
HAL Id: hal-02089262
https://hal.science/hal-02089262v1

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rationalizing the Need of Architecture-Driven Testing
of Interactive Systems

Alexandre Canny, Elodie Bouzekri, Célia Martinie, Philippe Palanque

To cite this version:
Alexandre Canny, Elodie Bouzekri, Célia Martinie, Philippe Palanque. Rationalizing the Need
of Architecture-Driven Testing of Interactive Systems. 7th International Working Conference on
Human-Centered Software Engineering (HCSE 2018), Sep 2018, Sophia Antipolis, France. pp.164-
186, �10.1007/978-3-030-05909-5_10�. �hal-02089262�

https://hal.science/hal-02089262v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22694

Official URL

DOI : https://doi.org/10.1007/978-3-030-05909-5_10

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Canny, Alexandre and Bouzekri, Elodie and
Martinie De Almeida, Celia and Palanque, Philippe Rationalizing
the Need of Architecture-Driven Testing of Interactive Systems.
(2018) In: 7th International Working Conference on Human-
Centered Software Engineering (HCSE 2018), 3 September 2018 - 5
September 2018 (Sophia Antipolis, France).

Rationalizing the Need of Architecture-Driven

Testing of Interactive Systems

Alexandre Canny1(&), Elodie Bouzekri1, Célia Martinie1,

and Philippe Palanque1,2

1 ICS-IRIT, Université Paul Sabatier – Toulouse III, Toulouse, France

{alexandre.canny,elodie.bouzekri,celia.martinie,

philippe.palanque}@irit.fr
2 Department of Industrial Design, Technical University Eindhoven,

Eindhoven, Netherlands

Abstract. Testing interactive systems is known to be a complex task that

cannot be exhaustive. Indeed, the infinite number of combination of user input

and the complexity of information presentation exceed the practical limits of

exhaustive and analytical approach to testing [31]. Most interactive software

testing techniques are produced by applying and tuning techniques from the

field of software testing to try to address the specificities of interactive appli-

cations. When some elements cannot be taken into account by the software

testing technique, they are usually ignored. In this paper we propose to follow an

opposite approach, starting from a generic architecture for interactive systems

(including both software and hardware elements) for identifying in a systematic

way, testing problems and testing needs. This architecture-driven approach

makes it possible to identify how software testing knowledge and techniques can

support interactive systems testing but also where the interactive systems

engineering community should invest in order to test their idiosyncrasies too.

Keywords: Architecture-driven testing � Interactive system testing

1 Introduction

Interactive systems testing involves different methods and techniques depending on the
objectives of these tests. The field of Human-Computer Interaction (HCI) has been
focusing on finding defects that affect user-related properties (such as usability, user
experience, accessibility, learnability…) developing methods, techniques and tools to
perform user studies involving directly the end-users. The field of software engineering
has been focusing on finding defects that affect software quality and software-related
properties (such as reliability, performance, availability, security…). This field has
been developing methods, techniques and tools to perform software studies involving

the Application Under Test (AUT) and a list of input to be provided to reveal defects.
Detecting defects in interactive systems requires bringing these two research fields

together in order to ensure that, on one side the interactive systems fit with the human
capabilities and the work of the users and, on the other side that the interactive systems
are correct and behave as expected at any time. Unfortunately, the software engineering

https://doi.org/10.1007/978-3-030-05909-5_10

field has mainly been addressing interactive systems as a standard computing system

(for instance abstracting away input and output devices, interaction techniques etc.) and

only seminal work from Memon in his PhD [29] was dealing with specific aspects of

interactive application testing. More precisely that work was performing testing using

events on interactors of WIMP applications (called Graphical User Interface

(GUI) testing). However, that work (and what was done later on) remained focused on

WIMP interfaces [39] while the field of HCI has been proposing much more efficient

and complex interaction techniques (e.g. the survey on menu techniques in [5]). More

recently, research work on software programming of interactive applications [25]

proposed methods and tools to automatically reveal bad programming practices but this

covers only a very small part of the interactive software (the event-handlers and their

structuring). What is tested and what is not, is a critical point as, if testing only some

parts of the interactive system might reveal defects, the non-tested parts might still

jeopardize the actual use of the system. Some recent work has been trying to extend the

part of the AUT beyond the GUI by considering the execution platform (e.g. Android

[38]). However, even in that work, testing only involves testing via event-handlers,

thus remaining close to GUI testing aspects.

In this paper we propose to follow an approach starting from a generic architecture

dedicated to interactive systems (including both software and hardware elements) for

identifying, in a systematic way, testing problems and testing needs. This architecture-

driven approach makes it possible to identify how software testing knowledge and

techniques can support interactive systems testing. It also allows identifying where the

interactive systems engineering community should invest to design and develop testing

techniques complementary to the software engineering ones.

Section 2 introduces informally some of the testing problems that are specific to

interactive systems. It demonstrates that those problems span from hardware (input and

output devices) to the functional core (non-interactive) of the application. It thus

demonstrates the need for testing techniques dedicated to interactive systems. This

section also identifies testing principles that could (and should) be applied to support

testing activities to address these problems of interactive systems. Section 3 presents in

detail the MIODMIT generic architecture for interactive systems and positions the

testing problems presented in Sect. 2 on that architecture. Section 4 presents two case

studies and the testing problems they raise to make concrete the abstract problems

presented in Sect. 2. These case studies exhibit different interaction techniques and

different input devices highlighting the variability of interactive systems and how this

affects the testing needs. The generic architecture MIODMIT is tuned for each case

study and is used to systematically identify those testing needs. Section 5 connects

MIODMIT to human aspects thus positioning user testing together with interactive

system testing presented in previous sections. Section 6 structures the related work

presented in the paper and makes explicit the testing problems that are covered by the

literature and the remaining open ones. Section 7 concludes the paper and highlights

paths for future work.

2 Informal Description of Problems for Testing Interactive

Systems

Since interactive systems relies on a growing set of I/O devices to enable interaction, it

is important to look at the testing of both their hardware and their software components.

In this section, we present the main principles of software, hardware and usability

testing and then use these principles to exemplify some of the problems tester must take

into account when testing interactive systems.

2.1 Main Principles of Testing

Main Principles of Software Testing

Software testing is an activity every application should go through, no matter it is

interactive or not. The Software Engineering Body of Knowledge (SWEBOK) [11]

defines software testing as the dynamic verification that a program provides expected

behaviors on a finite set of test cases, suitably selected from the usually infinite exe-

cution domain.

A key point in the software testing activity is the definition of the test levels. The

test level of an application is defined thanks to two variables: the target of the test and

the objective of the test. The targets of testing can be a single module (unit testing), a

group of module (integration testing) or the entire software application (system testing).

The SWEBOK [11] references 12 objectives of testing such as performance testing or

regression testing which are respectively non-functional and functional testing tech-

niques. The non-functional tests refer to the way the software operates (e.g. is it to

slow?) whereas the functional tests refer to the extent to which the software behaves

properly (e.g. is it producing the correct output for a given set of input?).

Once the testing level is defined, the testing of software application requires three

activities: the test case construction, the test suite construction and the test execution.

During the testing activity, the tested software is usually referred as the Application

Under Test (AUT). In [31], Nguyen et al. details these steps considering the testing of

applications with a graphical user interface (GUI) using “standard” widgets (e.g. but-

tons, label, radio button).

Main Principles of Hardware Testing

The testing of the hardware of interactive systems remains, to the best of our knowl-

edge, a relatively unexplored area. While patents such as [20] proposes testing tech-

niques for testing touch screen at hardware level, no systematic classification of testing

requirements for hardware has been issued to specifically address interactive systems.

However, hardware testing is a concern in the field of Cyber-Physical System

(CPS) engineering that shares some specificities with interactive system engineering.

CPS integrate both physical and computational elements so their engineering

requires bridging the continuous analog real world and the discrete digital world. The

behavior of CPS is thus similar to the one of modern interactive with multiple I/O

devices (e.g. compass, camera, speaker, haptic devices). According to Asadollah et al.

[3], hardware testing consists in testing hardware components of CPS, including tests

of each component’s functionality, which descriptions are based on the system

requirements. Amongst the most common and important variable in testing CPS

hardware, Asadollah et al. [3] lists memory size, speed, storage capacity, I/O interfaces

(ports), synchronization capabilities, etc. They also point out that testing the hardware

under specific conditions (e.g. local environment) is required. For interactive systems,

this is equivalent to the testing of the interactive system in its context of operation.

It is important to note that as for software testing, test levels may be defined.

Hardware tests levels can be described using targets and objectives. For example,

testing a touchscreen on its own is comparable to performing unit testing while testing

an entire smartphone packing this touchscreen is comparable to performing system

testing.

The tested hardware may be referred as the System Under Test (SUT) even though

this expression is also used in software engineering. In this paper, we consider that:

• the AUT is the application running on the interactive system at testing time. For

example, on a Personal Computer where VLC Media Player is running for a video

playback, the AUT is the VLC Media Player;

• the SUT is the entire interactive system, including its Input/Output devices, drivers,

etc. During a video playback with VLC Media Player, the SUT thus includes the

screen, the speakers, the soundcard, the remote control (if any), the operating

system, the VLC Media Player application, etc.

2.2 Testing Interactive System

To highlight how interactive system testing is difficult, we present in this section some

informal examples of the diversity of requirements and constraints that have to be taken

into account while testing (Table 1). These examples find their origins in the definitions

of elements of interactive systems (e.g. modal window), in the specifications of

interactive systems (e.g. hardware capability) or in authors’ experiences with interac-

tive systems (e.g. text disappearing or mouse cursor not moving in Windows).

On interactive systems, it must for instance be tested that if multi-touch interactions

involve five fingers, the touchscreen must accommodate at least five fingers. This

requirement appears in Table 1 (H3) as “The I/O devices must comply with the

requirements for the I/O devices of the SUT”. Second column of Table 1 assigns a

name to each example that will be used later. The third column assigns to each example

a component of interactive systems that is involved in this requirement/constraint. This

column shows that our examples of requirements and constraints (to be tested on

interactive systems) requires testing both software (e.g. Non-Interactive Code, Inter-

active Code) and hardware (e.g. device) components of an interactive system. How-

ever, to the best of our knowledge, no integrated testing techniques offer support for the

entire interactive system. A review of the literature regarding “interactive system

testing” shows that these keywords link mostly to papers related to GUI Testing.

Banerjee et al. [6] define GUI testing to mean that a GUI-based application, i.e. one that

has a graphical user interface (GUI) front-end, is tested solely by performing sequences

of events (e.g. “click on button”, “enter text”, “open menu”) on GUI widgets (e.g.

“button”, “text-field”, “pull-down-menu”). Thus, hardware is not took into account in

Table 1. Examples of the diversity of requirements and constraints to be tested

Description Name Component

Unit testing of the software components that are responsible of providing data

and services for the AUT should not reveal defects

N1 Non Interactive

Code

Integration of the software components that are responsible of providing data

and services of the AUT with the interactive elements of the interactive system

should not reveal defects

N2

A modal window reduces the interaction space only until it is closed I1 Interactive Code

The position of the manipulator of an input device (e.g. pointer) should evolve

in accordance with user action on that device (e.g. mouse pointer going left if

the mouse is moved to the left)

I2

The user can only trigger authorized events (e.g. whenever a file is open the

user can trigger the event close file)

D1

The user can trigger none of the unauthorized events (e.g. a user cannot trigger

the event close file if the file is not open)

D2

The text within a button must always remain visible when the button is visible P1 Presentation

The grayed-out widgets should not produce event even though the user act on

them

P2

Every available widgets should be reachable (e.g. if the widget is not visible,

manipulation of its window should allow the user to make it visible)

P3

The I/O loop should have performance compatible with human perception (e.g.

the movement of the manipulator of the mouse should occur within 50 ms after

the mouse has been moved)

H1 Device

The color displayed on the screen should correspond to the one that has been

required to be displayed

H2

The I/O devices must comply with the requirements for the I/O devices of the

SUT (e.g. the touchscreen device should handle at least as many fingers as

what is needed by the SUT)

H3

The I/O devices must behave so they prevent undesired repetition of events and

produce expected repetition of events (e.g. keeping a key pressed on the

keyboard will repeat production of the event associated to that key)

H4

The behavior of the firmware of the input device should be compatible (e.g.

type of data, rate) with the one of the input device driver

D3 Driver

The SUT should prevent removal of needed I/O devices by an application if

another application requires access to it (e.g. if a microphone is required all the

time by an application (noise detection), another one will not be allowed to

access it)

C1 Input/Output

Manager

The SUT must be capable of producing high-level events from low-level

events that are produced by one input device (e.g. each time the user presses

and releases a mouse button, a mouse clicked event is produced in addition to

mouse up and mouse down events)

C2

The SUT must be capable of exploiting multiple output modalities

synchronously if the AUT needs it (e.g. sound+video during video playback)

C3

The SUT must be capable of producing high-level events from low-level

events that are produced by multiple input devices (e.g. moving two fingers

concurrently in the opposite direction should be interpretable as a pinch event)

C4

GUI testing. Moreover, as mentioned by [26], GUI testing do not scale properly with

advanced GUI (e.g. supporting multi-touch or multimodal interaction). We claim that a

better understanding of the role of interactive systems components may help to provide

better testing techniques for interactive and so we propose to work on architecture-

driven testing techniques.

3 Architecture of Interactive Systems and Its Use for Testing

Interactive systems testing is a complex activity that is only partly addressed by

existing testing approaches. Indeed, a review of the literature regarding interactive

system testing shows that most of the problems presented in the Sect. 2.2 are not

addressed. Most of existing testing techniques [27, 28] focus on GUI (Graphical User

Interface) involving standard UI widgets (e.g. Buttons, ComboBox). As GUI heavily

exploits the functionalities, the interactive objects and the input devices offered by the

underlying execution platform, testing approaches rely on the “good” functioning of

the platform and thus testing only addresses behavioral and functional aspects of the

application and not the interactive system as a whole. In order to perform a systematic

approach to testing we propose an architecture-driven testing for interactive systems. In

order to avoid the pitfalls of GUI testing we propose to include hardware and hardware

drivers in addition to the more standard software elements. In this section, we first

present some architectures for interactive systems and highlight their relevance for

identifying components to test. Then, we detail the MIODMIT architecture, a fine-

grained architecture covering in a comprehensive way all the elements of “modern”

interactive systems. Finally, we highlight the components of the architecture impacted

by the problems presented in Sect. 2.2 and describe the testing needs to prevent these

problems.

3.1 Interactive Systems Architectures

Since the early 80’s, a software architecture (known as the Seeheim model [34]) has

been proposed to decompose interactive applications in smaller components. To reflect

the evolution of interactive applications and the fact that a large share of application

code was devoted to the User Interface, Len Bass et al. [7] proposed the Arch model

that was decomposing Seeheim’s Presentation component into two, the Logical

Interaction component and the Physical Interaction one.

With that modification, 3 out of 5 components are dedicated to the UI and the

Physical Interaction component connects to input and output devices (even though not

explicitly mentioned in the paper). Beyond that, it does not cope explicitly with

multimodal UIs that are nowadays mainstream means of interaction.

The architecture associated to ICon [16] refines carefully the input flow from

physical input devices to the application core (see. Fig. 5.1. in [17], p. 148), however,

no description of the output management is provided. As interactions frequently

involve both perception and action dimensions of user behavior, refining only input

does not make it possible to describe real systems.

As stated above, current interactive applications exploit multiple input and output

devices, and interaction with those systems may be multimodal. Some contributions

such as [15] (see Fig. 1) present connected components forming an architecture of

multimodal interactive applications. This architecture makes explicit a fission com-

ponent (for output) and a fusion component for input. Such representation is misleading

as fusion and fission may be associated with both input and output. For instance, a

sentence produced by a speech recognition system might be broken down into words

(fission of the input information) to identify commands and parameters [23]. Similarly,

a presentation of information might require the combination of multiple information

(e.g. the level of danger and a warning message) in order to present fused information

to the user (e.g. the warning message in orange color). This demonstrates the impor-

tance of having a very detailed and generic architecture for describing and designing

interactive systems.

3.2 MIODMIT Generic Architecture for Interactive Systems

MIODMIT [13] is a detailed architecture that makes the interactive systems components

explicit including hardware ones (both for input and output). It is thus more represen-

tative about interactive systems that the other architectures presented in the related work

section. This architecture does not exhibit dedicated fusion or fission engines compo-

nents, as fusion and fission are functions are distributed over the architecture in several

components (explained more in detail in the case study section). Figure 2 presents an

overview of the MIODMIT architecture. Each rounded rectangle represents a compo-

nent of the MIODMIT architecture and arcs represent the communication between

component. When an arc between two components is not present, the component cannot

communicate (information flow, function call, …) with the other one.

Fig. 1. Architecture for multimodal interactive systems from [15]

The “Input Device Type” greyed-out box describes the information flow for a given

type of input device. Each new type of input device requires a separate “Input Device

Type”. An “Input Device Type” is composed of three components. First, “Input

Devices” component is the physical (hardware) input device manipulated by the user

(e.g. a mouse or a finger on a touchscreen). The “Input Devices” component sends

information to or receives requests of information from the “Drivers & Libraries”

software component, which, in turn, makes this information available to the other

components of MIODMIT. Less commonly, “Drivers and Libraries” can manage

“Input Devices” behaviour such as sampling frequency [24] or providing user identi-

fication [40]. “Drivers and Libraries” can be provided either by the “Input Devices”

manufacturer or by the operating system if the hardware is standard or has been around

for a significant amount of time. Lastly, the “Input Chain Device” component is a

software component that mirrors the state of the “Input Devices” hardware (called

“Virtual Device”), the “Logical device” of the “Input Devices” hardware (e.g. cursor

pointer position for a mouse) and a manager. These components are transducers [2] that

transform raw data into low-level information. Virtual device can be dynamically

instantiated with plug-and-play devices. Whereas, logical devices can be dynamically

instantiated at operation time. For example, each time a finger touches a multi-touch

input device, a new logical device associated with the new finger is created. The

manager addresses configuration and dynamic configuration of devices.

The “Input Chain Manager” component is an event-based component that pro-

cesses low-level information and connects such information to user interface objects

(e.g. a button) and their location on the screen. This component may fuse information

from different input devices to create high-level information (e.g. clicking simultane-

ously on two mice will produce one click on each and the “Input Chain Manager”

might produce higher-level event called “combined click” [1]). In addition, this

component manages dynamic reconfiguration of interaction in case of failure1.

Fig. 2. The MIODMIT architecture (adapted from [14])

1 As terminology for failures, faults and errors we use the definitions from [4].

The “Input Chain Manager” component sends high-level information to “Global

Interaction Technique” component (a transducer [2]) or “Dialogue” component or to

the both.

The “Global Interaction Technique” component is a transducer that performs a

recognition of a specific interaction technique, which is not linked with a user interface

object (e.g. “OK Google” vocal interaction). Moreover, this component generates high-

level information used by the application to trigger the various command it provides.

The “Dialogue” and “Core” components are similar components to standard

interactive systems architecture such as Seeheim [34] or Arch [7].

The “Rendering System” component is responsible of immediate feedback and

other state-based rendering functions. A state-based rendering function describes how

to present information of a specific state.

The “Output Chain Manager” component offers same functionalities as the “Input

Chain Manager” component. Nevertheless, the “Output Chain Manager” is state-based

whereas the “Input Chain Manager” is event-based.

The “Output Device Type” describes the information flow for output device in the

same way.

3.3 Locating Testing Problems and Testing Needs Using MIODMIT

In this section, we position the problem listed in Table 1 according to the MIODMIT

architecture. This systematic analysis highlights the fact that testing problems may be

related to various components of the interactive systems and that a precise description

of the interactive system is required to be able to manage all these problems. It is

important to note that while some problems affect only one component of the archi-

tecture, some of them are distributed over several.

Problems Related to a Single Component of MIODMIT

N1 - Unit testing of the software components that are responsible of providing data and

services for the AUT should not reveal defects and N2 - Integration of the software

components that are responsible of providing data and services of the AUT with the

interactive elements of the interactive system should not reveal defects

In interactive system architecture in general, as well as in MIODMIT, the “software

components that are responsible of providing data and services” are part of the ap-

plication core. The testing of these components is well-documented by the software

testing community and the techniques for testing the application core of an interactive

application are not different from those allowing the testing of non-interactive

applications.

I1 - A modal window reduces the interaction space only until it is closed

Modal windows are designed so they force the user to interact with them before they

can resume interaction with their parent applications. Thus, I1 means that developers

must verify that any way of closing the modal window will allow user to resume

interaction according to their choice within the modal window. This implies testing at

the rendering system level.

P2 - The grayed-out widgets should not produce events even though the user acts on

them

This means that even though the input chain manager produces a mouse clicked event

over a grayed out button, testing should prove that this event should not be forwarded

as a higher-level event produced by the button itself towards other components of the

application (such as the dialogue).

H3 - The I/O devices must comply with the requirements for the I/O devices of the

SUT

This means that the compliance of every Input/Output device with their specifications

must be verified before their integration in the interactive system.

C1 - The SUT should prevent removal of needed I/O devices by an application if

another application requires access to it

This means that testing the component responsible of dynamic reconfiguration of the

I/O in the input/output chain manager must be performed in order to ensure that this

component will not cause a loss of resource for an application.

C2 and C4 - The SUT must be capable of producing high-level events from low-level

events that are produced by one input device/The SUT must be capable of producing

high-level events from low-level events that are produced by multiple input devices

This means that the capability of the input chain device to produce high-level events

specific to a device (e.g. click) must be tested (C2). Moreover, the capability of the

input chain manager to produce high-level events from the events produced by input

chain devices must be tested (C4).

C3 - The SUT must be capable of exploiting multiple output modalities synchronously

if the AUT needs it

This means that the priority management of the output chain manager must be tested.

Problems Distributed Over Several Components of MIODMIT

I2 - The position of the manipulator of an input device (mouse cursor) should evolve in

accordance with user action on that device

This problem concerns the entire left part of the architecture, or short loop (input

device types, rendering system and output device types). To take it into account, a

proper transcription of the user input on the output device is required. For a mouse, this

means that:

• Its motion sensor is calibrated properly (input device);

• Its drivers and libraries are getting data consistently and are computing the mouse

acceleration properly;

• The input chain device produces high level event notifying the rendering system

of the new cursor location;

• The rendering system makes the proper rendering request to the output chain

device (including coordinates, shape of the mouse cursor, etc.);

• The output chain device combines rendering request from the rendering system

and the output chains manager so the cursor is always drawn of top;

• The output drivers and libraries are dispatching the rendering requests to the

graphic card properly (correct screen, resolution, etc.)

• The screen (output device) is set in the proper input (e.g. HDMI) and is capable of

displaying the cursor.

P1 - The text within a button must always remain visible when the button is visible

This means that the output chain manager must request the display of the button with

the text in it and that the output chain device behave as expected. We do not detail the

testing needs for the output device type (presented in problem I2).

D1 and D2 - The user can only trigger authorized events/The user can trigger none of

the unauthorized event

This means that the rendering of the application produced by the output chains

manager and the output device type should reveal which actions are authorized or not

(e.g. disabling widgets) and that the problem P2 has been taken into account.

H1 – The I/O loop should have performance compatible with human perception

This problem is a refinement of problem I2 that takes human performance into account.

The I/O device type and the computing system responsible for the rendering system

must be performant enough so they accomplish the whole behavior described in I2 in

an acceptable time regarding human perception.

H2 - The color displayed on the screen should correspond to the one that has been

required to be displayed

This means that the output chains manager and output chain type must only request

the display of colors the output device is capable to render. Moreover, the screen

(output device) must be calibrated for its targeted color space (e.g. RGB) and the

drivers and libraries must be configured properly so they use the screen’s color space.

H4 - The I/O devices must behave so they prevent undesired repetition of events and

produce expected repetition of events

This means that, at the hardware level (input/output device), proper implementation of

feature such as de-bouncing must be verified (e.g. for a keyboard input device). This

also mean, at the input device type level, the implementation of character repeat is

done properly.

D3 - The behavior of the firmware of the input device should be with the one of the

input device driver

This means that the input device should always produce information that can be used

properly by the drivers and libraries. Thus, if the drivers and libraries and/or the

firmware of the input device is/are updated, both elements must still be compatible.

4 Testing Interactive Systems: Two Cases Studies

In this section, we present how to use MIODMIT to identify the testing needs for two

different MS Windows interactive systems

• a version of the application designed to be used with a mouse, a keyboard and a

trackpad as input devices and a screen as output device;

• a multimodal version of the application with the same input/output devices and

adding multi-touch input and speech-recognition. Besides, this application uses a

loudspeaker and speech synthesis.

4.1 A Common Application Core for Both Cases Studies

Both case studies are drawing applications that allow manipulating drawings (i.e.

creation of colored shapes selected from a finite set of possible shapes and colors). This

allows the two applications to share the same Application Core, i.e. the component that

is responsible for maintaining a list of created shapes, their color and their position.

Since the applications are coded in JAVA, unit testing of the application core is

possible using tools such as JUnit. Such testing allow verifying that:

• The services provided by the Shape class (e.g. getColor(), setColor(Color c),

getPosition()) behave as expected;

• The class responsible for handling the current drawing behaves as expected

(e.g. addShape(Shape s), getNbShape());

• The class responsible of serializing and de-serializing drawings behave as expected

(e.g. open(File f), save(), saveAs(File f)).

It is important to note that the testing of all this services independently is however

insufficient. Indeed, the internal behavior of the class must also be assessed with respect

to user action e.g. the user cannot open a file already open, save an empty file, etc.

4.2 Case Study 1: Mouse, Keyboard and Screen

Informal Description of the Interactive System and Its Architecture

In this first case study, the interactive system specifications are the following: HP

Zbook, Operating System: Windows 10; Output device: 14 in. display 1920 * 1080;

Input devices: Pointing devices (Integrated trackpad and HID-compliant USB Mouse)

and Integrated Keyboard.

Fig. 3. Screenshots of the interactive application (a) after drawing two shapes and while

drawing a third one (b) after drawing four shapes (including one not visible, please notice the

scrollbar) (Color figure online)

The user can select the shape and the color by clicking on the associated radio buttons

(see Fig. 3). To position the shape in the drawing area, the user has to press the left

button of the mouse at the desired location of the first point of a rectangle containing

the shape. Maintaining the mouse left button down (dragging) until the desired shape

size creates a ghost (Fig. 3a). Releasing the left button adds the shape to the drawing.

Following the «tune-on-demand» process presented in [14], we can produce from

MIODMIT a specific architecture (see Fig. 4). The two “pointing device type” are the

mouse and the trackpad. The “Mouse Device” and “Keyboard device” represent the

hardware part of these input devices. The “Mouse Driver” and “Trackpad Driver”

represent the drivers of these input devices. Similarly, the “keyboard device type” is

described by the “keyboard device” and “keyboard driver”. The “output device type”

corresponds to the computer screen composed of a “screen device” and a “screen

driver”. As computer runs Windows 10, the “Windows Manager” of this Operating

System covers entirely the functions of input and output chain components as well as a

subset of the functions of the rendering component. The “Windows Manager” contains

the “Abstract Cursor” (input chain functions and rendering functions) and the “Feed-

back Cursor” (output chain functions and the rendering of the cursor). The “Dialogue”

component describes the behavior of the interactive application. The “Functional Core”

supports the functions presented in Sect. 4.1.

Systematic Identification of Testing Needs for the Interactive System

This section identifies testing needs exploiting Fig. 4 from right to left (functional core

testing needs are omitted as they were presented in Sect. 4.1.

Dialogue of this application must handle discrete events from GUI widgets (i.e.

radio button) and events produced in the drawing area. Testing the capabilities of the

dialogue in handling events from GUI widgets is actually the main objective of most

GUI testing techniques. Indeed, in [29], techniques are designed to test GUI driven by

mono-event interactions (e.g. button clicks) which are not suitable for multi-event

interaction (e.g. on the drawing area of a graphical editor). While [10, 26] discuss the

testing of interactive systems with continuous interaction, these papers mainly

Screen

Driver

Mouse

Driver

Mouse

Device

Screen

Device

Keyboard

Driver

Keyboard

Device

Trackpad

Driver

Trackpad

Device

Windows Manager

(input + output chain manager)

Abstract Cursor

(input chain + partial

rendering)

Cursor Feedback

(output chain +

partial rendering)

Dialogue

Functional

Core

Functional

Adapter

Fig. 4. Description of the interactive system using MIODMIT

addresses multimodality itself and thus do not contribute to dialogue testing. Testing

the dialogue requires:

• Verifying that it is capable of consuming all the events produced by all the input

device types that it must support;

• Verifying that its user-driven state changes only occur in response to authorized

events;

• Its transition between states occur as expected.

While developing in JAVA, the operating system and the JAVA Virtual Machine

share responsibility over the Windows Manager. This component encapsulates the

Input/Output Type/Chain Device/Chain Manager as well as the Rendering System

according to MIODMIT terminology. For this reason, testing of theWindow Manager

thus cannot be placed under the responsibility of the developer of the application.

However, the actual behavior of the Windows Manager raises problems that testers

must take into account. Indeed, in the presentation of this case study, we state “the user

can select the shape and the color by clicking on the associated radio buttons”.

However, the radio button is a component from the JAVA Swing library and its

standard behavior does not comply with this statement. Indeed, pressing “Space” or

“Enter” on a focused radio button would trigger the same “ActionEvent” as the one

produced when clicking on it, adding unspecified behaviors to the application. During

development, decisions regarding these unspecified behaviors must be made (should

they be prevented or not?) so the test cases and suites are prepared accordingly:

• Actions described in the application specifications trigger ActionEvents as required;

• ActionEvents can (or cannot) be triggered by shortcut/hotkeys whether is was (or

was not) decided to allow them in the application.

By default, the Windows Manager allows users to resize and move the application

window. This makes it possible to hide some of the GUI widgets (e.g. Fig. 5c) or some

area of the drawing (e.g. Fig. 5a and b: absence of a scrollbar does not give a proper

idea of the drawing zone size). Moreover, the Windows Manager controls windows

arrangement and focus. Testing is thus required to verify that:

• The resizing of the window is constrained enough so none of the six radio buttons

are hidden;

• Resizing the window below the size of the drawing area triggers the appearance of

scrollbars (e.g. Fig. 3b);

• The application window can receive focus and may or may not be visible.

The Pointing Device Type of this interactive system is specific as it contains two

input devices: a mouse and a trackpad. The tester must verify that the abstract cursor

(and its associated feedback) of the Rendering System encapsulated in the Windows

Manager is capable of handling input from multiple pointing devices and is configured

to do so. Indeed, on some interactive systems, each pointing device can be attached to a

specific cursor2 or can be merged in a single cursor (e.g. MS Windows).

2 https://wiki.archlinux.org/index.php/Multi-pointer_X.

The testing needs regarding the drivers and the Input/Output Devices of this

interactive system were already discussed in Sect. 3.3 (see problems D3 for drivers

and H2, H3, H4 for I/O Devices) and are not repeated here.

4.3 Case Study 2: The Multimodal Drawing Application

Informal Description of the Interactive System and Its Architecture

In this case study, the user can perform the same interaction as in the case study 1, in

addition to multimodal ones. Since a touchscreen is available, the user can select radio

buttons by touching them and can also draw a shape by sliding a finger in the drawing

area. Shapes can be resized using a “pinch” interaction. The user can use a combination

of voice and touch to select shape and color from existing shapes in the drawing area:

• Saying “Select this color” and then touching a shape selects the color of the touched

shape and a speech synthesis announce “color selected” as in [8];

• Saying “Select this shape” and then touching a shape selects the shape of the

touched shape and a speech synthesis announce “shape selected”;

In both case, the touch must occur less than 2 s after speaking, otherwise the

interaction is discarded.

As for case study 1, we tuned (see Fig. 6) MIODMIT generic architecture using the

tune-on-demand process presented in [14]. Input/Output device types have been added

as required and the multimodal aspect of the application is handled by the “Input

Chains Manager” component (top right of Fig. 6). Part of the behavior of this com-

ponent is implemented by MS Windows 10, while part has to be programed

specifically.

Testing Needs Specific to This Multimodal Interactive System

In this section, we only present the testing needs raised by the multimodal interaction.

Testing needs from case study 1 (related to mouse and keyboard interactions) remain.

Fig. 5. The application window is (a) extended in height, (b) reduced in height after drawing the

blue triangle and (c) reduced in height so radio buttons disappear (Color figure online)

The Input Chains Manager component introduced in this case study is a new

source of event for the Dialogue as well as a new consumer of events from the

Windows Manager. A key aspect in testing the Input Chains Manager is to support

temporal aspects are required. For instance, the fusion mechanism [23] produces the

selection event only if the succession of events (speech + touch) occurs within a given

temporal window. It is important to note that this interaction technique has to be tested

as part of the Input Chains Manager as it describes how some events from different

input chains are produced and then transferred to the dialogue.

These case studies show that the instantiation of the MIODMIT architecture for a

SUT (System Under Test) provides support for a precise identification of testing needs.

It provides support in identifying:

• The common components from an application to another (in order to communalize

some tests and avoid duplicated testing)

• The impact of a change in the interaction technique on the testing needs

Screen

Driver

Mouse

Driver

Dialogue

Mouse

Device

Screen

Device

Keyboard

Driver

Keyboard

Device

Trackpad

Driver

Trackpad

Device

Microphone

Device

Microphone

Driver

Windows Manager

(input + output chain manager + rendering)

Cursor Feedback

(output chain +

partial rendering)

Abstract Cursor

(input chain + partial

rendering)

Voice Feedback

(output chain +

partial rendering)

Abstract Voice

Recognizer

(input chain + partial

rendering)

Soundcard

Driver

Speaker

Device

Finger Touch

Device

Touchscreen

Driver

Abstract Finger

(input chain + partial

rendering)

Finger Touch

Feedback

(output chain +

partial rendering)

Finger Touch

Device

Functional

Core

Functional

Adapter

Input Chain

Manager

Fig. 6. Architecture of the second case study using MIODMIT

5 Human Aspects in Architecture-Driven Interactive System

Testing

MIODMIT provides support for systematically testing all the parts of an interactive

system. The focus of the presented work is on the interactive system side. However,

while focusing on system, the human cannot be ignored. Testing some or all of the

parts of the architecture of an interactive system by function and without taking into

account how the future user of the system will use it, belongs to the category of system

centric testing or system/software testing. For this category of testing, system/software

functions are tested one by one, without caring about how they will be manipulated by

the user. But, this category of testing does not take into account human aspects. An

interactive system is used by a human in order to perform her/his work. The interactive

system has to be at least usable by the users that are targeted for the developed system.

User testing aims at taking into account human aspects for the interactive system being

developed. Nevertheless, user testing increases the number of testing activities as it

requires to add test cases that are related to human capabilities (colours that can be

perceived by the targeted user type, font size…). At the same time, it may also decrease

the number of test cases because of the limitations of human capabilities (speed human

information processing, field of view…).

We argue that taking into account the human aspects when testing an interactive

system is compatible with architecture driven testing. Figure 7 provides an overview of

the integration of the human characteristics with the MIODMIT architecture. The

following paragraph discusses the complementarity of the user testing practices with an

architecture driven testing.

Several properties related to human aspects may be targeted for an interactive

system. The usability property is one of the most important [32]. As defined by the ISO

9241-11 [21], usability is “the extent to which a system, product or service can be used

by specified users to achieve specified goals with effectiveness, efficiency and satis-

faction in a specified context of use”. Another important property that may be assessed

Fig. 7. H-MIODMIT (integrating the human characteristics with MIODMIT architecture)

for an interactive system, is the learnability property, that can be evaluated by mea-

suring how the interactive system allows the user to reach a reasonable level of usage

proficiency in a short period of time [32]. Then, depending on the application domain

(entertainment, games, critical systems…), other properties may also be targeted (user

experience, dependability…). For example, evaluating user experience with an inter-

active system aims at measuring properties such as emotion, aesthetics, social con-

nectedness [35]… that may be highly subjective and require specific evaluation

processes and techniques. Several aspects of user testing for interactive systems have to

be taken into account for the integration of human characteristics with architecture

driven testing:

• Iterative evaluation processes are applied to ensure that the user needs are taken into

account. Such processes are part of the User Centered Design paradigm which

usually encompass several prototyping and evaluation phases [18]. User involve-

ment is a pillar of such processes. User tests are performed for the most possible

stages of design of an interactive system (from early design phases with low-fidelity

prototypes to the deployment of the interactive system).

• For some properties, user testing can be achieved through predictive measurement

(analytical techniques) and does not require direct user involvement. For example,

heuristic evaluation technique [32] is based on usability principles that can be

examined systematically by a usability expert, in order to detect usability issues for

an interactive system. Other example is techniques based on user tasks analysis.

Some of these techniques are based on user task descriptions [13, 19], and some of

them are based on task models [12]. These techniques provide support to detect

usability problems related to the effectiveness criterion.

• For some other properties, user testing requires user involvement (empirical tech-

niques). For example, the wizard of Oz technique [22] is an experimental simulation

performed with users. It aims at testing the interactive system by giving the

impression to the user that s/he is interacting with the real interactive system. This

technique can be used in the early phases of the design process, when the interactive

system is partly implemented, in order to refine user needs. Another examples of

testing techniques that mandatory requires user involvement are the fine tuning of

an interaction technique [33] and the field user testing [36]. For that purpose,

several users of the targeted user type are required to perform a limited set of task

with a specific setup (part of the final interactive system, specific input device…).

These techniques aim at collecting data and at analyzing performance issues (effi-

ciency criterion) and/or subjective metrics (satisfaction, emotion, aesthetics…).

These aspects of user testing have an impact on the required level of fidelity of the

interactive system under test, and thus on the precision of the description of the

behavior and of the architecture of the interactive system under test:

• For some evaluation techniques, mock ups or low fidelity prototypes are sufficient

to perform user testing (example of such technique is the Wizard of Oz [22]). The

problem is then to ensure that the results and recommendations for the next iteration

of the interactive system are feasible according to the technical constraints. The

architecture can here be of great help in providing support to filter and adapt the

modifications and adding that are proposed for the future versions of the prototypes.

• For other evaluation techniques, a high-fidelity prototype or even the functional and

fully or partly deployed interactive system is required (example of such technique is

field user testing [36]). These kind of user testing techniques are expensive as they

require to develop and setup an experimentation protocol, and to select and recruit a

large number of users. In order to avoid loss of time for the users and/or loss of data

for the evaluation experts, the interactive system has to function as specified and

should be exempt of defects. In that case, the architecture can also be of great help

by providing support to ensure that each part of the interactive system is functioning

as specified before user testing. Furthermore, if the analysis of the evaluation

highlights that changes are required, the architecture provides support for identi-

fying in which parts the changes have to be performed (locality of the modifica-

tions) and thus enables to decrease the impact of these modifications and associated

non-regression testing on the whole interactive system (e.g. to modify an input

device driver to adapt the sensed speed of movement).

In summary, architecture-driven testing exploiting MIODMIT provides support for

user testing whatever evaluation technique is used. More precisely, it supports

assessing properties related to human aspects such as usability and user experience.

Lastly, we highlighted the fact that even though architecture-based interactive system

testing is emphasizing the technology aspect of testing, it is compliant with user

centered approaches focusing on user activities and behavior.

6 Related Work

This paper presented how an architecture-driven approach can help identifying the

testing needs for interactive systems. We emphasized that some of these needs are

partially covered by existing testing techniques while some other are, to the best of our

knowledge, not considered. In this section, we present why most of the existing

techniques fail in addressing testing components of interactive systems.

First of all, we remind that the testing of the Application Core is similar to the

testing of non-interactive applications. Due to space constraints, we do not present here

the wide-range of techniques for testing non interactive-application.

GUI testing is, at the software level, the closest field to interactive systems testing.

Banerjee et al. [6] systematic mapping classified 136 articles on this topic 7 years ago.

Despite its age, the findings of this mapping are still relevant; especially regarding the

research question “What test data generation approaches have been proposed?”. This

mapping reveals that models are the most popular test generation methods in the field.

While models used for test generation are, from HCI point of view, descriptions of the

dialogue (see Fig. 3 from [30]: this figure describes the dialogue without naming it),

they are not used to test the dialogue as a single component. Indeed, model-based

testing tools mostly rely on the state of GUI widgets during testing. Thus, what is tested

is that the presentation matches the expected state derived from the dialogue descrip-

tion, not that the dialogue itself is in a correct state (so it might not take into account

events from some correctly enabled GUI widgets). [6] distinguishes two other popular

test generation techniques: random and capture/replay. Since the random approach is

designed for “crash-testing” technique (i.e. events are played randomly on the GUI

widgets to verify that the application does not crashes), they cover very partially the

dialogue and functional core of the application by revealing they present defects that

causes crashes. These techniques do not however reveal the source of the defect.

Capture/replay is a technique in which testers records actions on the GUI that are stored

to be replayed on the SUT. This is particularly useful for regression testing. However,

these techniques addresses only a fraction of the output chain manager and rendering

systems. Indeed, recording all the possible actions on both SUT and AUT is an

impossible task as soon as one action can be performed several times on the GUI. Due

to space constraints, we do not go exhaustively over all the papers presented in [6] and

uses acronyms to refer to these techniques. Table 2 presents the components of the

architecture covered by existing testing techniques. MBT stands for Model-Based

Techniques, C/RT for Capture/Replay Techniques and rand for Random techniques.

MBT approaches are mainly used to test the behavior of the Dialogue component

of the AUT. However, [26] proposes, in addition, to use model-based descriptions of

multimodal interaction techniques for testing. In MIODMIT terms it means that [26]

supports testing of part of the Input Chains Manager component. [10] discusses the

testing of multimodal interactive system, taking into account the Input Chains

Manager.

On modern operating systems (e.g. Android), the permission mechanism allows the

user to restrict application access to input and output devices, affecting the

Input/Output Chain Manager. By developing Permission-Aware GUI Testing on

Android, [37] supports partial testing of this function handled by the Input/Output

Chain Manager.

Three columns in Table 2 are not covered by any previous work. Another concern

is that existing techniques only support partially the testing of the covered components.

Indeed, the Dialogue is mostly tested through the state of GUI widgets. The Output

Chain Manager is mainly tested by checking properties of the GUI widgets via their

public accessors, so their rendering is not assessed. On this aspect, we note that the

emergence of techniques based on computer vision (in order to assess what the users

will be seeing), such as [18] will be of great help to support automated testing.

Table 2. Components of the architecture covered by testing techniques [P = Partial coverage,

NC = No Coverage].

Techniques Input

devices

type

Input

chain

manager

Global

interaction

technique

Dialogue Rendering

system

Output

chain

manager

Output

devices

type

MBT e.g. [6] NC NC NC P NC P NC

C/RT e.g. [6] NC NC NC P NC P NC

Rand e.g. [6] NC NC NC P NC P NC

[10, 26] NC P NC P NC P NC

[38] NC P NC P NC P NC

Overall, we note that there is a need for new dedicated testing techniques to cover

all the elements of the architecture of interactive systems.

7 Conclusion

This paper has presented an architecture-driven approach to support testing of inter-

active systems. This Approach exploits MIODMIT architecture that has been used in

multiple domains such as interactive cockpits of large civil aircrafts of multimodal

interfaces for new cockpits of helicopters as well as desktop interactive applications

[9]. This paper has presented numerous specificities of testing of interactive systems

with respect to “standard” software testing. We have shown that known problems in

testing interactive systems can be positioned on one or multiple elements of MIODMIT

providing details on unit and integration tests problems for interactive systems.

One of the key elements of MIODMIT is its genericity and its capability of han-

dling multiple input and output devices. This is critical for interactive systems engi-

neering as new devices and new interaction techniques are frequently proposed to

increase the bandwidth between operators and computing systems. For instance,

MIODMIT handles devices such as Kinect, Leap (Motion), speech recognition sys-

tems, multiple parallel graphical input devices, just to name a few [14] but was not

presented due to space constraints.

In this paper we have also presented how user testing (or more generally user

studies) connects to the interactive systems testing which is the focus of this paper. The

H-MIODMIT architecture highlights the fact that interactive systems are meant to be

used by users and that this specific component (the user as a human) may add (but also

relax) constraints on interactive systems testing. Beyond, if user studies needs are

known and described while developing interactive systems, software specifications and

software testing techniques can support those activities as demonstrated in [33].

Future work will be dedicated to the definition of techniques to support unit testing

of each component of MIODMIT but also integration tests (e.g. the immediate feed-

back loop presented in the paper). The objective is to provide interactive systems

developers with adequate solutions in order to test their application beyond the classical

“test coverage” and “non regression testing” measures that are unfortunately mean-

ingless when interactive systems are considered.

References

1. Accot, J., Chatty, S., Palanque, P.: A formal description of low level interaction and its

application to multimodal interactive systems. In: Bodart, F., Vanderdonckt, J. (eds.) DSV-

IS 1996. Eurographics, pp. 92–104. Springer, Vienna (1996). https://doi.org/10.1007/978-3-

7091-7491-3_5

2. Accot, J., Chatty, S., Maury, S., Palanque, P.: Formal transducers: models of devices and

building bricks for the design of highly interactive systems. In: Harrison, M.D., Torres, J.C.

(eds.) DSV-IS 1997. Eurographics, pp. 143–159. Springer, Vienna (1997). https://doi.org/

10.1007/978-3-7091-6878-3_10

3. Abbaspour Asadollah, S., Inam, R., Hansson, H.: A survey on testing for cyber physical

system. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447,

pp. 194–207. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25945-1_12

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1, 11–33 (2004)

5. Bailly, G., Lecolinet, E., Nigay, L.: Visual menu techniques. ACM Comput. Surv. 49(4),

60:1–60:41 (2017)

6. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.M.: Graphical user interface (GUI) testing:

systematic mapping and repository. Inf. Softw. Technol. 55, 1679–1694 (2013)

7. Bass, L., et al.: The arch model: Seeheim revisited. In: User Interface Developpers’

Workshop (1991)

8. Bellik, Y.: Multimodal interfaces: concepts, models and architecture, Ph.D. thesis,

University Paris-South 11, Orsay (1995). (in French)

9. Bernhaupt, R., Cronel, M., Manciet, F., Martinie, C., Palanque, P.: Transparent automation

for assessing and designing better interactions between operators and partly-autonomous

interactive systems. In: ATACCS 2015, pp. 129–139 (2015)

10. Bouchet, J., Madani, L., Nigay, L., Oriat, C., Parissis, I.: Formal testing of multimodal

interactive systems. In: Gulliksen, J., Harning, M.B., Palanque, P., van der Veer, G.C.,

Wesson, J. (eds.) EIS 2007. LNCS, vol. 4940, pp. 36–52. Springer, Heidelberg (2008).

https://doi.org/10.1007/978-3-540-92698-6_3

11. Bourque, P., Fairley, R.E., IEEE Computer Society: Guide to the Software Engineering

Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press, Los

Alamitos (2014)

12. Campos, J.C., et al.: A more intelligent test case generation approach through task models

manipulation. In: Proceedings of the ACM HCI. EICS, vol. 1, pp. 9:1–9:20 (2017)

13. Cockton, G., Woolrych, A.: Understanding inspection methods: lessons from an assessment

of heuristic evaluation. In: Blandford, A., Vanderdonckt, J., Gray, P. (eds.) People and

Computers XV—Interaction without Frontiers, pp. 171–191. Springer, London (2001).

https://doi.org/10.1007/978-1-4471-0353-0_11

14. Cronel, M., Dumas, B., Palanque, P., Canny, A.: MIODMIT: a generic architecture for

dynamic multimodal interactive systems. In: Bogdan, C., et al. (eds.) Human-Centered and

Error-Resilient Systems Development, HCSE 2018. LNCS, vol. 11262, pp. 109–129.

Springer, Cham (2018)

15. Cuenca, F., Coninx, K., Vanacken, D., Luyten, K.: Graphical toolkits for rapid prototyping

of multimodal systems: a survey. Interact. Comput. 27, 470–488 (2015)

16. Dragicevic, P., Fekete, J.D.: Input device selection and interaction configuration with ICON.

In: Blandford, A., Vanderdonckt, J., Gray, P. (eds.) People and Computers XV—Interaction

without Frontiers, pp. 543–558. Springer, London (2001). https://doi.org/10.1007/978-1-

4471-0353-0_34

17. Dragicevic, P.: Un modèle d’interaction en entrée pour des systèmes interactifs multi-

dispositifs hautement configurables. Ph.D. Université de Nantes (2004). (in French)

18. Göransson, B., Gulliksen, J., Boivie, I.: The usability design process - integrating user-

centered systems design in the software development process. Softw. Process Improv. Pract.

8(2), 111–131 (2003)

19. Greenberg, S.: Working through task-centered system design. In: Diaper, D., Stanton, N.

(eds.) The Handbook of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum

Associates (2002)

20. Ha, T.T., Ghaffari, R.: Simulating Single and Multi-Touch Events for Testing a Touch Panel

(2012). https://patents.google.com/patent/US20120280934A1/en

21. ISO 9241-11. Ergonomics of human system interaction - Part 11. Usability: Definitions and

concepts (2018)

22. Kelley, J.F.: An iterative design methodology for user-friendly natural language office

information applications. ACM Trans. Inf. Syst. 2(1), 26–41 (1984)

23. Lalanne, D., Nigay, L., Palanque, P., Robinson, P., Vanderdonckt, J., Ladry, J.F.: Fusion

engines for multimodal input: a survey. In: ICMI, pp. 153–160. ACM (2009)

24. Lee, J.S., et al.: A 0.4 V driving multi-touch capacitive sensor with the driving signal

frequency set to (n + 0.5) times the inverse of the LCD VCOM noise period. In: IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 682–685 (2014)

25. Lelli, V., Blouin, A., Baudry, B.: Classifying and qualifying GUI defects. Presented at the

8th IEEE International Conference on Software Testing, Verification and Validation, 13

April 2015

26. Lelli, V., Blouin, A., Baudry, B., Coulon, F.: On model-based testing advanced GUIs. In:

2015 IEEE Eighth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pp. 1–10 (2015)

27. Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for GUI testing. In:

Proceedings of the 8th European Software Engineering Conference Held Jointly with 9th

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pp. 256–267. ACM, New York (2001)

28. Memon, A.M.: GUI testing: pitfalls and process. Computer 35(8), 87–88 (2002)

29. Memon, A.M.: A comprehensive framework for testing graphical user interfaces. Ph.D.

thesis, University of Pittsburgh, Pittsburgh (2001)

30. Memon, A.M., Nguyen, B.N.: Advances in automated model-based system testing of

software applications with a GUI front-end. In: Zelkowitz, M.V. (ed.) Advances in

Computers, pp. 121–162. Elsevier (2010)

31. Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.: GUITAR: an innovative tool for

automated testing of GUI-driven software. Autom. Softw. Eng. 21, 65–105 (2014)

32. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1994)

33. Palanque, P., Barboni, E., Martinie, C., Navarre, D., Winckler, M.: A model-based approach

for supporting engineering usability evaluation of interaction techniques. In: Proceedings of

EICS 2011, pp. 21–30. ACM (2011)

34. Pfaff, G.E. (ed.): Proceedings of IFIP/EG Workshop on User Interface Management Systems

(November 1983, Seeheim, FRG). Springer, Berlin (1985)

35. Pirker, M., Bernhaupt, R.: Measuring user experience in the living room: results from an

ethnographically oriented field study indicating major evaluation factors. In: Proceedings of

the 9th European Conference on Interactive TV and Video (EuroITV 2011), pp. 79–82.

ACM, New York (2011)

36. Rowley, D.E.: Usability testing in the field: bringing the laboratory to the user. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI

1994), pp. 252–257. ACM, New York (1994)

37. Sadeghi, A., Jabbarvand, R., Malek, S.: PATDroid: permission-aware GUI testing of

android. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, pp. 220–232. ACM, New York (2017)

38. Song, W., Qian, X., Huang, J.: EHBDroid: beyond GUI testing for android applications. In:

Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering, pp. 27–37. IEEE Press, Piscataway (2017)

39. Thimbleby, H.: Reasons to question seven segment displays. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pp. 1431–1440. ACM, New York

(2013)

40. Vu, T., et al.: Distinguishing users with capacitive touch communication. In: Mobicom 2012,

pp. 197–208 (2012)

