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The macroscopic behavior of pantographic sheets depends
mainly on their microstructure: experimental evidence and
qualitative analysis of damage in metallic specimens

Abstract Recently the exotic properties of pantographic metamaterials have been investigated, and various
mathematicalmodels (both discrete and continuous) have been introduced.However, the experimental evidence
available up to now concerns only polyamide specimens. In this paper, we use specimens printed usingmetallic
powder. We prove experimentally that the main qualitative and quantitative features of pantographic sheets
in planar deformation are independent of the constituting materials, at least when they can be regarded as
homogeneous and isotropic at micro-level. Of course, the absolute value of Young’s modulus of constituent
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material affects the overall reaction force needed to the hard device to impose a given displacement: A first
investigation on this effect is also attempted.

Keywords Pantographic structures · Additive manufacturing · Tomography · Generalized continua

1 Introduction

In this work, we investigate the mechanical properties of metal-printed specimens of a promising micro-
structured material, referred to as pantographic metamaterial. It is remarkable that this substructure results in
a material with an exotic macroscopic behavior which can be subjected to large deformation while remaining
in an elastic regime [1–4]. Notably, the design of the microstructure has been conceived so that its deformation
energy depends on the second gradient of the displacement [5–12]. Morphologically, the substructure can
be described as a double array of mutually orthogonal beams, also called fibers, interconnected by elastic
cylinders at intersection points, also called pivots [13,14]. This survey, specifically, focuses upon reporting
and analyzing the results gathered from extensional tests performed on two different samples of specimenswith
pantographic substructure which consist of (1) three aluminum-printed specimens and (2) four steel-printed
specimens, respectively. The experiments establish the fulfillment of the so-called BIAS extension test for all
the specimens. (This test is specifically called BIAS extension and not only extension, because it is performed
along a biased direction respect to the fiber direction.) In addition, some of the tests include several load–
unload cycles with increasing amplitude as well as compression loading. It is notable that the experimental
evidence for pantographic sheets gathered up to now concerns only specimens printed in polyamide, and it
was immediately evident that it is necessary to extend the available collection of data to specimens constituted
of different materials.

Earlier investigations had given the motivation to a series of papers (see, e.g., [13,15–17]) in which
the problem of determining the main exotic properties of pantographic metamaterials has been carefully
investigated. Various mathematical models have also been proposed, with the aim of finding a reasonable
compromise between predictive capacity and computational feasibility. The models introduced up to now can
be classified into two types (1) discrete, as in [13,16,18–21], wherein a finite set of rotational and extensional
springs are introduced to describe the complex deformation phenomenon occurring in the microstructure, and
(2) continuous, as in [13,19,22–24], which can be further distinguished into purely continuous ones, wherein
generalized plate models are used (of the same kind of those proposed, e.g., in [25–29]) and into hybrid
discrete/continuous ones, wherein beams (i.e., 1D continua) form lattices by means of interconnecting pivots
placed at finite distances (see [30–35]).

The relationship between discrete and continuousmodels can be established via homogenizationmethods as
mentioned in [5,7,13,30,36–41]. Also, interesting results have been found in statistical mechanics which prove
how, using precise mathematical argument, fluid continua can be derived from discrete microscopic system
via homogenization methods (see, e.g., the reviews [42,43]). However, we remark that the standard procedures
used in [44,45] cannot be used when three point interactions at micro-level are not negligible or when relevant
bending energy arises in beam lattices. In spite of the relevant and rigorous results obtained in homogenizing
microscopically inhomogeneous systems (also when thermal phenomena are involved), for systems which
are fluids macroscopically as shown, e.g., in [46–49], as well as for different classes of biological systems,
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see, e.g., [50,51]), the problem of homogenizing macroscopically solid behavior remains open if rigorous
reasonings of statistical mechanics are to be employed. Therefore, heuristic methods, including mixed micro–
macro- and ad hoc phenomenological approaches, are expected to play a relevant role in the modeling of the
structured media which we consider here.

In the research which we describe in this paper, it was possible to use specimens printed using metallic
powder. Some of the latest techniques collected under the name of additive manufacturing (AM) have been
employed whose challenge was to fabricate the specimens with well-refined pantographic substructure. We
are aware of the fact that the obtained micro-material cannot be regarded to have the same micro-mechanical
properties as the material obtained by a melting process. The SEM views in Fig. 12 clearly show that at length
scales much smaller than the beam cross-sectional size, the material appears to have a porous microstructure;
hence, the classical continuum Cauchy model cannot describe its complex deformation phenomena. In view
of the above, granular micro-mechanical models should be employed in order to consider the granular nature
of the constitutive material [52–59]. Here, we show based upon experimental measurements that the main
qualitative mechanical properties of pantographic sheets (considering planar deformation) appear to be inde-
pendent of the particular constituting materials. Further these mechanical properties can be described mathe-
matically if these materials, at micro-level, can be suitably modeled as being homogeneous and isotropic.
In this paper, a first investigation is described to evaluate the elastic range in BIAS extension tests, the
resilience to imperfection and micro-damage and nonlinearity, rupture mechanisms and ultimate failure of
considered novel metallic specimens. Comparisons are made between specimens fabricated from aluminum
and steel, respectively, remarking upon the similarities and differences in their exotic mechanical properties.
These observations are further compared with the ones exhibited by polyamide specimens. A preliminary
interpretation of the results, considering the existing theoretical model for pantographic structures, is also
described.

2 Additive manufacturing of steel and aluminum specimens

Recent advancements in the technical capability of production and designing processes permit fabrication
of materials having specific microstructures at small length scales, which have the ability to strongly con-
dition the macroscopic mechanical behavior of the material. The fabrication of the pantographic structure
considered herein, and other complex geometries, can be now realized using “3D printing,” also referred to
as additive manufacturing (AM). For example, selective laser sintering (SLS) have been already employed for
the production of the lattice structures in [60,61]. 3D printing is used to create objects with complex shapes
in layer-by-layer manner utilizing some precursor constitutive material. Most 3D printing processes employ
wires or powders made up of metallic or polymeric material which assume the designed shape by interacting
with an energy source. For fabrication with 3D printing, the object must be designed and its three-dimensional
geometry generated using a CAD software. The geometry is then discretized into a triangular/tetrahedral
mesh and saved in the form of stl file. Such a file is then used as an input for an AM software where the 3D
geometry is sliced into layers, whose thickness can be set according to the needed resolution and machine
capabilities, and the object to be built is positioned on the building platform. Before the printing process can
start, it is necessary to design the supports which connect the object to the building platform and take on the
functions of (1) supporting the part during the printing process, (2) dissipating heat and (3) avoiding thermal
distortion. The particular case of metal additive manufacturing requires a specific care to the minimization
of overhanging areas where overheating zones usually are located and provoke a deterioration of surface
roughness.

The so-called powder bed processes are certainly the most promising among the AM techniques. This
category includes the selective laser melting (SLM), also called laser beam melting (LBM), and electron beam
melting (EBM). The production process employs a laser (or electron) beam to melt a thin layer of powder.
A resolution can be defined for such a process based on the size of the laser beam, being usually in the
range between 50 and 100µm, and the height of the powder layer, being in the range between 20 and 50µm.
Generally, the overlapping of hundreds of welding beds (200–300µm in width) is needed to build a part
(about 500m of bead/cm3), and the melting process is performed under shielding inert gas in order to prevent
the oxidation of the powder. The shapes which can be built are complex and the objects, typically, have a
satisfactory mechanical behavior.



2.1 Manufacturing of steel pantographic structures

In this survey, the SLM125HL setup from SLM solutions has been used to create the pantographic structure.
This machine is equipped with a 400W YAG laser (YLR-400-WC) at a wavelength of 1070nm. Scanning
speed varies from 400 to 1500mm/s, while the thickness of the powder layer is in the range between 30 and
100µm.Theminimumdiameter of the laser at the focus point is about 70µm.Thepowder employed is the 316L
stainless steel having spherical particles whose least diameter size is 37µm (CILAS 920). Asmentioned above,
the manufacturing of the part is preceded by the proper positioning of the 3D geometry in the printing volume
using the MAGICS—Materialise software. As depicted in Fig. 1, the specimens were positioned orthogonally
to the building platform even though a tilt angle of 45◦ would have been preferable for the realization of the
pivots. Despite the significant technological achievements represented by such manufacturing technologies,
one has to consider that the objects obtained are very sensitive to the location and the number of supports whose
inadequate positioning could result in widespread microstructural flaws. Furthermore, the rough surfaces in
Fig. 2a, b indicate the possibility of appreciable porosity which, however, potentially can be suppressed by
heat treatments such as hot isostatic pressing (HIP), resulting in almost fully dense metallic alloys. (Such
postprocessing was not performed on the samples presented in the next sections.)

2.2 Manufacturing of aluminum pantographic structures

The following investigations were conducted with a commercial LBM system (EOS M 400), equipped with
a 1kW laser unit (YLR series, CW laser, wavelength 1070nm). All objects were manufactured of AlSi10Mg

Fig. 1 Manufactured steel samples

(a) connection at the middle of the sam-
ple.

(b) connection at the external point of the
sample.

Fig. 2 SEM view of the beam pivot connection after tensile testing



Fig. 3 Example of a basic exposure strategy (stripe strategy) and exposure areas. D: Downskin; U: Upskin; I: Inskin; O: Overlap;
Blue: Contour exposure (color figure online)

Fig. 4 Lamellas manufactured by a single laser track per layer, showing the impact of inertia (left sides) and interrupt delay (right
side). Left to right: increasing energy density

(PSD: D10: 12.28µm; D90: 43.22µm) processed in 90µm layers under the influence of a heated building
platform (165 ◦C). A shield gas flow was applied parallel to the top layer of the powder bed to remove any
side products arising from the welding process.

General exposure strategy The process control and resulting material characteristics are intricate due to the
incremental creation of material. An exposure strategy (arrangement of laser tracks) is necessary to create a
volume using a spot-like energy source like a laser beam. The exposure strategy in combination with exposure
parameters like laser power and exposure speed defines the material microstructure and therefore its character-
istics. Due to different thermal boundary conditions, a part is usually divided into areas of different parameter
settings (see Fig. 3). Areas in a surrounding of low thermal conductivity (e.g., powder) require different param-
eter settings compared to areas with increased thermal conductivity (e.g., surrounding solid material) in order
to create a material of high quality (regarding factors like porosity, homogeneity or microstructure).

Laser track characteristics Usual exposure speeds for the processing of AlSi10Mg can reach 2000mm/s. The
switch on/off time of the laser unit can take up to 50µs. Therefore, the full laser power is reached after a
distance of ∼ 0.1mm. This distance can also be impacted by delays in the electronics controls. This effect can
cause different ending points for the laser track (see interrupt delays in Fig. 4). A second effect can be caused
by the physical inertia of the projectors mirror, which is resulting in a lower exposure speed in the beginning
of the track and therefore in a higher energy input.

Part orientation A proper orientation of a part within the building volume is essential to its quality and error-
free producibility. Acute angles between the building substrate and the part’s surface require a support structure.
This is due to the residual stress within the material resulting from the rapid cooling rates [62]. Without any



Fig. 5 Pantographic sheet with a beam diameter of 1mmmanufactured of AlSi10Mg. Bottom: Sample manufactured by standard
manufacturing parameters. Top: Sample manufactured by adapted exposure parameters and strategy

connection of the part to the substrate, the part would deform within the process causing the coating unit to
jam. Furthermore, surfaces with an acute angle result in a poor surface quality regarding roughness, surface
cracks and surface porosity. Therefore, it is advisable to avoid part orientations with major surfaces of an acute
angle.

Adapted manufacturing parameters for a metamaterial The pantographic sheet was manufactured in a 45◦
angle rotated around its axial line in order to prevent any acute angles. All surfaces show therefore a 45◦ angle
toward the substrate plate. A further advantage of this orientation is that the exposure cross section within a
layer offers more surface than the actual beam cross section and therefore enables longer laser tracks. As a
second measurement, a setup of a single exposure area was applied within the lattice. In order to increase the
laser track length to a maximum, circular laser tracks were applied instead of a stripe strategy. Furthermore, the
exposure speed was minimized, which also required an adaption of laser power and hatch distance (spacing
between laser tracks). As a result, it is possible to manufacture the pantographic sheet without any visual
damage. A comparison of standard parameters and the adapted manufacturing parameters is illustrated in
Fig. 5. The specimens were manufactured under the same building orientation.

3 Tomographic analyses on aluminum samples

3.1 Micro-X-ray CT imaging

A ZEISS micro-X-ray CT machine was used to acquire the images (ZEISS Xradia 410 Versa 2018). This
machine uses X-rays to map the microstructure of an object at micrometer to millimeter scales. The imag-
ing modality works on the principle of density contrast. That is, the X-rays would transmit through the
sample such that the areas where less X-rays get through are the denser parts and the areas where more
X-rays get through indicate less dense parts in the materials. The 10× objective was used to image the sam-
ples which results in a digital image with a square field of view of side ∼ 1.5 × 103µm and pixel size
∼ 0.86µm/pixels. A total of 1441 images at the frequency of 4 images per degree of rotation were acquired
for tomographic reconstruction. The overall imaging time varied from 8 to 12h depending on the exposure
time per image. Subsequently, using the Reconstructor software, the images acquired were assembled as a
3D structure shown in Fig. 6. The reconstructed 3D structure has a voxel size of 1.72 × 1.72 × 1.72µm3.
A visual inspection of the reconstructed structure reveals a smooth internal texture for the aluminum with
spherical pores of varying sizes. This observation is not unexpected since the SLM process was used for its
fabrication.



Fig. 6 Reconstructed 10× Aluminum

Fig. 7 Selected sections in xy-, xz-, yz-planes and the 3D solid, of the original reconstructed μXCT image for aluminum
specimen, showing irregular boundaries

3.2 Avizo 3D analysis

Porosity analysis was performed using thewizard and image segmentation tool ofAvizo (Avizo 9.5.0 software).
To ensure that the segmentation tool could identify the interior pore spaces, the reconstructions were cropped
down to cubes to avoid the irregular boundary effects. Figure 7 illustrates the boundary irregularity in the
original reconstruction for aluminum specimen, shown as selected sections in xy-, xz-, yz-planes and the 3D
solid, respectively. Multiple cubical samples were taken from different locations of the original reconstruction
to ensure that the major topographic features (i.e., pore spaces) of the original reconstruction were represented.
Figures 8 and 9 give three instances of the cubical samples for aluminum specimen of size 400 × 400 × 400
voxels shown as selected sections in xy-, xz-, yz-planes and the 3D solid, respectively. The cubical sample
sizes were predicated by the original cross-sectional dimensions of the beam specimens and their orientation
in the xy-plane. Avizo’s segmentation tool was used to define the labels of the material volume versus the pore
volume in the cropped cubical samples. Once the areas were defined, Avizo’s label analysis tool was used to
calculate the image statistics. The porosity analysis wizard was also used to obtain the pore size distribution.
Porosity is defined as the ratio of the pore volume to the total volume. The average porosity of the aluminum
specimen was found to be 6.54%. For aluminum specimen, the maximum pore size varied from 167.7 to
194.8µm, while the median pore size ranged from 4.8 to 7.7µm for the three cubical samples. Figures 8 and 9
show that the pores in these specimens are mostly spherical.

4 Aluminum-printed structures

Extensional tests were performed on three aluminum-printed specimens of pantographic structure. The
microstructure of the aluminum samples is described by the parameters shown in Fig. 10 whose values are
reported in Table 1. The force versus displacement graphs are obtained by testing the specimens in a so-called
BIAS extension test which can be experimentally performed by clamping one of the two sides of the sheet
and imposing a longitudinal displacement to the other side. Herein we analyze the behavior under extension



Fig. 8 The columns give selected sections in xy-, xz-, yz-planes and the 3D solid, respectively, for three cubical samples (rows)
cropped from the top, mid- and lower regions of the original reconstructed μXCT image for aluminum specimen

Fig. 9 Pore structures with the three cubical samples cropped from the top, mid- and lower regions of the original reconstructed
μXCT image for aluminum specimen. The mostly spherical shapes of the pore spaces can be readily seen

of the three samples in order to determine (1) their elastic range, (2) the incipient plasticity and (3) the ensuing
the damage and failure process. According to the prescribed experimental test conditions, three types of bias
tests were performed as summarized in Table 2. The first type of test was designed to evaluate the elastic range
of considered specimens. For this aim, cyclical extension tests were performed with loading and unloading
phases, on specimen designated as sample A. The complete loading history of the test is depicted by the plot
in Fig. 11, but we will show each stage of the experiment separately. In Fig. 12a, b are shown the force–
displacement plots corresponding with the first two load cycles performed on sample A. A fist stretch step
of 1 mm is prescribed, and subsequently, a second load step up to 2mm is applied. At the end of each step,
the unloading phase follows. The deformation rate is 0.1mm/s to ensure that no inertial contribution occurs.
The plots in Fig. 12 clearly show that the trend of both curves is linear, highlighting a direct proportionality
between reaction force and imposed displacement. Furthermore, in both graphs the loading and unloading



Fig. 10 Geometry and microstructure parameters

Table 1 Fibers and pivot dimensions are measured in millimeter, and angles are measured in radiant

bb hb dp h p L l ϑ∗ p

1.0 0.6 0.9 3.0 210 70 π/2 4.85

Table 2 Tests performed on aluminum specimens

Type of test Cyclic test Destructive Deformation rate (mm/s)

Sample A Extension Yes Yes 0.1
Sample B extension No Yes 0.33
Sample C extension Yes Yes 0.05
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Fig. 11 Displacement versus time plot describing the load history applied to aluminum specimen A

phases almost coincide suggesting a linear elastic behavior. After this cyclic phase, sample A is stretched until
complete rupture. As shown in Fig. 13a, a linear stage can be considered up to 3mm of elongation, while in
Fig. 13b we can notice the initiation of a nonlinear stage. Looking at the whole BIAS extension test on sample
A shown in Fig. 14, it can be observed that the mechanical behavior is elasto-plastic with strain hardening
until a maximum in the reaction force is reached. This can be really observed by unloading the structure and
showing that the deformation has been irreversible (see Fig. 21). After that, a softening part occurs before the
first rupture. The first rupture event is related to the collapse of one of the external pivots highlighted in the
circle in Fig. 15 that are located at about 1

3 L . In the following, we will give an interpretation of this event on
the basis of some specific mechanism similar to the ones studied in [63]. Despite this rupture, the specimen
still exhibits a certain load capacity, as at least other three breakages occur before the total failure. In Fig. 16,
the failure sequence is shown: Every frame displayed corresponds to a rupture point beyond the first break in
the graph.



Fig. 12 Load–unload cycle on aluminum sample A

Fig. 13 Limit of elastic range of aluminum sample A

Fig. 14 Entire extensional test graph of aluminum sample A

We next compare the described results (sample A) to the ones relative to the second sample (sample B).
Sample B has been stretched until complete rupture without a previous cyclic test, at a deformation rate of
0.33mm/s (see Fig. 17). Although for sample B, the elastic phase has not been determined specifically, it is



Fig. 15 Aluminum sample A first break

Fig. 16 Aluminum sample A all breakages
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Fig. 17 Displacement versus time plot describing the load history applied to aluminum specimen B

possible to recognize a linear part of the force–displacement curve. The plot shows an overall strain hardening
behavior and a softening branch before the first rupture. After the proportionality limit (settled by hypothesis—
by comparing the plot in Fig. 18 with the result observed for sample A—at 2mm of stretch), the trend becomes
nonlinear for higher displacement values, exhibiting strain hardening. For sample B, the softening seems to
trigger at 8mm of elongation and progresses gradually till complete rupture. It is interesting to compare the
behavior of samples A and B. It is clear that the shape of the two curves is very similar, and likewise sample
B, also sample A has an initial linear part that corresponds to a linear elastic behavior. Despite a very similar
overall trend, there are significant differences between the two specimens (Fig. 19). The most obvious is the
resistance, in terms of reaction force provided, and the capability to deform. Figure 20 shows that sample B
begins to soften much earlier (before 10mm of displacement) compared to sample A, which stretched twice
as much before the commencement of damage softening.



Fig. 18 Entire extensional test graph of aluminum sample B

Fig. 19 Aluminum sample B first break

Fig. 20 Comparison between bias test results on sample A and B

We now present the results relative to sample C, subjected to a cyclic extension test. This experiment was
designed to examine the behavior beyond the elastic limit of considered specimen. SampleChas been submitted
to a higher number of load–unload cycles as given by the graph in Fig. 23. The first two cyclic phases, which



Fig. 21 Two load cycles applied on aluminum sample C

Fig. 22 Cyclic test and stretch until failure of aluminum sample C
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Fig. 23 Displacement versus time plot describing the load history applied to aluminum specimen C

prescribe an elongation up to 2mm and unloading and subsequently an elongation up to 4mm and unloading,
are summarized by the force–displacement plot in Fig. 21. In first stage, the force–displacement relation is
linear (see Fig. 21) up to an elongation of about 1mm; after that, a nonlinear stage starts. The subsequent
cycles are carried out beyond proportionality limit under the condition of plasticized material. Indeed, a
residual deformation can be evaluated at the end of each unloading stage. We can remark that, when a greater
number of load cycles are carried out, the shape of the resulting force–displacement curve appears to have
little influence of the loading cycles as every cycle shows the same overall trend (see Fig. 22). At the end of
the cyclic part, the loading is continued until total rupture of the specimen. As for the two previous cases, the



Fig. 24 Comparison between the force–displacement plots relative to samples A, B and C

Fig. 25 Aluminum sample C first break

softening represent the beginning of the damage of the specimen and the activation of the rupture mechanism,
but the softening phase is much less evident. Indeed, the reaction force does not have a relevant drop and its
value even rises again after a small increase in stretch. Also, when the first break occurs the force does not
decrease by a significant value. The second and third break happen at force level even higher, reaching 400N
(Fig. 23).

Comparing these results to the previous cases, some similarities and differences emerge (see Fig. 24). The
overall trend is very similar to that shown by samples A and B before the commencement of damage.Moreover,
in this case also the specimen starts to rupture due to the collapse of a pivot, whose position is highlighted in
Fig. 25. Looking at the comparison plots reported in Fig. 24, the main difference is the greater deformation
reached by the specimen C compared with sample A and B. It is remarked that the three samples have the same
slope for the linear stage but a very different behavior after that, although they have the same microstructure
and were fabricated in a single batch.

5 Inox-printed structures

We now describe the results obtained for BIAS extension test performed on inox-printed specimens. As in the
case of aluminum specimens, the intent is to evaluate the limit of elastic stage, the behavior in the plastic phase
and the initiation of the failure process. The setup for the tests is the same as for the aluminum specimen. In
addition, the experiments prescribe both cyclic andmonotonic tests. The details of the type of the test performed
for every sample are listed in Table 3. The microstructure is same as the aluminum-printed specimens, and it
is described by the parameters listed in Table 4 (Fig. 26).

We first discuss the results of the tests performed on sample S1. This specimen has been subjected to
different loading stages (see Fig. 28) which are (1) a cyclic extension phase, (2) a compression phase and then
(3) a stretch phase up to rupture. The complete load history applied on sample S1 is plotted in Fig. 27.



Table 3 Tests performed on inox-printed specimens

Type of test Cyclic test Destructive Deformation rate (mm/s)

Sample S1 Extention and compression Yes Yes 0.16
Sample S2 Extention No Yes 0.5
Sample S3 Extention No Yes 0.5
Sample S4 Extention No Yes 0.5

Table 4 Fibers and pivot dimensions are measured in millimeter, and angles are measured in radiant

bb hb dp h p L l ϑ∗ p

0.8 1.0 0.4 0.8 90 30 π/2 1.48

Fig. 26 Aluminum sample C all breakages
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Fig. 27 Displacement versus time plot describing the load history applied to steel specimen S1

In Fig. 28, the top graph shows the first cyclic stage, for the two extension cycles of 10mm each. In this
stage, the linear elastic behavior cannot be clearly demarcated. Indeed, the curve appears to exhibit nonlinear
behavior immediately upon loading. Further, at the first unloading corresponding to 10mm stretch, a residual
elongation is measured upon unloading suggesting the onset of plastic behavior. Referring again to the top
graph in Fig. 28, the second cycle seems to underline an isotropic strain hardening given the way the curve
resumes its path upon reloading. A second stage involving a compression test on sample S1 is depicted in the
middle graph in Fig. 28. Also in this case, there is no linear branch. It appears that the shape of the compression
curve has some similarities to the first cycle of tension test reported in the top graph in Fig. 28. Notably, the
values of the reaction force are approximately the same but with opposite sign. The bottom graph in Fig. 28
presents the force versus displacement plot up to rupture for the sample S1 under tension. The maximum
axial force is about 2500N at 30mm of stretch. Overall, the graph shows a work hardening of the specimen,



Fig. 28 Summary scheme of all experiments performed on inox sample S1

Fig. 29 Propagation of the failure under BIAS extension test performed on inox sample S1

which is much clearer after 22mm of stretch. Indeed, the rupture phase is preceded by a last step in which
the reaction grows very rapidly. Some fluctuations are recorded before the first rupture point, but their trend is
still upward, highlighting a typical behavior of pantographic structures. (We will remark resiliency as a feature
typical of pantographic structures.) Furthermore, when the first rupture occurs, the sample still has capacity of
deformation before the definitive failure. The rupture behavior registered for sample S1 shows a fundamental
difference with respect to aluminum samples: In this case, the failure is caused by tensile collapse of the outer
fiber on one of the two constrained sides, as shown in Fig. 29.



Fig. 30 Force versus displacement plots of BIAS extension test for a sample S2, b sample S3

A very similar overall behavior has been observed in BIAS extension tests of other inox-printed panto-
graphic structures, as well as the failure mechanism (the extension of the external fibers is always involved),
as shown in Fig. 31. In Fig. 30, the force versus displacement plots for the three inox samples are presented:
The shapes of the curves are very similar. Likewise, the graphs point an acceleration in the work hardening
mechanism around 20mm of stretch that leads the specimens to exert the maximum reaction force at about
30mm of stretch. A difference can be noted in the maximum value of the reaction of specimen S1, which is
lower than other two, being about 2500N the former and about 3000N the latter. This response is likely due
to the initial cyclic loading done on S1 specimen. However, strong similarities emerge from Figs. 30 and 31.

Another peculiarity behavior provided by themicrostructure emerges from aBIAS extension test performed
on inox sample S4, whose force versus displacement plot is shown in Fig. 32. Looking at the graph, it is
noticeable that at about 8mm of stretch the graph has a little dip that it could be related to a structural
imperfection. However, this fact does not alter the overall behavior of the specimen that continues its strain
hardening in the same way as the other inox samples. This last evidence proves that the pantographic structure
is reliable also against constructive defects.

6 Interpretation of experimental results: proposed models

The experimental data described in the previous sections show that two types of rupture mechanisms can
occur in the extension test of pantographic structures. Specifically, for the aluminum specimens, the failure,
caused by the breaking of pivots, triggers at external point of their longer side. On the other hand, for the
inox specimens, the onset of the rupture mechanism is located close to the vertices of the clamped edges.
The different behavior can be related to the geometric features of the pivots, which are the most deformed
element of the pantographic lattice. When the pivots have a slender shape, as in the case for the presented
aluminum specimens, they undergo flexural deformation superimposed on to the twist deformation due to the
relative rotation of the beams. Most of the experimental and numerical evidences in the literature consider
pantographic structures characterized by short pivots with negligible flexibility. A numerical modeling of the



Fig. 31 Failure propagation under BIAS extension test for a sample S2, b sample S3

Fig. 32 Force versus displacement graph related to inox sample S4: the constructive defect indicated by the local dip at about 8
mm of extension does not influence the overall behavior of the specimen under BIAS extension test



Fig. 33 Comparison between the deformation of an aluminum sample (a) and numerical simulations of a BIAS extension test
for b two-placement field strain energy density of Eq. 2 and c one-placement field strain energy density of Eq. 1. Colors indicate
strain energy density (color figure online)

mechanical behavior of such pantographic structures is possible using the homogenized expression of strain
energy density for an elastic surface with a pantographic microstructure defined in [13], which is
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∫
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The expression in Eq. 1 depends upon a single placement field χ , being F = ∇χ , which does not consider the
sliding between the two families of beams. Further investigations were the motivation for a series of papers
[17,22,32,64,64] concerning numerical simulations of BIAS extension tests performed by employing Eq. 1 as
strain energy density. These works demonstrate that the homogenized model is able to describe the behavior
of polyamide pantographic structures (i.e., the homogenized model predicts that the concentration of strain
energy is located where the samples break, as shown by the plot in Fig. 33a). For different geometries of the
microstructural elements, such as the case of the aluminum specimen, the flexibility of the pivots is no more
negligible, and the strain energy density must also consider that the no sliding constrain between the two arrays
of fibers does not hold. In [63], in order to describe the kinematics of the pantographic structure with slender
pivots a modified version of the bi-dimensional elastic surface model has been presented, which, in contrast
to [13], takes into account relative displacements between the two families of fibers. This assumption results
in a homogenized form of strain energy which depends on two different placement fields and it is defined by

W(χα) =
∫

Ω

K α
e

2
(‖FαDα‖ − 1)2dΩ

+
∫

Ω

K α
b

2

[
∇Fα|Dα ⊗ Dα · ∇Fα|Dα ⊗ Dα

‖FαDα‖2 −
(

FαDα

‖FαDα‖ · ∇Fα|Dα ⊗ Dα|
‖FαDα‖

)2
]
dΩ

+
∫

Ω

Kp

2
arccos

(
F1D1

‖F1D1‖ · F2D2

‖F2D2‖
)

− π

2

γ

dΩ

+
∫

Ω

Kint

2
‖χ1 − χ2‖2dΩ (2)

where the superscript α indicates the considered family of fibers. In Eq. 2, we used Fα = ∇χα and no sum
over repeated α is intended. We refer to [63] for the comparison between the constants in Eqs. 1 and 2. This



expression for the strain energy density describes the behavior of the pantographic system by means of two
independent placements for each of the two fiber arrays, whose interaction is governed by the last term of
Eq. 2, that is,

∫
Ω

Kint

2
‖χ1 − χ2‖2dΩ (3)

By introducing the interaction term in Eq. 3, the rupture mechanism of pantographic structures can be numeri-
cally reproduced to provide a good match with experimental measurements. Indeed, in [63] it is shown that by
employing Eq. 2 in a numerical simulation of extension test, higher values of strain energy density are found
to be located precisely at external points on the longest sides. Clearly, the interaction term is necessary when
the restrictive assumption in [13] does not hold. A qualitative comparison between strain energy density plots
referring to one-placement field model and two-placement field model is shown in Fig. 33. It is noteworthy
that Eq. 3 is characterized by the modulus Kint which has to be related to the deformation of the pivots. As
reported in [63], for high values of Kint, which is the case of very stiff pivots, the model produces the same
results as that of the one-placement model found in [13]. Furthermore, the dependence of the stiffness Kint
upon the modulus of the relative displacement of the fibers can be employed to describe the deterioration of
the mechanical properties of the specimen, i.e., for the definition of stepwise function in which Kint changes
depending on δ = |χ1 −χ2|. With the aim of forecasting the behavior of pantographic lattices and of defining
their failure criteria, it can be remarked that to use a modified version of the strain energy density allows us
to evaluate more cases as the one-field model results to be the limit of the two-field model for high values of
Kint.

Further,wemust remark that some similarities in behavior emergewhenwecompare results frompolyamide
specimens with the inox specimens. The pantographic microstructure of polyamide samples, as the inox ones,
is designed with short pivots and, despite the great difference existing between the mechanical properties of
the constituent material (i.e., the Young’s modulus) which result, obviously, in much more stiffer specimens
in terms of reaction force exerted, the rupture mechanism triggers near the clamped edges in both cases.

7 Conclusion

The experimental data regarding pantographic structure have been extended to new constitutive materials. The
most innovative and promising manufacturing techniques have been used to print aluminum and inox–steel
specimens, whose qualitative behavior (focusing on the determination of the elastic limit and plastic and failure
process) under BIAS extension test has been tested. The acquired data about this novelmetal-printed specimens
are added to those already available regarding polyamide specimens. Comparisons can be made between the
sets of pantographic structures shown in this work. Both the samples demonstrate the great compliance of
the material which can reach large deformations. This feature is shared with the polyamide specimens tested
in previous works, so it is possible to relate it to the specific pantographic microstructure rather then the
constitutive material. Furthermore, the specimens tested exhibit reliability toward the failure process which
never happens suddenly, but once triggered it gradually spreads. Clearly, the different material affects some of
quantitative properties: As fundamental example, consider the range of the measured reaction force, influenced
by the different Young’s modulus. Furthermore, one has to notice that the inox–steel specimens have a capacity
of greater deformation rather the aluminum samples if we consider that the long side of the inox specimens
is less than half long as the aluminum ones. A main difference between the rupture nature of the two sets of
specimens emerges. While in the case of aluminum specimen the resistance of the pivots is involved, in the
inox case the failure must be related to the tensile strength of the fibers. Also, the region where the rupture
triggers is different. Two models in the literature have been recalled with the aim of relating the type of failure
to the mathematical model suitable to predict it. Strain gradient modeling has proved to be useful also in
regularizing mesh-dependent problems in continuum damage and fracture mechanics, where localization of
deformations is frequently observed. Implementation of such regularization in second gradient materials would
be straightforward, also in view of parameters identification carried out in [65–69]. By means of a variational
asymptotic procedure, in [70] it has been derived a one-dimensional continuum model for the description of
finite motions of elastic planar slender pantographic structures, whose highly exotic features are discussed. We
show that, remarkably, the deformation energy density of such continuum depends, like the Elastica, not only
on the Lagrangian curvature but also on the elongation gradient. Such one-dimensional continuum exhibits
phase transition and negative stiffness as well.



Apart from the models considered here, an independent and novel approach to understand the large defor-
mation of beams and networks of beams as pantographic structures to be investigated in the future is to regard
a beam as the boundary curve of a two-dimensional manifold in a three-dimensional space. For this purpose,
the curve is to be endowed with its own energy similar to the one not only in the context of lower-dimensional
energetics [71] but also in a geometrically nonlinear framework [72] and in accordance with higher gradient
elasticity accounting for boundary energetics elaborated in [73]. The advantage of this approach, particularly
from a computational viewpoint, is that the bulkmaterial acts to regularize the behavior of the beam allowing in
this way to analyze the instabilities associatedwith thin beams, which seem to be very similar to the instabilities
of thin films on an elastic foundation [74]. One could be interested in studying the behavior of pantographic
structures when embedded in softer matrices. Indeed, for potential applications it could be necessary to con-
sider multiphase pantographic metamaterials. For this aim, it would be interesting to refer to [75,76] for the
calculation of the effective properties of a planar alignment and of a bundle of fibers in a softer matrix. For
some more general results, one can refer to [77–79].
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