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Abstract

In a recent paper with Sprang and Zudilin, the following result was proved: if a
is large enough in terms of € > 0, then at least 2(1_6)101;1% values of the Riemann
zeta function at odd integers between 3 and a are irrational. This improves on the
Ball-Rivoal theorem, that provides only #7022 log a such irrational values — but with
a stronger property: they are linearly independent over the rationals.

In the present paper we generalize this recent result to both L-functions of Dirich-
let characters and Hurwitz zeta function. The strategy is different and less elemen-
tary: the construction is related to a Padé approximation problem, and a generaliza-
tion of Shidlovsky’s lemma is used to apply Siegel’s linear independence criterion.

We also improve the analogue of the Ball-Rivoal theorem in this setting: we
obtain ligé? log a linearly independent values L(f,s) with s < a of a fixed parity,
when f is a Dirichlet character. The new point here is that the constant 1 + log 2

does not depend on f.

MSC 2010: 11J72 (Primary); 11M06, 11M35, 33C20 (Secondary).

The purpose of this paper is to prove results of irrationality, or linear independence, of
values of the Hurwitz ¢ function or L-functions of Dirichlet characters. Both are general-
izations of the Riemann ( function, so we begin with a quick survey of the main results in
this setting.

When s > 2is even, ((s)7~*®is a non-zero rational number so that ((s) is transcendental.
Apéry has proved [1] that ((3) is irrational, but there is no odd s > 5 for which ((s) is
known to be irrational. The next breakthrough is due to Ball-Rivoal [2, 20]:

dimg Spang (L, ¢(3), C(5), .. ., C(a)) > ~2ld)

> ———loga as a — o0, a odd.
1+ log 2

Here and throughout this introduction, o(1) denotes any sequence that tends to 0 as
a — oo. In this paper we mention only asymptotic results (namely, as a — 00) eventhough



most results can be made explicit, and often refined, for small values of a. At last we
mention the following recent result [11]:

log a

at least 20 °Wwelosa numbers among ¢(3), ¢(5), ..., ((a) are irrational, (0.1)
for a odd, a — oo.

The natural setting to generalize these results to values of the Hurwitz ¢ function or
L-functions of Dirichlet characters is the following. Let 7" > 1, and f : Z — C be such
that f(n+T) = f(n) for any n. We assume that f is not identically zero. Let ¢ > 0, and
a be sufficiently large (in terms of 7" and ¢). For p € {0, 1} consider the complex numbers

L(f,s):z%With2§s§aandszpmod2. (0.2)
n=1

If f is a Dirichlet character mod T then these are exactly the values of the associated
L-function.

The restriction on the parity of s in (0.2) is needed in some cases to get rid of powers
of m. Indeed, if f is a Dirichlet character then f is either even (i.e., f(—n) = f(n)) or
odd (i.e., f(—n) = —f(n)), according to whether f(—1) is equal to 1 or —1. If s > 2 has
the same parity as f then L(f, s)7~* is a non-zero algebraic number (see for instance [18,
Chapter VII, §2]) so that the numbers L(f, s) for s with this parity are linearly independent
over Q. Moreover, for any periodic map f : Z — Q which is either even or odd (and not
identically zero), we also have L(f,s)n7~* € Q" when s and f have the same parity (see
[12]). In these situations, we prove new results on the numbers (0.2) only when p and f
have opposite parities.

An interesting case where (in general) f is neither odd nor even is the following. Given
ue{l,...,T—1} we define f by f(n) =1if n =wumod T, and f(n) = 0 otherwise. Then

1 U

- 1 1 1
W) =2 G ray — T 2 vy~ T )

k=
where ((s,«) is the Hurwitz ¢ function. Therefore the general setting (0.2) encompasses
both values of the Hurwitz { function and values of L-functions of Dirichlet characters.

As far as we know, Apéry’s theorem has never been generalized in this direction; the
first natural conjecture in this respect is probably that Catalan’s constant L(x, 2) is irra-
tional, where y is the non-principal character mod 4. The Ball-Rivoal theorem has been
generalized to the L-function of this character by Rivoal and Zudilin [21]: they have proved
(0.3) below with 2+ log 2 instead of 7'+ log 2, eventhough 7' = 4. In the general setting of
(0.2), Nishimoto has generalized the Ball-Rivoal theorem as follows [19]:

1+o0(1)

dimg SpanQ{L(f, s), 2<s<a, s=pmod 2} > T+ log2

loga as a — oc. (0.3)
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In the special case where 22:1 f(n) # 0 (which includes the Hurwitz ¢ function but not
L-functions of non-principal Dirichlet characters), this lower bound appears already in
Nash’ thesis [17]. The constant T'+log 2 in Eq. (0.3) has been refined to T'/2+1og 2 in [§],
provided f is a Dirichlet character and T is a multiple of 4. When f is the non-principal
character mod 4, this gives as a special case the lower bound of Rivoal and Zudilin [21].

Our first result is that one may replace the constant 7'+log 2 in Eq. (0.3) with 1+log2,
so that the lower bound is uniform in 7" and is the same as for the Riemann ( function.

Theorem 1. Let T > 1, and f : Z — C be such that f(n+T) = f(n) for any n. Assume
that f is not identically zero. Let p € {0,1}, € > 0, and a be sufficiently large (in terms of
T ande). Then

—€
dimg Span {L ,8), 2<s<a, s= mod2}>7
QPpallg (f,s) >85> p “1+1og2
Of course the same result holds without the restriction s = p mod 2, but it is weaker
and even trivial in some cases where f is even or odd (as noticed above).

In another direction, we generalize the recent result (0.1) to this setting.

Theorem 2. Let T'> 1, and f : Z — C be such that f(n+T) = f(n) for any n. Assume
that f is not identically zero. Let E be a finite-dimensional Q-vector space contained in C,
p € {0,1}, € > 0, and a be sufficiently large (in terms of dim E, T, and €). Then among
the numbers L(f,s) with 2 < s < a and s = p mod 2, at least

log a

2(176) logloga

do not belong to E.

loga
Taking £ = Q we obtain at least 20 isglosa irrational values among the numbers
L(f,s). The dependence in a is much better than in the lower bound of Theorem 1;
however we obtain only numbers outside F, and not Q-linearly independent numbers.

Before explaining the strategy used in the proofs of Theorems 1 and 2, we would like
to state the two main special cases of Theorem 2 explicitly.

Corollary 1. Let x be a Dirichlet character; put p = 0 is x is odd, and p = 1 if x is
even. Let E be a finite-dimensional Q-vector space contained in C. Let € > 0, and a be
sufficiently large (in terms of x, dim E, and €). Then among the numbers L(x,s) with

2<s<aands=pmod 2, at least (1) s toga do not belong to E.

Corollary 2. Let r be a positive rational number, and p € {0,1}. Let E be a finite-
dimensional Q-vector space contained in C. Let € > 0, and a be sufficiently large (in terms
of r, dim E, and €). Then among the numbers

oo

1
C(Sﬂ“):Zm

n=0

loga
with 2 < s < a and s = p mod 2, at least 2= siosa do not belong to E.
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Corollary 2 is new even for r = 1, i.e. for the Riemann ¢ function: it is a refinement of
(0.1). We would like to emphasize the fact that the proof of [11] does not give this result
for £ # Q: a different approach is used here, proving linear independence and not only
irrationality.

The proof of Theorems 1 and 2 is based on the strategy of [8]: we apply Siegel’s linear
independence criterion using a general version of Shidlovsky’s lemma (namely Theorem 3,
stated in §1.3 and proved in [8] following the approach of Bertrand-Beukers [4] and Bertrand
[3]). This makes it necessary to relate the construction to a Padé approximation problem
with essentially as many equations as the number of unknowns. In the present paper we
adapt this strategy so as to include Sprang’s arithmetic lemma [23, Lemma 1.4] and the
elimination trick of [24, 23, 11]. The proofs of Theorems 1 and 2 are essentially the same,
except for the choice of parameters. It is also possible to prove other results of the same
flavour (see Theorem 4 at the end of §3.2, which implies both Theorem 2 and — up to a
multiplicative constant — Theorem 1).

Our construction contains as a special case the one used in [11] to prove (0.1). We prove
this in §3.3; as a byproduct, we relate the construction of [11] to a Padé approximation
problem with essentially as many equations as the number of unknowns.

The structure of this paper is as follows. We gather in Proposition 1 the output of the
Diophantine construction (see §1.1), and prove it in §1. Then we deduce Theorems 1 and 2
from Proposition 1 in §3 using Siegel’s linear independence criterion (stated in §2).

1 Diophantine construction

In this section we gather the Diophantine part of the proof, namely the construction of
linearly independent linear forms. We prove Proposition 1 stated in §1.1, from which we
shall deduce in §3 the results stated in the introduction. The linear forms are constructed
in §1.2 using series of hypergeometric type. We relate them in §1.4 to a Padé approximation
problem, and then apply a general version of Shidlovsky’s lemma (stated in §1.3). At last,
arithmetic and asymptotic properties are dealt with in §1.5.

1.1 Statement of the result

Let a, 7, N be positive integers such that 1 <r < %. Let N > 1, and f : Z — C be such
that f(m + N) = f(m) for any m. Assume that f is not identically zero. Let p € {0,1};
put

L(f,j) = Z fT(nnJl) for any j € {2,...,a}.

Let also

o= (46)(a+1)/N<2N>2r+27,7(a+1)/N+4(r+1) and B — (26)(a+1)/N<7, + 1)2r+2N2r+2. (1_1)



Proposition 1. There exists a constant ¢y, which depends only on a and N, with the
following property. For any integer multiple n of N there exist integers sy, with1 <k < ¢
and 2 <1< a-+ N, such that:

(i) For any n sufficiently large, the subspace F of RN~ spanned by the vectors
H(Sk2y -y Skatn), 1 <k < ¢y, is non-zero and does not depend on n.

(i1) For any k and any i we have |sy;| < f"H°™ as n — .

(7ii) For any k we have, as n — 00:

a N—-1
2017 3 skiL(fi) + D swarisa ()] < @, (1.2)
=2 =0
i=p mod 2

From now on, the symbols o(-) will be intended as n — co. Since k < ¢y, these symbols
can be made uniform with respect to k.

The integers s;, depend also implicitly on n, a, r, N, f and p. Their values for
i #Z pmod 2 do not appear in the linear combinations of part (iii), but they could be of
interest in other settings. Another feature of this construction is that for i < a, the integers
sk,; depend only on n, a, r, N but not on f or p. Probably this could lead to variants of
our results in the style of [14] or [7].

Remark 1. In [8] a similar construction is made, where the matriz [syi|ix has rank a +
N —1 for n sufficiently large so that the subspace F of part (i) is equal to RATN=1. In the
present setting we make a different construction to incorporate Sprang’s arithmetic lemma
(see §1.2 below), and the matriz [si;] we obtain has rank less than a + N — 1 for some
values of the parameters (see Remark 3 in §1.4): the subspace F in Proposition 1 is not
always equal to RTN-L

1.2 Construction of the linear forms

In this section we define the numbers sy, ; of Proposition 1 (see Eq. (1.17)) and express the
linear form of Eq. (1.2) in a more convenient way (see Lemma 1). We postpone until §1.5
the proof that s;; € Z.

As in §1.1 we let a, r, N be positive integers such that 1 < r < ;5. For any integer
multiple n of N we let

F(t) = (n/N)@tD)-CreDN (t —rn)@rrnt
WAt + Nhyet!

where (), = a(a+1)...(a+p—1) is the Pochhammer symbol. Note that each factor
t + Nh of the denominator appears also in the numerator, so that the poles t = —Nh of



this rational function only have order a. This rational function F'(¢) is similar to that of
[8], but central factors have been inserted in the numerator to apply Sprang’s arithmetic
lemma (see Remark 2 below).

In this section we follow the proof of [8], except for Eq. (1.19) which is specific to the
function F' we consider here. We let

So(z) = > F(-t)2' and Seelz) =D _F(t)z (1.3)

for z € C with |z| = 1; then both series are convergent since the degree —d, of F' satisfies
do ::—degF:(a+1)(%+1)—(27’—|—1)n—122. (1.4)

We let w = €™V and for any ¢ € {1,..., N} we consider the (inverse) discrete Fourier
transform of f, defined by

)

w (1.5)

Mz

1
N
A=1
We also let
Op = (Ndn/N)“HN(aH)"/N, where d; = lem(1,2, ..., 7).

The linear forms of Proposition 1 are given by the following lemma. The rational numbers
sk will be constructed explicitly in the proof (see Eq. (1.17)), and we shall prove in §1.5
that they are integers.

Lemma 1. For any 1 < k < dy— 1 there exist rational numbers sy, ..., Sgqarn Such that

FIO[w 088D (@) + (—1) P 5E )|

&
1=
=

a

=217 D sk Y sharia () (16)

1=2
i=p mod 2

where S® =Y s the (k — 1)-th derivative of a function S.

Let us prove Lemma 1. The partial fraction expansion of F' reads

n/N a

Y
=22 Gy Nay

h=0 j=1
with rational coefficients p; »; we consider

n/N
z) = ij,hZNh € Q[z]<y, for any j € {1,...,a}.



Let P, ; = P; for any j € {1,...,a}, and define inductively P ; € Q(z) by
1

Py j(2) = P (2) — ;Pk,uﬂ(z) for any £ > 2 and any j € {1,...,

where Py .11 = 0 for any k. We let also!

a [(t—1)/N| Din
Z Z Z Nhj_t € Qlz]<n
j=
d Vi(z P ol ST €Q
an 1 Z Z (Nh . t)j [’Z]Sn7

t=0  j=1 h=[(t+1)/N]
and define Uy, Vi for any k > 2 by the recurrence relations

, 1
Un(2) = Uia () = 7= Pe1a(2),

1

Vk(z) = VkLl(z) + mpkil&(z).
Then for any k& > 1 we have (as in [2, 10])
S +ZP,W 1)7Li;(2)

and SV (2) = Vi(2) + Z Py ;(2)Lij(1/2).

a}, (1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

Since Pj(z) € Q[zV] for any j € {1,...,a}, Eq. (1.7) yields P.; € 2'7*Q[z"]. This
property is very important to us since we shall evaluate Py ; at N-th roots of unity. To
evaluate in the same way the rational functions Uy, Vi € Qlz, 27!] for k < dy — 1, we write

N—-1 N-1
U (2) = AUpa(2) and 2"V (2) = Z AVea(2)
A=0 A=0

with Uy, Vix € Q[zY, 27"]. Then Eqns. (1.12) and (1.13) yield

N-1 a
ISV =3 AUa(z) + ) 2 P(2)(— 1)L (2)
A=0 j=1
N-1 a
and 2" 1SV () =) AV (2) + Z 7P i (2) L (1) 2).
A=0 j=1

!There is a misprint in the formula that gives U(z) in [8].

7

(1.14)

(1.15)

(1.16)



We may now define the coefficients s ; for any k& > 1 by:

{ Ski = 0nPri(1) for 2 <i <a,

Skat1+a = On(Uka(1) + (—=1)PVe n-a(1)) for 0 <A< N — 1, (1.17)

where Vi x = Vi, ; recall that 6, = (Nd,,/n)* I N@HDYN with d; = lem(1,2,..., ). Since
Py i(2), Ug (%) and Vi ny_x(2) are polynomials with rational coefficients, the numbers sy, o,

.., Skat+n are rational. We shall prove in Lemma 3 that they are integers, thanks to the
factor 6,. We also point out that s, is not defined for ¢ = 1; actually P (1) = 0 for the
values of k we are interested in (see (1.18) below).

To conclude the proof of Lemma 1, we shall evaluate Eqns. (1.15) and (1.16) at roots
of unity. At the point 1 this is possible since, as in [8, §4.3],

for any k <dy—1, Pi(1)=0 and Uy, Vi do not have a pole at z =1.  (1.18)

Now let &k < dy — 1, and z € C be such that |z|] = 1. Then Eqns. (1.12) to (1.16) hold,
upon agreeing that the sums start at j = 2 if z = 1; this remark will be used below when
z is a N-th root of unity.

Let Ay be the right hand side of Eq. (1.6). Using (1.18) the definition (1.17) of sy,
yields

A= 20,17 57 Pes(LU ) + 00 S (Wia(1) + (— 1V A ()£ (V).

1<j<a
Jj=p mod 2

Now Eq. (1.5) yields

Z F(O)w™ = f(m) for any m € Z, so that Zf )Lij(w") = Z fT(nn;) = L(f,j) for any j < a.
/=1 /=1 m=1
Therefore we have, since Vi, x = Vi o
Ae= G0y Poy(D((=1) +(=1)") > J(OLi; ()
j=1 =1
+5, Z_ [(Z ”)Uk A(1) + (-1)?( 3 f(ﬁ)uﬁ”) vm@)]
A=0 =1 =1

Then Eqns. (1.15) and (1.16) yield, since U A(z), Vir(2), and 2*7! P, ;(2) depend only on
2N and w is a N-th root of unity:

N
A =80 D J0) [ & DSF V() + (~1)f R SED ().
(=1

This concludes the proof of Lemma 1.



Remark 2. The only difference here with the construction of [8] is that the rational func-
tion F' has been modified to incorporate Sprang’s arithmetic lemma [23, Lemma 1.4]. In
our setting this choice of F' leads to the following additional property, that will be used in

§1.4:

Ui(2) + Vi(2) € Q[z"]. (1.19)
To prove this property we notice that
B n . a ijL
D@+ ViR =22 D mp

for any t which is not a multiple of N, the coefficient of 2 is —F(—t) = 0.

1.3 A general version of Shidlosvky’s lemma

Let g be a positive integer, and A € M,(C(z)). We fix* P;,...,P, € C[z] and n € N =
{0,1,2,...} such that deg P; < n for any i. Then with any solution Y = *(yi,...,y,) of
the differential system Y’ = AY is associated a remainder R(Y") defined by

R(Y)(2) = Z Fi(2)yi(2).

Let ¥ be a finite subset of C U {oo}, which may contain singularities of the differential
system Y’ = AY. For each 0 € %, let (Y]});c,, be a family of solutions of Y' = AY such
that the functions R(Y}), j € J,, are C-linearly independent and belong to the Nilsson class
at o (i.e., have a local expression at ¢ as linear combination of holomorphic functions, with
coefficients involving complex powers of z — o and integer powers of log(z — o)). We agree
that J, = 0 if 0 ¢ ¥, and define rational functions Py, € C(z) for k > 1 and 1 < i < ¢ by

P

d k—1
: = —+tA : ) 1.2
= (Er) | (1.20)
Pk:,q Pq

P

These rational functions Py ; play an important role because they are used to differentiate
the remainders (see [22, Chapter 3, §4]):

R(Y)*(z) = Z Bri(2)yi(2). (1.21)

The following result is proved in [8, Theorem 1.2].

2We shall check in §1.4 that the notation introduced in the present section is consistent with the one
used earlier in this paper.



Theorem 3. There exists a positive constant co, which depends only on A and %, with the
following property. Assume that, for some o € C:

(1) The differential system Y' = AY has a basis of local solutions at o with coordinates
in Cllog(z — a)][[(z — @)¢]] for some positive real number e.

(1) We have
Z Z ord,(R(Y;)) > (n+1)g —n#Jo — T
o€y jeEJ

for some T with 0 <17 < n — c.

(133) All rational functions Py;, with 1 <i < q and 1 < k < 7+ ¢, are holomorphic at
zZ=a.

Then the matriz [Py ;(a)1<i<gi<k<r+es € Myries—1(C) has rank at least ¢ — #J,.

In the special case where ¥ = {0}, #Jy = 1, Y; is analytic at 0, and « # 0 is not a
singularity of the differential system Y’ = AY, this result was used by Shidlovsky to prove
the Siegel-Shidlovsky theorem on values of E-functions (see [22, Chapter 3, Lemma 10]).
The functional part of Shidlovsky’s lemma has been generalized by Bertand-Beukers [4] to
the case where X C C, #J, = 1 for any o, and all functions Y} are obtained by analytic
continuation from a single one, analytic at all ¢ € 3. Then Bertrand has allowed [3,
Théoreme 2] an arbitrary number of solutions at each o, assuming that co ¢ 3 and the
functions Y;, j € J,, are analytic at 0. The proof [8] of Theorem 3 follows the approach
of Bertand-Beukers and Bertrand, based on differential Galois theory.

An important feature of Theorem 3 is that a may be a singularity of the differential
system Y/ = AY, and/or an element of . Both happen in the present paper, where o = 1
(see §1.4 where Theorem 3 is applied to prove Lemma 2). If a ¢ 3 then J, = ) so that
Theorem 3 yields a matrix of maximal rank g. On the other hand, if o € ¥ then the #.J,
linearly independent linear combinations of the rows of the matrix [Py ;(z)]: » corresponding
to R(Y;), j € J,, may vanish at a: the lower bound ¢ — #J, is best possible. In the setting
of §1.4 we have @« = 1 and J; = {1} so that Theorem 3 yields rk[P;;(1)] > ¢ — 1. Now
(1.18) in the proof of Lemma 1 shows that Py (1) = 0 for any k < 7+ ¢y (since 7+ ¢y < dp
because 7 and ¢y are independent from n whereas dy tends to co with n). Therefore the
matrix [Py ;(1)]1<i<q1<k<r+c, has rank equal to ¢ — 1. Removing the first row, which is
identically zero, yields a matrix of rank ¢ — 1 equal to the number of rows.

1.4 Padé approximation and application of Shidlovsky’s lemma
In this section we prove part (i) of Proposition 1 for the numbers s ; constructed in §1.2.

Lemma 2. Let sy ; be defined by Eq. (1.17). Then there exists a positive constant ¢, (which
depends only on a and N ) such that for any n sufficiently large, the subspace F of ReTN-1
spanned by the vectors *(sga2,...,Skarn), 1 <k < c1, is non-zero and does not depend on
n.

10



The proof of Lemma 2 falls into 3 steps. To begin with, we construct a Padé approx-
imation problem related to our construction, with essentially as many equations as the
number of unknowns; notice that this problem is not the same as in [8], since the function
F used in the construction is different. Then we apply a general version of Shidlovsky’s
lemma, namely Theorem 3 stated in §1.3. This provides a matrix P with linearly indepen-
dent rows. At last, we relate the numbers s;; to P by constructing a matrix M such that
[Sk.ilix = MP. The point is that M does not depend on n (whereas P and [sy;] do). The
subspace spanned by the columns of [s;]; x is the same as the one spanned by the columns
of M: it does not depend on n.

Step 1: Construction of the Padé approximation problem.

We recall from §1.2 that

F(t) = (n/N)!(a+1)f(2r+1)N (t— T”)(2r+1)n+1

PN (t+ Nhyott’
So(z) = > F(-t)z' =Ui(2 +ZP 1)7Li; (2),
t=n-+1

o0

and So ZF +ZP z)Li;(1/2).

Since Pj(z) € C[z"] for any j € {1,...,a}, we have P;(w’z) = P;(z) for any ¢ € Z.
Therefore letting

Ro(z) = So(w'z), Roos(2) = Seo(w2), Poy(2) =U, (w'z2), Poos(z) = Vi(w'?)

(1.22)

for any ¢ € {1,..., N}, we have
Rou(2) = Poy(2) + Z Pi(2)(—1YLij(w'z) = Ozt 2 0, (1.23)
and R ¢(2) )+ ZP L1] =0z, 2z . (1.24)

Moreover, recall that dy = —degF =(a+1)(%+1) = (2r+1)n — 1; Lemma 3 of [10]

shows that
1

ZP % =O0((z— 1%, 21

Using again the fact that P;(w‘z) = P;j(z), we obtain for any ¢ € {1,...,N}:

=B “Og((]“_ f;?] = 0((z — ™Y, zowh (1.25)

11



_ The new point here, with respect to [8], is that Eq. (1.19) in Remark 2 shows that
P = Pyy+ Py does not depend on £. Therefore Eq. (1.23) can be written as

Ro(z) = P(2) ) + Z Pi(2)(—1YLij(w'z) = Oz 2 0. (1.26)

We have obtained a Padé approximation problem with (@ + N + 1)(n + 1) unknowns,
namely the coefficients of P(z), Pj(z) for 1 < j <a, and Py for 1 </ < N. Eqns. (1.24),
(1.25) and (1.26) amount to

N(r+Dn+1)+N(dy—1)+N({(r+1)n+1)=(a+N+1)(n+1)—

linear equations, where 7 = a + 1 — alV is the difference between the number of unknowns
and the number of equations. If N = 1 then 7 = 1: this is exactly the Padé approximation
problem of [10, Theorem 1], which has a unique solution up to proportionality. However if
N > 2 then 7 < 0: we have solved a linear system with (slightly) more equations than the
number of unknowns.

Step 2: Application of Shidlovsky’s lemma.

Let us introduce some notation to fit into the context of §1.3, and check the assumptions
of Theorem 3. Let ¢ = a+N+1, and A € M,(C(z)) be the matrix of which the coefficients
A, j are given by:

Am‘—1(2) =

=
Al,aJrl(Z) = %
Alar1(2) = W for any £ € {1,..., N}

for any i € {2,...,a}

and all other coefficients are zero. We consider the following solutions of the differential
system Y/ = AY, with 1 </ < N:

You(z) = t( Liy (wf2), Lig(w'z), . . ,(-1)@Lia(wfz),1,o,...,o,—1,o,...,o),

o1 ., 1 o1
You(2) = t(Lh(%),ng(Tz),...,L1a<7z),0,07...,0,1,0,...,0),

Vorle) = (1.~ logla '), LB (- 1(10g((;f_ 3? 0,0,...,0)

where the coefficient —1 in Y{4(z) (resp. 1 in Y ¢(2)) is in position a + 1 + /.

We let Jo = {(0,1),(0,2),...,(0,N)}, Joo = {(00,1),(00,2),...,(c0,N)}, Jp = {w}
for 1 </ < N,and ¥ = {0,00} U{w’ 1 < ¢ < N}, so that we have a solution Y; for each
JjE€ Jyy o€

We also let P,,1(2)

= P(2) (which is equal to Poy(2) + Pey(2) = (Up + Vi) (w'2)
for any /), and P,i114(2) =

Poos(z) = Vi(w'2) for any ¢ € {1,...,N}. Then we have
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polynomials Pi(z), ..., P,(z) of degree at most n, and with the notation of §1.3 the
remainders associated with the local solutions Y;, j € J,, o0 € X, are exactly the functions
that appear in the Padé approximation problem of Step 1: R(Yy,) = Ros(2), R(Yoor) =
Roos(2), and R(Y,¢) = R,e(2) for any £ € {1,...,N}.
Since P, is not the zero polynomial, we have R ¢(z) # 0 for any ¢; the functions Ry (2),
, Ron(2) (resp. Ro1(2), ..., Roon(2)) are C-linearly independent (see [8, Lemma 2J).
Eqns. (1.24), (1.25) and (1.26) yield ords (R ¢(2)) > rn+ 1, ord,e(R,e(2)) > do — 1
and ordg(Ro(2)) > (r+1)n+ 1 for any ¢ € {1,..., N}, so that

ZZord Ri(z) > (2r+1)Nn+ N(dy+1)=(n+1)g—nN —7 with 7 =a+ 1 — alV;

ceY jEJ,

here ¢ = a + N + 1, and we recall that dy = —degF' = (a + 1)(§ +1) — (2r + 1)n — 1.
As above, 7 is exactly the difference between the number of unknowns and the number of
equations in the Padé approximation problem of Step 1.

The definition (1.20) of Py, is consistent with the one given (for ¢ < a) by Eq. (1.7) in
§1.2. We have 7 = a + 1 — alNV, so that for n sufficiently large 7 + co < dy where ¢y is the
constant given by Theorem 3. Therefore (1.18) shows that Uy and Vj are holomorphic at
z =1 for any k < 7+ ¢o. Eqns. (1.7), (1.10) and (1.11) imply that they are holomorphic

at all other roots of unity. Now Eqns. (1.20), (1.10) and (1.11) yield
Pras1(2) = WD (U (w2) 4+ Vi(w'2)) and Py ay140(2) = 0DV (w02) (1.27)

for any ¢ € {1,..., N}, by induction on k& > 1. Therefore all Py;, with k < 7+ ¢ and
1 <1 < q, are holomorphic at 1.

We have checked all assumptions of Theorem 3 for n sufficiently large: the matrix
[Pri(1)]1<i<q1<k<r+c, has rank at least ¢ —#J; = ¢—1. Now (1.18) implies Py (1) = 0 for

any k < 7+ ¢, so that we may remove the first row: the matrix P = [Py ;(1)]o<i<qi<k<rtes
has rank ¢ — 1, equal to its number of rows.

Step 3: Expression of sj; in terms of P and conclusion.

We shall now compute a matrix M independent from n such that [si];x = M P; recall
that the coefficients sj; and the matrix P depend on n.
To begin with, Eq. (1.14) with z = w’ yields

w1 KU Z wMU;M for any ¢ € 7Z,
since Uy x(2) € Q[zV, 27V]. Therefore we have
| XN
Uk (1 :N; Wk (WY for any 0 < A< N —1, (1.28)
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and the same relation holds with Vj  and Vj. Using Eq. (1.27) we deduce that

N
Via(l) = =) w MPae(l) for 0S A< N =1,
(=1

1
N
and also for A = N since Vj v = Vj 0, and

—% Tl 0 P 1< A SN -1,
Pray1(1) — % Y o1 Prariwe(1) if A= 0.

Therefore the definition (1.17) of s;; can be translated as

Ura(1) = {

q
Skﬂ' = mePk’j(l) (129)
7=2

forany 2 <i <a+ N and any 1 < k < dy — 1, where the coefficients m; ; are defined for
2<i<a+Nand2<j<g=a+ N+1by

m;; =0, for2<i<a+1

Mat1,a+1+L = %"((—1)1’ —1)for1<l¢<N

Mat1+ratlie = ‘Sﬁ"((—l)pwM —wMfor1</<Nand 1 <A< N-—1
m; ; = 0 for all other pairs (i, 7).

(1.30)

Let us choose now the constant ¢; of Lemma 2; the same constant appears in Proposition
1. We take ¢y = 7 4 ¢ — 1; this constant depends only on a and N. We consider the
matrices M = [mi7j]2§,~§a+N72§j§q and P = [Pk,j(l)]Qﬁjﬁq,lﬁkﬁcl- Then Eq (129) means
that

[Sk.ile<i<atN1<k<e = MP. (1.31)

Both M and P have coefficients in Q(w); recall that the coefficients sy ; of M P are rational
numbers, and we shall prove in §1.5 that they are integers. Let F denote the subspace
of RN~ spanned by the ¢ — 1 columns *(my,...,mayn,) of M. Now assume that n
is sufficiently large; then we have proved in Step 2 that the ¢ — 1 rows of P are linearly
independent. Therefore Eq. (1.31) shows that F is equal to the subspace spanned by
columns *(sk9,...,Skarn) Of the matrix [sy ;)i k. Since M does not depend on n, neither
does F: this concludes the proof of Lemma 2.

Remark 3. Let us prove that in Lemma 2, the subspace F is not always equal to R4TN -1
(i.e., that the matriz [si ;] may have rank less than its number of rows, namely a+ N —1).
Consider the case where p and N are even (so that w™/? = —1). Then the definition (1.30)
of the matriz M in Step 3 above yields myi14n/2; = 0 for any j, so that Eq. (1.29) implies
Skat1+n/2 = 0 for any k: the matriz [Sk.ilix has a zero row. This phenomenon does not
occur in [8]; it comes from the new property (1.19) obtained in Remark 2. Indeed a direct
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proof that sy q114n/2 = 0 can be obtained as follows, using Eqns. (1.17), (1.28), and (1.27)
but not the matriz M :

Skatl4N/2 = Op <Uk,N/2(1) + Vk,N/Q(l))

5n N N
— Nzw(k—l—N/Z)E(Uk +V;€)(w£) _ _Pka—l—l Z

/=1 /=1

1.5 Arithmetic and Asymptotic Properties

In this section we conclude the proof of Proposition 1 stated in §1.1, by proving parts (i)
and (i77) and the fact that the s;,; are integers. Recall that

o= (46)(a+1)/N<2N>2r+27,7(a+1)/N+4(r+1) and ﬁ — <2€>(a+1)/N<T + 1)2r+2N2r+2.

Lemma 3. We have si; € Z for any i € {2,...,a+ N} and any k < dy — 1, and as
n — 0o:

a

N—-1
’2(—1)1) Z sk L(f,1) + Z Skarivif (1)| <
‘ i=0

=2
1=p mod 2

n+0(n and Mmax |5k | < Bn(lJro( ))
2<i<a+N

In this lemma and throughout this section, we denote by o(1) any sequence that tends
to 0 as n — oo; it usually depends also on a, r, N, and k (but the dependence in k is not
significant since k is bounded by dy — 1, which depends only on n, a, r, N). We also recall
that d,, is the least common multiple of 1, 2, ..., n.

We shall prove two lemmas now; the deduction of Lemma 3 from these lemmas (using
Lemma 1 proved in §1.2) is exactly the same as the proof of Proposition 1 in [8, §4.5].
Recall from §1.2 that

n/N a
N t—1TN)(2r1)n+1 Djn

F(t) = NI+ D)=(@2r+ )N ( (2r+ _ Pih
(t) = (n/N) T Nyt 2 2 (T4 NI

Lemma 4. For any j € {1,...,a} and any h € {0,...,n/N} we have

(Ndn ) AN IN e 7, (1.32)

(1.33)

and |pj | < (2(a+1)/NN2(r+1)f(a+1)/N(T " 1>2r+2> n(1+o0(1))

where o(1) is a sequence that tends to 0 as n — oo and may depend also on N, a, and r.
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Proof of Lemma 4: We follow the approach of [5] by letting

n/N )thn/N(n;LN)

— _ (/N E
Fot) = MNGENR) t+ Nh ’
n/N h—l—n/NN—N/N n/NY\ ( Nh+in/N
‘ (t— Zn/N)n/N o <_1) ( h )( n/N ) <5<
Gi(t) = T = E T NE for 1 <i <rN,

h=0

n/N (_1)hN7n/N(n2N) (7Nh+ (i + )n/N

t+1+in/N),, n
Hi(t) = s +JN—/ L Z t+ Nh =

) )forOSiS(rJrl)N—l.
neo (t+Nh) ‘o

Then the partial fraction expansion of
F(t) = Fy(t)* = ONG (8) ... Gon () Ho(t) . .. Hippiyn-1(2)

an be obtained by multiplying those of Fy, G; and H; using repeatedly the formulas

t+Nh =1- t+Nh and

! = 1 Z ! (1.34)
(t+ Nh)(t+ NI). — NE(R — h)i(t + Nh) NIl — h)H =it + NI

with h # h'. The denominator of p;; comes both from this formula (and this contribution
divides (Nd,/n)*"7) and from the denominators of the coefficients in the partial fraction
expansions of Fy, G, H; (which belong to N™™VZ, so that N@+)/N accounts for this
contribution). This concludes the proof of (1.32).

On the other hand, bounding from above the coefficients of the partial fraction expan-
sions of Iy, G;, H; yields

(n + in/N)! I (64 1)n/N)!

(n/N)!(n + (i — Dn/N)| 11 (n/N)!(in/N)!

|pjh| <n o@ )N (a+1)n/N2 (a+1)n/N H

where O(1) is a constant depending only on a, 7, N which can be made explicit (see
m!

[5] for details). Simplifying the products and using the bound ——— < ¢™ valid when
mi + ...+ m, = m, one obtains

((r + Ln)?
nl(n/N)I@+ON

‘pj,h| < nO(1)<2/N>(a+1)n/N < nO(1)<2/N)(a+1)n/N<(7, + 1>N>2(r+1)n.

This concludes the proof of Lemma, 4.

The proof of the following lemma is inspired by that of [23, Lemma 1.4]. Recall that
U, and V; are defined in Eqns. (1.8) and (1.9), and that

571 — (Ndn/N)a+1N(a+1)n/N.
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Lemma 5. The polynomials 6,,U;(2) and 6,V1(z) have integer coefficients.
Proof of Lemma 5: Recall from Eq. (1.8) that

n a [(t-1)/N] Pin
t I o U
e D Dl Sl T

Assume that 6,U;(z) does not have integer coefficients. Then there exists ¢t € {1,...,n}
such that
a [(t=1)/N|] Nd /N)a—f—lN(a—l—l)n/Np]

a—jzl Z (Nh—1) & 7.

Let pf), = (Nd,,n)* I N@tn/Ny - which is an integer thanks to Lemma 4. Then we
have

[(t-1)/N] /Np .
n 7
T Gy

If N divides t then % — h is a positive integer less than or equal to n/N, so that it divides
dn/n: this contradicts the assumption o ¢ Z. Therefore N does not divide ¢, so that
F(-t)=0.

Since o & 7Z there exists hy such that

a

Z d]/ij ho 7
o (ho — t/N)!

Now F(—t) = 0 so that

a N a
J dj/ijh _ /Np] ho Z
2 Z —{/N)i == T 1Ny (ho — L/N)i
j=1 h=0 j=1
hho

This rational number has negative p-adic valuation for some prime number p. Therefore
there exist hy # hg and jp, j; such that

dﬁzl/N diO/N

vp(m) < 0 and vp<m) < 0.

This implies
min(v,(h1 —t/N),vp(ho — t/N)) > vp(dn/n)

so that v,(ho — h1) > vp(dn/n). This is a contradiction since 1 < |hg — hy| < n/N. This
concludes the proof that 6,,U;(z) € Z[z]; the same proof works for §,Vi(2).
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2 Siegel’s linear independence criterion

The following criterion is based on Siegel’s ideas (see for instance [6, p. 81-82 and 215-216],
[16, §3] or [15, Proposition 4.1]).

Proposition 2. Let 0y,...,0, be complex numbers, not all zero. Let T > 0, and (Q,) be
a sequence of real numbers with limit +00. Let N be an infinite subset of N, K > 1, and
for anyn € N let L™ = [el(:i)]lgigq,lgkgj( be a matriz with integer coefficients such that as
n — oo withn € N :

max |47 < Q)

(n) (Mg | <« O—T+ol1)
and max (G101 4.+ 00 < Qy .
Assume also that the subspace F of RY spanned by the columns t(f,(fl), . ,E,(;Z) of L™ s
non-zero and independent from n € N (provided n is large enough). Then we have

dimg Spang (61, ...,0,) > 7+ 1.

The usual version of this criterion (see for instance [9, Theorem 4]) is the same state-
ment, but the assumption on F is replaced by the assumption that L™ is invertible. The
latter is stronger, since it is equivalent to asking F = RY for any n. Indeed if 7 = R? then
L™ has rank ¢: for each n we may extract ¢ linearly independent columns of L™, and
obtain an invertible matrix to which [9, Theorem 4] applies. The point is that we shall
apply Proposition 2 to the matrices [sg ;] constructed in Proposition 1, and the subspace
F is not always equal to R? (see Remark 3 in §1.4).

Let us prove Proposition 2 now. Denote by F the image of L™, assumed to be inde-
pendent from n € N (provided n is large enough). Let p = dim F. Permuting 04, ..., 0,
if necessary, we may assume that a system of linear equations of F is given by

p
Ty = Zﬂt,ﬂi for p+1 <t <gq, with uy; € Q. (2.1)
i—1

We point out that the coefficients p;; are rational numbers because the matrices L™ have

integer coefficients. Since t(ﬁ,&?,...,ﬁ%) € Fforanyl <k < K and any n € N
sufficiently large, Eq. (2.1) yields

p p q p
Soelo =30 (64 > wath) = Do, (2.2)
i=1 i=1 t=p+1 i=1

upon letting 6] = 0; +>°[_ ., purq60; for 1 < i < p. Moreover for any n € N sufficiently
large, we have rkL(™ = dim F = p and Eq. (2.1) shows that the last ¢ — p rows of L™ are
linear combinations of the first p rows. Therefore the first p rows are linearly independent:
the matrix [Egi)]lgigpggkg & has rank p. Accordingly for each n there exist pairwise distinct
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integers ki, ..., k, between 1 and K such that the matrix M™ = [5(?@-]1949 is invertible.
Using Eq. (2.2) we may apply the usual version of Siegel’s criterion (namely [9, Theorem 4])
to this matrix and deduce that

dimg Spang(0y,...,0,) > 7+ 1.

Since ¢ € Spang (01, ..., 0,) for any 1 < i < p, this concludes the proof of Proposition 2.

Remark 4. The idea of applying the usual version of Siegel’s criterion to numbers 0
defined as linear combinations of 61, ..., 8, appears also in [9] (see Proposition 2 in §6
and Eq. (9.1)). However the situation is different in that paper: the rows of the matriz P
(see Step 2 in §1.4 above) are linearly dependent, which is not the case here.

3 Deduction of Theorems 1 and 2 from Proposition 1

In this section we prove Theorems 1 and 2 stated in the introduction, and also a result
that nearly contains both of them (namely Theorem 4 stated at the end of §3.2). At last,
we show in §3.3 that the linear forms constructed in [11] are a special case of those studied
here.

3.1 Proof of Theorem 1

Let f, T, p, €, and a be as in the statement of Theorem 1; put N = T. We consider the
complex numbers 6y, ...,0,,y_1 given by:

0;—1 = 2(—1)PL(f,i) for 2 < i < a with ¢ = p mod 2,
0;_1 =0 for 2 <1i < a with ¢ Z p mod 2,
Opri = f(i) for 0 <i < N — 1.

We apply Proposition 1 to each integer multiple n of N, and let E,(;Li) = Spiq1 for 1 <7 <
a+ N —1and 1 <k <c¢;. Then we apply Siegel’s linear independence criterion (namely
Proposition 2 stated and proved in §2) with g = a4+ N—1, @, = f" and 7 = —}ggg (so that
Q,;” = a"), where o and 3 are defined in §1.1; we take for A the set of integer multiples

of N. Therefore we obtain

log o
log 8
(3.1)
Taking a very large and r equal to the integer part of m concludes the proof of
Theorem 1 since

dim@SpanQ({L(f,i), 2<i<aandi=pmod2}U{f(0),...,f(N— 1)}) >1-

log o 1+e, .
log 3 T+ log2 og a where CHHJPOO)S“ 0;
here the shift of N in the lower bound comes from f(0), ..., f(N — 1) that appear in

Eq. (3.1).
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3.2 Proof of Theorem 2

Let f, T, E, and p be as in the statement of Theorem 2. Let 0 < ¢ < 1/4 and a be
sufficiently large with respect to €, T, and dim E. We denote by D the product of all
primes less than or equal to (1 — 3¢)loga (such a product has asymptotically the largest
possible number of divisors with respect to its size, see [13, Chapter XVIII, §1]). Then we
have
logD = Z logp < (1 —2¢)loga
p<(1—3¢)loga

1—2¢

by the prime number theorem, i.e., D < a'~*°. We take for r the integer part of a®. At

last, we let N = DT.

For any divisor d of D = N/T and any m € Z, let g4(m) = f(m/d) if d divides m, and
ga(m) = 0 otherwise. Since f is T-periodic we have g4(m + N) = gq4(m) for any m.
We shall choose below an integer wy for each divisor d of D; let

9= Z Wa9p/d-

d|D

We shall apply Proposition 1 to the N-periodic function g and obtain linear forms in
the numbers

7

- f(m/)d
L(g,i) = mz:l i % wqf(md/D) = %wd mZ;l mTDi
Dimd -

by letting m’ = md/D. Therefore we have

L(g,i) = D‘i<2wddi)L(f,z’). (3.2)

d|D

Notice that D has § = 27((1=3)loga) divisors, with

loga

logéd = 7m((1 —3¢)loga)log2 > (1 —4¢e)(log2) (3.3)

logloga

Assume that the number of values (0.2) which do not belong to F is less than §. Let
2 <y <y < ... <51 < a be integers such that if L(f,i) ¢ E and i = pmod 2,
2 <1 < a, then i = i; for some j.

The homogeneous linear system

dedif'zofor any j € {1,...,0 — 1} (3.4)
d|D

has ¢ unknowns wy, where d ranges through the set D of divisors of D, and § — 1 equations.
Therefore it has a non-zero integer solution (wy) € ZP.
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At this point, the integers wy are chosen in [11] such that >, wad # 0, using an
elementary zero estimate (namely, a generalized Vandermonde determinant is non-zero).
Here we do not need to make any such assumption: we just assume that wy # 0 for at
least one d. Indeed a (much more complicated) zero estimate is used in the present proof,
namely Theorem 3.

Proposition 1 applies to the N-periodic function g = > dp WdgD/d defined above. Using
also Siegel’s linear independence criterion as in §3.1 we obtain

log o

log 8
(3.5)

dimg SpanQ({g(O), o g(N=1)}U{L(g,7),2 <i<aandi=pmod 2}) >1-—

with
_logozN log r N log a
logB  1+1log2 1+log2
as a — oo (recall that r is the integer part of a®).
On the other hand, the numbers that appear in the left hand side of (3.5) have the
following properties:

e ¢(0), ..., g(N —1) belong to {0, f(0), f(1),..., f(T —1)}.

e For 2 <i < a with i =pmod 2, L(g,i) is zero if i € {i1,...,45_1}, and belongs to £
otherwise, as Eqns. (3.2) and (3.4) show.

1

Therefore we have

dimg SpanQ({g(O), o g(N=1)}U{L(g,7),2 <i<aandi=pmod 2}) <T+dimE.

(3.6)
Combining Eqns. (3.5) and (3.6) yields a contradiction provided a is large enough. This
concludes the proof of Theorem 2.

Since 4(1 4 log2) > 7, the same proof (with € replaced with €/4 to take Eq. (3.3) into
account) provides the following refinement of Theorem 2.

Theorem 4. Let T'> 1, and f : Z — C be such that f(n+T) = f(n) for any n. Assume
that f is not identically zero. Let p € {0,1}, 0 < ¢ < 1, and a be sufficiently large (in
terms of T and €). Let E be a finite-dimensional Q-vector space contained in C with
dim E < Zloga. Then among the numbers L(f,s) with 2 < s < a and s = pmod 2, at
least

log a

2(176) logloga

do not belong to E.

Choosing € = 7/8, this refinement implies that the numbers L(f,s) with 2 < s < a
and s = p mod 2 are not all contained in such a subspace E: they span a Q-vector space
of dimension at least élog a. Except for the multiplicative constant (% instead of 11;1‘; g;),
Theorem 1 follows as a corollary of Theorem 4.
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3.3 Connection to the proof of [11]

In this section we show that the linear forms used in [11] to prove (0.1) are a special case
of those studied in the present paper (namely in the proof of Theorem 2 with f(m) = 1,
T =r=k=1,and p =amod 2). Accordingly they are related to the Padé approximation
problem stated in §1.4, in which the number of equations is essentially equal to the number
of unknowns.

We keep the notation of the proof of Theorem 2 in §3.2, with 7= 1 and f(m) = m
for any m € Z. In particular N = D is the product of all primes less than or equal to
(1 — 3¢)loga. For any divisor d of D we have g4(m) = 1 if d divides m, and g4(m) = 0
otherwise. The function g = > d|p Wagn/d satisfies

g(m) = Z wy for any m € Z. (3.7)

d|D
D|md

Now let n be an integer multiple of 2N = 2D, and let p € {0, 1} be such that p = a mod 2.
Then the rational function F' satisfies the symmetry property of well-poised hypergeometric
series:

F(—n —t) = (=)@t @ DEHD p(g) = (~1)PF(2). (3.8)

This is the key ingredient (since the Ball-Rivoal theorem) to get rid of even zeta values,
when p = 1. In our approach where Nesterenko’s linear independence criterion is replaced
with Siegel’s combined with Shidlovsky’s lemma, this property cannot be used in the same
way because it is destroyed when considering S~V (z) for k > 2. Using both Sy and S
in constructing the linear forms (see §1.2) makes it possible to overcome this difficulty (as
in [8]). With k£ = 1 this trick does not modify the linear forms we are interested in, since
for any ¢ € 7Z we have using Eqns. (1.3) and (3.8) and the fact that N divides n:

So(@) + (~1)Sw(w™) = Y F(=tl' + (=17 Y F(t)"

= 2(-1) F(t)w". (3.9)

t=1

We are now in position to express differently the linear forms constructed in part (i7)
of Proposition 1 from the map g given by Eq. (3.7), in the special case where N = D, n
is a multiple of 2N, p = amod 2, r = 1, and k = 1. Denote by A,, this linear form. Then
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we have using Lemma 1 and Equs. (3.9) and (3.7):

5 = D F0(So(e) + (-1 Swlw™))
= 2A=1 ) F) Y 50"

(=1

= 2(=1)P Y F(t)g(t)
= 2=1"> wy»_ F(t)

dp  t>1
Ddt

= 2(-1"> wy» F(Dt'/d)
d|D t'=1

d oo

= 2(—1)prdZ Z F(mD —i—j%).

dD  j=1m=1

In the last expression the sum on m > 1 should have begun at m = 0, but this makes no
difference since F'(jD/d) =0 for any 1 < j < d. Now let R(t) = F(Dt); then we have

(;513”/\” Y w Y R+ é). (3.10)

dp  j=1m=1

Up to the normalizing factor % these are exactly the linear forms 7, used in [11] to

prove (0.1). Indeed the following Tnotation is used in [11] for 1 < 5 < D and d|D:

2%t —n+2) - j
Rn<t) — D3Dn n!s+173D ]; : , Tnf — Rn (m + _)’
szo(t + )t ’ mZ:1 D

d

Tn,d = E Tn,j%’ n = E Wq Tn,d-

j=1 d|D

Now, up to the normalizing factor R, (t) is equal to the rational function R(t) = F(Dt) so
that A, is equal to 7, using Eq. (3.10).
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