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Figure 1: Three scenes rendered using our shadow algorithm. Left: Powerplant (12.7M triangles) 20ms. Middle : RaptorPark (30M triangles)
17ms. Right: ManyModels (73.8M triangles) 28ms.

Abstract
Real-time shadow algorithms based on geometry generally produce high quality shadows. Recent works have considerably
improved their efficiency. However, scalability remains an issue because these methods strongly depend on the geometric
complexity. This paper focuses on this problem. We present a new real-time shadow algorithm for non-deformable models that
scales the geometric complexity. Our method groups triangles into clusters by precomputing bounding spheres or bounding
capsules (line-swept spheres). At each frame, we build a ternary metric tree to partition the spheres and capsules according to
their apparent distance from the light. Then, this tree is used as an acceleration data structure to determine the visibility of the
light for each image point. While clustering allows to scale down the geometric complexity, metric trees allow to encode the
bounding volumes of the clusters in a hierarchical data structure. Our experiments show that our approach remains efficient,
including with models with over 70 million triangles.

CCS Concepts
•Computing methodologies → Rendering; Visibility;

1. Introduction

Shadows are a fundamental visual effect for computer generated
images. They provide essential spatial hints allowing us to correctly
perceive objects positions in the scene. Despite its importance,
computing pixel accurate shadows in real-time is a challenging
problem in Computer Graphics.
Shadow maps [Wil78] remain the most widely used technique
because of their speed and scalability. But they fail at always
providing exact hard shadows due to their image space nature, even
at high resolution. To avoid aliasing, shadow maps often exceed by
a factor of 4, at least, the screen resolution. Since high resolution
displays become a standard, the memory cost may also become
an issue [SBE16]. This is why real-time hard shadows are still an
open research topic. Shadow volumes [Cro77] based methods are
the historical alternative to image space techniques. Since they

rely on geometry, they naturally produce exact shadows. However,
their dependence on geometric complexity generally prevents them
from competing with screen space techniques in terms of speed and
scalability.
Recent works based on shadow volumes [SKOA14, GMAG15]
enable a high level of performance regarding the speed. However,
these algorithms remain sensitive to scalability. At some point,
this always leads to a significant loss of efficiency, limiting their
application scope.
In this paper, we propose a new geometry based algorithm for
rendering pixel accurate hard shadows which is both fast and
scalable. First, it precomputes triangles’ clusters of roughly
equivalent size. These clusters are bounded with either spheres
or capsules (i.e. line-swept spheres) to tightly fit the enclosed
geometry. Later, during the rendering, these bounding volumes
define cones or capsule cones under projection from the light. Such
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a representation is different from the traditional usage of shadow
volumes, i.e. based on shadow quads or shadow planes. In the spirit
of Gerhards et al. [GMAG15], we build at each frame a hierarchical
data structure over the geometry to enable efficient light visibility
queries. However Gerhards et al. rely on shadow planes to partition
space, which is not compatible with the cones derived from our
clusters. This brings us to follow a different approach based on
metric trees [Uhl91b], a simple and flexible way of partitioning
space which has received little attention in the context of rendering.
Thanks to metric trees, our algorithm merges cones and capsule
cones in a unified data structure. The clustering leverages its linear
build cost while per-pixel queries retain a logarithmic complexity.
Thereby, our contribution is a new real-time shadow algorithm
for handling large dynamic scenes under rigid-body transforms,
supporting both directional and omnidirectional light sources. We
show that our geometry-based approach handles models with more
than 70 million triangles, achieving then better performance than a
hardware rasterization based method used in production [WHL15].

2. Related Work

In this section, we review works related to pixel accurate hard shad-
ows. We briefly outline the work built on shadow maps, then we
focus on geometry based methods since it is the context of this pa-
per. For a comprehensive survey of real-time shadows, we refer the
reader to the book by Eisemann et al. [ESAW11].

Aliasing is inherent to shadow maps because their resolution does
not match the location of view samples. These samples are pro-
jected anywhere on the shadow maps. Thus, depth information is
taken from the closest texel, yielding to erroneous values. To solve
this problem, irregular rasterization consists in placing light sam-
ples where exact values are needed. View samples are first projected
on the irregular shadow maps. They are stored in a 2D data struc-
ture which is traversed by triangles to identify the samples covered
by at least one of them. Aila et al. [AL04] follow this approach
using a kd-tree. Johnson et al. [JLBM05] use an Irregular Z-Buffer
(IZB). They project the view samples on a regular grid and store
the samples that project in a same cell in a list. Triangles are then
conservatively rasterized: they are enlarged and projected on the
grid to find the lists of samples potentially occluded by a triangle.
Later work [SEA08] proposed a GPU implementation. However,
due to the irregular distribution of view samples, neighboring pix-
els can exhibit a high variance in their list lengths. This can affect
both the performance of the method and its stability, because an ef-
ficient use of GPU hardware requires balanced workloads. Wyman
et al. [WHL15] recently made an in-depth analysis of performance
for IZB. They show that variations appear where aliasing is found
in shadow maps. Applying cascades to IZB significantly reduces
variance. Combined with early z-culling, the method is able to con-
sistently hit real-time framerates. They also propose an extension to
support anti-aliased shadows using 32 samples per pixel. This work
was implemented in NVIDIA’s ShadowLib [Sto16]. The library im-
plements a GPU specific variant of cascades coined dynamic repro-
jection to further reduce the variance: The area of the screen with
high list lengths is detected and is assigned to a dedicated IZB.

Historically, shadow volumes [Cro77] are the main alternative to

screen space approaches. Based on geometry, it enables exact shad-
ows for directional and omni-directional light sources. A shadow
volume defines the boundary of the shadow cast by an object. Sil-
houette edges spanning this boundary are computed, and oriented
quads are extruded through them away from the light source. Then,
a second pass renders the shadow quads from the camera while
counting the number of front and back faces. A point is shadowed
if more front faces than back faces are counted. The first hardware
implementation, known as Z-PASS [Hei91] uses the stencil buffer
to count front/back facing quads. However, counting quads from
the eye position fails if the camera is already in shadow, a problem
known as "eye-in-shadow". To prevent it, the Z-FAIL variant starts
to count from a point at infinity [Car00], which is usually less ef-
ficient because more quads are rendered in the stencil buffer. The
main drawback of shadow volumes, besides the need for triangles
connectivity to compute silhouette edges, is the important fill rate
it can incur even for scenes of moderate complexity. To alleviate
the fill rate, several works attempt to remove useless shadow cast-
ers [LWGM04, SWK08]. This allows to shift the problem without
completely removing it.
Sintorn et al. [SOA11] avoid fill rate issues and silhouette compu-
tations. They build a hierarchical depth map over the view samples.
Each level of the hierarchy represents a tile containing the min-max
depth values of the previous level. Per triangle shadow volumes
(called shadow frustums) are then filtered down the hierarchy to
find the shadowed view-samples. This method consistently outper-
forms Z-PASS shadow volumes. However, the tiles may span a
large portion of the view frustum, leading to a significant loss of ef-
ficiency. The authors reduce this problem using a full 3D hierarchy
of clusters over the view samples [SKOA14], allowing for a finer
rejection of shadow frustums. Since each shadow frustum traverses
the 3D hierarchy, the algorithm retains a linear dependence on the
number of triangles. The results provided in [SKOA14] use models
up to 400k triangles.

Another family of geometry based methods originated from the
work of Chin and Feiner [CF89]. Shadow volumes are considered
as unbounded convex polyhedrons represented by the three planes
spanned by a triangle’s edges plus its supporting plane. A BSP tree
is built over the shadow volumes using polyhedral set operations
to partition space into lighted and occluded regions. Triangles are
filtered through the structure and split into fragments along the par-
titioning planes. Fragments located outside any shadow volume are
added to the BSP tree by merging their BSP representation. Then,
the tree is used as an acceleration data structure to query the light
visibility from any point in the scene. Building the BSP tree requires
costly polygon/plane clipping operations. In addition, they generate
numerical precision issues and uncontrolled memory growth. As a
consequence, the idea was left aside because it lacks robustness and
efficiency, even on scenes of moderate complexity.
Gerhards et al. [GMAG15] revived the principle of partitioning
space with shadow volumes and managed to overcome previous
issues. They introduced a third child to the BSP nodes to store
intersected geometry, extending the BSP tree to a Ternary Object
Partitioning (TOP) tree. This change is the key to avoid clipping
operations. It solves robustness issues and makes the memory foot-
print predictable. This solution, latter refined with some optimiza-
tions [MGAG16], has interesting practical complexities. Indeed, the
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memory footprint of the TOP tree is O(n) for n triangles. Its traver-
sal is logarithmic with respect to n, and the method is shown to
be efficient up to 1 million triangles. Nevertheless, a TOP tree is
built in O(n logn), similarly to a simple sort. This inherently limits
the ability of this method to scale to larger scenes without losing
efficiency.
Our contribution allows to query the visibility with a similar
O(logn) complexity, but handles scenes with many more triangles,
using a new hierarchical structure having a lower complexity.

3. Algorithm overview

We briefly present the three different steps of our algorithm.

Clustering This is a preprocessing step. It is done once for each
model in the scene. Clustering is a proven solution to cope with the
geometric complexity. Triangles are grouped into clusters made of
up to 32 elements. Next the clusters’ bounding volumes are com-
puted. They must fit the geometry while remaining simple to mini-
mize memory consumption and to allow for an efficient use in next
step. Thus, we use spheres and capsules to represent each cluster.

Metric tree construction At each frame, we build a data structure
(a metric tree) using clusters rather than triangles to scale down
the geometric complexity. It encodes the occlusion generated by
the clusters’ bounding volumes. Seen from the light, spheres and
capsules become cones and capsule-cones. They are a conserva-
tive representation for the shadows cast by the triangles inside each
cluster. Contrary to Gerhards et al., who build a ternary object par-
titioning tree over the shadow volumes, we cannot rely on a similar
partitioning scheme because it does not apply to cones or capsule-
cones. Thus, we introduce a different approach based on metric
trees. It allows us to merge in a unified data structure the cones and
capsule-cones according to their angular distance.

Metric tree traversal At each frame, all the image points traverse
the metric tree to determine whether they are lighted or shadowed.
Each point is tested against the cone or capsule-cone stored in a
given node. If it is inside, a shadow ray from the point to the light
is tested for intersection against each triangle in the related cluster.
Otherwise the whole cluster is skipped and the traversal continues
in the node’s children until an intersection is found (the point is in
shadow) or until the leaves are reached (the point is lit).

Sections 4 and 5 detail these steps.

4. Clustering and bounding volumes

Clustering A first approach is to build a data structure similar to
Gerhards et al.’s one using clusters instead of triangles. Basically, if
the construction costs O(nlog(n)) for n triangles, a tree built on clus-
ters containing p triangles can be computed in O( n

p log( n
p )). While

this does not change the intrinsic complexity, clustering scales down
the computation time, allowing to handle models with a higher num-
ber of triangles. Our work does not depend on a specific clustering
algorithm, but the clustering quality may affect the method effi-
ciency.
Several methods exist to generate clusters of triangles. Variational
Surface Approximation algorithms [CSAD04] aim at fitting large
pieces of a mesh surface using as few proxies as possible, originally

with planes. Extending the proxy set with spheres or cylinders al-
lows to fit surfaces more efficiently [WLK05]. Our clustering aims
at producing small groups of triangles but we do not want to fit
their surface. We need to minimize their bounding volume. In a
ray-tracing context, Garanzha [Gar09] builds a BVH over clusters.
Triangles are grouped into spheres according to a heuristic that com-
bines their size and density using the mesh connectivity. Meister et
al. [MB16] use a hierarchical k-mean clustering on triangles to ac-
celerate the BVH construction on GPU. k-mean clustering naturally
adapts to the structure of the geometry and also tends to gener-
ate disk-shaped clusters on densely tessellated geometry. Since we
already work with non-deformable models, we do not want an addi-
tional constraint such as the connectivity required in [Gar09]. Thus
we opted for the k-mean approach.
First, k centers are chosen among the triangles to be clustered (ini-

Figure 2: Top: 1st level of the cluster hierarchy obtained by sorting
triangles along the Morton curve and grouping them into chunks.
Middle: the 2nd level of the hierarchy is obtained by applying k-
mean clustering on the previous level. This is applied recursively
until a given number of triangles per cluster is reached. Bottom: the
clusters of the last level are used to build our metric tree.

tially, the center of their bounding box). Meister et al. [MB16] select
centers randomly to minimize calculations. As we run our prepro-
cess on the CPU, we afford to choose centers in a more careful
way using k-mean++ [AV07]. Each center is chosen amongst a set
of candidates in order to maximize its distance to the others. This
improves the clusters distribution. After initialization, each element
is assigned to its closest center using the distance function proposed
in [MB16]. Centers are then replaced by the mean of all elements
attached to them. Several iterations of this process allow the method
to converge to a solution where clusters are defined by a center and
their attached elements. The operation is repeated recursively until
the number of triangles per cluster is less than a given value. The
computation time for the clustering is not really a concern since it
runs as a CPU preprocess. However to handle large models more ef-
ficiently, we introduce the following optimization: We first sort the
triangles in Morton order. Then, splitting the triangles buffer into
consecutive chunks produces a first rough clustering. In practice,
we use chunks of 512 triangles. Then we apply hierarchical k-mean
clustering on each individual chunk (Fig. 2) until the desired cluster
size is reached (up to 32). This process is much faster than applying
k-mean clustering from the start. Using a lower chunk size would
further reduce computation times, but this could degrade the clus-
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Figure 3: Bounding volumes of clusters. Left: Spheres are used
to bound clusters. Middle: Spheres fail at fitting elongated clusters.
Right: Capsules are best suited to elongated clusters.

tering quality.
When clustering is done, we compute the normal cone of each clus-
ter, i.e. the cone whose axis is the average of the triangle normals
and its opening is the maximum angle made between its axis and
all the triangle normals in the cluster (see Figure 4). Normal cones
are used to quickly cull useless clusters in Section 5.

Bounding volumes Once the clustering is over, we compute bound-
ing volumes enclosing each group of triangles. These volumes
should fit the geometry as tightly as possible to avoid over conser-
vative computations during the shadow computations. In addition,
it is advisable to use a compact representation with a fixed memory
footprint to remain efficient on the GPU due to the memory band-
width limitations. Common bounding volumes are Axis Aligned
Bounding Boxes (AABB) and Oriented Bounding Boxes (OBB).
However, we are interested in the occlusion that they cast from the
light. The AABB and OBB projective equivalent are frustums made
of planes according to the number of silhouette edges, i.e. 4 to 6
planes per cluster. First, this implies a variable memory footprint.
Second, other bounding volumes can be used with a fixed memory
footprint and a more compact representation.
Instead, spheres are an interesting alternative: They become cones
under projection from any direction and offer a compact and simple
representation. But they fail at always providing a good fit to the
underlying geometry, especially in the case of elongated clusters
(see Figure 3). In this case, we extend spheres to line-swept spheres
or capsules similarly to [LGLM99]. A capsule is a sphere extruded
along a line segment. Capsules lead to capsules-cones under pro-
jection from the light. In practice, we start by computing for each
cluster an OBB as in [GLM96], using the mean (µ) and covariance
matrix (C) of the triangle vertices. Given pi, qi and ri the vertices
of the ith triangle in the cluster, µ and C are expressed as :

µ =
1

3n

n

∑
i=0

(pi +qi + ri)

C jk =
1
3n

n

∑
i=0

(p′ij p′ik +q′ij q′ik + r′ij r′ik )

with n the number of triangles in the cluster, p′i = pi− µ, q′i =
qi− µ, r′i = ri− µ and C jk the elements of the 3 by 3 covariance
matrix. The normalized eigenvectors of the matrix C form the basis
of the OBB, and the extremal vertices along those axis define its
bounds. A capsule is used if the largest dimension of the OBB is
twice the length of any other dimension, otherwise a sphere. In the
latter case, we compute the smallest sphere [Gär99] enclosing the
triangle vertices inside the cluster. If a capsule is chosen, the triangle

vertices are projected on a plane orthogonal to the largest OBB
axis. Next, we compute the smallest circle enclosing the projected
vertices. This circle determines the position of the capsule axis as
well as the capsule radius. Finally, the length of the capsule axis is
set equal to the largest OBB extent.
Spheres and capsules may remain too conservative depending on
the geometric configurations. Larsen et al. also define rectangular
swept spheres (i.e a sphere convoluted with a rectangle) which may
provide better bounding volumes. However, such shapes are too
costly both in memory and calculation for our purpose. Instead we
compute two slabs per cluster to narrow their bounding volume. The
slabs are two parallel planes bounding the geometry along the axis
of the normal cone as illustrated by Figure 4. The combination of
slabs with capsules allows for a fitting of the cluster close to that of
an OBB, while requiring less memory space (48 bytes against 84
bytes for OBBs).

Figure 4: A normal cone is computed for each cluster to enable
cluster culling. Since spheres and capsules may be over conservative
when the cluster is seen orthogonally, two slabs are also computed
per cluster. The slabs are two parallel planes bounding the geometry
along the normal cone axis.

5. Metric tree construction

Seen from the light, a triangle becomes a shadow volume described
by four bounding planes. To partition the light space into visible
and invisible regions, this naturally leads Chin and Feiner [CF89]
to use a BSP tree, latter extended to a TOP tree by Gerhards et al.
This partitioning strategy is not suitable to our case: Indeed, our
clustering generates spheres and capsules, that become cones and
capsule-cones in the light space. We therefore rely on a metric tree.

5.1. Definition

Metric trees [Uhl91b,ZADB06] rely only on a given distance to par-
tition data in metric spaces. They are defined in any dimension and
are often used to answer similarity queries such as nearest neighbor
searches. Let O be a set of elements to be partitioned, and d a func-
tion measuring the distance between elements inO. ThenM(O,d)
is a metric space if the following conditions on d are met:

• ∀x, y ∈ O, d(x, y)≥ 0 (non negativity)
• ∀x, y ∈ O, d(x, y) = d(y, x) (symmetry)
• ∀x, y, z ∈ O, d(x, z)≤ d(x, y)+d(y, z) (triangle inequality)

A set of elements inside a metric space M can be arranged in a
metric tree in the following way: Each node of the tree contains an
element p associated to a distance δ. p serves as a pivot to subdivide
the domain into a near domain Sn and a far domain S f such as:
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Sn = {x ∈ O | d(p, x)≤ δ},
S f = {x ∈ O | d(p, x)> δ}.

Sn is the set of elements nearest than δ from p while S f contains the
elements farther than δ from p. Since our set is composed of vol-
umetric objects (cones and capsules-cones), they may overlap the
two sub-domains Sn and S f of a node. To address this problem, a so-
lution is to shift from a binary structure to a ternary one. Each node
receives a supplementary child So containing objects overlapping
both Sn and S f . Uhlmann [Uhl91a] first described a ternary struc-
ture when partitioning bounding boxes with a kd-tree. Gerhards et
al. [GMAG15] used a similar strategy to change a BSP tree in a
TOP tree to handle shadow volumes. In the same way, we extend
metric trees into ternary metric trees to handle volumetric objects.
The distance δ associated to a pivot p partitions the domain into
three sub-domains Sn, S f and So:

Sn = {o ∈ O | d f ar(p, o)≤ δ}
S f = {o ∈ O | dnear(p, o)> δ}
So = {o ∈ O | dnear(p, o)< δ < d f ar(p, o)}

where dnear(p, o) (resp. d f ar(p, o)) is the nearest (resp. farthest)
distance from p and any point of o. Figure 5 illustrates this process.

δ Sn
S f

So

Figure 5: Ternary partition according to the distance from an el-
ement. Left: The blue capsule serves as pivot and is associated to
the partitioning distance δ. Right: The related ternary metric tree:
Objects are partitioned into 3 sets according to their distance from
the pivot and δ.

5.2. Angular distances between cones and capsule-cones

To encode the occlusion created by our clusters from the light, we
build a ternary metric tree over the related cones and capsules-cones.
This requires a suitable metric. The Euclidean distance does not fit
since we are in the projective light space. Instead we use an angular
distance. In our case, the angular distance is the apparent distance
between two points as seen from the light. For an omni-directional
light source O, the angular distance between two points A and B is
the angle formed by lines (OA) and (OB):

d(A,B) = ÂOB

Given a sphere of center C and radius r, the related cone in light
space can be expressed as the set of points whose angular distance
from C is less than or equal to α = arcsin( r

OC ) (see Figure 6.a).
The capsule-cone case is slightly more complicated. Indeed, the ap-
parent size of a capsule from the light varies along its supporting
segment due to perspective (let us recall that a capsule corresponds

to a sphere extruded along a line segment ; then the radius of the
projected spheres varies). Thus, given a capsule of segment AB and
radius r, a point P is inside the related capsule-cone if its smallest an-
gular distance from X ∈ AB, is less than or equal to α = arcsin( r

OX )
(see Figure 6.b). To avoid time-consuming computations, we use a
conservative approximation based on the largest angular distance
subtended by the capsule. We find X on AB such as arcsin( r

OX ) is
maximum, which is equivalent to minimize OX (see Figure 6.c).
Intuitively, the apparent size of the capsule is the largest where the
capsule is the closest from the light. While this approximation over-
estimates the occlusion cast by a capsule, the benefit is worth the
cost because the calculations become much simpler and faster.
Both cones and capsule-cones are represented using a center ele-
ment (a point or a segment) and a fixed angular value. Then dnear

and d f ar are computed as follows:

dnear(V1,V2) = d(C1,C2)− (α1 +α2)

d f ar (V1,V2) = d(C1,C2)− (α1−α2)

where Vi is a cone or a capsule of center element Ci (either a point or
a segment) with angular value αi. Figure 7 illustrates the different
combinations. The ternary metric tree is built over the cones and
capsules-cones derived from the clustering step using these two
distances.

a)

C

O

r

α

b)O

β

αX1

X2r

r X1 X2

r r

c)O

O

α

αX1

X2

r

r

r r
X1 X2

Figure 6: Cone and capsule-cone representation. O is the light
position. The silhouette of the sphere/capsule as seen from O are
drawn in red. (a) Cone representation: Points within a cone have
their angular distance from the related sphere center C less than or
equal to α = arcsin( r

OC ). (b) The case of a capsule-cone is more
complicated: Contrary to a cone, the angular value of a capsule-
cone is not fixed. It varies along the capsule segment, because of
the projection. As an example, α > β because X2 is closer from
O than X1 (X1 and X2 being any points on segment AB). As seen
from the light (top right), the capsule appears larger around X2 than
around X1. (c) Conservative capsule-cone representation: We refer
to the largest angular distance of the capsule, where the capsule
segment is the closest from the light. It is as if the segment was
bent to a semicircle to compensate for the deformation due to the
perspective from the light (top right).

5.3. Building a ternary metric tree

Building a metric tree is similar to the quicksort algorithm. First, a
root node is created with a pivot chosen among the elements and a
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C1

C2

A
B

α1

α2

β

C

A

B

E

F

α

β1

β2

Figure 7: Near (in red) and far (in green) angular distances from a
cone (left) and a capsule (right). This illustration is seen from the
light. All distances are angular distances.

partitioning distance δ. Next, the remaining elements are distributed
in its different children according to their distance from the pivot
compared to δ. The process is repeated in the child nodes until no el-
ement remains. Previous works have investigated the two key points
of the construction: Choosing the pivot and computing δ. Usually,
the pivot is selected randomly to ensure a consistent construction
whatever the input data. Yianilos [Yia93] shows that selecting the el-
ement with the maximum distance to the others can be a slightly bet-
ter choice. However, it is also more costly to calculate. Ideally, the
distance δ associated to a pivot splits the remaining elements into
two sets of the same size. This is generally achieved by using the
median distance from the pivot to all the other elements [Uhl91b].
Determining δ using the median distance requires testing every el-
ement belonging to a given node. The cost is significant and linear
in the number of elements. While following a similar approach on
GPU is possible, synchronization is required at each stage of the
construction. This approach is too expensive to keep a good framer-
ate. Instead, we rely on a similar parallelization to Gerhards et al. ,
which is more GPU-friendly (we will see that this comes with some
drawbacks). The elements (cones and capsule-cones) are inserted
into the ternary metric tree independently of each other. A pool
of threads consumes a set of elements one by one. All concurrent
accesses are managed using atomic operations. In practice, each
thread takes the bounding volume of a cluster. At first, it is culled
according to its normal cone and the light position. If the culling test
is positive, the thread computes the cone or capsule-cone from the
bounding volume of the cluster. Next it is inserted into the tree from
the root node. According to its distance from the pivot, this process
continues with one of the three children. When a leaf is reached,
it is replaced by a new node containing the element as pivot. Ran-
dom pivot selection is done implicitly by the GPU’s scheduler. As a
drawback, computing the partitioning distance δ associated to each
pivot becomes complicated. Because of the concurrent insertions,
a pivot is the first element to reach a leaf. Thus, a median distance
cannot be computed since there is no other elements at this moment.
At this point, the domain partitioned by this new pivot is almost
unknown, and so is δ. Hence, we rely on the following heuristic: At
first, all the cones and capsule-cones have their partitioning distance
initialized to the angular value of the cone created from the bound-
ing sphere of the scene. Next, threads insert the elements from the

root node, and their partitioning distances are progressively refined
according to their path in the tree using the following rules:

1. When an element reaches a near child node, its partitioning dis-
tance is divided by 2.

2. Else its partitioning distance is unchanged.
3. If an element reaches a leaf, the latter is replaced by a new node

with the element as the pivot and its partitioning distance δ is the
value determined so far by the two previous rules.

Those rules are motivated by the following observations: We cannot
rely on the elements distribution, but we may have a few hints about
the regions that enclose them. Each node induces one region per
child node. The near region is bounded by a cone or a capsule-cone
(according to the pivot) whose angular value is δ, the partitioning
distance. The far region is the complement of the near region with
respect to the current node region. The overlapping region, whose
bounds are unknown at runtime, is located in the vicinity of the near
region boundary. Precisely, a node region is the intersection of all
the regions encountered along the path from the root to the node.
Obviously, this is too complicated to represent or to compute exactly.
This also prevents from using the solid angle of the node region
in a heuristic. Finally, the most explicit information corresponds
to the near regions. In this case we are certain that the region of
the inserted element is restricted to a cone or capsule-cone. As a
consequence, we narrow the partitioning distance of this element.
Figure 8 illustrates the near regions created from this partitioning
scheme. In any other case, our knowledge is too limited to make
a proper decision. Under such conditions, leaving δ unchanged is
better than doing a bad choice.
Thanks to those rules, computing δ becomes simple and efficient.
We also tried many other heuristics but none was worth its cost. We
will show in section 6 that our approach leads to a good trade-off
between the speed of the construction and the quality of the ternary
metric tree.

5.4. Traversal

A ternary metric tree is built at each frame. Then it is traversed
from its root node by each image point to determine its visibility
from the light. This operation is equivalent to tracing shadow rays.
But it is important to notice that we do not trace any ray through
our metric tree. As seen from the light, we find point locations
among disks and capsules. A non-optimized traversal algorithm is
straightforward. The following steps are applied for each node:

1. The angular distance α from the pivot to the point is computed.
2. If α is smaller than the angular value of the pivot, the image

point is inside the pivot: Thus, all the cluster triangles are tested
for occlusion. If an occlusion is found, the image point is in
shadow and the traversal ends at once. Otherwise, the traversal
continues.

3. The process is repeated in the overlapping child, plus the near
child or the far child according to the comparison of α with the
partitioning distance δ. The overlapping subtree is always visited
since it overlaps both the two other children.

Finally, the image point is lighted if the traversal ends without find-
ing any occlusion. Previous works suggested several optimizations
that can be applied or adapted to our different steps:
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Figure 8: For the clarity of this illustration, the overlapping nodes
are deliberately omitted. On the left, a partition built over cones and
capsule-cones as seen from the light, and the related metric trees on
the right. Dark colors correspond to pivots, and light colors to their
near region. The left (resp. right) child corresponds to the near (resp.
far) child node. Every time an element goes through a near/left child
node, the partitioning distance of this element is divided by 2. Top:
Initially, all elements have the same partitioning distance δ. The
orange elements do not meet any near child node, their partition-
ing distance δ remains unchanged. The purple elements pass once
through a near child node, thus their partitioning distance becomes
δ/2. Bottom: The gray elements go twice through a near child node,
their partitioning distance equals δ/4.

Step 1: It is useless to visit the current subtree if the image point is
closer from the light than any geometry in the subtree [MGAG16].
Thus each node stores the smallest (euclidean) distance from the
light for all the clusters in the related subtree. This allows to stop
visiting a subtree as soon as the image point is found closer from the
light than the stored distance. This smallest distance is computed
during the metric tree construction using atomic operations.
Step 2: When the geometry inside a cluster is tested for occlusion,
the shadow ray from the point is tested for intersection with each
triangle. This is costly since a cluster may hold up to 32 triangles
in our tests. Thus, we use the slabs precomputed in the clustering
step (see section 4) to add a yet conservative but more accurate test
similar to [KL10]. If the shadow ray is rejected by the slabs enclos-
ing the triangles, the whole cluster can be skipped safely without
accessing the geometry.
Step 3: Always visiting the overlapping subtree may be a source of
inefficiency [Uhl91a,GMAG15]. Thus, each node stores an interval
[min, max] corresponding to the extreme angular distances of the
elements contained in its overlapping subtree. This allows to visit
an overlapping subtree only if α ∈ [min, max].

6. Results

All our experiments are done on a NVIDIA GTX 1080 and Intel
i7700k CPU at a resolution of 1920x1080. To evaluate the scal-
ability of our approach, we use models from 1.8 to 73.8 million
triangles. Figure 10 presents our test scenes. Our algorithm is im-

Figure 9: Capsules always help to improve framerate. For exam-
ple, the fence used in RaptorPark is made of cylinders that gener-
ate elongated clusters. The two heat maps represent the number of
nodes whose triangles were all tested without finding any intersec-
tion. Left: Using only spheres to bound clusters is over conservative.
Right: Mixing spheres and capsules provides a tighter fit.

plemented using OpenGL 4.3 in a deferred rendering context. The
ternary metric tree is built in a Compute Shader, using persistent
threads to merge the input clusters in the tree. Per pixel queries run
inside a Fragment Shader using positions from the GBuffer. Pre-
computed data and the structure are stored inside Shader Storage
Buffer Objects. We compare our method with the PSV algorithm
from [MGAG16] whose implementation is publicly available. We
also compare to the algorithm by Wyman et al. [WHL15] using their
1 sample per pixel implementation available in NVIDIA’s Shad-
owLib [Sto16] (for simplicity we will use "ShadowLib" to refer to
this second method). At the end of this section, we also present a
supplementary comparison to GPU ray tracing using OptiX. The
comparison methods are tuned to deliver overall best performances
for each scene and each method. Front-face culling and light-view
frustum culling are always enabled. Comparisons are made during
a fly-through over the different scenes. Light-view frustum culling
benefits mainly to PSV because the number of triangles is a very
dominant factor for its efficiency. Figure 11 shows the computation
times per frame for each method and Table 1 sums up the results.
Performance analysis We focus on our algorithm behavior. The
first observation is that our method scales well the geometric com-
plexity contrary to the two previous methods. Thanks to the cluster-
ing, building the ternary metric tree remains efficient. The traversal
becomes the most costly part of the computations, from 2× to 3×
the construction cost, except for ManyModels which is used to push
the limits of our approach. A closer examination reveals the sen-
sitivity of our algorithm to the visual complexity because of its
geometry based nature. As an example, our algorithm is almost
as fast on xyzrgb_dragon (7.2M triangles) as it is on Birdfeeder
(1.8M triangles). It is even slower on Tentacles which has less tri-
angles (3.8M). But Birdfeeder and Tentacles cast more difficult
shadows than xyzrgb_dragon. This induces an overhead in the com-
putation times since our data structure reflects the view from the
light. This is also noticeable on Powerplant compared to Raptor-
Park or Lucy&Dragon. Another factor that can affect our results
is the ratio between the number of cones and capsule-cones. Ob-
viously, computing the angular distance from a cone is cheaper
than from a capsule-cone. Building the metric tree depends on the
number of clusters but also on this ratio. For example, this is high-
lighted on Tentacles whose construction is 4.47ms whereas it is
only 1.9ms on xyzrgb_dragon. Tentacles has even more clusters
than xyzrgb_dragon. But while the former has 38% of capsules, it
is only 0.5% for the latter. Nevertheless, using capsules and spheres
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always leads to better results than using only spheres (see Figure 9).
Comparison with PSV On Birdfeeder our approach does not really
improve over PSV. In this case, the model is too small (1.8M trian-
gles) to benefit from our clustering strategy. This is not the same
on the other scenes. The computation with PSV quickly increases
with the number of triangles. Above 10 million triangles, PSV starts
to struggle to remain real-time. The PSV traversal is very efficient
thanks to its logarithmic complexity, even on large models. But the
linearity of its construction dominates the overall performances and
it quickly becomes a serious bottleneck. Our approach avoids this
problem since our construction relies on clusters rather than individ-
ual triangles. On the other hand, our traversal costs more for PSV as
we must test an array of triangles when a point is located inside the
cone or capsule-cone of a cluster. While the related overhead lies
about 2× to 3×, it is more than compensated by our construction
which is 2× to 17× faster than the PSV one.
Comparison with ShadowLib The Irregular Z-Buffer is set to a
resolution of 20482 or 40962 according to the scene and the most
efficient settings. The dynamic reprojection optimization (see sec-
tion 2) is always enabled as it greatly improves the overall perfor-
mance, except for Birdfeeder where it is useless and thus disabled.
ShadowLib is less sensitive to the visual complexity than our ge-
ometry based method since it relies on rasterization. For example,
it is almost 2× faster on Birdfeeder or Tentacles. These are our
smallest models but they cast complex shadows. However, with big-
ger models, more triangles are conservatively rasterized over the
IZB, leading to more intersection tests with the samples lists. As a
consequence, the computation time of ShadowLib increases with
the geometric complexity. On xyzrgb_dragon (7.2M triangles) our
approach is on average 1.8× faster than ShadowLib. Powerplant
(12.7M triangles) has both a significant visual complexity and geo-
metric complexity. While our approach is sensitive to the first one,
ShadowLib is more sensitive to the second one. Therefore, the dif-
ference in speed is less important and the acceleration factor drops
to 1.17×. But it grows from 2.3× to 6.2× on the other models
(18.9M to 73.8M triangles) where ShadowLib becomes too sensi-
tive to the number of triangles.
Memory cost Our implementation uses 2 arrays: One to store the
clusters (64 bytes per cluster), the other to store the nodes (64 bytes
per node). Notice that this does not include the geometry: Each node
stores the index of the first triangle and the number of triangles in
its cluster. Thus, n clusters induce a total memory cost of 128× n
bytes. Since there is less clusters than triangles, this cost is moder-
ate. In Table 2, the first column summarizes the used memory for
each scene.
Metric tree quality: Our construction is fast because it is GPU
friendly and does not require intensive calculations. As a counter-
part we have to rely on a heuristic to choose the partitioning dis-
tances because of the limited knowledge about the domain to par-
tition (see section 5). To validate our approach, we carefully built
on the CPU a state-of-the-art ternary metric tree for each scene,
selecting pivots as proposed by Yianilos [Yia93]. Partitioning dis-
tances are computed using a median partitioning strategy. Indeed,
Uhlmann [Uhl91b] suggests that it is the best solution to obtain an
efficient structure, even though building a ternary metric tree is not
exactly the same as building a binary one. The CPU ternary metric
tree is loaded to the GPU memory and used to render shadows dur-
ing the fly-through. For these tests, we use a stationary light source

since the CPU structure cannot be built at each frame. To evaluate
the quality of the trees, we compare the traversal of the GPU struc-
ture to the traversal of the CPU one. The second column of Table 2
gives the worst performance ratio we obtained during the traversal
compared to the CPU build. In the worst case, our structure is only
17.8% to 10% slower than the CPU one according to the scenes.
This shows that our GPU build provides a good trade-off between
the speed of the construction and the quality of the structure.
Clustering times The last column of Table 2 indicates the time
spent to preprocess each scene. Since clustering speed is not crucial,
our CPU implementation runs on a single core. It could probably
be improved or implemented on GPU. Nevertheless, the timings are
far from prohibitive.
Comparison with OptiX The clustering step prevents our approach
from applying to deformable models. In this case, ray tracing be-
comes an alternative to render pixel-accurate shadows as the ac-
celeration structure does not have to be built from scratch at each
frame. The last column of Table 1 shows the time spent to trace
shadow rays using OptiX (5.1). Our approach delivers better per-
formance on the first 3 scenes (Birdfeeder/Tentacles have complex
shadows, shadow rays are less coherent). OptiX is notably efficient
on Powerplant (3.4×) since the shadow rays avoid entering the main
building that contains most of the geometry. Next, OptiX remains
faster (from 1.1× to 2.5×) and more stable, reaching 205M rays/s
on average. The last column of Table 2 gives the memory consump-
tion for OptiX. Our approach uses much less memory (3× to 16×
less) except on RaptorPark where OptiX takes advantage of instanc-
ing (we did not implement instancing for our method but it would
be possible). However, we have to recall that our memory cost is
per light source.
Discussion and limitations Our method naturally handles omni-

directional light sources in a single pass. This remains an advantage
compared to rasterization based techniques that may require up to
6 passes to cover all directions. We can also support directional
light sources: In such a case, spheres and capsules are extruded
along the light direction, leading to cylinders and line-swept cap-
sules. Thus the ternary metric tree can be built using the euclidean
distance between those volumes instead of the angular distance. We
have also tested this specific case which is slightly faster than the
omni-directional case because shadows do not spread so much and
calculations are simpler. The same kind of improvement can be ob-
served using ShadowLib because less view points are in shadows.
As noticed in the introduction of this paper, our method can handle
dynamic geometry but only under rigid-body transformations since
the clustering is a preprocessing step. Nevertheless, we believe this
is not a hard constraint since freely deformable models of tens of
millions of triangles are not so common. Clustering is a NP-hard
problem, we cannot think of doing it dynamically at each frame
with such a number of triangles. Finally, as long as the triangles
in a cluster are transformed without going out of its bounding vol-
ume, our method would still work. This could help to handle more
general geometric transformations but it would require additional
computations because the normal cone of clusters would be com-
puted again as well as their slabs.
As stated in section 4, the construction of a ternary metric tree re-
mains O(nlog(n)), except that n is a number of clusters instead of
a number of triangles. At some point, too many clusters will lead
to a drop of efficiency. The number of clusters can be limited by
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Figure 10: Top row: Birdfeeder (1.8M triangles) casts complex and regular shadows. Tentacles (3.8M triangles) casts complex but irregular
shadows. xyzrgb_dragon is a single mesh made of 7.2M triangles. Powerplant (12.7M triangles) is a serious challenge for geometric shadow
algorithms. It is mostly made of a tangle of pipes. Bottom row : Dragons (18.9M of triangles) is made of 8 tessellated dragons. RaptorPark
(30M triangles) gathers 30 tessellated raptors surrounded by fences made of elongated triangles. Lucy&Dragon, with 35M triangles, is a big
scene for a real-time context. ManyModels is made of 73.8M triangles and allows to push the limits of our method.
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Figure 11: Comparing timings between our method, PSV and ShadowLib during a fly-through of the scenes. On the smallest model, our
approach does not significantly improve over PSV. It is also slower than ShadowLib which is less sensitive to the shadow complexity thanks to
the rasterization. But as the number of triangles increases, our approach becomes more efficient than PSV and ShadowLib. Up to 35M triangles
(Lucy&Dragon, acceleration factor varies on average from ×1 to ×5.96 wrt PSV and from 0.48 to 3.22 wrt Shadowlib. On ManyModels, our
biggest scene, our approach remains below 33ms, where ShadowLib is barely interactive and PSV is not real-time anymore.

increasing the number of triangles per cluster. As a drawback, this
will lead to an extra cost during tree traversal because more trian-
gles will be tested for intersection if a point is occluded by a cluster.
Between 10M to 20M triangles, our tests (see Table 1) show that
16 triangles per cluster is a good balance. Above 30M, 22 triangles
per cluster is a better choice. At some point, too many triangles per
cluster will also lead to a drop of efficiency. However, our method
already supports very large models. It is especially true with highly
tessellated meshes thanks to the clustering efficiency.
Contrary to PSV or ShadowLib, our approach is able to scale with

the geometric complexity. Compared to GPU ray tracing, our mem-
ory cost is better (yet linear in the number of lights) but we are
slower, except on the first 3 models. Thus, GPU ray tracing remains
an interesting choice in practice. But our results are promising since
ternary structures applied to rendering are very little explored. Tak-
ing advantage of the metric tree to enable anti-aliasing may also be
more efficient than super-sampling.
Even though geometry based algorithms produce pixel-accurate
shadows, they remain subject to aliasing artifacts. Addressing this
problem requires to consider the pixel’s vicinity visibility. Seen

submitted to Eurographics Symposium on Rendering - EI&I (2018)



10 F. Deves & F.Mora & L. Aveneau & D. Ghazanfarpour / Scalable real-time shadows using clustering and metric trees

Ours PSV ShadowLib OptiX
Clust. size Metric tree Traversal Total TOP tree Traversal Total Total Traversal

Birdfeeder (1.8M) 5.41 1.66 5.72 7.39 4.54 2.6 7.18 3.54 10.36
339k clusters, 12% of capsules 0.73 / 1.92 3.25 / 7.97 5.08 / 9.75 2.39 / 6.15 1.85 / 3.7 5.0 / 9.44 2.49 / 5.12 7.23 / 13.10

Tentacles (3.8M) 5.46 4.47 7.16 11.64 10.10 4.79 14.89 6.39 13.23
700k clusters, 38% of capsules 2.90 / 7.72 3.0 / 12.22 7.82 / 17.31 6.42 / 13.13 2.37 / 6.58 9.76 / 19.1 5.14 / 10.02 5.8 / 26.03

xyzrgb_dragon (7.2M) 11.62 1.90 6.23 8.13 16.24 2.68 18.93 14.71 9.54
621k clusters, 0.5% of capsules 0.55 / 2.88 1.03 / 11.36 1.80 / 13.99 6.40 / 25.70 0.69 / 4.90 7.34 / 28.17 10.75 / 20.22 3.08 / 14.72

Powerplant (12.7M) 15.6 5.35 16.40 21.75 30.01 7.52 37.53 25.64 6.21
817k clusters, 21% of capsules 0.60 / 7.65 6.58 / 32.63 7.21 / 38.67 8.18 / 47.79 3.31 / 12.11 11.68 / 55.72 17.86 / 35.43 3.88 / 8.54

Dragons (18.9M) 16.8 4.05 11.56 15.61 49.67 4.91 54.58 36.84 13.34
1.12M clusters, 1% of capsules 1.69 / 5.92 6.33 / 17.46 10.84 / 22.81 44.27 / 59.47 2.43 / 8.01 47.31 / 62.84 21.78 / 46.45 6.73 / 20.64

RaptorPark (30M) 22.6 6.50 12.35 18.85 76.83 3.63 80.47 60.76 10.21
1.32M clusters, 1% of capsules 4.39 / 8.64 8.42 / 16.61 13.84 / 23.96 56.54 / 99.76 2.38 / 4.94 59.68 / 103.72 48.89 / 87.15 7.03 / 14.73

Lucy&Dragon (35.2M) 22.8 5.85 12.02 17.88 102.30 4.38 106.68 52.66 11.2
1.54M clusters, 1% of capsules 1.82 / 7.59 3.64 / 20.21 8.49 / 27.27 27.55 / 120.88 1.13 / 8.57 30.79 / 128.87 43.81 / 83.71 4.64 / 18.04

ManyModels (73.8M) 22.1 13.61 11.53 25.14 - - - 138.76 10.08
3.34M clusters, 1% of capsules 8.81 / 16.98 5.49 / 18.72 19.135 / 32.23 - / - - / - - / - 99.93 / 244.18 5.311 / 17.949

Table 1: Average rendering times measured over a fly-through of the scenes. For each scene, we indicate the number of clusters with the
capsule percentage used by our method. Ours: The first column is the average number of triangles per cluster. The "Metric tree" and "Traversal"
columns detail the times spent to build and to traverse the metric tree. The "Total" column is their sum. PSV: The "TOP tree" and "Traversal"
columns gives the times spent to build and to traverse the TOP tree. The "Total" column is their sum. ShadowLib: Timings obtained with the
implementation of [WHL15].

Mem size Worst % Clustering Mem size
Ours CPU Time OptiX

Birdfeeder (1.8M) 43.4 Mb 89.3% 6.3s 171 Mb
Tentacles (3.8M) 89.6 Mb 90.6% 15.1s 359 Mb
xyzrgb_dragon (7.2M) 79.5 Mb 86.2% 17.2s 676 Mb
Powerplant (12.7M) 104.5 Mb 88.1% 33.5s 1.21 Gb
Dragons (18.9M) 143.4 Mb 86.0% 32.0s 444 Mb
RaptorPark (30M) 168.9 Mb 90.3% 44.9s 93 Mb
Lucy&Dragon (35.2M) 197.1 Mb 84.5% 64.5s 3.32 Gb
ManyModels (73.8M) 427.5Mb 82.2% 134.8s 4.31 Gb

Table 2: Additional statistics. First column shows the used memory
for storing both the clusters and the metric tree on the GPU. Second
column indicates a quality comparison of our GPU construction
with respect to a CPU one, built using a state-of-the-art strategy. The
percentages are the worst performance ratio between the traversal
of the two structures. Third column depicts the time spent to cluster
each model on the CPU.

from the light, this area could be bounded with a cone. Filtering
that cone through the metric tree would provide the geometry that
visually overlaps the pixel region. Then, sampling this geometry
similarly to [WHL15] would produce anti-aliased shadows. As met-
ric trees rely on distances, it would also be interesting to use dis-
tances to the closest occluder similarly to ray marching to enable
cheaper anti-aliasing or to create approximate soft shadow effects.

7. Conclusion and perspectives

Real-time shadow algorithms in object space fully rely on geometry.
This is why they are accurate and render high quality shadows. As
a drawback, they struggle with the geometric complexity and their
scalability is restricted. To solve this problem, our new algorithm,
although limited to non-deformable models, is both geometry based

and scalable. Our approach uses clusters in light space to build a
ternary metric tree which is then traversed by the image points to
compute their visibility from the light. While clustering is a com-
mon yet efficient solution to cope with the geometric complexity,
metric trees are unusual in the context of rendering. They provide a
flexible way for partitioning the clusters according to their apparent
distance from the light. Our results show that our approach remains
efficient even on very large scenes. There is probably still room for
improvements. We compute a hierarchical clustering but we only
use the last level of this hierarchy to build the ternary tree. It may
be interesting to use the full hierarchy to build nested ternary met-
ric trees and progressively refine the shadows from a coarse level
to a finer grain. This may also give the opportunity to develop an
approach using level of detail. At last we believe that metric trees
could provide an original approach for solving other problems such
as ambient occlusion for example. While building a metric tree us-
ing a median strategy is too costly to efficiently handle dynamic
geometry, our work shows that we can think about other strategies
to quickly build such a structure without making an important sac-
rifice in quality.
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