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This study investigates the combination of Mueller imaging polarimetry with machine learning for the automated optical classication of raw materials. It shows that standard image classication techniques based on support vector machines or deep neural networks can readily be applied to polarimetric data extracted from Mueller matrix measurements. The feasibility of such an approach is empirically demonstrated through the classication of multispectral depolarization images of real-world materials (banana, wood and foam samples).

INTRODUCTION

Mueller polarimetry [START_REF] Chipman | Polarimetry[END_REF] allows one to measure the polarization properties of a medium. Such measurements, coupled with machine learning techniques, have found successful applications in e.g., biomedical diagnosis, 2, 3 car detection [START_REF] Fan | Polarization-Based Car Detection[END_REF] or material classication.
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While the classication of image patches into dierent material categories is a classic image processing problem [START_REF] Varma | A statistical approach to material classication using image patch exemplars[END_REF] for which various multispectral, [START_REF] Deborah | Application of spectral statistics to spectral texture discrimination[END_REF] photometric [START_REF] Kampouris | Fine-grained material classication using micro-geometry and reectance[END_REF] or polarizationbased 10, 11 solutions exist, very few works in this direction considered active polarimetry, although Zallat et al. had already demonstrated in 2003 [START_REF] Zallat | Using polarimetric imaging for material classication[END_REF] that it could allow the automated classication of an image into dierent clusters corresponding to dierent materials. More recently, Vaughn et al. showed in [START_REF] Vaughn | Classication using active polarimetry[END_REF] that materials could be classied through their Mueller matrices using support vector machines (SVM [START_REF] Boser | A training algorithm for optimal margin classiers[END_REF] ), but they classied single Mueller matrices and not spatially-varying elds of Mueller matrices, as would be the case in polarimetric imaging.

5

On the other hand, we believe that the spatially-varying properties of polarization, i.e., the texture, may be of fundamental importance for characterizing non-uniform materials. Therefore, we revisit the problem of material classication using active polarimetric imaging, in view of the recent developments in the eld of image classication due to the advent of deep neural networks. Our aim is to show that state-of-the-art image classication techniques such as [START_REF] He | Deep residual learning for image recognition[END_REF] can readily be applied to polarimetric images, and that image classication benets from the introduction of polarization data.

Consider for instance the images in Figure 1, which depict three small samples of banana, wood and foam, imaged at 510, 580 and 630 nm using a multispectral camera. The intensity images of these samples appear only slightly dierent, and therefore classication of these images will be rather dicult. On the other hand, turning these images into polarimetric images (in this example, we extracted the depolarization index from Mueller matrix elds of the same samples) reveals structures which are not visible in the intensity images. Therefore, polarization images seem to much better characterize materials in comparison with intensity images, and we shall see that they can readily be plugged into existing image classication frameworks.

The methodology we followed for constructing a database of polarization images of dierent materials is presented in Section 2. In Section Figure 1. Comparison between intensity and depolarization images of banana, wood and foam samples (each sample is approximately 1 cm 2 large). In both rows, the blue, green and red channels encode information measured, respectively, at 510, 580 and 630 nm using a multispectral camera. While it is very dicult to distinguish between the three samples using intensity, depolarization reveals the underlying structures of the matter and is thus more suitable for classication purposes.

ACQUISITION OF POLARIMETRIC DATA

In order to create a database of polarimetric images, we considered the dual-rotating Mueller imaging polarimeter presented in Figure 2, and described in detail in. [START_REF] Quéau | Design and simplied calibration of a Mueller imaging polarimeter for material classication[END_REF] It consists a collimated halogen light source followed by a polarization state generator (a xed linear polarizer followed by a controllable quaterwave plate), a polarization state analyzer (a controllable quaterwave plate followed by a controllable linear polarizer) and a multispectral camera. The sample to analyze is placed between the polarization state generator and polarization state analyzers. By acquiring a series of images under several predened polarization angles for the optical elements in the generator and analyzer, the polarization properties of the sample can be estimated.

More formally, let the polarization state of the light entering the generator be represented by the Stokes vector [I, Q, U, V] , and let the polarization state of the light exiting the analyzer be represented by the Stokes vector [I, Q, U, V ] . Let A, M and G be the 4 × 4 Mueller matrices of the analyzer, medium to analyze and generator, respectively. Then, the transformations in the polarization state of light can be represented as follows:

I Q U V = A M G I Q U V . (1) 
In dual-rotating polarimetry, a non-polarized light source is used (i.e., Q = U = V = 0 in Eq. ( 1), the Mueller matrices A and G of the analyzer and generator are controllable, and a photosensitive sensor measures the output intensity I. The Mueller matrix M of the medium can then be estimated using linear least-squares, from a series of 64 intensity measurements obtained under known varying states for the analyzer and generator.

As can be seen in Figure 2, Mueller matrices of real-world samples may exhibit both spectrally and spatiallyvaring properties. In order to capture as many information as possible about the imaged material, it is thus interesting to measure not just one Mueller matrix, but rather a set of Mueller matrix elds representing both the spatial and spectral variations of the material's polarization properties. These properties can then be represented in a more compact form by turning the Mueller matrix elds into various physically-meaningful quantities such as diattenuation, retardance, polarizance or depolarization. In this study we focus for simplicity on depolarizing materials, and thus we turn the estimated Mueller matrix elds into depolarization images (cf. Figure 3). For Mueller imaging polarimeter is the medium to be analyzed). This polarimeter is used to obtain 2D Mueller matrix elds characterizing the optical properties of the medium at three dierent wavelengths (in each case, the top-left image shows one intensity image of the medium, and the others show the Mueller matrix components normalized by the rst one). The three Mueller matrix elds are then turned into depolarization images (cf. Figure 3). The Mueller matrix elds shown in this example are those from the wooden sample in the middle column of Figure 1.

one particular pixel and one particular wavelength, we dene depolarization as in Equation (47) in, [START_REF] Chipman | Polarimetry[END_REF] such that it varies from 0 for a nondepolarizing Mueller matrix to 1 for an ideal depolarizer:

Depolarization = 1 - 4 i=1 4 j=1 Mij 2 M11 2 -1 √ 3 .
(

) 2 
The multispectral depolarization images obtained this way can then be classied using machine learning techniques, as discussed in the next section. In order to provide a proof of concept for these claims, we constructed a database of intensity and depolarization images for three dierent classes: banana, wood and foam. At small-scale (each image pictures an area of approximately 1 cm 2 ), the intensities of these three samples look more or less alike and there seems to be very few information to extract for classication. However, the three classes exhibit very dierent spatially-varying polarization properties: there is much more salient features to observe in the depolarization images and thus one would expect that such images could be used in a standard image classier.

We constructed an annotated training set consisting of 100 intensity and depolarization images per class. Both constructed by imaging the samples at 510, 580 and 630 nm, and assigning the resulting measurements to the blue, red and green channels of RGB images of size 224 × 224. Another set of 50 test images per class, dierent from the training images, was then acquired. Exemplar images from the training and test sets are shown in Figure 4.

We then trained two standard image classiers on the training set, and evaluated their performance on the test set. First, we considered the image classier from Matlab's computer vision toolbox, which is a support vector machine (SVM) classier relying on bag of SURF features. [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] Since our purpose is to question whether or not such frameworks can readily be used by nonspecialists in machine learning, we refrained ourselves from tuning any parameter of the classier, and used all the default ones. The results shown in the rst row of Figure 5 indicate that the performances of this naive approach on intensity images are not really satisfactory. Obviously, better performances could be obtained through parameter tweaking, but it is much more interesting to observe that even without any tuning, performances drastically improve when feeding the classier with depolarization images instead of intensity images. This tends to indicate that the underlying information is both easier to extract and more discriminative.

Another alternative to improve the results is to resort to a state-of-the-art convolutional neural network (CNN) for the classication, instead of the SVM. We thus also evaluated the performances of a Resnet 18 We emphasize the simplicity of both experiments, which consist simply in replacing the input to existing image classication architecture from plain images to polarization-aware ones, without any parameter tuning.

Obviously, even better performances would be expected by more appropriately tuning the parameters and, most importantly, enlarging the training database. But, the fact that existing architectures are readily applicable to Mueller imaging polarimetry data, and that considering such data seems to yield very reasonable classication results, already highlights the potential of the combination between polarimetry and machine learning. Figure 5. Confusion matrices obtained for the classication of real-world banana, wood and foam samples, using Matlab's builtin support vector machine (SVM) classier [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] with default parameters (top) or a state-of-the-art convolutional neural network (CNN) [START_REF] He | Deep residual learning for image recognition[END_REF] whose parameters are initialized by pretraining on the ImageNet database [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] (bottom), on intensity (left) and depolarization (right) images. In each table, the columns show the predicted labels, the rows show the true labels and the numbers indicate the percentage of classications. Considering depolarization instead of intensity improves the results in both cases: standard image classication tools can thus readily be applied to active polarimetric imaging systems and classication seems to benet from the use of polarimetry-aware data.

CONCLUSION AND PERSPECTIVES

We investigated the combination of machine learning techniques and active polarimetry for the purpose of optical classication of heterogeneous materials. We showed that existing image classication techniques could readily be employed for classifying depolarization images constructed by multispectral Muller imaging polarimetry.

Classication experiments using support vector machines and convolutional neural networks were carried out on real-world samples, and indicated the potential of polarimetry-aware classication over plain intensity-based approaches. In the future, we plan to further explore the potential of the proposed approach by directly classifying multispectral Mueller matrix elds instead of depolarization images. This represents a nontrivial task: for the moment each depolarization image consists of one graylevel image per wavelength, and thus considering three wavelengths we could obtain RGB-like images which can be plugged into existing frameworks. But, using the full Mueller matrix eld would result in 16-dimensional images per wavelength, and thus the architecture of the network might need to be adapted.
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 2 Figure2. Top, left: Mueller imaging polarimeter used in our experiments (top left is a collimated light source followed by a polarization state generator, bottom left is the multispectral sensor preceded by a polarization state analyzer, right is the medium to be analyzed). This polarimeter is used to obtain 2D Mueller matrix elds characterizing the optical properties of the medium at three dierent wavelengths (in each case, the top-left image shows one intensity image of the medium, and the others show the Mueller matrix components normalized by the rst one). The three Mueller matrix elds are then turned into depolarization images (cf. Figure3). The Mueller matrix elds shown in this example are those from the wooden sample in the middle column of Figure1.
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 3 Figure 3. Depolarization images corresponding to the three Mueller matrix elds shown in Figure 2. These three gray level images are then combined into RGB images such as the ones in the second row of Figure 1, and used for classication purposes.

network 13 for

 13 this task. Since training such a network requires optimizing over several millions of parameters, and we have at our disposal only a few hundreds of images, we carried out data augmentation of the training set (rotation, translation and scaling of images) and initialized the parameters by pretraining on the ImageNet database. 16 The results shown in the second row of Figure 5 indicate once again that the classier performs much better on polarization-aware images than on plain intensity images. Banana Wood Foam Intensity samples from the training set Intensity samples from the testing set Banana Wood Foam Depolarization samples from the training set Depolarization samples from the testing set

Figure 4 .

 4 Figure 4. Real-world banana, wood and foam samples used for classication. Top: multispectral intensity images, bottom: corresponding depolarization images. Each training set contains 100 images, and each testing set contains 50 images which are not present in the training sets.