
HAL Id: hal-02089261
https://hal.science/hal-02089261v1

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Closure of Description Logics under
Substitutions

Jon Haël Brenas, Rachid Echahed, Martin Strecker

To cite this version:
Jon Haël Brenas, Rachid Echahed, Martin Strecker. On the Closure of Description Logics under
Substitutions. 29th International Workshop on Description Logics (DL 2016), Apr 2016, Cape Town,
South Africa. pp.1-12. �hal-02089261�

https://hal.science/hal-02089261v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22714

Official URL : http://ceur-ws.org/Vol-1577/paper_47.pdf

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Brenas, Jon Haël and Echahed, Rachid and Strecker,
Martin On the Closure of Description Logics under Substitutions. (2016) In:
29th International Workshop on Description Logics (DL 2016), 22 April
2016 - 25 April 2016 (Cape Town, South Africa).

On the Closure of Description Logics under

Substitutions ⋆

Jon Haël Brenas1 Rachid Echahed1 Martin Strecker2

1 CNRS and University of Grenoble Alpes
2 Université de Toulouse / IRIT

Abstract. We investigate the extension of Description Logics (DL) with a notion

of “substitution”. Substitutions naturally arise when reasoning about programs

which modify graph structures that are characterized by DLs. They constitute also

a means to express concept and role modifications such as addition or deletion of

individuals (respectively, pairs of individuals) to or from concepts (respectively,

roles). After a formal definition of substitutions, we conduct a systematic study

of a wide range of DLs with the purpose of proving or disproving conservativity

of an extension of the respective DL with substitutions. The resulting classifica-

tion is a gauge of the expressiveness of description logics and their adequacy for

reasoning about change of graph structures.

1 Introduction

Motivation: Description Logics (DLs) [3] constitute the main class of logics serving

as foundation of knowledge representation systems. They have been used for instance

as the underlying formal framework for graph and knowledge bases and corresponding

querying languages such as SPARQL [17] and OWL [14].

These logics differ by their expressive power and complexity1. Besides their static

descriptions, Knowledge bases may also be amenable to evolve. Such evolutions can

be the result of arbitrary programs. This paper has been motivated by the problem of

evolving KBs and the means that may be used to guarantee their formal descriptions.

Actually, by using a program logic following a Hoare style, see e.g. [4], one may prove

that a KB, say K, which satisfies an assertion Pre, can be modified by a program P

and the resulting KB, say K ′, satisfies an assertion Post.

One of the questions explored in this paper is therefore: which DLs that have proven

to be adequate for knowledge representation can also be used for reasoning about

change, particularly to specify assertions such as Pre and Post and the underlying

Hoare calculus? In other words, how do classical DLs behave when used in a Hoare

calculus where substitutions arise in the computation of assertions? Recall that to every

elementary action of a program P , is associated a substitution [10].

A result of this paper is that all the families of description logics considered here

can be extended to a decidable program logic, with the aid of substitutions. In some

cases, these substitutions are conservative (and can therefore be eliminated within the

⋆ This research has been supported by the Climt project (ANR-11-BS02-016)
1 see, e.g., http://www.cs.man.ac.uk/˜ezolin/dl/

logic itself), and in some cases, this is impossible. Providing rigorous proofs of this
latter fact is one of the main aims of this paper.

Overview of the approach: Although DLs come in numerous flavors allowing to cater
to diverse needs in term of expressiveness and complexity, they are tailored to represent
”static” knowledge, that is to represent and reason about a given state of knowledge.
The need for ways to make knowledge evolve has lead to an increasingly rich field of
knowledge update and action [20,11].

The work presented in this paper is inspired by the desire to take advantage of
notions of program verification.In a program verification framework, one would com-

pute the weakest precondition associated to a postcondition P ost, say wp(P rog, P ost).
wp(P rog, P ost) would then be the condition that the original knowledge base has to
satisfy to be sure that we reach a knowledge base satisfying the postcondition. Compu-

tation of weakest preconditions is done stepwise, starting from the postcondition and by
considering the effect of each instruction starting from the last one and going back to the
first instruction. The effect of an elementary instruction, say inst, on a postcondition,
say Q, is reflected by a so-called substitution, say θ. Substitutions are classic and central
elements of Hoare Logic and the most intuitive way in such a framework to translate
into logic the effect of an action. Such an approach is quite unusual in the graph trans-

formations framework though and being able to effectively express substitutions in the
case of such transformations is of utmost importance.

The task of proving the correctness of a program can thus, through the use of sub-

stitutions, be reduced to the task of determining whether or not a formula is valid. The
main issue is that most logics for which there are results on the decidability or the com-

plexity of the validity problem do not explicitly consider substitutions as a constructor.
The other way round, most logics with substitutions have received very little attention
and there are thus few results on their validity problems.

Note that our goal is to inspect logics and classify them depending on whether or
not adding substitutions to them modifies their expressive power. We do not claim to
produce efficient ways to prove that a program is correct.

The paper is structured as follows: We recall in Sect. 2 different DLs starting from
ALC and introduce their extensions with substitutions. In Sect. 3 , we provide a family
of DLs which are closed under substitutions, whereas Sect. 4 shows that some other
DLs are not closed under substitutions. Sect. 5 discusses the case of the logic ALCO
and some of its extensions. We conclude in Sect. 6.

2 Syntax

In this section, we define the syntax of the description logics we consider. We start by
the elementary logic ALC. ALC, and all of its extensions, are defined using a signature
(C, R, I) where C is a set of concept names, R is a set of role names and I a set of
individuals.

Definition 1 (ALC roles). The set of ALC-roles is R.

Definition 2 (ALC concepts). The set of ALC-concepts, C, is defined as:

C ::= ⊥ (empty concept) | A (concept name) | ¬ C (negation)

| C ⊓ C (conjunction) | ∃R.C (exists)

where c is a concept name (∈ C) and R is a role. As usual, ⊤ is used for ¬ ⊥, C ⊔ D

for ¬(¬C ⊓ ¬D) and ∀R.C for ¬∃R.¬C.

As an example, ∃R. (c ⊔ ∀R. c) is an ALC-concept satisfied by nodes having an

R-neighbour which satisfies c or whose R-neighbours satisfy c.

Concepts are the basic building block of DL formulae. Usually, the problem we are

interested in looks like: “Is concept C valid (or satisfiable) given some axioms?”. These

axioms are split into ABoxes and TBoxes.

Definition 3 (ABox and TBox). An individual assertion IA is defined as:

IA ::= a : C (concept assertion) | a = b (equality)

| a 6= b (inequality) | (a, b) : R (positive role assertion)

| (a, b) : ¬R (negative role assertion)

where C and D are concepts, R is a role and a and b are individuals. An ABox is a

finite set of individual assertions. A TBox is a finite set of concept inclusions of the form

C ⊑ D, where C and D are concepts.

Each extension of ALC we are going to focus on adds new concept or role con-

structors. Each constructor is associated to a letter added to the name of the logic2. The

constructors that we consider in this paper are Q, O, Self , I, @ and U , defined as

follows:
Q (≥ n R C) (at least) O {a} (nominal)

Self ∃S.Self (local reflexivity) I R− (inverse role)

@ @aC (concept assertion) U U (universal role)

where a is an individual, S is a role, different from U, R is a role and C is a concept.

(< n R C) is a shorter way to write ¬(≥ n R C).
From now on, as there are numerous logics that are considered, we will introduce

new notations. ALCL1 . . .Ln[Ln+1 . . .Lm] denotes the family of description logics

with all constructors corresponding to L1 . . .Ln and any combination of those corre-

sponding to Ln+1 . . .Lm.

Definition 4 (Interpretation). An interpretation I is a pair {∆I, ·I} where ∆I is the

universe (set of elements) and ·I, the valuation, is a function that maps each concept

name to a subset of ∆I, each role name to a subset of ∆I ×∆I and each individual to

an element of ∆I.

Below, we define the valuation of roles and concepts:

⊥I = ∅ (¬ C)I = ∆I\CI, written CI

(C ⊓ D)I = CI ∩DI (U)I = ∆I ×∆I

(∃R.C)I = {δ ∈ ∆I|#(RI

C
(δ)) ≥ 1} {a}I = {aI}

(∃R.Self)I = {δ ∈ ∆I|(δ, δ) ∈ RI} (@aC)I = ∆I if aI ∈ CI

(≥ n R C)I = {δ ∈ ∆I|#(RI

C
(δ)}) ≥ n} ∅ otherwise

(R−)I = {(δ, δ′) ∈ ∆I ×∆I|(δ′, δ) ∈ RI}

2 see, e.g., http://www.cs.man.ac.uk/˜ezolin/dl/

where RI

C
(δ) is {δ′ ∈ ∆|(δ, δ′) ∈ RI ∧ δ′ ∈ CI} and #(V) stands for the cardinal of

V .

Definition 5 (Model). We say that an interpretation I satisfies an assertion a : C

(resp. a = b, a 6= b, (a, b) : R, (a, b) : ¬R) if aI ∈ CI (resp. aI = bI, aI 6= bI,

(aI, bI) ∈ RI, (aI, bI) 6∈ RI). We say that an interpretation I is a model of an ABox

A if I satisfies all the assertions of A. We say that an interpretation I satisfies a concept

inclusion C ⊑ D if CI ⊆ DI. We say that an interpretation I is a model of a TBox

T if I satisfies all the concept inclusions of T . We say that an interpretation I satisfies

a concept C if CI 6= ∅.

Now we introduce the notion of substitution that allows one to modify the valuation

of concepts and roles by adding or removing elements.

Definition 6 (Substitution). Given a role name R, a concept name c and individuals a

and b, a substitution θ is defined as follows:

θ ::= ǫ (empty substitution)

| R := R− (a, b) (deletion of role instance)

| R := R+ (a, b) (insertion of role instance)

| A := A− a (deletion of concept instance)

| A := A+ a (insertion of concept instance)

Substitutions define an additional concept constructor. We use σ in logic names to

signify that substitutions are allowed as constructors. It is important to note that this

constructor can only be used to build the concept part of the considered formulae and

not in assertions nor in concept inclusions.

Definition 7 (Lσ concepts). Given a logic L, the set of Lσ-concepts, C, is defined as:

C ::= L (concept of L)

Cθ (explicit substitution)

where L is a concept of L and θ is a substitution.

For instance, C[R := R + (a, b)] means that C is satisfied after adding the pair

(a, b) to the valuation of R. The interpretation is thus modified accordingly.

Definition 8 (Valuation of explicit substitutions). Let A be a concept name, a and b

be individuals, C be a concept and R be a role name, the valuation of explicit substitu-

tions is defined as follows:

– (Cǫ)I = CI

– (C[A := A + a])I = CK where ∆K = ∆I, ∀B ∈ C, B 6= A,BK = BI,

∀R ∈ R, RK = RI, ∀o ∈ I, oK = oI and AK = AI ∪ {aI}.

– (C[A := A − a])I = CK where ∆K = ∆I, ∀B ∈ C, B 6= A,BK = BI,

∀R ∈ R, RK = RI, ∀o ∈ I, oK = oI and AK = AI ∩ {aI}
– (C[R := R+(a, b)])I = CK where ∆K = ∆I, ∀A ∈ C, AK = AI, ∀P ∈ R, P 6=
R,PK = P I, ∀o ∈ I, oK = oI and RK = RI ∪ {(aI, bI)}

– (C[R := R−(a, b)])I = CK where ∆K = ∆I, ∀A ∈ C, AK = AI, ∀P ∈ R, P 6=

R,PK = P I, ∀o ∈ I, oK = oI and RK = RI ∩ {(aI, bI)}

The definition of the valuation for roles and concepts are conserved.

For instance, the valuation of (≥ 3 R C)[C := C + a][R := R − (b, d)] is

{δ ∈ ∆|#({δ′ ∈ ∆|(δ, δ′) ∈ RL ∧ δ′ ∈ CK}) ≥ 3} where CK = CI ∪ {aI} and

RL = RI ∩ {(bI, dI)}.

In this paper, we are interested in how the addition of substitutions to concepts

affects the expressive power of a given Description Logic. For now, explicit substitu-

tions can only be used in the definition of a concept (and thus are forbidden in ABoxes

and TBoxes). To be more precise, ABoxes and TBoxes are usually allowed but their

treatment is not what we are interested in. The reason why it is so is that, in the most

expressive logics we consider, they can be simulated into the concept itself. For the

least expressive logics, we look at whether or not allowing substitutions in ABoxes and

TBoxes is sufficient to close the gap between the logics with and without substitutions.

To be able to evaluate the expressiveness of a logic, we define an equivalence rela-

tion on logics.

Definition 9 (Equivalence). Two concepts C and D are said to be equivalent if, for

every interpretation I, CI = DI. A logic L1 is at most as expressive as a logic L2 wrt.

concepts written L1 ≤C L2 if every concept in L1 has an equivalent concept in L2.

Two logics L1 and L2 are concept-equivalent if L1 ≤C L2 and L2 ≤C L1.

Definition 10 (Closure under substitutions). A logic L is said to be closed under sub-

stitutions if L and Lσ are concept-equivalent.

3 DLs Closed under Substitutions

In this section we prove that DLs in ALCUO[QI@Self] are closed under substitu-

tions. Let us notice first that in ALCQUIO@Self some constructs are rendundant. In

particular, when a DL includes O (nominals), assertions can be rewritten as concept in-

clusions. When a DL includes U (universal role), concept inclusions can be rewritten as

mere concepts. Additionally, as the concept @aC is equivalent to the assertion a : C,

all @-concepts can be removed in presence of both O and U . Finally, in presence of

both O and @, all ABox assertions can be rewritten as concepts.

As both O and U are part of ALCQUIO@Self , we consider for this chapter that

the TBox and the ABox are empty.

Theorem 1. ALCQUIO@Self is closed under substitutions.

The proof of Theorem 1 is done by providing a terminating rewriting system con-

sisting of rules which translate concepts of ALCQUIO@Selfσ into concepts of

ALCQUIO@Self (without substitutions). The idea is to associate to each possible

concept constructor Φ coupled with a substitution constructor σ an equivalent substitution-

free concept Φ′. The rules thus have the form: Φσ Ψ . Ψ is a concept of

ALCQUIO@Selfσ equivalent to Φσ such that substitutions are applied to “simpler”

concepts. The rules are made so that they are orthogonal, thus ensuring that the rewriting

system is confluent. Furthermore, we have shown that the considered rules constitute a

terminating rewrite system. Therefore each formula Φσ rewrites to a unique substitution

free normal form Φ′ (Φσ ∗ φ′).

Reporting all rules in here would be burdensome. Thus, to illustrate our point, we

give the example of a rule Φσ Ψ for the ALCQUIO@Selfσ-concept where the

left-hand side Φσ is such that φ = (≥ n R C) and σ = [R := R − (a, b)]. The

right-hand side Ψ of the rule is a concept equivalent to Φσ, that is to say a concept such

that for every node µ, µ satisfies Ψ iff µ satisfies (≥ n R C)[R := R − (a, b)]. A

possible concept for Ψ is given below :

(({a} ⊓ ∃U.({b} ⊓ C[R := R− (a, b)]) ⊓ ∃R.{b}) ⇒
(≥ (n+ 1) R C[R := R− (a, b)]))

⊓ ((¬{a} ⊔ ∀U.(¬{b} ⊔ ¬C[R := R− (a, b)]) ⊔ ∀R.¬{b}) ⇒
(≥ n R C[R := R− (a, b)])).

– If the current node is a and b is an R-neighbour of a satisfying C[R := R− (a, b)]
(that is if {a} ⊓ ∃U.({b} ⊓C[R := R− (a, b)]) ⊓ ∃R.{b} is satisfied), then a will

actually lose exactly one R-neighbour satisfying C after the substitution and it will

thus have at least n remaining R-neighbours satisfying C after the substitution if it

had at least n+ 1 before and thus (≥ (n+ 1) R C[R := R− (a, b)]).
– If either the current node is not a, b does not satisfy C[R := R − (a, b)] or b is not

an R-neighbour (that is if ¬{a}⊔∀U.(¬{b}⊔¬C[R := R− (a, b)])⊔∀R.¬{b} is

satisfied) then the removal of the edge (a, b) from R doesn’t affect the current node

and thus (≥ n R C[R := R− (a, b)]) must be satisfied.

By following the same proof technique used for Theorem 1, we can show that the

following DLs are also closed under substitutions.

Corollary 1. The logics of ALCUO[QI@Self] are closed under substitutions.

One can easily see from the one rule presented that the rewriting system risks caus-

ing an exponential blow-up in the size of the concept whose satisfiability is tested. In
a worst case scenario, this could change the complexity of the satisfiability problem to
2NEXPTIME.

Another noteworthy observation is that the constructors @ and U are both used to
access remote nodes. A quick check of the rules shows that all occurrences of U in T
are of the form ∃U.({a} ⊓ C) or ∀U.(¬{a} ⊔ C) which are both equivalent to @aC.
Hence:

Corollary 2. The logics of ALCO@[QISelf] are closed under substitutions.

4 DLs Not Closed under Substitutions

In this section, we give a family of Description Logics which are strictly less expressive
than their extension with substitutions. In addition to the purely technical interest of
sorting logics depending on whether or not they have the property of being closed un-

der substitutions, studying less expressive logics is meaningful as the more expressive
logics are known to have a greater complexity[18]. Moreover, the translation removing
substitutions is itself exponential which makes the problem clearly intractable.

We first consider the Description Logic ALC. ALC does not contain O nor U or

@, thus ABoxes and TBoxes need to be used. Yet, we still require that no substitution

appears in them.

Theorem 2. ALC is not closed under substitutions.

More formally, to prove that the addition of substitutions to ALC strictly increases

its expressiveness, we use a result from [6]:

Theorem 3. For every concept C of the logic ALC, for every two interpretations I1

and I2, for every bisimulation relation Z between I1 and I2, if an element x1 of I1
satisfies C and there is an element x2 of I2 such that x1Zx2, then x2 satisfies C. The

same can be said for the satisfiability of ABox and TBox assertions.

Definition 11 (Bisimulation). Given a signature (C, R, I) and two interpretations I1
and I2, a non-empty binary relation Z ⊆ (∆I

1 ×∆I
2) is a bisimulation if it satisfies:

(ALC1) d1Zd2 =⇒ for all A ∈ C, (d1 ∈ AI1 ⇔ d2 ∈ AI2)
(ALC2) For all R ∈ R, (d1Zd2 ∧ d1R

I1e1 =⇒ ∃e2.d2R
I2e2 ∧ e1Ze2)

(ALC3) For all R ∈ R, (d1Zd2 ∧ d2R
I2e2 =⇒ ∃e1.d1R

I1e1 ∧ e1Ze2)
(ALC4) For all a ∈ I, aI1ZaI2

The idea of the proof of Theorem 2 consists in building an interpretation I1 such

that an ALC-concept C containing substitutions holds and I2 bisimilar to I1 where C

does not hold, thus proving that ALC is not as expressive as ALCσ. Fig. 1 depicts such

interpretations.

Let’s check that I1 and I2 are bisimilar. As the only concept in C is A and R is

empty, we verify the four axioms given in Def 11:

(ALC1) d1Zd3 (d1 ∈ AI1 ⇔ d3 ∈ AI2)X ALC2 R = ∅ X.

d2Zd3 (d2 ∈ AI1 ⇔ d3 ∈ AI2)X (ALC2 R = ∅ X.

(ALC3) R = ∅ X. (ALC4) aI1ZaI2X

So I1 and I2 are bisimilar.

However, after the removal of the individual a from the concept A, the concept A

still holds in d2 and does not hold in d3. This shows that there is no equivalent concept

to A[A := A − a] in ALC, which is enough to show that ALC is not closed under

substitution.

One could wonder whether it is possible to find a way, using a TBox and an ABox to

find something that would be equivalent to A[A := A − a] in ALC. As the signature is
({A}, ∅, {a}), there are only few choices available as individual assertions or concept
inclusions. A rapid analyses of these choices shows that there is no way to build an
ABox nor a TBox that would provide an equivalent for A[A := A − a].

In [6], one may find other definitions of bisimulations for various Description Log-

ics used to show that DL-concepts are stable. Below, we recall briefly these definitions.
The names of the axioms indicate which logic they apply to. For instance, if one wants
to deal with ALCUI, one has to use axioms (ALC1), (ALC2), (ALC3), (ALC4), (U1),

(U2), (I1) and (I2) to define bisimulations.

(U1) For all d ∈ ∆I1 , there exists d′ ∈ ∆I2 .dZd′

(U2) For all d′ ∈ ∆I2 , there existsd ∈ ∆I1 .dZd′

(I1) For all R ∈ R, (d1Zd2 ∧ d1R
−I1e1 =⇒ there exists e2.d2R

−I2e2 ∧ e1Ze2)
(I2) For all R ∈ R, (d1Zd2 ∧ d2R

−I2e2 =⇒ there exists e1.d1R
−I1e1 ∧ e1Ze2)

(O) For all a ∈ I, d1Zd2 =⇒ (d1 = aI1 ⇔ d2 = aI2)
(Q) For all R ∈ R, (d1Zd2 =⇒ there is a bijection h : {y|(d1, y) ∈ RI1} →

{y′|(d2, y
′) ∈ RI2} such that h ⊆ Z.

(IQ) For all R ∈ R, (d1Zd2 =⇒ there is a bijection h : {y|(y, d1) ∈ RI1} →
{y′|(y′, d2) ∈ RI2} such that h ⊆ Z.

(Self) For all R ∈ R, d1Zd2 =⇒ (d1R
I1d1 ⇔ d2R

I2d2).

One could see that there is no rule for @. Actually, it is easy to prove that (ALC4)

is enough for @.

The same example allows to prove that the DLs given in the following corollary are

not closed under substitutions. The reader may verify that the axioms of bisimulations

corresponding to these logics are satisfed by Z.

Corollary 3. The logics of ALC[U@IQSelf] are not closed under substitutions.

If a DL contains O, the example of Fig. 1 no longer is a counter-example because

Z is not a bisimulation anymore. Indeed d2Zd3 but d3 = aI2 whereas d2 6= aI2

contradicting (O).

I1 I2

d1 : a d2 d3 : a

Fig. 1. On the left, I1 is a model of A[A := A − a]. On the right, I2 is not. Nodes satisfying A
are drawn in red. Dashed arrows represent Z. The signature is ({A}, ∅, {a}).

Up to now, in this section, we have considered that the only part of the logic where
substitutions where allowed was the concept whose satisfiability or validity we wanted
to prove. Usually, the problem when DLs are considered is not the satisfiability or the
validity of a concept, though, but whether or not the association of an ABox and a TBox
can yield a model.

Another interesting question then is whether or not, for an ABox and a TBox both
possibly containing substitutions, it is possible to find a equivalent couple ABox-TBox
without substitutions. It is not. Indeed, the ABox (a : A)[A := A+b] is satisfied in only
two possible cases: either a : A before the substitution occurs or a = b. None of these
two cases can be expressed using TBox assertions and, using an ABox, you can only
express them as a Boolean ABox[19], which is not usually allowed, or using a nominal.

5 The case of ALCO

The technique we used in the previous section cannot be applied directly in the case of
the logic ALCO. Indeed, we can show the following result.

Theorem 4. ALCOσ concepts are stable under ALCO-bisimulations.

To show this theorem, we assume given two interpretations I1 = {∆I1 , .I1} and

I2 = {∆I2 , .I2}, x1 ∈ ∆I1 and x2 ∈ ∆I2 , Z an ALCO-bisimulation between I1 and

I2 such that x1 Z x2 and prove for any ALCOσ-concept C, x1 ∈ CI1 ⇔ x2 ∈ CI2 .

As the complete proof is quite long, only a summary will be reported here.

We will mostly reuse the rewriting system intropduced in Sect. 3. Given anALCOσ-

concept, the rules for atomic concepts give an equivalent ALCO-concept which is in-

variant for ALCO-bisimulations.

For the other rules, we will reason by induction. We assume that the concept whose

invariance we want to show is (C ⊔D)θ. The correct translation is Cθ ⊔Dθ. Let’s prove
that x1 ∈ (Cθ ⊔ Dθ)I1 ⇒ x2 ∈ (Cθ ⊔ Dθ)I2 . We know that x1 ∈ (Cθ ⊔ Dθ)I1 . That
is, x1 ∈ (Cθ)I1 or x1 ∈ (Dθ)I1 . Then, by induction, x2 ∈ (Cθ)I2 or x2 ∈ (Dθ)I2 .
Thus x2 ∈ (Cθ ⊔ Dθ)I2 . The same way, we can show that x2 ∈ (Cθ ⊔ Dθ)I2 ⇒ x1 ∈
(Cθ ⊔ Dθ)I1 . Showing (C ⊓ D)θ and (¬D)θ are invariant is done mutatis mutandis.

The concepts using the constructors ∃ and ∀ are handled by going back to the defini-

tion of the interpretations and bisimulations. Let’s prove that (∃R.C)[R := R+(a, b)] is
invariant for ALCO-bisimulations. Once again, we start assuming x1 ∈ ((∃R.C)[R :=
R+(a, b)])I1 . That means x1 ∈ {y | ∃z such that (y, z) ∈ (R[R := R+(a, b)])I1 ∧z ∈
(C[R := R + (a, b)])I1 }. Then, by replacing (R[R := R + (a, b)])I1 by its expres-

sion, one gets x1 ∈ {y | ∃z such that (y, z) ∈ (R ∪ {(a, b)})I1 ∧ z ∈ (C[R :=
R + (a, b)])I1 }. Thus, x1 ∈ {y | ∃z such that (y, z) ∈ RI1 ∧ z ∈ (C[R := R +
(a, b)])I1 }∪{aI1 , bI1 ∈ (C[R := R+(a, b)])I1 }. As x1 belongs to at least one of those
sets: either there exists z1 ∈ ∆1 such that (x1, z1) ∈ RI1 ∧z1 ∈ (C[R := R+(a, b)])I1

which means that, by (ALC3), there exists z2 ∈ ∆2 such that (x2, z2) ∈ RI2 and, by
induction, z2 ∈ (C[R := R + (a, b)])I2 . Thus x2 ∈ ((∃R.C)[R := R + (a, b)])I2 ,
or x1 = aI1 and bI1 ∈ (C[R := R+(a, b)])I1 which means that, by (O), x2 = aI2 and,
by induction, bI2 ∈ (C[R := R + (a, b)])I2 . Thus x2 ∈ ((∃R.C)[R := R + (a, b)])I2 .

The exact same reasoning can be done in the other direction to prove that this is an
equivalence.

Theorem 4 could lead us to think that the addition of substitutions to ALCO does
not increase the expressiveness of the logic. This is not true. We propose below another
kind of binary relations that are able to distinguish between ALCO and ALCOσ. The
only difference is the last axiom (rALC4). To put it simply, it checks that the interpre-

tation agree on the connected subgraph containing the root instead of agreeing on all
connected subgraphs containing at least one nominal.

Definition 12. Given two interpretations I1 and I2, a rooted-bisimulation between I1
and I2 rooted in (x,x′) is a binary relation Z ⊆ (∆I1 × ∆I2) such that:

(ALC1) d1Zd2 =⇒ for all A ∈ C, (d1 ∈ AI1 ⇔ d2 ∈ AI2)
(ALC2) For all R ∈ R, (d1Zd2 ∧ d1RI1 e1 =⇒ ∃e2.d2RI2 e2 ∧ e1Ze2)
(ALC3) For all R ∈ R, (d1Zd2 ∧ d2RI2 e2 =⇒ ∃e1.d1RI1 e1 ∧ e1Ze2)
(rALC4) xZx′

This definition is extended for logics containing ALC the same way as the definition of
bisimulations.

Definition 13. A concept C is stable under rooted-bisimulations if, for any interpre-

tations I1, I2, any rooted-bisimulation Z between I1, I2 rooted in (x,x′) and any y

reachable from x, there exists y′ such that yZy′ and y ∈ CI1 ⇔ y′ ∈ CI2 .

Theorem 5. ALCO-concepts are stable under rooted-bisimulations

Once again, the proof is done by induction on the length of the concepts. It is obvi-

ous for concept names due to rule (ALC) and for nominals due to rule (O).

Theorem 6. ALCOσ-concepts are not stable under rooted-bisimulations.

Fig. 2 provides a counter-example illustrating Theorem 6. The results of Theorems 5

and 6 can be extended to the logics in ALCO[IQSelf].

Let’s check that I1 and I2 are (d1,d3)-bisimilar. As the only concept in C is A and

there is no role in R, we verify the four axioms given in Def 12:

(ALC1) d1Zd3 (d1 ∈ AI1 ⇔ d3 ∈ AI2)X (ALC2)] R = ∅ X.

(ALC3) R = ∅ X. (rALC4) dI1

1 ZdI2

3 X

(O) d1Zd3 d1 = aI1 ⇔ d3 = aI2X

So I1 and I2 are (d1,d3)-bisimilar.

I1 I2

d1 : ad2 : b d3 : a d4 : b

Fig. 2. On the left, I1 is a model of (∀R.A)[R := R + (a, b)]. On the right, I2 is not. Nodes
satisfying A are drawn in red. Dashed arrows represent Z. The signature is {{A}, ∅, {a, b}}. I1

and I2 are (d1, d3)-rooted-bisimilar.

Theorem 7. ALCO is not closed under substitutions.

Even in the presence of ABoxes and TBoxes, ALCO is still not closed under sub-

stitutions. Indeed, no ABox or TBox allows to express the concept ({a} ∧ ∃R.A)[R :=
R + (a, b)] as it can only express one of the two possible “templates” of models at a
time: the concept {a} ∧ ∃R.A is satisfied or the concept {a} together with the ABox
b : A is satisfied. It is possible to express any of the two alone, the intersection of the
two but not their union, which is the one we are looking for.

Once again, one may want to look at the problem of whether or not there exist an
equivalent couple ABox-TBox without substitutions for any ABox-Tbox with substitu-

tions. Once again, it is not possible. The ABox assertion a : (∃R.A)[R := R + (a, b)]
yields the same possible models given previously. Once more the solution would be to
use a Boolean ABox [19] to be closed under substitutions.

6 Related Work and Conclusion

We tackled the problem of adding substitutions to concepts in various DLs. We have
described different situations where substitutions increase the expressive power of DLs
and where they do not. In the latter situations, proving concept satisfiability in presence
of substitutions can be carried out using the same proof procedures tailored for DLs
without substitutions. However, when the expressive power of the logics are altered by
substitutions, new proof procedures are to be devised. We have shown that the most
expressive logics we considered are closed under substitutions. Moreover, as they allow
to define the Abox and the Tbox directly as a part of the concept, it is possible to
represent this way knowledge representation bases. On the other hand, logics without
nominals, are strictly extended with the introduction of substitutions. Adding Abox
or Tbox assertions is not enough to cover the gap in expressiveness either. Finally,
logics with nominals are a borderline case where there is no equivalent formula without
substitutions allowing to express the formula with substitutions but it is possible to find
a disjunction of such formulae. A solution, that we didn’t consider here, for these logics
would be to allow role constructors that would be the union and difference of roles.

This paper presents a systematic study of the closure under substitutions of various
families of DLs. We are not aware of similar work in the literature.

This paper only concentrates on DLs. There are other approaches to deal with graph
or pointer transforming programs, such as separation logic [16], which are to a large
extent orthogonal to our approach (also see [5]), or Pale [13] based on monadic second-

order logic, requiring a tree-shaped backbone to be identified in graphs.

DLs have been investigated in various areas with dynamic structures. For instance,
Dynamic Description Logics [21] combine description logics with a PDL-style action
language, with unspecified elementary actions, whereas in our case, we concentrate on
a specific set of primitives .

Knowledge update is a field that has been widely studied be it as database update
[20,7] or in the more philosophical epistemic logic[2,11].

In [12], the authors study the effects of elementary updates on sets of ABox formu-

lae. As updates and substitutions look differently at the actions, their results and ours
differ even though the topics are related.

Only few approaches use action languages with updates in the form of substitutions.

[4] use a full programming language (including loops), where updates are restricted to
elementary positive or negative concept and role expressions.

[1] uses a simpler update language (not containing loops), but updates may contain
complex concept and role expressions. This provides a logic that could be used for
verification of graph transformations since the logic is closed under substitutions.

Last but not least, Hoare style program verification for graph transformation has al-

ready been proposed in the literature (see, e.g., [15,8]). The investigated logics are often
dialects of nested graph condition [9] which are more expressive than the DLs consid-

ered in the present paper. Our aim is not to achieve high expressivity, but investigate
which reasoning principles can be implemented soundly with less complex logics.

References

1. Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. Managing

change in graph-structured data using description logics. In Proc. of the 28th AAAI Conf. on

Artificial Intelligence (AAAI 2014), pages 966–973. AAAI Press, 2014.

2. Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory change:

Partial meet contraction and revision functions. J. Symb. Log., 50(2):510–530, 1985.

3. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-

cations. Cambridge University Press, 2003.

4. Jon Haël Brenas, Rachid Echahed, and Martin Strecker. A Hoare-like calculus using the

SROIQσ logic on transformations of graphs. In Josep Diaz, Ivan Lanese, and Davide San-

giorgi, editors, Theoretical Computer Science, volume 8705 of Lecture Notes in Computer

Science, pages 164–178. Springer Berlin Heidelberg, 2014.

5. Stéphane Demri and Morgan Deters. Separation logics and modalities: A survey. Journal of

Applied Non-Classical Logics, 25(1):50–99, 2015.

6. Ali Rezaei Divroodi and Linh Anh Nguyen. On bisimulations for description logics. Infor-

mation Sciences, 295:465 – 493, 2015.

7. Ronald Fagin, Gabriel M. Kuper, Jeffrey D. Ullman, and Moshe Y. Vardi. Updating logical

databases. Advances in Computing Research, 3:1–18, 1986.

8. Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transformation

systems relative to nested conditions. Mathematical Structures in Computer Science,

19(02):245–296, 2009.

9. Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weakest preconditions for

high-level programs. In Procs. of 3rd International Conference on Graph Transformations,

ICGT 2006, volume LNCS 4178, pages 445–460. Springer, 2006.

10. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.

11. Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updating a knowl-

edge base and revising it. In Proceedings KR’91. Cambridge, MA, USA, April 22-25, 1991.,

pages 387–394, 1991.

12. Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Foundations of instance level

updates in expressive description logics. Artificial Intelligence, 175(18):2170–2197, 2011.

13. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine. In PLDI,

pages 221–231, 2001.

14. OWL Standard. OWL Standard. http://www.w3.org/2001/sw/wiki/OWL.

15. Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph programs. Fun-

damenta Informaticae, 118(1-2):135–175, 2012.

16. John C. Reynolds. Separation logic: A logic for shared mutable data structures. Logic in

Computer Science, Symposium on, 0:55, 2002.

17. SPARQL Standard. SPARQL Standard. http://www.w3.org/2001/sw/wiki/SPARQL.

18. Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in

expressive description logics. J. Artif. Intell. Res. (JAIR), 12:199–217, 2000.

19. Jigneshkumar R. Viradia. Reasoning with boolean aboxes. Master’s thesis, Technisch Uni-

versität Dresden, 2008.

20. Marianne Winslett. Updating logical databases, volume 9. Cambridge University Press,

2005.

21. Frank Wolter and Michael Zakharyaschev. Dynamic description logics. Advances in Modal

Logic, 2:431–446, 1998.

