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Abstract. We put forward a simple, yet e�ective splitting strategy for
multi-view stereopsis. It recasts the minimization of the classic photo-
consistency + gradient regularization functional as a sequence of sim-
ple problems which can be solved e�ciently. This framework is able
to handle various photo-consistency measures and regularization terms,
and can be used for instance to estimate either a minimal-surface or a
shading-aware solution. The latter makes the proposed approach very
e�ective for dealing with the well-known problem of textureless objects
3D-reconstruction.
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1 Introduction

Multi-view stereopsis consists in reconstructing dense 3D-geometry from multi-
view images. A common approach to this problem is to estimate a mapping
(depth) between pixels in a reference view and 3D-geometry, by maximizing
the photo-consistency of the reference image with the others. To measure photo-
consistency, the reference image is warped to the other views using the estimated
depth map and the (known) relative poses, and compared against the target
images. However, photo-consistency is not signi�cant in textureless areas (see
Figure 1): the optimization problem needs to be regularized by constraining vari-
ations in the 3D-geometry. If z : Ω ⊂ R2 → R+\{0} denotes the unknown depth
map, with Ω the image domain, surface variations under perspective projection
can be measured as a function of ∇zz = ∇ log z : Ω → R2. Multi-view stereo can
then be formulated in a classic and generic manner [13] as the minimization of
the sum of a �delity term f inversely proportional to photo-consistency, and of
a regularization term g. We thus consider in this work the following variational
problem:

min
z
f(z) + g(∇ log z) (1)

(the choice of applying regularization in log-space is discussed in Section 2).
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Possible choices for f and g are discussed in Section 2. Section 3 introduces
our main contribution: a generic multi-view stereo algorithm, which recasts (1) as
a sequence of nonlinear-yet-local and global-yet-linear problems, both of which
can be solved e�ciently. We present in Section 4 appropriate regularizers for
the 3D-reconstruction of textureless objects, before empirically evaluating the
potential of our algorithm in Section 5. Eventually, our conclusions are drawn
and future research directions are suggested in Section 6.

Fig. 1. Given a reference view of a textureless object (�rst column), and a set of t ≥ 1
target views (second column), multi-view stereopsis based solely on photo-consistency
optimization fails to estimate a reasonable mapping (depth) between the reference view
and 3D-geometry (third column). Much more satisfactory results are obtained when
introducing shading-aware and/or minimal-surface regularizations (fourth column).

2 Preliminaries

In this work we focus on solving the discrete counterpart of (1). In the following,
z is thus a vector in Rp containing the p unknown depth values, log z is to be
understood in a element-wise manner and ∇ ∈ R2p×p is a �rst-order, forward
�nite di�erences matrix such that ∇z ∈ R2p approximates the depth gradient.

Fidelity term. Let π−1z (i) be the back-projection from the i-th pixel, i ∈ {1, . . . , p},
in the reference view to its conjugate 3D-point, given a depth map z and the
(known) intrinsics of the camera. Let

{
πj
}
j∈{1,...,t} be the projections from 3D-

points to pixels in the t ≥ 1 other cameras (hereafter �target cameras�), using
the (known) camera poses and their (known) intrinsics. Let vi ∈ Rm be a m-
dimensional feature vector at pixel i in the reference view. Such a vector can be
the brightness value in pixel i (m = 1), the RGB values in that pixel (m = 3),
the concatenation of brightness values in a 3 × 3 neighborhood centered in i
(m = 9), etc. For a given target camera j ∈ {1, . . . , t}, photo-consistency mea-
sures the adequation between vi and the feature vector vj

πj◦π−1
z (i)

∈ Rm at the

matched pixel πj ◦π−1z (i) in the target view, in the sense of some loss function ρ.
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The �delity term can then be constructed by averaging the photo-consistency
contributions from all target cameras and summing over all pixels:

f(z) =
1

t

p∑
i=1

t∑
j=1

ρ
(
vi, v

j

πj◦π−1
z (i)

)
. (2)

One could consider as loss function ρ the normalized sum of squared deviations
ρSSD(x, y) =

1
m

∑m
c=1 (xc − yc)

2
or a robust variant of it, and then linearize (2)

using �rst-order Taylor expansion as in [7,12]. However, linearization requires
small depth increments. Robustness can also be reached by replacing SSD with
the normalized sum of absolute deviations ρSAD(x, y) = 1

m

∑m
c=1|xc − yc| or

a loss function based on the zero-mean normalized cross-correlation such as
ρZNCC(x, y) =

1
2

[
1− (x−x)>(y−y)

‖x−x‖‖y−y‖

]
(see [5, Chapter 2]). Photo-consistency mea-

sures are then further normalized within (0, 1) using a nonlinear operator, e.g.,

the exponential transform ρ(x, y) := 1 − exp
{
−ρ(x,y)

2

σ2

}
with user-de�ned pa-

rameter σ. With all these choices, the �delity term may become nonlinear, non-
smooth and non-convex, and the optimization tedious. Therefore, minimization
of f is usually carried out using bruteforce grid-search over the sampled depth
space. This �winner-takes-all� strategy was �rst advocated in [8]. Despite its sim-
plicity, it is remarkably e�cient, and impressive depth map reconstructions of
highly textured scenes have long been demonstrated [6].

Regularization. Nevertheless, in textureless areas, the �delity term degenerates
(in each pixel, there are multiple depth values for which it is globally minimized).
Obviously, increasing the number of views will have no e�ect on this issue, and
one should rather rely on regularization. For instance, one may introduce a total
variation prior [16]. However, under perspective projection total variation does
not enforce physically sound constraints on the geometry: smoothing should
rather be carried out using the minimal surface prior [7]. Yet, this would turn
the regularizer into a bilinear form involving both the depth z and its gradient
∇z, making the optimization challenging. Re-parameterization avoids this issue:
introducing the change or variable z̃ =

√
z, the total surface area can be rewrit-

ten as a function g(∇z̃) [7]. A logarithmic change of variable z̃ = log z can also
be considered for the same purpose, as well as to derive a physics-based reg-
ularization term based on shape-from-shading under natural illumination [14].
This might be particularly interesting for us, because shape-from-shading algo-
rithms typically assume constant scene re�ectance, which is essentially another
wording for textureless scenes. Because we believe it is interesting to compare
smoothness-based and physics-based priors for multi-view stereopsis of poorly
textured objects within the same numerical framework, we opt for the logarith-
mic change of variable in the regularization term, which explains the form of
the variational model (1). Shading-aware multi-view stereo has long been identi-
�ed as a promising track [3], and theoretical guarantees on uniqueness exist [4].
Still, there is a lack of practical numerical solutions. Jin et al. presented in [9] a
variational one, yet it assumes a single, in�nitely distant light source, while we
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are rather interested in natural illumination. Other methods combining stereo
and shading information under natural illumination have also recently been de-
veloped [10,11,17], but they only consider photometry as a way to re�ne an ex-
isting multi-view 3D-reconstruction, which remains the baseline of the process.
We would rather like to follow an end-to-end joint approach, as for instance in
the very recent work [12]. In comparison with [12], the approach presented in
the next section avoids linearization of the �delity term and is therefore slightly
more generic, since any robust photo-consistency measure (including those based
on non-di�erentiable or non-convex loss functions) can be considered.

3 A generic splitting strategy for multi-view stereo

In this section, we show how to turn the discrete counterpart of the variational
problem (1) into the simpler problem (6), and we introduce Algorithm 1 for
solving the latter.

Proposed variational model. As discussed in the previous section, the �delity
term f in (1) is often chosen as a robust non-smooth cost function, hence the
non-regularized problem is already challenging. The coupling induced by the
gradient operator in the regularization term g makes things even worse. We
separate those di�culties by splitting the optimization over f and g. Introducing
an auxiliary variable u = z ∈ Rp, (1) is equivalently rewritten as follows:

min
u,z

f(u) + g(∇ log z)

s.t. u = z
. (3)

In (3), the u-subproblem is still non-smooth and possibly non-convex, but at least
it is now small-scale (and hence, parallelizable) since f is separable (each term
in the outer sum in (2) only involves the depth in a single pixel). Minimization
of f can be carried out using bruteforce grid-search over a set of sampled depth
values. Moreover, assuming g is smooth, its minimization can be achieved using
gradient-based optimization. However, the hard constraint u = z would prevent z
from capturing thin surface variations. Thus, we relax the hard constraint u = z
in (3) into a quadratic penalization term:

min
u,z

f(u) + g(∇ log z) + β ‖log u− log z‖2 , (4)

with β > 0 a tunable hyper-parameter. Let us remark that the penalization is
applied in log-space: in this way, z appears in (4) only through its logarithm.
We can thus equivalently optimize over z̃ = log z, and recover z = exp z̃ at the
end of the process. The new optimization problem becomes:

min
u,z̃

f(u) + g(∇z̃) + β ‖log u− z̃‖2 . (5)
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As mentioned in the previous section, recent studies have advocated in favor
of nonlinear regularization terms g, and thus the z̃-subproblem in (5) remains
challenging. We simplify it through a second splitting: introducing an auxiliary
variable θ = ∇z̃ ∈ R2p, Problem (5) is turned into the following, equivalent one:

min
u,θ,z̃

f(u) + g(θ) + β ‖log u− z̃‖2

s.t. θ = ∇z̃
. (6)

Numerical solving of (6). The linear constraint in (6) could be handled, e.g., by
resorting to an augmented Lagrangian approach, but in this preliminary work we
rather follow a simpler strategy consisting in approximating the solution of (6)
by iteratively solving quadratically-penalized problems of the form

min
u,θ,z̃

f(u) + g(θ) + α(k) ‖θ −∇z̃‖2 + β ‖log u− z̃‖2 , (7)

with values of α(k) > 0 increasing to in�nity with iterations k. We want the hard
constraint in (6) to be satis�ed at convergence i.e., when k → +∞, in contrast
with the one in (3) which we purposely replaced by a quadratic penalization with
�xed parameter β. For each value α(k), we approximately solve (7) by one sweep
of alternating optimization. As discussed above, the u-subproblem can be solved
by grid-search. We focus on smooth and separable regularizers g (cf. Section 4),
so the θ-subproblem can be solved using parallelized gradient-based iterations.
Eventually, the z̃-subproblem is a sparse linear least-squares problem which can
be solved using conjugate gradient. We repeat this process until the relative
residual between two estimates of z = exp z̃ falls below a threshold set to 10−4.
This algorithm is sketched in Algorithm 1. Intuitively, it iteratively estimates
a rough depth map by optimizing photo-consistency (Equation (8)), then regu-
larizes the depth variations (Equation (9)), and integrates the re�ned gradient
into the log-depth map (Equation (10)). The values α(0) = 1 and β = 0.1 were
empirically found to yield reasonable results and were used in all experiments.
As initial depth map z(0), a fronto-parallel plane was always considered, with
depth values taken as the mean of the ground-truth ones.

4 Regularizers for textureless multi-view stereopsis

Given that f and g might be non-convex, it seems di�cult to draw a theoret-
ical convergence analysis of Algorithm 1. We thus leave this analysis for the
future, and rather focus in this exploratory work on evaluating the e�ciency of
the algorithm on real-world multi-view stereo problems. In particular, we now
turn our attention to the challenging problem of reconstructing poorly textured
objects, and discuss, in view of this, the choice of a suitable regularizer. This
requires clarifying the notion of �textureless� objects, hence let us �rst recall
some photometric notions.
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input : Initial depth map z(0), α(0) > 0, β > 0
output: Re�ned depth map z

z̃(0) = log z(0), k = 0, r(0) = +∞;

while r(k) > 10−4 do

// Photo-consistency optimization

u(k+1) = argmin
u

f(u) + β
∥∥∥log u− z̃(k)∥∥∥2

; (8)

// Regularization of depth variations

θ(k+1) = argmin
θ

g(θ) + α(k)
∥∥∥θ −∇z̃(k)∥∥∥2

; (9)

// Integration

z̃(k+1) = argmin
z̃

α(k)
∥∥∥∇z̃ − θ(k+1)

∥∥∥2

+ β
∥∥∥z̃ − log u(k+1)

∥∥∥2

; (10)

// Auxiliary updates

α(k+1) = 1.5α(k); z(k+1) = exp z̃(k+1); r(k) =
‖z(k+1)−z(k)‖
‖z(k)‖ ; k = k + 1 ;

end

Algorithm 1: Generic splitting strategy for multi-view stereo.

Lambertian image formation model. The �delity term in (2) is derived from the
common assumption that the brightness of a surface patch is invariant to changes
in the viewing angle. In other terms, the surface is assumed to be Lambertian,
and its re�ectance is characterized by the albedo. Assuming a single point light
source at in�nity, the brightness Ii in the reference view at pixel i is then the
product of albedo and shading:

Ii = ai max
{
0, n>i l

}
, (11)

with ai > 0 the albedo at the 3D-point π−1z (i) conjugate to pixel i, ni ∈ S2 ⊂ R3

the unit-length surface normal at this 3D-point, and l ∈ R3 the lighting vector
(in intensity and direction). The surface normal depends on the gradient of the
log-depth map i.e., on θ, according to (see, for instance, [14]):

ni := n(θi) =
1

d(θi)

[
f θi

−1− [x, y]> · θi

]
, (12)

where θi =

[
θ1i
θ2i

]
∈ R2 denotes the depth gradient in pixel i (vector θ ∈ R2p

introduced in (6) is thus the concatenation of all θi, i ∈ {1, . . . , p}), f > 0 is
the focal length of the perspective camera, and (x, y) ∈ R2 are the centered
coordinates of pixel i. The unit-length constraint on ni is ensured thanks to the
normalization by

d(θi) =

√
f2‖θi‖2 +

(
1 + [x, y]

> · θi
)2
. (13)

Model (11) is valid for a single light source at in�nity, which is rather unrealistic
in practical scenarios. However, natural illumination can be represented as a
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collection of in�nitely-distant light sources, and the brightness at pixel i is then
obtained by integrating the right-hand side of Equation (11) over the upper
hemisphere. Approximating this integral using second-order spherical harmonics,
one obtains (see [2] for details):

Ii = ai ñ
>
i l̃, (14)

with l̃ ∈ R9 a low-order lighting representation which can be calibrated be-
forehand using a reference object with known geometry and re�ectance, and
ñi ∈ R9 a �pseudo-normal� vector depending solely on the three components

of ni =
[
n1i , n

2
i , n

3
i

]>
and thus, again, on θi:

ñi := ñ(θi) =



ni
1

n1i n
2
i

n1i n
3
i

n2i n
3
i(

n1i
)2 − (n2i )2

3
(
n3i
)2 − 1


(12)
=



f θi
d(θi)

−1−[x,y]>·θi
d(θi)

1
f2θ1i θ

2
i

d(θi)2

fθ1i (−1−[x,y]
>·θi)

d(θi)2

fθ2i (−1−[x,y]
>·θi)

d(θi)2

f2
(
(θ1i )

2−(θ2i )
2
)

d(θi)2

3(−1−[x,y]>·θi)
2

d(θi)2
− 1


. (15)

In highly-textured scenes, the albedo values ai in (14) strongly di�er from
one pixel i to another. As a consequence, so do the brightness values Ii and the
feature vectors vi, which makes the optimization of the �delity term f(z) in (2)
meaningful, even in the absence of regularization. However, in textureless scenes
the albedo is uniform, say equal to one:

ai = 1 ∀i ∈ {1, . . . , p}, (16)

and thus, according to (14), brightness variations are purely geometric i.e., due
to variations in ni. Such variations may be extremely subtle and thus unsuitable
for use in a �delity term such as (2), and regularization is required. Next we
discuss two possible choices of regularizers.

Shading-aware regularization. Equation (14) can serve as a guide in multi-view
stereo, in order to let the Lambertian image formation model disambiguate the
matching problem in textureless areas. For instance, if we assume that the Lam-
bertian model is satis�ed up to a homoskedastic, zero-mean Gaussian noise, we
can minimize the di�erence between both sides of Equation (14) in the sense
of the quadratic loss, in the spirit of the variational approach to shape-from-
shading under natural illumination introduced in [14]. This yields the following
regularization function (recall that ai = 1):

gShading(θ) = λ

p∑
i=1

(
ñ(θi)

> l̃ − Ii
)2
, (17)
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with λ > 0 a tunable hyper-parameter. Using the regularization (17) in Algo-
rithm 1 yields a solution to shading-aware multi-view stereo. Let us emphasize
that gShading(θ) is smooth and separable (each term in the sum involves only
θi = [θ1i , θ

2
i ]
> ∈ R2), so (9) can be recast as a series of p two-dimensional non-

linear problems which can be solved in parallel using, e.g., BFGS iterations.

Minimal-surface regularization. The latter regularizer requires knowledge of the
lighting vector l̃. In some situations, calibrating lighting might be tedious or
impossible, and one may prefer not to use an explicit image formation model.
In such cases, it is possible to simply limit the surface variations, for instance
by penalizing the total surface area. Following [14], this can be achieved by
penalizing the `1-norm of the map d de�ned in Equation (13), which yields the
following minimal-surface regularizer:

gMS(θ) = µ

p∑
i=1

d(θi). (18)

Again, gMS(θ) is smooth and separable, so (9) can be solved using parallelized
BFGS iterations.

Combined regularization. Obviously, the minimal-surface regularizer (18) will
tend to favor smooth surfaces and may miss thin structures. Conversely, the
shading-aware regularizer (17) will tend to explain all thin brightness variations
in terms of surface variations, which may be a source of noise misinterpretation.
Therefore, it might be interesting to combine both shading-aware and minimal-
surface regularizations, and the experiments in the next section are carried out
using the following regularizer:

g(θ) = λ

p∑
i=1

(
ñ(θi)

> l̃ − Ii
)2

︸ ︷︷ ︸
gShading(θ)

+µ

p∑
i=1

d(θi)︸ ︷︷ ︸
gMS(θ)

, (19)

which remains smooth and separable, and yields the shading-aware solution if
λ > 0 and µ = 0, and the minimal-surface one if λ = 0 and µ > 0.

5 Experimental results

In all our experiments, the feature vectors vi are the concatenation of brightness
values in a 3×3 neighborhood. Unless stated otherwise, the loss function ρ in (2)
is the exponential-transformed SAD (with σ = 0.2). We �rst test our model on
a synthetic dataset, using a renderer to generate images of size 540× 540 of the
well-known �Stanford's Bunny� with uniform albedo, knowing the lighting l̃ and
the camera parameters. Gaussian noise with standard deviation equal to 1% of
the maximum intensity is added, in order to get closer to real images.
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Fig. 2. Top row: in shape-from-shading, thin details in the input synthetic image (left)
are �nely recovered (center, the estimated depth is rendered frontally), yet the overall
shape is biased due to the concave/convex ambiguity (right, rendering from another
viewing angle). Bottom row: non-regularized multi-view stereo (t = 1), where the
target synthetic image (left) is generated by translating the perspective camera. The
overall shape is reasonable, yet thin details are missing and artifacts appear because
photo-consistency degenerates in textureless areas (same viewing angles as above).

To preface, we highlight in Figure 2 the main issue of single-view shape-from-
shading (i.e., f(z) = 0, λ = 1 and µ = 0): though the reference image is well
explained, the resulting depth map is obviously prone to the concave/convex
ambiguity. Non-regularized multi-view stereo (i.e., f(z) = (2), and λ = µ = 0)
is not satisfactory either: adding a second view (here, a simple translation of the
perspective camera) and optimizing photo-consistency results in a noisy surface
due to ambiguities in matching textureless patches.

As shown on the top row of Figure 3, results improve with the introduction
of regularization. When they are not set to zero, the hyper-parameters are set to
λ = 5.10−4 and µ = 5.10−5 (those values were determined empirically). As ex-
pected, minimal-surface regularization allows to estimate a noise-free depth map
which is globally reasonable, yet �ne-scale details are missing. Using shading-
aware regularization, �ne-scale details are recovered, but a single target view
(t = 1) is not enough to remove all concave/convex ambiguities. On the other
hand, a joint approach gives satisfactory results, since the advantages of both
regularization terms are combined.

Let us also remark that, since we did not explicitly take into account visibility
issues, the estimated depth is not valid around parts which are not visible in the
target image: see, for instance, the right edge of the bunny on the top row of
Figure 3. To deal with visibility issues, we can simply increase the number t
of target images (t = 6 in the example on the bottom row of Figure 3) so
that each part in the reference view is covered in a few target pictures, the
remaining occlusions being treated as outliers in the robust �delity term f(z).



10 Jean Mélou et al.

This largely improves the results, as con�rmed when evaluating the root mean
squared error (RMSE, expressed in millimeters, knowing that the ground truth
values stand within a 800-millimeter interval) with respect to ground truth. Let
us remark that shading-aware regularization alone seems su�cient and minimal-
surface regularization tends to smooth out �ne-scale details.

This is con�rmed by Figure 4: increasing the number t of target views removes
all the concave/convex ambiguities of shape-from-shading, so minimal-surface
regularization should be decreased, since it is not physics-based and tends to
systematically �atten the surface.

RMSE = 27.0 RMSE = 28.4 RMSE = 24.4

RMSE = 25.0 RMSE = 19.0 RMSE = 22.7

Fig. 3. Top row: Multi-view stereo with t = 1 target view (the two images are those of
Figure 2). Bottom row: Multi-view stereo with t = 6 target views. From left to right:
minimal-surface regularization (λ set to zero), shading-aware regularization (µ set to
zero), and combined regularization (λ > 0 and µ > 0). The errors due to occlusions on
the �rst row have largely been reduced on the second row.

Finally, we put this work in real context, using the Augustus dataset from [17].
We used an existing photogrammetric pipeline [1] to estimate the camera pa-
rameters, as well as a rough depth map from which we could estimate lighting
and the position of the initial plane (let us emphasize that this rough depth
map was not used any further, e.g., as initial estimate). To demonstrate the
ability of our framework to handle various photo-consistency measures, we show
results obtained with the exponential-transformed SAD or ZNCC loss functions.
From the results in Figure 5, the last reconstruction (bottom right), which uses
exponential-transformed ZNCC and combined regularization, is the most satis-
factory, at least from a qualitative point of view.
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Fig. 4. RMSE for di�erent regularization terms and for di�erent numbers t of target
images. If the combined approach gives better results with a low number of images,
shading-aware regularization alone works better as soon as t > 3.

Fig. 5. Real-world multi-view stereo with t = 6 target views (two of them are shown
in Figure 1), using SAD (top row) or ZNCC (bottom row) loss functions. From left to
right: minimal-surface regularization (λ = 0, µ = 1.10−5), shading-aware regularization
(λ = 5.10−3, µ = 0), and combined regularization (λ = 5.10−3, µ = 1.10−5).
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6 Conclusion and perspectives

We have introduced a generic splitting algorithm for multi-view stereo. It han-
dles a broad class of photo-consistency measures and regularization terms, and
is a suitable approach to 3D-reconstruction of textureless objects with few pa-
rameters to tune. Now, the proposed numerical scheme could be extended to
the use of higher order regularization terms [15], to a joint estimation of depth,
re�ectance and lighting as in [12], and the whole approach could be turned into
a volumetric one in order to recover a full 3D-model, as for instance in [11].
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