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2Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Blvd de l’Observatoire, CS 34229, F-06304 Nice cedex 4, France
3Center for Particle Cosmology, University of Pennsylvania, 209 S. 33rd St, Philadelphia, PA 19104, USA
4The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy

Accepted 2019 August 12. Received 2019 August 7; in original form 2019 March 6

ABSTRACT
The internal properties of dark matter haloes correlate with the large-scale halo clustering
strength at fixed halo mass – an effect known as assembly bias – and are also strongly affected
by the local, non-linear cosmic web. Characterizing a halo’s local web environment by its
tidal anisotropy α at scales approximately four times the halo radius, we demonstrate that
these multiscale correlations represent two distinct statistical links: one between the internal
property and α, and the other between α and large-scale (�30 h−1 Mpc) halo bias b1. We focus
on scalar internal properties of haloes related to formation time (concentration cvir), shape
(mass ellipsoid asphericity c/a), velocity dispersion structure (velocity ellipsoid asphericity
cv/av and velocity anisotropy β), and angular momentum (dimensionless spin λ) in the mass
range 8 × 1011 � Mvir/( h−1 M�) � 5 × 1014. Using conditional correlation coefficients and
other detailed tests, we show that the joint distribution of α, b1, and any of the internal
properties c ∈ {β, cv/av , c/a, cvir, λ} is consistent with p(α, b1, c) � p(α)p(b1|α)p(c|α), at
all but the largest masses. Thus, the assembly bias trends c↔b1 reflect the two fundamental
correlations c↔α and b1↔α. Our results are unaffected by the exclusion of haloes with recent
major merger events or splashback objects, although the latter are distinguished by the fact
that α does not explain their assembly bias trends. The overarching importance of α provides a
new perspective on the nature of assembly bias of distinct haloes, with potential ramifications
for incorporating realistic assembly bias effects into mock catalogues of future large-scale
structure surveys and for detecting galaxy assembly bias.

Key words: methods: numerical – cosmology: theory – dark matter – large-scale structure of
the Universe.

1 IN T RO D U C T I O N

The physical connection between the growth and properties of
gravitationally collapsed dark matter haloes and the cosmic web
environment in which these haloes reside is an interesting and
challenging problem in the study of hierarchical structure formation
(White & Silk 1979; Eisenstein & Loeb 1995; Bond & Myers
1996; Bond, Kofman & Pogosyan 1996; Monaco 1999; Sheth &
Tormen 1999). Although the basic statistical connection between
the very large-scale density environment (or halo bias) and halo
properties such as mass was already established several decades ago
(Kaiser 1984; Bardeen et al. 1986; Bond et al. 1991; Lacey & Cole
1993), subsequent technological improvements in simulating cold,
collisionless self-gravitating cosmological systems have revealed
several additional features of dark matter haloes.

� E-mail: rsujatha@iucaa.in

Primarily, these relate to the striking universality seen in the
structure of cold dark matter (CDM) haloes, both in the density
(Navarro, Frenk & White 1996, 1997) as well as velocity dispersion
profiles (Taylor & Navarro 2001; Ludlow et al. 2010). Later results
also indicate a deep connection – which is the focus of this work –
between the large-scale halo bias and internal properties of haloes of
fixed mass such as formation time, concentration, substructure abun-
dance, shape, velocity dispersion structure, angular momentum, etc.
(see e.g. Sheth & Tormen 2004; Gao, Springel & White 2005;
Wechsler et al. 2006; Jing, Suto & Mo 2007; Faltenbacher & White
2010). Apart from the intrinsic interest in painting a more complete
picture of hierarchical structure formation from first principles,
understanding and calibrating these effects also continues to be
of interest from the point of view of galaxy formation and evolution
(see e.g. Yan, Fan & White 2013; Lin et al. 2016; Tinker et al.
2017; Paranjape, Hahn & Sheth 2018b; Wang et al. 2018; Zehavi
et al. 2018; Alam et al. 2019) as well as for precision cosmology
(Zentner, Hearin & van den Bosch 2014; McEwen & Weinberg
2018).
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The dependence of halo bias on halo formation time at fixed mass
was termed ‘assembly bias’ in the early literature on this subject. We
will use this term to denote the dependence of bias on any internal
property other than mass, although recent results indicate that
there could be more than one physical mechanism responsible for
establishing these correlations (see e.g. Mao, Zentner & Wechsler
2018; Salcedo et al. 2018; Han et al. 2019).

In general, such correlations between internal halo properties
(i.e. quantities defined at length-scales �few × 100 h−1 kpc, say)
and large-scale halo bias (measured at scales �few × 10 h−1 Mpc)
can be thought of as remnants of the physics of halo formation in
the hierarchical paradigm. For example, excursion set models of
halo abundances and clustering generically predict such statistical
correlations by connecting the local physics of halo formation
to the large-scale halo environment through the long-wavelength
correlations present in the initial conditions (see e.g. Zentner 2007;
Dalal et al. 2008; Musso & Sheth 2012). These models, however,
currently do not correctly reproduce all known assembly bias
trends, indicating that they still lack some key physical mechanisms
involved in halo formation.

Focusing on the expected local and highly non-linear nature of
halo formation, it is then interesting to ask whether one might
segregate the correlation between an internal property and large-
scale bias into (at least) two distinct contributions: one composed
of a connection between the internal property and some feature
of the local non-linear environment and the other connecting the
local environment to the large-scale bias. The latter connection
is conceptually exactly the kind of correlation that excursion set
models are built to explain, while the former could be a correlation
which needs additional physical mechanisms to be included in the
dynamical models describing halo formation.

Recent studies indicate that the cosmic web environment at
relatively small scales (of the order of a few virial radii) plays
an important role in the assembly bias due to halo formation
epoch (Hahn et al. 2009), mass accretion rate (Fakhouri & Ma
2010; Musso et al. 2018), internal velocity dispersion structure
(Borzyszkowski et al. 2017), and halo concentration (Paranjape,
Hahn & Sheth 2018a). In particular, these studies have revealed
an intimate connection between the nature of assembly bias and
the immediate environment of a halo (e.g. whether or not the halo
lives in a cosmic filament; see also Wang et al. 2011; Shi, Wang &
Mo 2015, who studied the dependence of dynamical variables on
the local tidal environment). While this is not unexpected – the
protohalo patches from which haloes form are correlated with the
linear tidal field (Bond & Myers 1996; Sheth, Mo & Tormen 2001)
– and analytical excursion set calculations do predict a statistical
correlation between halo bias and formation time or concentration
(Musso & Sheth 2012; Castorina & Sheth 2013), the specific role
of the non-linear cosmic web in establishing assembly bias effects
still lacks a first principles understanding.

In this work, we are interested in clean statistical signatures,
using N-body simulations, that the physics of hierarchical halo
formation splits into distinct contributions from different length-
scales. Previous work by some of us has shown that the tidal
anisotropy in the immediate vicinity of a halo (see below) plays
a key role in determining the assembly bias trends defined by halo
concentration, particularly at low masses where a large fraction of
haloes reside in filaments (Paranjape et al. 2018a). This appears
quite natural in hindsight, since the turn-around radius of material
currently infalling on to a halo is a few times the halo radius (around
the same scale where Paranjape et al. 2018a, defined the tidal
anisotropy), and the only relevant physical mechanism at play for

collisionless dark matter is the tidal influence of gravity. Our goal
here is to extend these ideas to other halo properties (we will study
the halo shape, velocity dispersion tensor, and spin) and statistically
assess the importance of the tidal anisotropy as an intermediary in
explaining assembly bias in these properties.

The paper is organized as follows: in Section 2, we describe our
simulations and the measurements of various internal properties of
haloes used in this work. In Section 3, we explore the connection
between the halo tidal environment and assembly bias in these
properties. We summarize known results before presenting our main
findings which indicate that the tidal anisotropy of the cosmic web in
the halo vicinity is an important indicator of all assembly bias trends.
In Section 4, we present tests of potential physical explanations of
our results, showing that the connection between tidal anisotropy
and assembly bias cannot be explained by splashback objects
or recent mergers. We conclude with a discussion in Section 5.
The Appendix presents convergence studies for our numerical
techniques and detailed tests of the robustness of our choice of
statistics.

Throughout, we use a spatially flat �CDM cosmology with total
matter density parameter �m = 0.276, baryonic matter density
�b = 0.045, Hubble constant H0 = 100 h km s−1 Mpc−1 with h =
0.7, primordial scalar spectral index ns = 0.961 and r.m.s. linear
fluctuations in spheres of radius 8 h−1 Mpc, σ 8 = 0.811, with a
transfer function generated by the code CAMB (Lewis, Challinor &
Lasenby 2000).1

2 SI MULATI ONS AND H ALO PRO PERTI ES

We use N-body simulations of collisionless CDM in cubic, periodic
boxes performed using the tree-PM code GADGET-2 (Springel
2005).2 These simulations, which we briefly describe here, are the
same as those used by Paranjape et al. (2018a) in their analysis.
We use two configurations: a lower resolution one having 10
independent realizations, and two realizations of a smaller volume,
higher resolution box. All boxes were run using Np = 10243

particles, with the lower (higher) resolution configuration having a
box of comoving length L = 300 (150) h−1 Mpc, corresponding to
a particle mass of mp = 1.93 × 109 (2.4 × 108) h−1 M�. The force
resolution parameter ε in each case was set to 1/30 of the mean
comoving interparticle spacing, leading to ε = 9.8 (4.9) h−1 kpc for
the lower (higher) resolution, while PM forces were computed on a
20483 grid in each case.

Initial conditions for the lower (higher) resolution boxes were
generated at a starting redshift zin = 49 (99) using the code MUSIC

(Hahn & Abel 2011)3 with second-order Lagrangian perturbation
theory. Haloes were identified using the code ROCKSTAR (Behroozi,
Wechsler & Wu 2013a)4 which performs a Friends-of-Friends (FoF)
algorithm in six-dimensional phase space. For the higher resolution
boxes, we stored 201 snapshots equally spaced in the scale factor
a = 1/(1 + z) (
a = 0.004615) between z = 12 and z = 0,
which we used to produce merger trees using the code CONSISTENT-
TREES (Behroozi et al. 2013b).5 The simulations and analysis were
performed on the Perseus cluster at IUCAA.6

1http://camb.info
2http://www.mpa-garching.mpg.de/gadget/
3https://www-n.oca.eu/ohahn/MUSIC/
4https://bitbucket.org/gfcstanford/rockstar
5https://bitbucket.org/pbehroozi/consistent-trees
6http://hpc.iucaa.in
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To ensure that our results are not contaminated by substructure
and numerical artefacts, we discard all subhaloes identified by
ROCKSTAR and further only consider objects whose virial energy
ratio η = 2T/|U| satisfies 0.5 ≤ η ≤ 1.5 as suggested by Bett et al.
(2007). Our measurements of the tidal environment in the vicinity of
the haloes, which we describe below, were performed after Gaussian
smoothing on a cubic grid with Ng = 5123 cells. We therefore impose
a restriction on the minimum halo mass we study, so as to minimize
the contamination to our final results from the resolution imposed
by this grid. Based on convergence studies which we discuss below,
we choose to analyse haloes with at least 3200 particles for most
of the analysis. This gives a mass threshold of 6.2 × 1012 (7.7 ×
1011) h−1 M� and leaves us with approximately 19 000 (17 000)
objects in each of the lower (higher) resolution boxes.

Throughout, we focus on results at z = 0 and study all halo
properties as a function of virial mass Mvir enclosed in the virial
radius Rvir as defined using the spherical overdensity prescription
of Bryan & Norman (1998). We have checked that qualitatively
identical results are obtained when binning haloes according to
other mass definitions such as M200b enclosed inside the radius
R200b,7 or the mass Mell enclosed inside the mass ellipsoid of the
halo which is calculated as described in Section 2.3.1 below.

2.1 Measuring halo-by-halo bias

As our indicator of choice for the large-scale density environment
of haloes, we use the halo-by-halo bias estimator b1 described by
Paranjape et al. (2018a). A similar variable defined in real space has
also been recently used by Han et al. (2019).

This is essentially a halo-centric dark matter overdensity estimate
filtered with a window function that is sharp in Fourier space. This
sharp k filter is built using k-dependent weights chosen such that the
arithmetic mean of b1 for any population of haloes is identical to
the usual Fourier space linear bias of this population, as measured
by the ratio of the halo-matter cross-power spectrum Phm(k) and the
matter power spectrum Pmm(k) at small k.

In detail, denoting the discrete Fourier transform of the dark
matter density contrast as δ(k) evaluated at the grid location k in
Fourier space, the bias for halo h is calculated as

b1,h = ∑
low-k wk

[ 〈
eik·x(h)δ∗(k)

〉
k
/Pmm(k)

]
, (1)

where Pmm(k) = 〈 δ(k)δ∗(k) 〉k and 〈 . . . 〉k denotes a spherical
average over modes contained in a bin of k. The quantity eik·x(h)

corresponds to a weighted average of phase factors over the
configuration space cell x(h) containing the halo h, and seven of
its neighbouring cells, using weights appropriate for a cloud-in-cell
(CIC) interpolation. We sum over low-k modes in the simulation
box, using the ranges 0.025(0.05) � k/(h Mpc−1) � 0.09 for the
lower (higher) resolution configuration, additionally weighting by
the number of modes wk ∝ k3 for logarithmically spaced bins (with∑

low-kwk = 1).
We emphasize that the resulting bias estimate is an indicator

of halo environment at large scales �30 h−1 Mpc where bias
is approximately linear and scale independent. This should be
contrasted with other estimators employed in the literature, such
as marked correlation functions or ratios of correlation functions at
scales �10 h−1 Mpc (Wechsler et al. 2006; Villarreal et al. 2017;

7R200b is the halo-centric radius which encloses a spherical overdensity of
200 times the background matter density.

Mansfield & Kravtsov 2019). The interpretation of assembly bias
trends of these estimators is likely to be complicated by non-linearity
and/or scale dependence of bias (Sunayama et al. 2016; Paranjape &
Padmanabhan 2017). See also Han et al. (2019) for tests of linearity
at smaller scales.

The primary advantage of using a halo-by-halo estimator of bias
is that it allows us to treat halo bias on par with any other halo-
centric or internal property. In particular, we are able to directly
probe the correlation of the scatter in halo bias with other variables
by calculating appropriate correlation coefficients between b1 and
these variables, without having to bin haloes. We will build our main
analysis below using such correlation coefficients.

2.2 Measuring the halo tidal environment

As our main indicator of a halo’s non-linear local environment, we
will use the tidal anisotropy variable α introduced by Paranjape
et al. (2018a). This is constructed using measurements of the tidal
tensor at halo locations, as follows.

First, the density field δ(x) evaluated using CIC interpolation
on a cubic lattice is used to evaluate the tidal tensor ψij (x) ≡
∂2ψ/∂xi∂xj by inverting the normalized Poisson equation ∇2ψ =
δ in Fourier space. While doing so, we apply a range of Gaussian
smoothing filters e−k2R2

G/2 to generate multiple smoothed versions
ψij (x; RG) of the tidal tensor on the lattice. We then interpolate
these in configuration space to the location xh of halo h and also
interpolate in smoothing scales to the size Rh of the halo (see below),
thus creating a halo-by-halo catalogue of tidal tensor estimates
ψij (xh; Rh).

Diagonalizing this halo-centric tidal tensor and denoting its
eigenvalues by λ1 ≤ λ2 ≤ λ3 (for brevity, we will drop the subscript
h in the following), we then construct the halo-centric overdensity
δ using

δ = λ1 + λ2 + λ3, (2)

and the halo-centric tidal shear q2 using (Heavens & Peacock 1988;
Catelan & Theuns 1996)

q2 = 1

2

[
(λ2 − λ1)2 + (λ3 − λ1)2 + (λ3 − λ2)2

]
. (3)

The halo-centric tidal anisotropy α is then defined by

α =
√

q2/ (1 + δ) . (4)

The choice of smoothing scale RG = Rh for each halo is driven by
our requirement of a measure of the local halo tidal environment
which correlates well with the large-scale environment as measured
by b1 above. As shown by Paranjape et al. (2018a), the choice Rh

∼ 4R200b is the largest halo-scaled smoothing radius8 for which α

as defined above correlates more tightly with b1 than does δ at the
same scale (see also Appendix A2).

The measurements of the tidal tensor and associated variables
above depend on the choice of grid size used for the original CIC
interpolation. For a given grid size, the requirement that the sphere of
radius ∼4R200b be sufficiently well resolved leads to a lower limit on
halo mass. Appendix A1 presents a convergence study using which
we conclude that a 5123 grid is sufficient for our purposes, provided

8In practice, we set Rh = 4R200b/
√

5, the ‘Gaussian equivalent’ of the
spherical tophat scale 4R200b. The factor

√
5 is most easily understood

by Taylor expanding the Fourier transforms of the Gaussian and spherical
tophat filters and equating the terms proportional to k2.
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we restrict attention to haloes with ≥3200 particles enclosed inside
Rvir. These are the default choices for our analysis.

Fig. A1 also shows that α and δ as defined above are, in
fact, positively correlated. This is potentially a cause for concern
because any statements regarding the correlation between α and
halo properties could simply be reflecting a correlation between δ

and those properties (see e.g. Shi & Sheth 2018). To assess the level
to which this is true, we perform a detailed comparison of these
correlations in Appendices A2 and A3, finding that α is in fact a
better indicator of all correlations with halo properties than is δ.
(We remind the reader that we define both α and δ at scales ∼4R200b

for the reasons discussed above.)
We also note that other estimators of tidal anisotropy such as√
q2/(1 + δ)μ with some constant μ can decrease the correlation

strength between α and δ. E.g. Alam et al. (2019) find that setting
μ � 0.55 works well for RG = 5 h−1 Mpc and haloes selected so
as to describe a sample of galaxies in the Sloan Digital Sky Survey.
However, the dependence of the value of μ on smoothing scale,
halo mass, large-scale environment, or sample selection, and the
origin of any specific value, is unclear. We therefore prefer to work
with our definition (4), which is a regular function of 1 + δ, and
explicitly check for systematic biases due to correlations with δ.

For example, since α and δ are positively correlated, one might
ask whether the variable α(2) ≡

√
q2/(1 + δ)2, which is also a

regular function of 1 + δ, might perform better. Indeed, we find
that α(2) correlates very weakly with δ over our entire mass range
(see also Haas, Schaye & Jeeson-Daniel 2012, for an alternative
tidal variable which also correlates weakly with the isotropic
overdensity). However, the b1↔α(2) correlation is weaker than the
b1↔α correlation, and is instead similar to the b1↔δ correlation
seen in Fig. A2, thus making α(2) unsuitable for our purposes. Thus,
although the tidal anisotropy variable α as defined in equation (4)
is strictly a combination of anisotropy and density, its superior
correlation with b1 as compared to pure anisotropy (or pure density)
variables makes α our variable of choice for assembly bias studies.

2.3 Measuring internal halo properties

We will study the correlations between the halo environment (as
characterized by halo bias b1 and tidal anisotropy α) and a number
of internal halo properties. For the latter, we will focus on scalar
variables describing the anisotropy of the halo shape and velocity
dispersion tensors, halo concentration, and spin. We discuss the
measurements of each of these below.

Throughout this work, for any halo we discard particles that are
either not contained inside the phase space FoF grouping provided
by ROCKSTAR or are gravitationally unbound to the halo. All internal
halo properties are therefore calculated using only gravitationally
bound particles belonging to the FoF group of each halo.

2.3.1 Mass ellipsoid tensor

As a part of its post-processing analysis, the ROCKSTAR code
measures the mass ellipsoid tensor (or shape tensor) Mij of each halo
using the iterative procedure prescribed by Allgood et al. (2006).
This tensor is evaluated as

Mij =
∑

n∈halo

xn,ixn,j /r
2
n, (5)

where i, j = 1, 2, 3 refer to the coordinate directions, xn is the
comoving position of the nth particle in the halo with respect
to the halo centre of mass, and r2

n is the comoving ellipsoidal

distance of this particle from the centre of mass given by r2
n =

x2
n + y2

n/(b/a)2 + z2
n/(c/a)2. Here, we defined a2 ≥ b2 ≥ c2 as the

ordered eigenvalues of Mij. Since the calculation of the ellipsoidal
distance requires knowledge of the eigenvalue ratios, this is done
by an iterative procedure with a starting guess of equal eigenvalues
and subsequent updates in each iteration after estimating Mij using
equation (5) and diagonalizing it. The calculation sets the semimajor
axis of the ellipsoid equal to the halo virial radius Rvir and sums
over all (bound, FoF) particles in the halo. We refer the reader to
Allgood et al. (2006) for further details of the procedure.

Denoting the final converged eigenvalues with the same notation
a2 ≥ b2 ≥ c2, we use the ratio c/a as a measure of the asphericity
of the mass ellipsoid tensor. This variable is convenient since its
values are bounded between 0 ≤ c/a ≤ 1, with zero corresponding
to a highly aspherical halo and unity to a spherical halo. We have
checked that using other measures of asphericity which include
information on the intermediate axis, such as the triaxiality variable
T = (a2 − b2)/(a2 − c2) (Franx, Illingworth & de Zeeuw 1991),
lead to qualitatively identical results.

2.3.2 Velocity ellipsoid tensor

We have modified ROCKSTAR so as to calculate the velocity ellipsoid
tensor which is a measure of the anisotropic velocity dispersion of
the dark matter particles constituting a halo. For a halo with N
particles, this tensor is given by

V 2
ij = 1

N

∑
n∈halo

(
vn,i − 〈 vi 〉) (vn,j − 〈

vj

〉)
, (6)

where vn is the peculiar velocity of nth dark matter particle and
〈 v 〉 = ∑

n∈halo vn/N is the bulk peculiar velocity of the halo.
Similar to the mass ellipsoid tensor, we denote the eigenvalues

of V 2
ij by a2

v ≥ b2
v ≥ c2

v and use the ratio cv /av as a measure of
the asphericity of the velocity ellipsoid. For consistency with the
calculation of the mass ellipsoid tensor, we restrict the sum in
equation (6) to be over those (bound, FoF) particles contained inside
the mass ellipsoid defined by equation (5).

2.3.3 Velocity anisotropy

A related property of the halo is the velocity anisotropy β defined
as (e.g. Binney & Tremaine 1987)

β = 1 − σ 2
t /

(
2σ 2

r

)
, (7)

where σ 2
r and σ 2

t are the radial and tangential velocity dispersion,
respectively, of the particles in the halo. These are calculated by
first projecting the velocity of each particle in the halo along and
perpendicular to the radial direction (defined by the centre of mass)
and then computing the variance of each component separately
over all particles. As before, we restrict attention to the particles
contained inside the mass ellipsoid defined by equation (5). We
have modified ROCKSTAR to compute β for each halo alongside the
velocity and mass ellipsoid calculations described previously.

Although β is clearly related to the velocity ellipsoid tensor, it is
worth keeping in mind that β also crucially depends on the shape of
the halo when computing the radial and tangential dispersions. Thus,
the velocity anisotropy β captures information from the full phase
space of the halo, unlike the mass and velocity ellipsoid tensors
individually. We return to this point below. For now, we note that
this variable takes values in the range −∞ < β ≤ 1, with β = 0
corresponding to an isotropic velocity ellipsoid and the positive and
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negative extremes of the allowed range corresponding, respectively,
to radially and tangentially dominated velocity dispersions.

Finally, unlike standard applications which study β as a function
of radial distance, here we define the radial and tangential disper-
sions, and hence β, by averaging over all (bound, FoF) particles
in the halo. It would also be interesting to explore the radial
dependence of β vis a vis the environmental correlations we are
focusing on, an exercise we leave for future work.

2.3.4 Concentration

By default, ROCKSTAR performs a least-squares fit of the spherically
averaged dark matter profile of each halo to the universal NFW form
(Navarro et al. 1997)

ρ(r) = ρs

(r/rs) (1 + r/rs)
2 , (8)

where ρs is a normalization constant related to the mass of the halo
and rs is the scale radius. The halo concentration cvir is then defined
as

cvir ≡ Rvir/rs. (9)

Halo concentration correlates well with formation epoch (Navarro
et al. 1997; Wechsler et al. 2002; Ludlow et al. 2013), and its
dependence on halo mass and environment has been thoroughly
studied in the literature (Bullock et al. 2001a; Ludlow et al. 2014;
Diemer & Kravtsov 2015, see also below). We include cvir in our
analysis as a proxy for formation epoch and to compare with the
assembly bias trends of other variables.

2.3.5 Spin

The dimensionless spin parameter is given by

λ ≡ J |E|1/2

GM
5/2
vir

, (10)

where J is the magnitude of the angular momentum, E the total
energy, and Mvir the mass of the halo, with G being Newton’s
constant (Peebles 1969). By default, ROCKSTAR calculates λ for
each halo using its bound, FoF particles inside Rvir; we use this
measurement in our analysis below.

We have also checked that using the alternative definition of
dimensionless spin λ

′
proposed by Bullock et al. (2001b, this is also

calculated by ROCKSTAR) leads to identical results, where

λ′ ≡ Jvir√
2MvirRvirVvir

(11)

with Jvir being the angular momentum inside a sphere of radius Rvir

containing mass Mvir, and where Vvir = √
GMvir/Rvir is the halo

circular velocity at radius Rvir.
Similar to halo concentration, the distribution of spin as a function

of halo mass and its correlation with other halo properties as well
as large-scale environment is also well studied in the literature
(e.g. Bullock et al. 2001b; Bett et al. 2007; Rodrı́guez-Puebla et al.
2016; Johnson et al. 2019, see also below). The measurement of
the spin parameter is rather sensitive to the particle resolution,
with order unity errors accrued for haloes sampled with a few
hundred particles (Oñorbe et al. 2014; Benson 2017), and this can in
principle substantially affect any conclusions regarding correlations
between spin and other variables. Since we only consider haloes
sampled with ≥3200 particles, however, we expect these numerical
errors in our bins of lowest particle count to be �25 per cent at the

object-by-object level (see fig. 3 of Benson 2017). We therefore do
not expect any of our conclusions regarding spin assembly bias to
be altered as a consequence of particle resolution.

Fig. A6 shows the distributions of each of these variables for a
few narrow mass ranges. See Appendix A5 for a discussion of the
associated trends.

3 A SSEMBLY BIAS AND TIDA L
E N V I RO N M E N T

In this section, we use measurements of halo bias, tidal anisotropy,
and the various internal halo properties discussed in the previous
section to assess the nature of the statistical correlations between all
these quantities. We start using our simulations to recapitulate some
known results on assembly bias, followed by our new statistical
analysis.

3.1 Known results

Fig. 1 summarizes previously known assembly bias / secondary bias
trends due to halo velocity anisotropy variables β and cv /av (left-
hand panel) and halo shape c/a, concentration cvir, spin λ, and tidal
anisotropy α (right-hand panel). In each panel, upward (downward)
triangles indicate the mean halo bias in the upper (lower) quartiles of
the respective quantity, at fixed halo mass. Additionally, the circles
in the left-hand panel show the mean bias for all haloes at fixed
mass.

We see that haloes that are aspherical either in shape (small c/a)
or velocity dispersion (small cv/av) are less clustered than more
spherical haloes. The split by velocity anisotropy β shows that
haloes dominated by more radial orbits (β > 0) are less clustered
than tangentially dominated haloes. Correspondingly, haloes with
smaller spin values are less clustered than those with higher spin.
The split by halo concentration shows a more complex trend, with
highly concentrated haloes being less clustered at high masses but
more clustered at low masses, the inversion occurring near Mvir ∼
1013 h−1 M�. Finally, haloes in isotropic environments (small α) are
substantially less clustered than those in anisotropic environments.

The assembly bias trend with halo concentration (as well as
formation time, which we do not show here) has been widely
discussed in the literature (see e.g. Wechsler et al. 2006; Jing et al.
2007; Angulo, Baugh & Lacey 2008; Dalal et al. 2008; Desjacques
2008; Faltenbacher & White 2010; Sunayama et al. 2016; Lazeyras,
Musso & Schmidt 2017; Paranjape & Padmanabhan 2017). The
inversion of the trend is related to the tidal anisotropy of the halo
environment; a large fraction of low-mass haloes live in highly
anisotropic and biased environments9 such as cosmic filaments,
unlike more isolated haloes which dominate their environment and
follow the trends predicted by standard spherical collapse models
(Paranjape et al. 2018a). There are also indications that the trend in
velocity anisotropy β may be connected to the tidal environment,
with low-mass haloes accreting in filaments being dominated
by tangential orbits; such haloes should inherit high values of
large-scale bias from their parent filaments (Borzyszkowski et al.
2017).

The monotonic dependence of halo bias on halo asphericity c/a
and spin λ at fixed mass in the right-hand panel of Fig. 1 is consistent
with the trends noted previously in the literature using configuration
space definitions of bias (Bett et al. 2007; Gao & White 2007;

9We discuss the so-called ‘splashback’ haloes in Section 4.
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Figure 1. Summary of known assembly (or secondary) bias trends. The symbols joined by lines show measurements of halo bias b1 (Section 2.1) averaged
over haloes in bins of mass Mvir for different populations. The circles in the left-hand panel show results for the full halo population in each mass bin. The
triangles of different colours in each panel indicate measurements at fixed mass but focusing on haloes in the upper quartile (upward triangles) and lower
quartile (downward triangles) of a secondary property. The left-hand panel shows results for the secondary property being velocity anisotropy β (Section 2.3.3)
and velocity ellipsoid asphericity cv /av (Section 2.3.2). The right-hand panel shows results for halo shape asphericity c/a (Section 2.3.1), concentration cvir

(Section 2.3.4), spin λ (Section 2.3.5), and the tidal anisotropy α (Section 2.2). In each panel, the filled symbols joined with solid lines show the mean over 10
realizations of the lower resolution box, with error bars showing the scatter around the mean, while open symbols joined with dashed lines show measurements
using two realizations of the higher resolution box. We see that the tidal anisotropy α has, by far, the strongest trend with halo bias at fixed mass.

Faltenbacher & White 2010; Johnson et al. 2019) (see also van
Daalen, Angulo & White 2012, for a study of shape- and spin-
dependent clustering at Mpc scales).

As regards the asphericity of the velocity ellipsoid cv/av or related
variables, we are unaware of any work other than Faltenbacher &
White (2010) that has discussed the corresponding assembly bias
trend. It is therefore worth commenting on the nature of this trend
before proceeding. We see in the left-hand panel of Fig. 1 that
the amplitude of the trend with cv/av is only slightly weaker than
that with β. The nature of the trend is quite interesting, however,
since it says that haloes with spherical velocity ellipsoids cluster
less strongly than aspherical ones. On the one hand, this suggests a
potential connection with the trend shown by the asphericity of the
shape tensor c/a which is qualitatively identical. On the other, it is
also tempting to compare with the trend due to β. Keeping in mind
that perfectly spherical velocity ellipsoids would correspond to β =
0, it is clear that the trend defined by upper and lower quartiles
of β is actually sensitive to additional information about haloes
with aspherical velocity ellipsoids, by splitting these into radially
dominated (upper β quartile) and tangentially dominated (lower β

quartile) haloes (cf. the discussion earlier regarding the connection
between β and the full phase space of the halo.)

It is clear from Fig. 1 that the trend between halo bias b1 and the
local tidal anisotropy α is the strongest amongst all the secondary
bias trends. In fact, defining α at approximately four times the halo
radius ensures that this correlation is stronger than that between b1

and the local overdensity δ of the halo environment measured at the
same scale (Paranjape et al. 2018a). Moreover, the definition of α is
such that this variable would be statistically independent of the very
large-scale overdensity in the (Gaussian random) initial conditions,
unlike δ at the same scale (Sheth & Tormen 2002). The fact that α

and b1 correlate so strongly is then highly suggestive of a physical
link between these quantities related to the non-linear dynamics of
halo formation (see also Castorina et al. 2016). The strength of the
b1↔α correlation will be important below.

3.2 Disentangling multiscale correlations using conditional
correlation coefficients

As discussed in the Introduction, we are interested in identifying a
clean statistical signature that contributions from different length-
scales might segregate into distinct correlations: one between
internal halo properties and the local cosmic web environment
and the other between the local web and large-scale halo bias.
A convenient approach to addressing this issue is to use the concept
of conditional correlation coefficients (Han et al. 2019), as we
describe next. This analysis is made possible by our use of a halo-
by-halo measurement of bias that does not require haloes to be
binned.

Consider three standardized (i.e. zero mean, unit variance)
Gaussian variables a, b, c with mutual correlation coefficients γ ab,
γ bc, and γ ca. The conditional distribution p(b, c|a) is then a bivariate
Gaussian with variances Var(b|a) = 1 − γ 2

ab, Var(c|a) = 1 − γ 2
ac

and the conditional covariance

Cov(b, c|a) = γbc − γabγac ≡ γbc|a. (12)

The key point to note is that, if γ bc|a = 0, then the conditional
distributions of b and c at fixed a are independent: p(b, c|a) =
p(b|a)p(c|a). Bayes’ theorem then implies that the conditional
distribution of c is independent of b: p(c|a, b) = p(c|a). In the
present context, to the extent that any statistical correlation between
physical variables should ultimately have a physical origin, this
would strongly suggest that the statistical connection between c and
b is linked by (at least) two physical mechanisms, one connecting c
to a and the other connecting a to b.

This discussion shows that the vanishing of γ bc|a = γ bc − γ abγ ac

is a useful diagnostic of the conditional independence of c on b.
Although we phrased the discussion in terms of a multivariate
Gaussian for p(a, b, c), the fact that this distribution is non-Gaussian
is not as large a concern as one might have imagined. Rather, the
significance of γ bc|a = 0 is tied to the assumption that c can be well
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Figure 2. Correlations between internal halo properties, tidal environment, and large-scale bias. (Left-hand panel): Spearman rank correlation coefficients,
for haloes in bins of mass Mvir, between tidal anisotropy α and other halo properties, including γαb1 with large-scale bias b1 and γ αc with internal properties
c ∈ {β, cv /av , c/a, cvir, λ} (see caption of Fig. 1). In the legend, each coefficient γ ab is represented by the symbol a↔b. (Middle panel): Assembly bias
trends seen using Spearman rank correlation coefficients γb1c between halo bias and each internal property c (cf. Fig. 1). (Right-hand panel): Conditional
correlation coefficients γb1c|α (equation 12) for each internal property c. Note that the vertical axis in the middle and right-hand panels is zoomed in by a factor
approximately three as compared to the left-hand panel. The formatting of symbols (filled versus empty) and lines (solid versus dashed) is identical to that in
Fig. 1. The right-hand panel shows the main result of this work: each conditional coefficient γb1c|α is substantially smaller in magnitude than the corresponding
unconditional coefficient γb1c in the middle panel. Thus, conditioning on tidal anisotropy α largely accounts for the assembly bias trend of all internal halo
properties. See the text for a discussion.

approximated by a model which is linear in a and b (see equations 3
and 4 in Bernardi et al. 2003). It is just that, for a multivariate
Gaussian, the linear model is exact.

Nevertheless, to minimize systematic errors, we will rely on
measurements of Spearman’s rank correlation coefficients for each
pair of variables, which standardizes all the distributions before
computing correlations. Below, we will also discuss tests of the
robustness of this choice of statistics.

3.3 Tidal anisotropy as an indicator of assembly bias

Our motivation behind setting up the correlation analysis in the
previous section was to explore the possibility that assembly bias
correlations between internal halo properties and large-scale bias
might be explained using the separate correlations of each of
these with some intermediate-scale environmental variable. In this
context, it is worth mentioning that previous investigations of
assembly bias have failed to identify any single environmental
variable that might be responsible for correlations between halo
bias and multiple internal halo properties (Villarreal et al. 2017;
Xu & Zheng 2018). The fact that tidal anisotropy α shows by far the
strongest correlation with halo bias makes α a promising candidate
for such a variable.

In the language of the previous section therefore we will now
think of a as the tidal anisotropy α, b as halo bias b1, and c as
any one of the internal halo properties {β, cv/av , c/a, cvir, λ}.
Below we will also report the results of analysing other permutations
and combinations of variables, including using intermediate-scale
overdensity δ as the environmental variable.

Fig. 2 shows the main results of this paper. The left-hand
panel shows Spearman rank correlation coefficients (for haloes
in fixed bins of Mvir)10 between the tidal anisotropy α and other
halo properties including halo bias b1 and all internal properties
c ∈ {β, cv/av , c/a, cvir, λ}. This panel summarizes a number of

10We have checked that all our results are robust to our choice of binning.
Namely, we found identical results for all correlation trends when doubling
the number of mass bins. Thus our results are unaffected by mass-dependent
trends in any correlation.

previously known results, including the observations that, at fixed
mass, haloes in more anisotropic tidal environments tend to be more
strongly clustered (α↔b1, Hahn et al. 2009; Paranjape et al. 2018a),
more concentrated (α↔cvir, Paranjape et al. 2018a), more spherical
(α↔c/a, Wang et al. 2011), with higher spin (α↔λ, Hahn et al.
2009; Wang et al. 2011), and have more tangentially dominated
velocity distributions (α↔β, Borzyszkowski et al. 2017). Addi-
tionally, we see that objects in anisotropic environments also have
more spherical velocity ellipsoids (α↔cv/av), with a correlation
very similar at all masses to that between α and the mass ellipsoid
asphericity c/a.

The middle panel of Fig. 2 summarizes the known assembly
bias trends discussed in Section 3.1. We see that the strength and
sign of the correlation coefficients at any halo mass is perfectly
consistent with the results of the previous binned analysis (Fig. 1)
which focused on the extremes of the distributions of internal
halo properties. Note that we have zoomed in on the vertical
axis as compared to the left-hand panel; the correlations of halo
properties with large-scale bias are weaker (by approximately
a factor approximately three in each case) than the respective
correlations with the local tidal environment.

The right-hand panel of Fig. 2 shows our main new result: we
display the conditional correlation coefficients γb1c|α (calculated
using equation 12) for each internal property c ∈ {β, cv/av , c/a,
cvir, λ}. The vertical scale is identical to that in the middle panel
which showed the corresponding unconditional coefficients using
the same scheme for colours and markers. In each case, we see that
the conditional coefficients are substantially smaller in magnitude
than the corresponding unconditional ones at all masses (by a factor
approximately three or so at low masses). In fact, except for β around
∼1014 h−1 M� (see below), the conditional coefficients are scattered
around zero in all cases over the entire mass range, implying
that α is an excellent candidate for the primary environmental
variable responsible for halo assembly bias trends. In support of
this argument, we find in Appendix A4 (see also below) that
conditioning on α performs much better at decreasing assembly
bias strength than conditioning on δ at the same scale, despite the
fact that α and δ are correlated. Further, in order to quantify exactly
how close to zero the conditional coefficients γb1c|α are in Fig. 2,
we use two methods.
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Table 1. Top 10 conditional correlation coefficients b1 ↔ X | Y rank-
ordered by reduced Chi-squared values for comparison to zero. Here X,
Y were allowed to be any two of the variables {β, cv /av , c/a, cvir, λ, α, δ},
i.e. treating environmental variables on par with internal halo properties.
Chi-squared values were calculated using measurements in nine mass bins,
with mean values and errors computed using two realizations of the high-
resolution and 10 realizations of the low-resolution simulations. The first
column labels the conditional coefficient being tested and the second column
reports the value of reduced Chi-squared for nine degrees of freedom. Values
below the horizontal line correspond to p-values <10−4.

Conditional corr. coeff. χ2/dof

b1 ↔ λ |α 0.90
b1 ↔ c/a | α 0.97
b1 ↔ cv/av | α 1.76
b1 ↔ cvir | α 2.18
b1 ↔ λ |β 3.13
b1 ↔ β |α 4.34

b1 ↔ cvir | δ 11.89
b1 ↔ cvir | cv/av 14.52
b1 ↔ cvir | c/a 24.00
b1 ↔ c/a | cv/av 29.96

Figure 3. Relative correlation coefficients, calculated as the ratio
γb1c|α/γb1c using measurements from the middle and right-hand panels
of Fig. 2 (and formatted identically) for internal halo properties c ∈ {β,
cv /av , c/a, cvir, λ} as indicated. The horizontal dotted line indicates zero
and the horizontal dashed lines indicate ±0.25, i.e. a factor four decrease in
the magnitude of γb1c|α relative to γb1c . See the text for a discussion.

The first is a straightforward Chi-squared test which we perform
using the results in nine mass bins of the low- and high-resolution
boxes where we have reliable error bars on the measurements of
γ bc|a. While performing this test, we also relaxed the assumption
of using α as the intermediary between halo properties and
bias, exploring multiple other combinations involving either the
overdensity δ or one of the internal properties themselves as the
intermediary. When the resulting triplet combinations are ordered
in increasing order of reduced Chi-squared, we find that triplets
involving α as the intermediary produce the best Chi-squared

values, while those involving δ perform much worse. Table 1
summarizes these results. We note that the largest discrepancy in
our conclusions occurs for the assembly bias variable β at high
masses; the residual assembly bias conditioned on α deviates
from zero at masses > 8 × 1013 h−1 M�. This can be seen in the
right-hand panel of Fig. 2 and also causes the largest Chi-squared
values out of the five assembly bias variables in Table 1.

The second method is to simply construct the ratio γ bc|a/γ bc: if
the magnitude of this ratio is small, it means that conditioning on a
has indeed substantially decreased the correlation between b and c.
This is a particularly useful diagnostic for internal properties such as
halo concentration whose correlation with halo bias is the smallest
in amplitude of all internal properties. The results are shown in
Fig. 3. For the internal properties {β, cv/av , c/a}, we see that the
relative correlation coefficient is, in fact, much smaller than unity
over nearly the entire halo mass range.

For halo concentration and spin, on the other hand, the relative
correlation shows very large fluctuations and noise at higher masses.
This is perhaps not surprising considering previous results which
suggest that assembly bias signatures at these mass scales are likely
caused by other effects (Dalal et al. 2008; Paranjape et al. 2018a).
Interestingly, our results from Table 1 and Fig. 3 indicate that α

is a particularly good indicator of spin assembly bias in the mass
range ∼1012–1014 h−1 M�. This can be compared with the results
of Johnson et al. (2019) who found that spin assembly bias can be
largely explained using the presence of neighbours of comparable
mass. Our results are consistent with theirs, since α represents the
anisotropy of the total tidal field in the halo vicinity, including the
influence of all neighbours.

To summarize, the statistical correlation between large-scale bias
b1and essentially any internal halo property c that we have studied
is consistent with arising from the individual correlations b1↔α

and α↔c, at nearly all halo masses.

3.4 Reliability of chosen statistics

We argued in Section 3.2 that the use of correlation coefficients
combined using equation (12) relies essentially on the implicit
assumption that the underlying correlations between triplets of
variables are linear. Our use of Spearman’s rank correlations means
that the relevant variables are actually the ranks of the physical
variables, so that we are dealing with triplets of correlated variables
which are individually uniformly distributed. Although the variables
are now standardized, their intrinsic correlations are not necessarily
linear or even monotonic (see e.g. fig. 12 of Paranjape et al. 2018a,
which shows that the median halo concentration is non-monotonic
in α at fixed mass), so one might still worry about systematic
effects in our analysis. We have therefore performed some explicit
tests, which we describe here, to establish the robustness of our
conclusions. Our method differs from that of Han et al. (2019)
who used Gaussian process regression to explicitly fit for the
non-linearity/non-monotonicity of the dependence of halo bias on
other variables, thus allowing them to explore a multidimensional
bias ‘manifold’. Instead, below we demonstrate the robustness of
our primary results using direct probes of probability distributions
involving b1, α, and one halo internal property at a time.

We first test the reliability of replacing explicit conditional
correlation coefficients (which would require binning of data) with
the expression in equation (12) (which uses all available data) in
Appendix A4, focusing on the strongest assembly bias signature
which is that of the velocity anisotropy β. Fig. A5 shows that
explicitly binning in α before computing the correlation coefficient
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Figure 4. Joint distribution of α, b1, and β for haloes in three mass ranges: low [8 × 1011 < Mvir/( h−1 M�) < 3 × 1012], mid [6 × 1012 <

Mvir/( h−1 M�) < 1013], and high [Mvir/( h−1 M�) > 1013]. (Top left panel): The scatter plot shows β against b1 with points coloured by α. Each
coloured solid line focuses on a quartile of α as indicated in the legend, showing the median b1 in bins of β (the bins are chosen to be quintiles of β for haloes
in each α quartile). (Top right panel): The scatter plot shows α against b1 with points coloured by β. Similar to the left-hand panel, each coloured solid line
now shows the median b1 in quintiles of α, for haloes selected in a quartile of β as indicated. The results of the two panels are consistent with a correlation
structure p(α, b1, β) � p(α)p(b1|α)p(β|α). See the text for a discussion. The bottom panels show the same as the top for mid and high masses.

between b1 and β does decrease the magnitude of the correlation to
nearly zero at all masses and for all α.

To address the concern regarding non-linearity or non-
monotonicity of the intrinsic correlations, we focus on three mass
ranges: low [8 × 1011 < Mvir/( h−1 M�) < 3 × 1012], mid [6 ×
1012 < Mvir/( h−1 M�) < 1013], and high [Mvir > 1013 h−1 M�]
containing ∼104 haloes each and dissect the full distribution of {b1,
α, β} in Fig. 4. The scatter plots in the top panels of the figure focus
on the low-mass range. The top left panel shows the distribution of β

and b1, with the symbols coloured by the value of α. Apart from an
overall negative correlation between β and b1 (cf. middle panel of
Fig. 2), we can also see that both these variables are correlated with
α by observing that the redder (bluer) points, which correspond to
α � 0.1 (α � 1) are largely confined to the bottom right (top left) of
the distribution. Similar conclusions about the correlation between
variables can be made from the top right panel which shows the
scatter distribution of α and b1, with the symbols coloured by the
value of β.

In order to extract more information on the structure of the joint
probability distribution p(α, b1, β), we consider the mean value of
bias conditioned on α and β i.e. 〈 b1|α, β 〉. In the three-dimensional
space of {b1, α, β}, this quantity forms a two-dimensional surface
whose properties we explore using projections on to the b1–β and
b1–α planes, as we discuss next.

In the top left panel of Fig. 4, we plot the projection of 〈 b1|α, β 〉
on to the b1–β plane as solid lines, with each line focusing on
haloes in quartiles of α (from red to blue in increasing thickness
as α increases.) The overall assembly bias trend between b1 and
β is now visible as the fact that the blue (red) curve having larger
(smaller) bias lies towards smaller (larger) β. More interestingly,
we see that each of these lines is approximately horizontal; this
implies that〈 b1|α, β 〉in each quartile of α is independent of β, i.e.
〈 b1|α, β 〉 � 〈 b1|α 〉. In other words, bias when conditioned on α

does not show an assembly bias with β.
Similarly, the projection of 〈 b1|α, β 〉 on to the b1–α plane is

shown in the top right panel as solid lines, with each line focusing
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on haloes in quartiles of β (from blue to red in increasing thickness
as β increases). All the lines clearly trace out the same locus of
positive correlation between b1 and α, with vertical and horizontal
shifts now occurring essentially in perfect tandem as β changes.
A simple calculation shows that this is again consistent with the
relation 〈 b1|α, β 〉 � 〈 b1|α 〉.

These results together give a complete picture of 〈 b1|α, β 〉 as
being approximately a plane in {b1, log α, β} space and moreover
being orthogonal to the b1–log α plane. The bottom panels of Fig. 4
show that identical conclusions can be drawn for the mid (bottom
left) and low (bottom right) mass bins. We can go even further and
ask whether the conditional variance Var(b1|α, β) also displays the
same behaviour. Fig. A8 in the Appendix shows that this is indeed
the case: the projections of this quantity in the b1–β and b1–α planes
are consistent with the relation Var(b1|α, β) � Var(b1|α).

These results strongly suggest that the joint distribution p(α,
b1, β) itself (as opposed to only its first moment) has a structure
consistent with b1 and β being conditionally independent of each
other, when conditioned on α:

p(α, b1, β) � p(α)p(b1|α)p(β|α),

which then ensures that the trends of 〈 b1|α, β 〉 and Var(b1|α, β)
discussed above emerge. Thus, the overall anticorrelation between
b1 and β (assembly bias) is explained by the mutual dependence of
these variables on the tidal anisotropy α.

We emphasize that this analysis made no assumptions regarding
Gaussianity of the variables, monotonicity, or linearity of the trends,
etc. We have further verified that essentially identical results are
obtained using all other internal halo properties considered in this
work as well (see Figs A7 and A8 in the Appendix).

The results of this section therefore provide strong support for
our claim that the tidal anisotropy α is the primary indicator of
assembly bias for a number of internal halo properties. Our tests
have further demonstrated that our conclusions are robust to our
choice of statistical tools (Spearman rank correlation statistics, with
conditional correlation coefficients defined by equation 12). In the
next section, we explore other, physical choices related to sample
selection which could, in principle, affect our conclusions.

4 TH E I M PAC T O F S P L A S H BAC K O B J E C T S
A N D M A J O R ME R G E R S

The primary analysis of this work presented in Section 3 defined
haloes as objects identified as being distinct at the epoch of interest
z = 0. These haloes therefore also include the small population of
so-called ‘splashback’ haloes (Gill, Knebe & Gibson 2005), which
are objects that have passed through one pericentre passage of their
eventual host but are currently outside its virial radius. Treating
splashback objects equivalently to genuine distinct haloes therefore
risks contaminating any signal that involves a correlation with large-
scale environment. Indeed, there is considerable evidence that, at
low masses, a significant fraction of the assembly bias signal in
variables such as halo concentration or age in fact arises from
splashback objects (Dalal et al. 2008; Hahn et al. 2009; Sunayama
et al. 2016; Villarreal et al. 2017; Mansfield & Kravtsov 2019). It is
then important to assess the impact of this small population on our
conclusions regarding the influence of the cosmic web environment.

Similarly, the fact that there are strong correlations between tidal
environment and internal properties such as halo asphericity in
position or velocity space could be connected to the occurrence of
recent major merger events. We must therefore also ask whether the

cancellations we see in the conditional correlation coefficients in
the previous section are related to major mergers.

We address both of these issues in this section, showing that
our results are unchanged when excluding splashback haloes or
segregating haloes by the epoch of their last major merger.

4.1 Splashback objects

We identify splashback haloes using the output of CONSISTENT-
TREES which provides the redshift zfirstacc of the ‘first accretion’
event of each object. This is the epoch at which the main progenitor
of the object first passed inside the virial radius of a larger object.
Splashback haloes are then objects which are currently not identified
as subhaloes (i.e. not inside the virial radius of a larger object;
‘PID’=−1 according to CONSISTENT-TREES) but have zfirstacc > 0.
With a fine time resolution in our merger tree which uses 201
snapshots, we expect this criterion to capture most of these objects.

We have repeated the analysis of Section 3 for halo samples
excluding splashback haloes and also for the splashback haloes
themselves. Since we only have merger histories available for haloes
in our high-resolution boxes, we focus on the low-mass range for
this analysis. Fig. 5 shows the results. We see in the top row that
excluding splashback haloes has essentially no impact on our main
results, since the correlation coefficients in the left and middle
panels, as well as the level of cancellation in the right-hand panel,
are nearly identical to the low-mass results of Fig. 2. The black
curve in the top right panel shows the fraction of haloes that were
excluded as being splashback objects; this is always �2 per cent
over this mass range and decreases as expected towards higher
masses.

Interestingly, when we repeat the analysis for these splashback
objects themselves (bottom row of Fig. 5), we see very different
behaviour. First, the correlation between α and b1 at the lowest
masses is now weaker in magnitude than other correlations, in stark
contrast to the case for distinct haloes. And the right-hand panel
shows that, in fact, α has essentially no impact on the assembly bias
correlations involving any internal property. (We do not display
the results for the two highest mass bins which contain fewer than
20 objects each.) In other words, the cosmic web anisotropy is
a very poor indicator of any assembly bias trend for splashback
objects. This is physically perhaps not surprising considering the
very different accretion and tidal stripping histories of these objects
as compared to other genuinely distinct haloes. We discuss this
further in Section 5.

4.2 Recent major mergers

The output of CONSISTENT-TREES provides, for each object, the
epoch of the last major merger event this object experienced on its
main progenitor branch. The definition of a major merger is an event
involving the overlap of virial radii of objects with a mass ratio closer
to unity than 1:3. We use objects from the higher resolution box as
in the earlier analysis and discard splashback objects as defined
by the criterion of Section 4.1. We segregate the remaining objects
by their redshift zlmm of last major merger into two populations:
those with recent major mergers which occurred at zlmm < 0.4
(corresponding to <4.3 Gyr of lookback time) and those with major
mergers further back in the past. We then compute the same rank
correlation coefficients as before and repeat the analysis similar to
that shown in Fig. 5.

Fig. 6 shows the results. Our segregation makes the recent major
merger population have fewer objects, thus the results have larger
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Figure 5. Same as Fig. 2, showing results of the analysis performed separately for splashback and other haloes, restricted to the higher resolution boxes and
hence lower masses. Splashback objects were identified as described in Section 4.1. (Top row): Results excluding splashback objects; these are essentially
identical to those in Fig. 2, with α being a good indicator of all assembly bias trends. The black dashed curve in the top right panel shows 10 × the fraction of
haloes classified as splashback objects. (Bottom row): Results for splashback objects only; in this case, α is a very poor indicator of any assembly bias trend.
Results are not displayed for the two highest mass bins which contain fewer than 20 objects each. See the text for a discussion.

scatter. Despite this, we see that separating out the population with
recent major mergers does not bring out any dramatic difference in
our main results, suggesting that both the populations of haloes are
influenced similarly by their respective tidal environment as regards
their assembly bias trends. We conclude that major merger events
are not a likely cause for α being an excellent statistical intermediary
in explaining halo assembly bias.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The hierarchical formation of cosmological structure leads to
distinct connections between the properties of the cosmic web and
its constituent dark matter haloes across a wide range of length-
scales. The most striking amongst these are the ones categorized
as assembly bias (or secondary bias), in which the large-scale
(�few × 10 h−1 Mpc) clustering strength of haloes shows distinct
trends with a number of internal halo properties (defined at scales
�Rvir ∼ few × 100 h−1 kpc), even at fixed halo mass. Understand-
ing the origin of such correlations across several orders of magnitude
in length-scale is of great interest from the point of view of building
a complete understanding of structure formation in the �CDM
framework, and can have consequences for galaxy evolution and
precision cosmology.

In this work, we have explored the idea that many (if not all)
assembly bias trends in the mass range 8 × 1011 h−1 M� � Mvir �
5 × 1014 h−1 M� could be largely a result of a multiscale connection
between internal halo properties and the large-scale environment,

with the local, non-linear cosmic web environment acting as
an intermediary. This is motivated by the expectation that these
correlations must be connected to the only physical mechanism at
play (gravitational tides) at the most natural intermediate length-
scale in the problem (the current turn-around radius for infalling
material around a given halo, which is close to approximately four
times the halo radius).

We considered scalar internal properties related to the shape, ve-
locity dispersion, density profile, and angular momentum of haloes;
these include the halo shape asphericity c/a (Section 2.3.1), velocity
ellipsoid asphericity cv /av (Section 2.3.2), velocity anisotropy β

(Section 2.3.3), concentration cvir (Section 2.3.4), and spin λ

(Section 2.3.5). The large-scale environment of each halo was
characterized using the halo-by-halo bias b1 of Paranjape et al.
(2018a) defined at �30 h−1 Mpc scales (Section 2.1) and, for the
local cosmic web environment, we considered the halo-centric tidal
tensor defined at ∼4R200b scales (Section 2.2), focusing on the tidal
anisotropy variable α (equation 4) introduced by Paranjape et al.
(2018a).

Our primary statistical analysis relied on Spearman rank corre-
lation coefficients calculated for pairs of variables. In particular,
we argued that the vanishing of conditional correlation coefficients
defined in equation (12) offers a useful and compact way to assess
the strength of multivariate statistical connections (Section 3.2),
and we further demonstrated that this technique is robust to all of
the assumptions involved in using equation (12) (Section 3.4 and
Appendices A4 and A6).
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Figure 6. Same as Fig. 5, now splitting haloes into those with recent major merger events and other haloes. The haloes with recent major mergers were
required to have their last major merger at a redshift zlmm < 0.4 (see Section 4.2 for details). (Top row): Results excluding haloes with recent major mergers;
these are essentially identical to those in Fig. 2, with α being a good indicator of all assembly bias trends. The black dashed curve in the top right panel shows
the fraction of haloes classified as recent major mergers. (Bottom row): Results for only haloes with recent major mergers; again, α is still a good indicator of
all assembly bias trends. We conclude that α influences assembly bias similarly for both these populations. See the text for a discussion.

Our main results can be summarized as follows:

(i) The tidal anisotropy α shows the strongest correlation by
far with b1 at fixed halo mass amongst all halo properties we have
considered (Fig. 1 and middle panel of Fig. 2) and correlates strongly
with all internal halo properties as well (left-hand panel of Fig. 2).
The correlation between α and b1 in particular is substantially
stronger than that between b1 and pure density or pure anisotropy
variables, as discussed in Section 2.2. The variable α is therefore
an excellent candidate for an intermediary in explaining assembly
bias, more so than the density contrast δ (equation 2) defined at the
same scale (Appendices A2 and A3).

(ii) The conditional correlation coefficients γb1c|α are substan-
tially smaller in magnitude than the unconditional coefficients γb1c

for all internal halo properties c that we studied, for all but the
highest mass scales we consider (right-hand panel of Fig. 2, see
also Table 1 and Fig. 3). The joint distribution of α, b1, and any
internal property c ∈ {β, cv/av , c/a, cvir, λ} is therefore consistent
with reflecting only two fundamental correlations b1↔α and c↔α:

p(α, b1, c) � p(α)p(b1|α)p(c|α), (13)

(Section 3.2, see also Fig. 4 and Appendix A6). Thus, α indeed
explains all large-scale assembly bias trends, particularly at low
halo mass. α defined at approximately four times the halo radius
also outperforms the environmental overdensity δ defined at fixed
smoothing scales 1–2 h−1 Mpc, recently proposed by Han et al.
(2019) as an assembly bias indicator (see Appendix A2).

(iii) Our conclusions regarding the role of α are unchanged upon
excluding splashback haloes from the analysis (Section 4.1, top
row of Fig. 5). Interestingly, repeating the analysis for the small
population of splashback objects themselves (these are �2 per cent
of distinct haloes in our mass range) showed that α is a poor indicator
of any assembly bias trend for these objects (bottom row of Fig. 5,
see also below).

(iv) Our conclusions regarding α are also unchanged when
segregating haloes by the presence or absence of a recent major
merger event (Section 4.2, Fig. 6).

This wide-ranging effect of α in connecting small and large scales
provides a new perspective on the phenomenon of assembly bias
of low-mass haloes. There are several indications in the literature
that multiple aspects of a halo’s tidal environment could play a role
in establishing the assembly bias trends of different variables. E.g.
being in a non-linear filament affects the mass accretion rate and
formation time of an object (due to strong tides, Hahn et al. 2009;
Musso et al. 2018) and changes its shape, profile, and velocity
dispersion structure (due to strong external flows, Borzyszkowski
et al. 2017; Mansfield & Kravtsov 2019). Consistently with this
picture, tidal influences on substructure also start well before
accretion on to the parent object (Behroozi et al. 2014). Similarly,
the presence/absence of neighbours having larger (Hahn et al. 2009;
Hearin, Behroozi & van den Bosch 2016; Salcedo et al. 2018) or
comparable mass (Johnson et al. 2019), and their corresponding
tidal influence, has also been shown to be connected with assembly
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bias. (See also Mo et al. 2005; Buehlmann & Hahn 2019, for the
related effect of tidal heating due to the formation of cosmic sheets.)

The fact that α simultaneously explains multiple assembly bias
trends over a wide range of halo mass suggests that, ultimately,
the quantity relevant for assembly bias is the degree of anisotropy
of the current tidal environment of distinct haloes, evaluated at the
current turn-around scale (approximately four times the halo radius).
Having fixed this, the specific physical mechanism that affects any
particular variable becomes less relevant; we expect it to only play
a role in establishing how strongly that variable correlates with the
tidal anisotropy.

This has consequences of practical interest, particularly because α

is defined at intermediate length-scales. On the one hand, the impor-
tance of α as an assembly bias indicator might be exploited to pop-
ulate low-resolution simulations with otherwise unresolved haloes
having the correct assembly bias trends. This would be of immense
interest for precision cosmological analyses that would otherwise
require high dynamic range as well as tight control on assembly bias
related systematics (see e.g. Zentner et al. 2014). On the other hand,
α can also be useful in high-resolution, small volume simulations
of galaxy formation, where it might be used to predict (albeit
with large scatter) the large-scale environment of realistic galaxies.
For example, understanding the strength and origin of correlations
between α and variables such as stellar mass, star formation rate,
metallicity, etc., might help in understanding the expected strength
of galaxy assembly bias, which has been difficult to detect robustly
in observational samples (Lin et al. 2016; Tinker et al. 2017).

To try and understand why the variable α, specifically, is such
a good assembly bias indicator for distinct haloes, it is worth
considering its behaviour for splashback haloes. As we showed,
α does not perform well in explaining the assembly bias of these
objects. This is likely a manifestation of the fact that the internal
properties of splashback objects, like other substructure, have been
dramatically affected by the strong tidal influence of their host halo.
Since this also includes substantial mass-loss due to tidal stripping
and a consequent decrease in radius, it is perhaps not surprising
that the tidal environment evaluated at the scale approximately
four times the current radius, at the current location, is not a
good indicator of the large-scale environment of the splashback
object.

It appears, then, that α is a good indicator of assembly bias
for objects whose current tidal environment is the most extreme
they have ever experienced, and fails for objects whose current
environment does not reflect the largest tidal influences that have
acted on them. This points towards a novel approach in thinking
about substructure in general, in which haloes might be classified
by their tidal history. Objects that have always been in tidally mild,
isotropic environments (small α) would then be distinguished from
objects that have spent a considerable fraction of their existence in
anisotropic sheets or filaments (large α). Subhaloes and splashback
objects would then simply be the extremes of the latter category,
objects that have experienced very high tidal forces at some point in
their past (not necessarily reflected by their current environment).
Of course, for this picture to be consistent, it must also be possible to
construct a local tidal indicator of large-scale assembly bias trends
for subhaloes and splashback objects, perhaps α defined using the
scale of the host halo.

We also believe these ideas could be a useful starting point for
a dynamical model of the influence of local non-linear tides on
internal halo properties, building on, e.g. known results from tidal
torque theory for the connection between large-scale tides and halo
angular momenta and shapes (see e.g. Catelan & Theuns 1996) and

accounting for known correlations between internal halo properties
(see e.g. Jeeson-Daniel et al. 2011; Skibba & Macciò 2011).
Finally, it would be interesting to extend our analysis to include
tensor assembly bias signatures involving alignments between the
mass/velocity ellipsoid tensors, angular momenta, and halo-centric
tidal tensors. We will return to all these issues in future work.
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A P P E N D I X A : C O N V E R G E N C E A N D
ADDI TI ONA L TESTS

In this Appendix, we first present a convergence study for our calcu-
lation of tidal variables which justifies our choices for the minimum
halo mass threshold in our simulations. We then show that, although
the variables α and δ defined in the main text are correlated, the
tidal anisotropy α is likely to be a better indicator than the isotropic
overdensity δ of all assembly bias, an expectation which is then
confirmed in the main text. We also display the one-dimensional
probability distributions of all the halo-related variables used in this
work, in a few narrow mass ranges. Finally we complete our analysis
in Section 3.4 by showing explicitly the structure of distribution of
b1, α, and c for all c ∈ {β, cv /av , c/a, cvir, λ}.

A1 Convergence study

Fig. A1 shows the Spearman rank correlation coefficient γ αδ

between α and δ as a function of halo mass. These variables were
evaluated as described in Section 2.2 using various grid sizes as
indicated in the legend. Results are shown for the low-resolution
(markers with solid lines) and high-resolution configuration (mark-
ers with dashed lines).

We see that convergence in any given configuration of the
simulations is starting to be achieved at grid sizes of ≥5123 cells.

Figure A1. Convergence study of the α↔δ correlation. The symbols
joined by lines of different colours indicate measurements using α and
δ (Section 2.2) computed on cubic grids of different sizes as indicated. The
formatting of symbols (filled versus empty) and lines (solid versus dashed)
is identical to that in Fig. 1. Based on the behaviour of the curves in the
overlap region between the higher and lower resolution boxes, we conclude
that a 5123 grid is sufficient for our purposes, provided we restrict attention
to haloes with ≥3200 particles (shown as the vertical line). See the text for
further details and a discussion of the consequences of a positive correlation
between α and δ.
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Based on the trends seen in Fig. A1, we also choose a minimum
halo mass threshold of 3200 particles as a compromise between
minimizing the mismatch in γ αδ between the two configurations and
retaining enough statistics in the highest mass bin analysed in the
high-resolution simulation. A lower mass threshold would increase
the mismatch, while a higher threshold such as 4000 particles would
minimize the mismatch but make all measurements at the high-mass
end of the high-resolution box too noisy to be reliable.

Since the correlation coefficient between α and δ is quite large
across all masses, one would worry that any statements about
statistical connections between α and other variables such as
halo bias or internal halo properties could simply be reflecting a
correlation between δ and these properties. Below we demonstrate
that this is not the case for any of the correlations we are interested in.

A2 Tidal environment and large-scale bias

Fig. A2 explores the correlations between the environment variables
α and δ defined at ∼4R200b scales and the large-scale environment as
measured by halo bias b1. The dashed curves show the unconditional
correlation coefficients γb1α (red) and γb1δ (blue). As already
discussed by Paranjape et al. (2018a), these show that γb1α > γb1δ ,
so that α is better correlated with b1 than is δ at any halo mass.
Indeed, Paranjape et al. (2018a) motivated the choice of 4R200b as
being the largest scale (adapted to the halo size) where this is true
across all halo masses (see their fig. 5 and also the discussion below).

The solid curves show the conditional correlation coefficients
γb1α|δ (red) and γb1δ|α (blue). We see that γb1δ|α < γb1δ by a factor
approximately two to three for all halo masses. The conditional
coefficient γb1α|δ , on the other hand, shows a smaller decrement
compared to the corresponding unconditional coefficient γb1α . In
fact, we curiously also see γb1α|δ � γb1δ across all masses, so that

Figure A2. Correlation between tidal environment at 4R200b scales (as
measured by α and δ) and large-scale environment (measured by halo bias
b1). Curves show the unconditional correlation coefficients γb1α and γb1δ

(dashed), as well as the conditional coefficients γb1δ|α and γb1α|δ (solid).
The results indicate that α is a better indicator of large-scale environment
than is δ, both in the unconditional and conditional sense.

conditioning on δ does not even decrease the correlation between α

and b1 below the unconditional correlation between δ and b1.
These results indicate that α is a better indicator of large-scale

environment than is δ, both in the unconditional and conditional
sense.

We have also repeated the analysis of Fig. 2 using α defined
at fixed scales of 1 and 2 h−1 Mpc, finding that the cancellations
leading to small conditional correlation coefficients only occur
in the mass range where 4R200b � 1 h−1 Mpc, 2 h−1 Mpc, respec-
tively. Fig. A3 shows the results. For ease of comparison, we
use bins of M200b rather than Mvir for this figure. Finally, we
have repeated this last analysis using δ instead of α, defined at
4R200b, 1 h−1 Mpc, 2 h−1 Mpc. We found that none of these vari-
ables perform as well as α(4R200b) in producing small conditional
correlation coefficients across the entire halo mass range we probe.
For brevity, we do not display these results. In a recent study, Han
et al. (2019) proposed that δ defined at 1–2 h−1 Mpc is a strong
candidate for explaining assembly bias trends. Our results indicate
that α(4R200b) is an even stronger candidate, which can also be
understood by the fact that the α↔b1 correlation seen in the left-
hand panel Fig. 2 takes values at least comparable to, and usually
larger than, the correlation strength between b1 and the fixed-scale
δ’s (not shown).

A3 Tidal environment and internal halo properties

Fig. A4 explores the correlations between internal halo properties
and the environmental variables α and δ, colour-coded by the
internal properties as in previous figures. The solid (dashed) curves
show the conditional correlation coefficients γ cδ|α (γ cα|δ) for c ∈
{β, λ}. We have chosen these two internal variables as representing
the extremes of the trends we discuss here; the other internal
variables {cv/av , c/a, cvir} show qualitatively identical trends with
intermediate strengths. In each case, we find γ cδ|α is substantially
smaller in magnitude than γ cα|δ at all but the smallest halo masses
we explore, indicating that α accounts for a substantial fraction of
the correlation of δ with all internal properties. Especially in the
case of λ, we see that α accounts for nearly all of the correlation
between λ and δ.

Taken together, the results shown in Figs A2 and A4 show that
α is a much better candidate than δ for an environmental link that
could explain assembly bias in any internal halo property. In other
words, the anisotropy of the halo tidal environment is expected to
be more important than the local density in explaining assembly
bias trends.

A4 Explicit conditional correlation

In the main text, we explore the connection between halo tidal
environment and assembly bias using the Gaussian-motivated
correlation coefficients γ bc|a ≡ γ bc − γ abγ ac, where b and c
represent halo bias and any internal halo property, respectively,
and a represents the environmental variable. Here, we perform an
explicit test of this connection by evaluating correlation coefficients
in fixed bins of the environmental variable. Since binning naturally
increases the noise in our measurements, we only display results
for the strongest assembly bias trend which is that between b1 and
velocity anisotropy β.

Fig. A5 shows the correlation coefficients γb1β as a function of
halo mass, evaluated for haloes in quintiles of δ (left-hand panel) and
α (right-hand panel), with the all-halo coefficient repeated in each
panel in red. It is visually apparent that fixing α leads to conditional
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2992 S. Ramakrishnan et al.

Figure A3. The top panel is identical to Fig. 2 except that we show results as a function of M200b instead of Mvir, with tidal anisotropy α still defined at 4R200b

scales. The middle and lower panels repeat the same analysis for α defined at 1 and 2 h−1 Mpc, respectively. We see that the residual assembly bias (right-hand
panels) is consistent with being zero only when α is defined at scale 4R200b. In fact, we see that, when α is defined at 1 or 2 h−1 Mpc scales, the residual
assembly bias reduces only in the mass range where the haloes have 4R200b � 1 or 2 h−1 Mpc, respectively. The respective mass ranges have been marked
with grey vertical lines in the middle and bottom right-hand panels, respectively (this comparison is the reason to use M200b).

correlations that are substantially closer to zero than when fixing δ.
We have checked that qualitatively similar results hold for all other
internal variables except cvir for which the noise is too large to draw
strong conclusions given our simulation set.

A5 Halo properties

Here, we show for reference the distributions of all variables studied
in the main text, including halo bias b1, environmental variables {α,
δ}, and internal halo properties {β, cv/av , c/a, cvir, λ}. See Section 2
for a description of how each of these is measured.

The histograms in Fig. A6 show the individual distributions of
all eight variables (different panels, as labelled) for a few narrow
mass ranges (different line styles), with several known trends being

apparent. We see that haloes are, on average, substantially aspherical
in shape (panel c/a) but less so in their velocity ellipsoids (panel
cv /av), although there is a clear preference for radially dominated
orbits (panel β). The distributions of spin λ and concentration cvir

show distinct tails at small values, while those of the environmental
variables δ and α are skewed towards large values, and the
distributions of b1 are largely symmetric around the median. All
variables except b1 and λ show noticeable trends with halo mass.

A6 Joint distribution of α, b1 and internal properties

In Section 3.4 we analysed the full distribution of b1, α, β

and showed that the overall anticorrelation between b1 and β is
consistent with being largely due to α. In this section we complete
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Figure A4. Correlation between tidal environment at 4R200b scales (as
measured by α and δ) and internal halo properties c ∈ {β, λ}. The curves
show the conditional coefficients γ cδ|α (solid) and γ cα|δ (dashed). We see
that |γ cδ|α | < |γ cα|δ | at essentially all masses in both cases, indicating that α

accounts for a substantial fraction of the correlation of δ with both of these
internal properties. We find qualitatively similar results for the other internal
properties {cv /av , c/a, cvir} (not shown).

this analysis by showing the same for the distribution of b1, α, and
c for all internal properties c in all three mass ranges.

To make the results compact, we will not show scatter plots
for the various distributions and instead focus on the conditional

mean 〈 b1|α, c 〉 (as already shown in Fig. 4 for the case c → β) and
additionally the square root of the conditional variance σ (b1|α, c) ≡(〈

b2
1|α, c

〉 − 〈 b1|α, c 〉2
)1/2

, for all c ∈ {β, cv /av , c/a, cvir, λ}. If
the general relation (13) is true, then we should expect 〈 b1|α, c 〉 �
〈 b1|α 〉 and σ (b1|α, c) � σ (b1|α). Figs A7 and A8 show that this is
indeed the case, as we discuss below.

Both figures comprise of subplots focusing on one internal
variable c at a time. Fig. A7 (Fig. A8) shows projections of 〈 b1|α, c 〉
(σ (b1|α, c)) in the b1–c (left subplot panels) and b1–α planes (right
subplot panels) for all three mass ranges (three sets of curves with
offsets given for clarity). The bins along each horizontal axis are
chosen as quintiles of the respective variable,11 so that the left
subplot panels additionally reveal the b1–c assembly bias trends for
the mean and width of the conditional b1 distributions as systematic
horizontal shifts of the different lines. Fig. A7 for 〈 b1|α, c 〉 shows
results qualitatively identical to those seen in Fig. 4, with the b1–c
projections being approximately horizontal lines in fixed quartiles
of α, and the b1–α projections tracing out common loci in fixed
quartiles of c. Fig. A8 extends these results to the (square root of)
conditional variance σ (b1|α, c), with the b1–c projections again
being approximately horizontal with α-dependent offsets, and the
b1–α projections tracing out common loci in fixed c-quartiles.

Furthermore, as we see in Fig. A6, the distribution of b1 is
approximately symmetric about its mean, indicating that a Gaussian
shape is a reasonable approximation. This would mean that the
conditional independence of b1 and c at fixed α as seen in
the conditional mean and variances in fact extends to the entire
distribution as discussed above. These results strongly support our
main conclusions regarding the role of α in explaining assembly
bias.

11The marker location on the horizontal axis for each such quintile is chosen
as the median of that quintile, averaged over realizations.
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2994 S. Ramakrishnan et al.

Figure A5. Explicit conditional correlation between halo bias b1 and velocity anisotropy β as a function of halo mass for haloes in quintiles of δ (left-hand
panel) and α (right-hand panel). The all-halo coefficient is shown with red symbols joined by red lines; this is the same in each panel and is repeated from the
middle panel of Fig. 2. We see that fixing α leads to conditional correlations that are substantially closer to zero than when fixing δ.

Figure A6. Normalized distributions of all variables used in this analysis (different panels, as indicated). In each panel, the solid, dashed, and dotted curves
show measurements for low-, intermediate-, and high-mass haloes, respectively, as indicated in the legend at the top. The lowest mass bin uses measurements
from two realizations of the high-resolution box, while the other two mass bins use measurements from 10 realizations of the low-resolution box, with the
curves showing the mean and the error bars showing the scatter across realizations.
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Cosmic web and halo assembly bias 2995

Figure A7. Conditional mean of b1 at fixed α and c ∈ {β, cv /av , c/a, cvir, λ}: Each subplot shows 〈 b1|α, c 〉 in two projections: the b1–c plane for different
quartiles of α (coloured lines in the left subplot panels) and the b1–α plane for different quartiles of c (coloured lines in the right subplot panels). The mapping
between line colour and quartiles of α or c is given in the legend at the top right. The results for c = β are repeated from Fig. 4. In each panel, results are shown
separately for haloes segregated into three mass ranges as in Fig. 4. The low-mass results are averaged over two realizations of the high-resolution box while
the mid- and high-mass results are averaged over 10 realizations of the low-resolution box, with error bars in each case showing the error on the respective
mean. For clarity, the mid- and high-mass results are also given vertical offsets of +10 and +25, respectively. We see that the results for all internal variables c
and for each mass range are consistent with the relation 〈 b1|α, c 〉 � 〈 b1|α 〉. See the text for a discussion.
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Figure A8. Square root of conditional variance of b1 at fixed α and c ∈ {β, cv /av , c/a, cvir, λ}: Same as Fig. A7, showing results for σ (b1|α, c) ≡
(
〈

b2
1|α, c

〉 − 〈 b1|α, c 〉2)1/2. In this case, the mid- and high-mass results in each subplot panel were given vertical offsets of +3 and +5, respectively, for
clarity. The large errors in the low-mass results are likely driven by systematic effects in computing object-by-object b1 values due to the smaller k-space range
provided by the smaller volume of the high-resolution box (see also the low-mass histogram of b1 in Fig. A6). We see that the results for all internal variables
c and for each mass range are consistent with the relation σ (b1|α, c) � σ (b1|α). Together with the results of Fig. A7, this shows that the full distribution of b1,
α, and c is consistent with p(α, b1, c) � p(α)p(b1|α)p(c|α) for each c. See the text for a discussion.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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