated by InsMT (i.e., σ c 12 -σ i 12 ), and ii) a blue line to represent the gap between the similarity degree of the reference alignment and the corresponding value calculated by RiMOM-IM (i.e., σ c 12 -σ r 12 ). For the sake of readability, the links of the reference links are sorted according to the associated similarity degree. Moreover, a black line is the marker used for 0-values, i.e., the minimum gap between the reference links and the tools result. When the reference link similarity (i.e., the similarity as it is perceived by human workers in the crowd) is higher than the similarity degree calculated by the participating tool, the value of the gap between the two is positive, meaning that the tool underestimated the similarity of a pair of instances in the two datasets with respect to the human judgment. On the contrary, when the tool reference link similarity is lower than the tool resulting value, the gap between the two values is negative, meaning that 

Gap between reference alignment and results

Fig. 4. Results of the sim-rec task: gap between the similarity degrees calculated by InsMT and RiMOM-IM and the reference alignment the tool overestimated the similarity between the instances with respect to the human judgment. By analyzing Figure 4, we note that InsMT produces homogeneous similarity values for the links, resulting in a more homogeneous distribution of the similarity degrees. However, the average gap value from the expected degrees of similarity is quite high and the number of similarity degrees that have been overestimated (resulting in a negative gap) is high as well. On the contrary, for RiMOM-IM, we have higher variability in the similarity degrees but a large number of links have a similarity degree very near to the expected value. Moreover, in case of RiMOM-IM, the number of overestimated similarity values is more or less the same than the number of underestimated values. Furthermore, the gap between the results of the two tools and the expected links has been measured by the Euclidean distance considering each link as a dimension, in order to compare the similarity of the same correspondence. As a result, we have d(InsMT) = 37.03 and d(RiMOM-IM) = 21.83.

As a further evaluation analysis, we split the range [0, 1] of possible similarity degrees into ten smaller ranges of size 0.1 that we call range-of-gap. A range-of-gap rd is populated with those links whose gap from the reference alignment is in the range of rd. Consider a link l c (i 1 , i 2 , σ c 12 ). For InsMT and RiMOM-IM, the link l c is placed in the range-of-gap corresponding to the value | σ c 12 -σ i 12 | and | σ c 12 -σ r 12 |, respectively. The results of the analysis by range-of-gap are provided in Figure 5. From the bar chart of Figure 5, we note that the results of RiMOM-IM are better of InsMT. In fact, RiMOM-IM is capable of retrieving a correct degree of similarity, i.e., with a difference from the expected value lower than 0.1, for about 2400 links of the 4104 in the reference alignment (≈ 60%). This result can be considered as a very good performance and shows how RiMOM-IM is capable of adequately simulating the human behavior in the evaluation of the similarity between two real object descriptions. In case of InsMT, the peculiar behavior of the tool is to produce the largest part of the similarity values in the small range [0.6, 0.8]. As a consequence, the majority of the links are in the range-of-gap [0.6-0.7] and [0.6-0.8], which denotes a remarkable difference between the automatic result and the human judgment.