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Abstract 

 

Identification of patients at risk of kidney graft loss relies on early individual prediction of graft 

failure. Data from 616 kidney transplant recipients with a follow-up of at least one year were 

retrospectively studied. A joint latent class model investigating the impact of serum creatinine 

(Scr) time-trajectories and onset of de novo donor-specific anti-HLA antibody (dnDSA) on 

graft survival was developed. The capacity of the model to calculate individual predicted 

probabilities of graft-failure over time was evaluated in 80 independent patients. The model 

classified the patients in three latent classes with significantly different Scr time-profiles and 

different graft survivals. Donor age contributed to explain latent class membership. 

Additionally to the SCr classes, the other variables retained in the survival model were 

proteinuria measured one-year post-transplantation (HR=2.4, p=0.01), pre-transplant non-

donor-specific antibodies (HR=3.3, p<0.001), dnDSA in patient who experienced acute 

rejection (HR=15.9, p=0.02). In the validation dataset, individual predictions of graft failure 

risk provided good predictive performances (sensitivity, specificity and overall accuracy of 

graft failure prediction at ten years were 77.7%, 95.8% and 85 %, respectively) for the 60 

patients who had not developed dnDSA. For patients with dnDSA individual risk of graft 

failure was not predicted with a so good performance.  



 

Introduction 

In kidney transplantation, a new challenge in modelling is individualized prediction of graft 

failure risk over time. Up to now, no study has reported such a model appropriate for any 

kidney transplant patients to assess the individual risk and its evolution with time. Numerous 

risk factors of kidney graft failure are known: factors linked to donor (e.g. age, cause of 

death, serum creatinine, living or deceased donor, cause of death, Expanded Criteria Donor 

– ECD)[1–6], to transplantation (e.g. cold ischemia time, retransplantation)[7], and to 

recipients (demographic, clinical, immunological and biological factors)[8–14]. Several recent 

studies have identified donor-specific anti-HLA antibodies (DSA) and antibody-mediated 

rejection (ABMR) as primary causes of allograft failure [9,15–17]. Ways to improve graft 

survival in patients who do not develop DSA are less studied although as many graft failures 

are observed in patients without DSA [18]. 

Association between graft failure and serum creatinine (SCr) was studied in taking into 

account SCr levels measured at specific time-points and/or SCr linear evolution with time 

after transplantation (e.g. SCr slopes between two measurements) [5,14]. Considering the 

whole dynamic history of SCr (i.e. SCr evolution with time) should be an efficient alternative 

strategy.   

Latent class models could permit to study the heterogeneity in the individual time-trajectories 

of SCr [19]. The joint models are innovative statistical tools which allow to study the 

association between evolution of markers over time (i.e. time-trajectories of continuous 

variable), fixed covariates (i.e. individual factors collected at a given time) and onset of an 

event [5,20]. Statistical developments in the joint modelling area rely either on the shared 

random-effects models that include characteristics of the longitudinal marker as predictors in 

the model for the time-to-event [21,22] or on the joint latent class models which assume that 

the population can be parted into homogeneous subgroups (corresponding to latent classes), 

with a class-specific time-evolution of the marker and a class-specific risk of the event 

[23,24]. Using a shared random effect model, Fournier et al. (2016) showed that the risk of 

graft failure up to 13 years after transplantation was associated with both current value and 

current slope of SCr [5]. Onset of de novo DSA (dnDSA) was not considered by the authors 

and no prediction of the individual graft failure risk was obtained. No joint latent class model 

has been developed previously to predict graft failure. 

As several papers reported models predictive of graft failure using data collected up to one 

year after transplantation, it seemed relevant (i) to jointly model the change of serum 

creatinine over at least the first year post-transplantation and (ii) to investigate in such a 

model the impact of individual potential risk factors on both change of SCr and graft failure 

risk. Therefore, the objectives of the present study were (i) to develop a joint latent class 

model investigating the impact of serum creatinine time-trajectories and onset of dnDSA on 



 

graft survival and (ii) to study the possibility of individualized risk prediction of kidney graft 

failure within ten years after transplantation.  

 

Material and Methods 

Study population 

Data was extracted from the retrospective cohort of kidney transplant recipients grafted at 

the University Hospital of Limoges (France) between 1984 and the end of 2011 (n=819). 

Among these patients, 616 who had sufficiently data with a clinical and immunological follow-

up of at least one year were included in the study.  A flowchart showing patient selection is 

presented in Figure 1.  

The study database was approved by the French Informatics and Liberty National 

Commission (CNIL, registration number 1795293). All the grafts came from heart-beating 

deceased donor. More details about the patients included can be found in a previous work of 

our group [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart showing selection of renal transplant recipients included in the study. 

Not followed-up in Limoges after 

transplantation (n=38) 

Patients transplanted 
between January 1

st
, 1984 and 

December 31, 2011 
(n=819) 

Missing immunoclinical data (n=59) 

Patients included into study 

(n=616)  

Donor-specific anti-HLA antibodies 
before transplantation (n=13) 

Non-functional graft within the first two 

months post-transplantation (n=20) 

Missing proteinuria at M12 (n=14) 

Follow-up < 1year (n=48) 

Unknown donor’s cause of death (n=11) 



 

Outcomes and study endpoint 

Graft failure, defined as return to dialysis or pre-emptive retransplantation was used as the 

outcome variable. Death was considered as a censored event when the recipient died with a 

functioning graft.  

 

Available variables 

Donor-specific variables were age and cause of death (categorized to vascular, traumatic 

vehicle accident, traumatic non-vehicle accident and other). Transplantation-related variables 

included cold ischemia time, retransplantation and transplantation period (1984-1993, 1994-

2002 and 2003-2011). Recipient variables included: age at transplantation, gender, non-

donor specific anti-human leucocyte antigen antibodies (NDSA) before transplantation, initial 

immunosuppressive regimen and proteinuria levels at month 12 (M12) after transplantation 

(in case of missing data for proteinuria at month 12, the first value collected between M12 

and M18 was used). Additionally, repeated measures of SCr within the first 18 months after 

transplantation (usually at M1, M3, M6, M12 and M18, median number of measurements: 5, 

range: 2-8), diagnosis of a first acute rejection episode (AR) and onset of de novo donor 

specific anti-HLA antibodies (dnDSA) were collected. 

Anti-HLA antibodies were screened and identified using Luminex® solid-phase assay (One 

Lambda LABScreen assays) in samples collected before transplantation, at three, six and 

twelve months post-transplantation and annually thereafter or whenever clinically indicated. 

Results were expressed as median fluorescence intensity (MFI). MFI>1000 was considered 

positive. All sera collected and tested using the Complement Dependent Cytotoxicity method 

prior to availability of Luminex® technology in our center (2007) were reanalyzed using 

Luminex® as previously described.[10] Patients in whom the Luminex® reanalysis identified 

presence of DSA before transplantation were excluded from the database studied.  

Donor, recipient and transplant characteristics are presented in Table 1.  

  



 

 

Table 1: Immunological parameters, donor, recipient and transplant characteristics (n=616) 

Donor characteristics   

Mean age  (SD) [years] 43.5 (16.4) 

Age ≥60 years (n) 110 (17.8%) 

Cause of death (n)   

     Vascular 268 (43.5%) 

     Traumatic vehicle accident 106 (17.2%) 

     Traumatic non-vehicle accident 116 (18.8%) 

     Other 36 (5.8%) 

     Unknown 90 (14.6%) 

Recipient characteristics   

Age (years, mean (SD)) 49.5 (13.8) 

Male/Female (n) 375/241 

Biological parameters   

Mean proteinuria measured between at M12 [g/L] (SD) 0.166 (0.451) 

Mean serum creatinine at month 12 [µmol/L] (SD)  139 (67) 

Clinical characteristics   

Death with functioning graft (n) 56 (9.1%) 
Acute rejection (n) 
Graft failure (n) 

135 (21.9%) 
68 (11.0%) 

Initial immunosuppressant   

AZA/MMF 134/473 

Unknown 9 

Immunological parameters  

De novo donor specific anti-HLA antibodies (n) 60 (9.7%) 

Non donor specific anti-HLA before transplantation (n) 96 (15.6%) 

Transplant characteristics   

Retransplantation (n) 52 (8.5%) 

Mean cold ischemia time [minutes] (SD) 1138 (369) 

Period of transplantation (n)     

    from 1984 to the end of 1993  99 (16.0%) 

    from 1994 to the end of 2002  194 (31.5%) 

    from 2003 to the end of 2011  323 (52.5 %) 

AZA = azathioprine, MMF = mycophenolate mofetil 

  



 

Statistical analysis 

Joint latent class model 

A joint latent class model for a longitudinal outcome and a right-censored (left-truncated) 

time-to-event outcome was developed in the ‘lcmm’ R-Package, version 17.8 (available at 

https://cran.r-project.org/web/packages/lcmm/lcmm.pdf). This model considers the population 

of subjects as heterogeneous, and assumes that the population consists of a finite number of 

homogeneous subgroups (so called latent classes)[24,25]. Each latent class was 

characterized by a class-specific time-trajectory of SCr and a class-specific risk of graft 

failure. This type of joint model is constituted of three submodels: (1) a multinomial logistic 

submodel aiming to calculate each patient probability of belonging to each latent class, (2) a 

mixed effect submodel to describe the SCr time-trajectories specific of each class (3) a 

survival submodel to describe the risk of graft failure specific of each class. A general 

mathematical representation of these sub-models, as well as R codes can be found 

elsewhere [19,25]. 

The model was constructed in a step-by-step procedure. The first step of model building 

aimed to define (i) a mixed-effects model for the SCr trajectories, (ii) the baseline risk 

function and (iii) the number of latent classes. Different link functions were compared to 

transform the observed SCr values into a Gaussian latent variable (i.e. herein, the 

unobserved kidney function): (i) a linear transformation, (ii) a rescaled cumulative distribution 

function of a beta distribution (iii) quadratic I-splines with equidistant nodes and (iv) quadratic 

I-splines with nodes located at the quantiles of SCr distribution. The most appropriate link 

function was selected on the basis of goodness-of-fit as measured by the discretized Akaike 

criterion (dAIC)[25]. The risk of graft failure was modelled using a parametric proportional-

hazards model. Weibull, piecewise constant and M-splines baseline risk functions were 

tested and compared using the Akaike criterion (AIC). The joint latent class model was 

estimated for a number of latent classes varying from 1 to 5 and the Bayesian information 

criterion (BIC) was used to compare them [25]. 

In the second step, the impact of the available covariates (see Table 1) as well as the impact 

of their interaction on (i) the class-membership probabilities, (ii) both the class-specific SCr 

trajectories and graft failure risk, was studied through fixed effects common within all classes 

and/or class-specific effects. Each covariate was first tested in univariate analysis and 

entered in multivariate analysis when univariate association (p<0.2) was found. If the onset of 

dnDSA was retained as covariate, its impact would be studied by taking into account several 

post-dnDSA follow-up periods because associated adverse effects are known to be delayed 

from their onset. The criteria for final model selection were the BIC and the highest mean 

posterior class membership probabilities which assess the ability of the model to discriminate 



 

between the different latent classes. Finally, the predicted class-specific survivals were 

compared with the observed survivals within each class using Kaplan-Meier analysis.  

Because certain research teams studied the factors predictive of short-term graft survival [9],  

we also analyzed the factors predictive of 5-years graft survival. Numerous studies having 

investigated the predictive factors of graft failure among the individual factors known up to 

one year post-transplantation, the final joint model was compared to a model including 

follow-up data collected up to 1 year post-transplantation only.  

Individual predictions in an independent patient group 

An independent database of 80 patients (60 without and 20 with dnDSA randomly selected) 

grafted since 2002 and followed-up in another French transplant center (CHU Tours, Astre 

database approved by the CNIL, Authorization number DR-2012-518) was used to evaluate 

the capacity of the model to calculate individual predicted probabilities of graft-failure over 

time [26].  

 

Results 

Follow-up description 

Among the 616 patients studied, graft failure was observed in 68 (11%) patients over the 10 

years of follow-up (incidence per 1,000 person-years, 16.8; 95% CI, 13.1 to 21.3). The 

median follow-up time in patients up to graft failure was 4.97 years (range: 1-10). Among 548 

event-free patients, median follow-up time was 7.13 years (range: 1-10). There were 56 

deaths with a functional graft. Sixty patients developed dnDSA (incidence per 1 000 person-

years, 14.8; 95% CI, 11.3 to 19.1; median time of onset 3.93 years; range: 0.02-9.8) and 12 

(20%) of them lost their graft. In these 60 patients, the median follow-up time up to graft 

failure was 6.13 years (range: 1-10).  In the 556 patients who did not developed dnDSA, graft 

failure was observed in 56 patients (11.2%) over the 10 years of follow-up. The median 

follow-up time to graft-failure in these 556 patients was 4.39 years (range: 0.94-10). One 

hundred and thirty five patients were treated for a first acute rejection episode over the whole 

study period, 121 (90%) of which were biopsy proven. T-cell mediated rejection (TCMR) was 

evidenced in 104 patients, ABMR in 14 patients, and mixed rejection (TCMR+ABMR) in 3 

patients. Ninety-four first rejections occurred within the first year post-transplantation.  

Joint latent class modelling 

The SCr time-trajectories were fitted after transformation with a I-spline link function with 5 

equidistant nodes since it provided the lowest dAIC. The time-trajectories of SCr after 

transformation were best described using quadratic function of time to allow non-linear mean 

trajectories over time. The baseline risk function was modelled parametrically using a two-

parameter Weibull baseline risk function. The joint latent class model including three latent 

classes was retained. The class-specific risks of graft failure were described using presence 



 

of NDSA before transplantation, proteinuria at M12 greater than 0.275 g/L (yes/no), 

interaction between onset of acute rejection and development of dnDSA (yes/no). The 

estimations related to the proportional hazard submodel of the final joint model are reported 

in Table 2.  

 

Table 2. Joint latent class mixed model estimates of hazard ratio for graft failure risk 

 Survival submodel  

 HR 95% CI p-value 

NDSA before transplantation (yes vs. no) 3.27 [1.75 - 6.13] <0.001 

Proteinuria at M12 (>0.275 g/L vs. 0.275 g/L) 2.41 [1.22 - 4.76] 0.011 

dnDSA (yes vs. no) 0.49 [0.05 - 4.46] 0.524 

Acute rejection (yes vs. no) 0.78 [0.39 - 1.56] 0.486 

(dnDSA*acute rejection) Interaction 15.35 [1.55 -152.43] 0.019 

HR= hazard ratio, CI= confidence interval, NDSA=non donor specific anti-HLA antibodies, dnDSA=de 

novo donor-specific anti-HLA antibodies 

 

 

The donor age (categorized as greater or not than 60 years) contributed to explain latent 

class membership with the recipients of kidneys from donors younger than 60 years having a 

significantly higher probability to be allocated to class 1 (characterized by the lowest Scr 

values and the best graft survival). The mean posterior probability of belonging to each class 

ranged from 82.6% in patients allocated to class 1 to 89.2% in class 3, indicating a clear 

discrimination between the latent classes. Of note, this model including acute rejection and 

dnDSA data collected over the follow-up outperformed a joint model taking into account data 

collected up to the end of the first year post-transplantation only (p=0.001). This comparison 

showed the added value of the dnDSA data collected after one year post-transplantation.  

Figure 2 shows the estimated trajectories re-translated into SCr and the associated predicted 

graft failure-free survival for each class. Class 1 with 189 patients (30.7%) was characterized 

by a mean SCr baseline value close to 100 µmol/L, a slow decrease in SCr within the first 18 

months post-transplantation and a mean risk of graft failure at 10 years post-transplantation 

close to 5%. Class 2 corresponding to the majority of the patients (n=392, 63.6%) was 

characterized by a higher mean SCr baseline value, close to 150 µmol/L and a stable mean 

trajectory over the first 18 months post-transplantation while the mean risk of graft failure at 

10 years post-transplantation achieved 10%. In comparison with class 1, it was associated 

with a significant increase in the observed incidence of graft failure at 10 years post-

transplantation (log-rank test, p=0.0346). Finally, class 3 with 35 patients (5.7%) was 

characterized by a mean SCr value close to that of class 2 at baseline followed by a rapid 



 

rise of SCr within the first 18 months post-transplantation. In comparison with class 1 and 

class 2, it was associated with a significant increase in the observed incidence of graft failure 

(p<0.0001). The mean risk of graft failure at 10 years post-transplantation in this class was 

100%, and no subject in this class had a graft survival greater than seven years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Class-specific predicted mean trajectories (top panel) and class-specific predicted event-free 

probabilities (bottom panel) from the final joint latent-class mixed model; class 1 (n=189) is in green, 

class 2 (n=392) in black and class 3 (n=35) in red. Dashed lines are the computed 95 % confidence 

intervals. 

 

The short-term risk (5-years) of graft failure was also studied using the developed joint three 

latent class model. This 5-years risk was significantly associated with serum creatinine latent 



 

classes (p<0.0001), proteinuria at M12 (p=0.003) and pre-transplant NDSA (p=0.034). 

Contrary to the 10-years model, the effect of interaction between dnDSA and acute rejection 

was not significant any more.       

Individual predictions in an independent patient group 

Individual predictions of graft failure up to the end of follow-up were computed for 60 patients 

from the validation dataset who had not developed DSA, according to their observed history 

of SCr and the covariates retained in the final 10-years joint model. In the 36 tested patients 

with graft failure, failure risk was adequately predicted in 28 patients as the 95% confidence 

interval of the predicted probability of graft failure included values greater than 50%. In the 24 

patients who did not experience graft failure, the predicted probability of graft failure 

remained lower than 30% (with an upper limit of the 95% confidence interval<50%) until the 

end of the follow-up except for one patient. Thus, using data collected up 12 months post-

transplantation in this patient subpopulation, sensitivity, specificity and overall accuracy of 

the graft failure prediction at ten years were 77.7%, 95.8% and 85 % respectively. Figure 3 

depicts the predicted probability of graft failure in 18 patients randomly selected from this 

subgroup.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Individual predictions of 10-years graft failure risk based on covariates known at 1 year post-

transplantation for 18 patients without dnDSA (a) who experienced graft failure, (b) who did not 

experienced graft failure. Solid lines indicate the predicted medians and dashed lines indicate the 95% 

confidence intervals; the vertical line indicates time of graft failure. 



 

In the 20 tested patients who had developed dnDSA, the model predicted an increased risk 

of graft failure, but the individual risk of graft failure was not adequately predicted for most of 

these patients. The best and worth predicted curves of graft failure obtained in this patient 

subgroup are shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The worst (patient A) and the best (patient B) prediction of probabilities of 10-years graft 

failure with 95% confidence intervals from the final joint latent-class mixed model among the group of 

patients who developed de novo donor-specific anti-HLA antibody (dnDSA). The black part of the 

curve corresponds to predictions based on covariates known up to 1 year post-transplantation while 

the red curve corresponds to prediction recalculated after onset of both dnDSA and acute rejection; 

the vertical dashed black line indicates the time of graft failure. 

 

  



 

 

Discussion 

This study presents a new tool which adequately predicts the individual risk of graft failure in 

patients who did not developed dnDSA. In patients with dnDSA, individual prediction of graft 

failure risk was not obtained with a so good accuracy. The variables retained in the model 

are patient variables routinely collected and are classically reported to be associated with 

graft failure (measurements of SCr and proteinuria, presence of pre-transplant NDSA, 

dnDSA, acute rejection and donor age)[8–10,12,14,27]. Our study confirms the association 

of donor age above sixty years with both worse renal function and shorter graft survival 

[6,28]. In the model developed herein, the proteinuria level observed at one year after 

transplantation also contributed to explain the graft failure risk. Proteinuria at M12 was 

previously retained in association with several SCr values determined within the first year 

post transplantation in the KTFS score aiming to predict the graft survival at 8 years [14]. Our 

model included an interaction term between dnDSA and acute rejection showing, as 

previously reported, that dnDSA are more deleterious for graft survival when the patient has 

also experienced acute rejection [11]. This work confirms the deleterious impact of pre-

transplant NDSA which was less studied than the impact of preformed DSA but was found to 

influence clinical decisions in personalized medicine [29,30]. 

Although numerous works highlighted the potential impact of certain DSA classes on graft 

failure [9,10,31], nearly all reported survival models and scoring systems developed to 

predict graft survival in the kidney-transplant population did not take into account the onset of 

dnDSA [5,8,14]. At side, some studies focused on patients with preexisting and/or de novo 

DSA [17].  Recently, Viglietti et al. reported a new score to predict kidney allograft survival in 

patients with preexisting or de novo DSA and who experienced ABMR [31]. Ignoring the 

impact of dnDSA on the prediction of graft failure risk in a predictive tool could lead to 

underestimate this risk in patients with dnDSA but also to overestimate the risk in patients 

without dnDSA, especially in the long term. Herein, taking into account dnDSA improved on 

average the long-term survival prediction but not the short-term (e.g. 5 years graft survival). 

Consistently, Gonzales et al. found that adding presence of dnDSA at 1 year post-

transplantation to an existing risk model (which incorporates recipient factors at 1 year, 

including age, sex, ethnicity, renal function, proteinuria, and acute rejection)[32] did not 

improve predictive ability of graft loss by 5 years [9]. This result could be due to a too short 

time horizon because (i) dnDSA occur all over the follow-up and are mostly absent in the first 

year post transplantation (ii) graft loss attributable to dnDSA can occur several years after 

their onset [12]. Recently, significant progress has been made to understand the 

pathophysiology of DSA-mediated injuries and the determinants of graft loss [17,33,34].  



 

Preliminary tests were performed from our model for making individualized risk predictions in 

distinguishing patients with and without dnDSA.  

The graft failure risk has been less studied in patients who had not developed dnDSA. 

However, most of the kidney graft failures are observed in this subpopulation. The frequency 

of graft failure observed herein (in database used for model development) was similar to the 

frequency reported by Terasaki’s team (11% allograft loss) with a similar follow-up (median 

of 94 months)[18]. In this population, predictive performance of our model seems high. Using 

the validation dataset, graft loss was actually observed in 28 out of the 29 patients without 

dnDSA for whom the graft failure was predicted by our model (i.e. one false positive). As 

comparison, a sensitivity of 0.72 and a specificity of 0.71 were reported for the Kidney 

Transplant Failure Score [14]. Although our model might not be appropriate for predictions of 

graft loss in the global kidney transplant population, it can still be used to generate more than 

satisfying individual predictions in the majority of this population (i.e. the patients who do not 

develop dnDSA). It is noteworthy that this prediction can be performed from one-year post-

transplantation using data routinely collected in clinical setting. Interestingly, this prediction-

tool does not require histologic data, which is in accordance with the current practice to 

decrease the use of biopsies.  

Great differences between the present model and the previously published tools for graft 

failure prediction are in (i) predicting the individual risk of graft failure over time contrary to 

scoring systems which classified the patient in a risk-class (e.g. 3- or 4-level 

system)[10,14,31] (ii) taking into account the time-evolution of Scr levels within the first year 

after transplantation contrary to works which consider single time-points [14]. 

We used for the first time the recently proposed statistical approach of joint latent class 

models to predict graft outcome. Interestingly, the strengths of this approach have been 

demonstrated in oncology [35] and dementia [23].  

While we are in an era with very few new therapeutic strategies and new immunosuppressive 

drugs, individual prognostic tools are necessary for the optimal selection of patients in clinical 

trials. To demonstrate significant effects of candidate molecules, future trials should focus on 

patients with poor renal prognoses, and we believe that our model may be a valuable tool for 

identification of these patients. 

Last, our findings should be interpreted by taking into account the limitations of current study. 

We were unable to directly test the impact of immunosuppressive regimen and their blood 

levels because of dose adjustments and switches from one regimen to another which 

occurred frequently in patients over such a long study period (from 1984 until 2011). 

However, we would expect that the different immunosuppressive regimens are at least in 

part related to different transplantation period, and the period of transplantation was tested 

but not among the covariates significant in the multivariate model. Similarly, two out of four 



 

criteria for expended donation (i.e. last donor SCr and history of hypertension) were missing 

in the present study but by combining the two remaining criteria in a single dichotomous 

variable (i.e. donor age ≥60 years or between 50 and 59 years with cardiovascular accident 

vs. other), we did not observe a better performance of our model than by using donor age 

alone.  

Although allograft histology thanks to repeated biopsies also was found associated with 

transplant outcome [31], it was not possible to investigate its impact in the present study. 

Indeed, the database included almost exclusively biopsies performed when there were 

clinical signs in favour of graft lesions, such as an increase in serum creatinine.  Anyway, the 

purpose of this work was to develop a simple-to-use tool taking into account routinely 

collected data after transplantation. This is in accordance with the general trend to decrease 

the graft biopsy appeal.  

 

Conclusion 

Joint models were used to characterize the kinetics of Scr and their link with time-to-event 

(time-to-graft failure) and to identify relevant covariates linked to graft survival. The individual 

predictions of graft-failure probability obtained in patients without DSA, shows that this 

approach could be useful to improve patient's follow-up and the early detection of numerous 

at risk patients as approximately half of graft failures are observed in patients without DSA. 

The graft failure risk would be re-evaluated throughout the time after transplantation in case 

of dnDSA occurrence or acute rejection. In the future, we have the project to include our 

predictive model in an expert system available for transplant physicians. 
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