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Minimal order disturbance estimator design
for aircraft load alleviation control

Daniel Ossmann1 and Charles Poussot-Vassal2

Abstract— In this paper a novel approach to design linear
disturbance estimators is presented. The model based design
approach relies on advanced nullspace computation techniques
and explicit facilitates an estimators design of low state dimen-
sion. This reduces the dependencies on the underlying design
models and thereby increases robustness against modeling
errors. To further support this low order characteristics an ad-
vanced model approximation technique for preprocessing high
order design models is presented. The proposed approaches
are applied to a generic model of a business jet aircraft. The
derived disturbance estimator is used in a control algorithm to
reduce the wing bending moments on the aircraft in case of
wind gusts. Both, the disturbance estimator together and the
load alleviation controller are verified in a non-linear closed
loop aircraft simulation model.

I. INTRODUCTION

Estimating an unknown disturbance using linear observers
and estimators can be powerful in conjunction with feedback
control [1]. The idea is to appropriately include a disturbance
estimate in the control law so that disturbance effects can
be approximately removed. This requires the estimation of
the disturbance with high accuracy. There is a long history
on disturbance estimator design and thus a rich literature
available on different design methods. The simplest design
idea arises in the frequency domain, where the known,
disturbance free plant model is used to derive the difference
between the measured and estimated output, which is consid-
ered to be the disturbance. See for example references [2],
[3] for description and proper applications. The unknown
input observer [4], [5], [6] translates the problem into the
time and state-space domain and estimates both the systems
states and the disturbance. This requires the definition of
disturbance dynamics to allow the disturbance estimation
via a dedicated system state. The problem formulation in
the time domain and the introduction of disturbance states
also opened the door to the adaption of well developed state
estimators as Kalman filters or H∞-norm based filter designs
for the disturbance estimation problem [7]. The similarity of
the Kalman filter and the classical designs in the frequency
domain are discussed in [8].

The topic of disturbance estimators is closely related to
the approaches used in the fault detection and isolation (FDI)
community. Interpreting the appearing faults as disturbances,
a lot of approaches available in the FDI literature can be used
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for the estimation of disturbances. The main difference be-
tween FDI and disturbance estimation is, that the disturbance
observer has to accurately reflect the disturbance input signal,
while FDI aims to generate any signal, which is decoupled
from all known and unknown inputs but the fault(s) to be
detected. However, some approaches can be adapted to not
only provide fault detection but also fault estimation, i.e.,
reflecting the actual value of the fault. This fault estimation
problem is comparable to the disturbance estimation problem
and methods used for the one can be used for the other.
Notable linear design methods to solve FDI problems are
Luenberger observers [9] and Luenberger-type approaches
using for example geometric methods [10] or eigenstructure
assignment [11]. Further, also arising from the idea of
disturbance observers, unknown input observers [11] are well
established in the field of FDI. Beside the observer based
approaches, parity space methods [12], [13] and nullspace
based approaches have been introduced, see e.g., [14], [15].
These two methods allow the design of detectors of minimal
order. The minimal order characteristics of the observer
reduce the dependence on the underlying model dynamics
and thereby increases implicitly the robustness to modeling
errors and model uncertainties. The main difference in the
two mentioned approaches lies in the computational and
numerical manner in solving the decoupling conditions. The
nullspace based design methods can be considered to be
numerically more reliable [16].

In this paper we make use of the latest developments in
the nullspace based design methods in the FDI community
to present a novel approach for the design of disturbance
estimators. Originally developed to solve FDI problems [14],
[17], herein the disturbance estimation problem is stated
in a form, which allows its direct solving via the idea of
nullspace computations. The design methodology to design a
minimal order disturbance estimator is introduced in section
II. In case of design models with very high state dimension,
which are for example usually present when dealing with
load alleviation problems on aircraft, an a priori model
reduction is recommended. Thus, in section III an advanced
model approximation technique is additionally discussed to
facilitate the minimal order estimator design. A main focus
of the paper lies on the realistic and industrially relevant
application. In section IV a generic example of a medium
size business jet is introduced. It serves as basis for the order
reduction and the subsequent disturbance observer design.
The model is further utilized in section V to verify the
load alleviation capabilities of the proposed load alleviation
system. The idea of this load alleviation system is to use



the wind estimate to trigger a dedicated feedback law, which
alleviates the maximum bending moments on the wings in
case of increased wind gusts. A description of this non-linear
control law is provided in section IV.C.

II. DISTURBANCE ESTIMATOR DESIGN

In this section the disturbance estimator design problem is
generally derived. It is shown how it is connected to the idea
of nullspace computations for linear dynamical systems.

A. Problem formulation

Consider the linear model described by the input-output
form

y(s) = Gu(s)u(s) +Gd̄d̄(s) +Gdd(s), (1)

where y(s), u(s), and d̄(s) are the Laplace-transformed
vectors of the p-dimensional system output vector y(t),
the mu-dimensional control input vector u(t), and the md̄-
dimensional disturbance vector d̄(t), respectively. d(s) is the
Laplace-transformed of scalar disturbance input d(t) to be
estimated. Gu(s), Gd̄(s), and Gd(s) are the transfer-function
matrices (TFMs) from control inputs to outputs, disturbance
inputs to outputs, and disturbance input to be estimated to
outputs, respectively. Note that only one disturbance d(s) out
of the full disturbance vector [d̄(s) d(s)]T shall be estimated.
Thus, a disturbance estimate d̃(s) needs to be decoupled from
any additional disturbances d̄(s) acting on the system. This
is no restriction to the design process as for Nd = md̄ +md

disturbances acting on the system, Nd individual estimators
can be designed using the methods described below, if the
according design conditions are fulfilled.

For the system described in (1) a linear disturbance
estimator processes the measurable system outputs y(t) and
control inputs u(t) and generates the disturbance estimate
d̃(t). In the input-output form this can be described by

d̃(s) = Oe(s)

[
y(s)
u(s)

]
, (2)

where Oe(s) is the TFM of the disturbance estimator. For
a physically realizable disturbance estimator, Oe(s) must be
proper and stable. The order of Oe(s) is the dimension of the
state vector of a minimal state-space realization of Oe(s).
The general description in (2) allows the definition of the
disturbance estimation problem (DEP):

Design a physically realizable linear disturbance estimator
of the form (2) such that for all u(t) and d̄(t)

(i) d̃(t) = 0 when d(t) = 0

(ii) d̃(t) ≈ d(t) when d(t) 6= 0

(iii) d̃(t) is asymptotically bounded.

Additionally, Oe(s) shall be of minimal order (iv).

B. Solving the disturbance estimation problem

The requirements (i) and (ii) of the DEP are easily trans-
formed into algebraic conditions. Therefore, the system’s

input-output equation (1) is inserted in the disturbance esti-
mator equation (2), so that the disturbance estimate depends
on the control and disturbance inputs, i.e.,

d̃(s) = Oe(s)

[
Gu(s) Gd̄(s) Gd(s)
Imu

0 0

]u(s)
d̄(s)
d(s)

 . (3)

The decoupling condition (i) requires that the disturbance
estimate d̃(s) is decoupled from all inputs u(s) and distur-
bances d̄(s), which shall not be estimated. This is equivalent
to demand

Oe(s)

[
Gu(s) Gd̄(s)
Imu

0

]
:= Oe(s)Gn(s) = 0. (4)

It follows that Oe(s) needs to be a left annihilator of Gn(s).
By deriving a minimal basis Nl(s) for the left nullspace
of Gn(s), the design conditions (i) can be tackled. For the
design condition (ii), the basic constraint

Oe(s)

[
Gd(s)

0

]
6= 0 (5)

must be fulfilled. This can only be achieved, if the DEP
is actually solvable. The solve-ability condition follows the
theorem presented in [16]:

Theorem 1: For the system (1) the DEP is solvable if and
only if

rank
([
Gd̄(s) Gd(s)

])
> rank(Gd̄(s)). (6)

Thus, the disturbance to be estimated needs to be linearly
independent of all the other disturbances. Note that the
condition (6) is independent of the control input u. Thus, for
the case md̄ = 0, the DEP is always solvable. This makes
sense as just known inputs and one unknown input to be
estimated act on the system.

If condition (6) is fulfilled, a disturbance observer fulfilling
(ii) which is stable (iii) as well as proper and minimal (iv)
can be constructed by linear combination of the rows of the
left nullspace basis Nl(s) of the Gn(s) [16], i.e.,

Oe(s) = h(s)Nl(s). (7)

Note that any linear combination of Nl(s) solves the design
condition (i) but it has to be checked if (5) is ensured to
fulfill condition (ii). To solve the DEP, the transfer function
vector is defined as h(s) = kw(s), which consists of a
transfer function vector w(s) to make the filter proper, stable
and of least order. The constant k is used for scaling to ensure
a transfer behavior from d to d̃ of 1. If the DEP is solvable,
it is always possible to freely select the scaling k. As k is
selected to be a constant scalar herein, its value is chosen
based on the transfer gain from the disturbance input to the
derived disturbance estimator output at a certain frequency.
Note that this does usually not restrict the tracking of the
disturbance to a single frequency, as disturbances often show
constant gain over a wider frequency range. More details on
the actual computation are presented next.



C. Computation

The expression (7) represents a parametrization of all
possible disturbance estimators and is the basis of the so-
called nullspace based filter design methods. These methods
have been formally introduced in [14] using polynomial
bases and have been extended to be numerically more reliable
algorithms in [15], [16] using rational basis, both for fault
detection purposes. Successful applications of the approaches
can be found in [18], [19], [20].

The slightly modified computation procedure to compute
a disturbance estimator using these methods herein can be
summarized in three dedicated steps. If condition (6) is
fulfilled,

(I.) compute a minimal left nullspace basis Nl(s)
of Gn(s),

(II.) compute a rational vector w(s) such that
Õe(s) = w(s)Nl(s) is proper, stable, has least
order, and (5) is fulfilled,

(III.) select a constant k s.t. Oe(s) = kW (s)Nl(s)

ensures a transfer from d to d̃ of 1 at a defined
frequency.

For steps (I .) and (II .) we rely on the numerically sound
approach presented in [21]. It allows to derive a rational
nullspace basis allowing to generate a minimal, proper and
stable disturbance observer Õe(s). In more detail, step (I .)
is solved using matrix pencil methods. The minimal order in
(II .) is then ensured via solving a minimum dynamic cover
problem and the stable and proper dynamics are achieved via
a QR decomposition. Interested readers in the computational
ideas and their details are referred to [17].

One essential difference to the fault detection problem is
the requirement that in case of a disturbance estimator the
estimator’s output shall reflect the disturbance magnitude.
This is required as this estimate is usually directly used as
input signal in a feedback controller. Thus, to allow the fault
estimation the correct scaling of the observer (III .) needs to
be explicitly considered. If the DEP is solvable, condition (4)
holds for any observer Õe(s) derived via (7). Thus, equation
(3) reduces to

d̃(s) =
[
Õy(s) Õu(s)

] [y(s)
u(s)

]
= Õy(s)Gd(s)d(s), (8)

where Õe(s) = [Õy(s) Õe,u(s)] is separated into Õe,y(s),
which processes the system measurements y, and into Õu(s),
which processes the (known) control inputs u. Note that
Õe,y(s)Gd(s) is one single-input single-output transfer func-
tion as only scalar disturbances d are considered in (1). Thus,
considering the requirement that the magnitude of d̃ follows
d and moving into the frequency domain, leads to

k|Õe,y(ıω)Gd(ıω)| = 1. (9)

To follow the disturbance signal d at a desired frequency ωd,
the scaling for the disturbance observer Oe(s) can be selected
as k = |Õe,y(ıωd)Gd(ıωd)|−1. As an example, if the steady
state value of the disturbance estimate shall equal the steady

state value of the disturbance, ωd = 0 is an appropriate
choice. As the dynamics of the disturbance observer can be
freely chosen [17], a small lag between the disturbance and
its estimate is ensured via setting adequately fast disturbance
observer dynamics.

In case of linear design models of very high state dimen-
sions, which are, e.g., present when dealing with structural
dynamics of aircraft, an a priori approximation of the high
order model is recommended. The theoretical background
used for the approximation of the aircraft models in this
paper is provided next.

III. MODEL APPROXIMATION

When dealing with industrial problems such as aircraft
systems, associated models usually embed unsteady aerody-
namics as well as structural modes and aerodynamic delays.
Consequently, the dimension of the state-space dimensions
can be very large, and additionally models can include delays
and potentially mixing differential and algebraic equations.
Thus, before the methods presented in section II can be
applied, a pre-processing step, to reduce the state dimension
and simplify the complexity should be first applied in order to
improve the numerical treatment and accuracy of the results.
A short reminder of the methods involved in section IV are
briefly discussed in this section. As these methods are not
the main topic of this paper, more details on infinite or data-
driven model approximation can be found in [22], [23], [24]
and on finite order large-scale model approximation in [25],
[26]. Let us follow these two classes of problems and remind
the driving ideas as follows.

A. Infinite dimensional or data-driven model approximation

Given an infinite dimensional model H , which results,
e.g., if time-delays are considered, it is possible to obtain
the frequency-domain responses Φi ∈ Cny×nu for different
frequency samples ωi (i = 1, . . . , N ). Then, one can write
H(ıωi) = Φi. One of the data-driven approaches is based
on the interpolation framework well defined in [27], [22],
involving the Loewner matrices. The method consists of an
exact rational model interpolation, optionally followed by a
reduction procedure. To this aim, let us first partition the
collected data (ωi,Φi)

N
i=1 in two disjoint sets as follows

(N = q + k):

ı[ω1, . . . , ωN ] = [µ1, . . . , µq] ∪ [λ1, . . . , λk]
[Φ1, . . . ,ΦN ] = [ṽ1, . . . , ṽq] ∪ [w̃1, . . . , w̃k].

(10)

Then, define lj ∈ Cny×1 (j = 1, . . . , q) and ri ∈ Cnu×1

(i = 1, . . . , k) the q left and k right tangential direc-
tions. Using these tangential directions, let us define v∗j =
l∗j ṽj ∈ C1×nu and wi = w̃iri ∈ Cny×1 the left and right
tangential data directions, respectively. Based on the left
interpolation driving frequencies {µi}qi=1 ∈ C with left
output or tangential directions {li}qi=1 ∈ Cny , producing
the left responses {vi}qi=1 and right interpolation driving
frequencies {λi}ki=1 ∈ C with right input or tangential
directions {ri}ki=1 ∈ Cnu , producing the right responses
{wi}ki=1, the objective is to find a model transfer function H̃



which is a tangential interpolation of the data, i.e., satisfies
the following left and right interpolation conditions:

l∗j H̃(µj) = v∗j
for j = 1, . . . , q

and H̃(λi)ri = wi
for i = 1, . . . , k

}
. (11)

The interpolation problem (11) can be solved thanks to the
Loewner framework (see, e.g., [27]). An important property
of the Loewner approach is that it encodes the minimal
McMillian degree of the interpolation model and its minimal
realization order n. This then leads to an exact descriptor
model interpolating the data, especially useful, when the
number of data is very large.

B. Finite dimensional model approximation

Once an exact interpolation model H̃ has been obtained,
with potentially large dimension, a second step then con-
sists in approximating this finite order model with a low
dimensional one. One common objective in model approx-
imation consists in finding a reduced-order model that well
captures the main original input/output dynamical behavior.
To address this objective, the (frequency-limited) H2-norm
mismatch error is commonly used, see e.g., [26], [28]. The
resulting approximation problem consists thus in seeking a
low order approximation model Ĥ(s) of H̃(s), such that:

Ĥ := arg min
G ∈ Hny×nu

2

rank(G) = r � n

||H̃ −G||H2
. (12)

Beside the fact that problem (12) is non convex and non-
linear, some conditions have been proposed to reach the so-
called first order optimality conditions and procedures to
ensure that a local (hopefully global) optimum is reached.
Moreover, the proposed IRKA and FL-ISTIA algorithms are
appropriate to practically tackle these problems (see e.g.,
[26], [28] for details). Finally, the derived model Ĥ can be
easily brought into the form (1) by separating the inputs
accordingly.

IV. APPLICATION

Reducing structural loads on an aircraft by advanced
control techniques is a main research interest of today’s
aircraft industry. Reducing the loads allows building a lighter
aircraft and thereby saves costs. The loads arise from steering
the aircraft (maneuver loads) and from external disturbance
inputs, (gust loads). The latter are considered in this paper
for a generic business jet aircraft.

For being able to realistically compute and compare loads
with and without load alleviation controller, while taking
into account as much as possible structural interactions,
an aircraft model with about 300 states is available. The
model includes detailed structural and aerodynamic effects,
delays, realistic actuator and sensor models as well as a
baseline control law, providing adequate handling qualities
to the pilot. The control inputs to the open loop aircraft
model are the commands of the elevator, the inner ailerons
and the outer ailerons. The gust impact on the model is
characterized by nine inputs describing the position, velocity

and acceleration impact at three different locations along the
fuselage. As measured signals for feedback control, the pitch
rate, the load factor and the angle of attack are provided. The
provided baseline controller only commands the elevator,
while the load alleviation controller shall use the ailerons
symmetrically to alleviate the bending moments due to gusts.

The open loop model, i.e., without baseline controller,
serves as basis for the disturbance observer design. The
design will be carried out for a fixed aircraft speed and
altitude as an example and verified in the full non-linear,
closed loop aircraft model including a case with varying mass
and center of gravity position.

A. Model approximation

The high number of states as well as the nine disturbance
inputs makes the estimator and control design challenging.
Thus the idea is to reduce the state dimension and the number
of disturbance inputs. In view of disturbance estimator and
control design, it is preferable to use a single disturbance
single input.

The nine disturbance inputs are actually used to model a
single gust hitting three different parts (front, middle, rear)
of the aircraft one after another. The derivatives of the three
gust input positions are required to consider the unsteady
aerodynamics. Consequently, the second and third set of gust
inputs are equal to the first one but delayed by a fixed time
delay. Thus, mathematically the second and third set of inputs
can be derived by simply delaying the first on. Additionally,
the velocity and acceleration of the first gust input can be
derived by derivative action on the first gust input position,
finally reducing the gust inputs to a single one. After these
modifications, the resulting model now embeds two internal
delays (denoted τ1 and τ2, related to the velocity of the
aircraft) and has a rank deflective descriptor form. These
internal delays are explained by the use of exact delay actions
applied on the exact derivative terms. Thus, the linear time-
invariant dynamical system can be represented by a first order
descriptor realization with nu inputs (including one single
gust input), ny outputs, nx internal variables, and the two
internal delays. The model is given by a set of differential
and algebraic equations

Eẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2) +Bu(t)
y(t) = Cx(t),

(13)
with the rank defective matrix E, the internal variables
x(t) ∈ Rnx := X , and the the input and output functions
u(t) ∈ Rnu := U and y(t) ∈ Rny := Y , respectively.
E,A0, A1, A2 ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx

are constant matrices. The matrix pencil is regular if the
matrix (A0 +A1e

−τ1λ +A2e
−τ1λ)−λE is non-singular for

some finite λ ∈ C and a {τ1, τ2} couple. In this case, the
associated transfer function is

H(s) = C
(
sE−A0−A1e

−τ1s−A2e
−τ2s

)−1
B+D. (14)

Obviously, due to the presence of delays in the dynamical
part of the equations, the resulting model is now of infinite
dimension. To cope with this, first an exact stable Loewner



interpolation of this infinite model by a finite order one is
performed as discussed in section III-A. This leads to a
large scale descriptor model of dimension n, which exactly
interpolates the infinite dimensional model H , with H̃(s), of
the form

H̃(s) = C̃
(
sẼ − Ã

)−1
B̃. (15)

This finite order model (e.g., with a finite number of eigen-
values) can now be approximated using any (frequency-
limited) H2 oriented model approximation techniques as
discussed in section III-B and further presented in e.g.,
[26], [29], [30]. This leads to a reduced order model with
dimension r � n, as,

Ĥ(s) = Ĉ
(
sÊ − Â

)−1
B̂ (16)

which minimizes the (frequency-limited) mismatch error.
Finally, the aircraft model of about 300 states with nine
disturbance inputs has been approximated with a model of
order r = 25 with a single disturbance input. This reduced
model can now be used to design the disturbance estimator.

B. Estimator Design

A disturbance estimator with the presented methods in
section II is designed for the aircraft. The final design
model after the model approximation features 25 states, three
control inputs, namely elevator, symmetric inner aileron and
symmetric outer aileron positions, one gust input and the
two measurable outputs, i.e., pitch rate and the load factor.
Applying the approach presented in section II, results in
a first order disturbance estimator. As the dynamics of the
detector can be freely chosen, the single real pole is set to
-1. This value still provides an adequate estimation delay and
ensures reasonable estimator gains. The resulting state-space
representation of the disturbance estimator is given by

ẋe = −xe +Be
[
q nz η ξi ξo

]T
d̃ = xe +De

[
q nz η ξi ξo

]T
,

(17)

where xe is the scalar detector state, q the pitch rate, nz
the load factor, η the commanded elevator position, ξi the
commanded symmetric inner aileron position, and ξo the
commanded symmetric outer aileron position. Be and De

are the 1× 5 input and feed-through vectors of the observer,
respectively. The disturbance acts on the plant output with
differentiating behavior at low frequencies, i.e.., constant
gusts are not visible in the measurements. As the gusts to
be estimated are dynamic 1-cosine gusts, the frequency to
determine the scaling factor k is selected at wd = 50 rad/s
to ensure an adequate tracking of the incoming gusts.

In Fig. 1 the response of the developed first order distur-
bance observer to vertical 1-cosine gust inputs is presented
for two different mass and center of gravity cases. The first
case is referred to as design case in the following, as at
this mass and center of gravity position the reduced order
design model has been derived. The second case is referred
to as verification case as it is used to verify the robustness
of the observer against changes in mass and center of
gravity positions. The shown simulation results are generated

using the full non-linear, closed-loop simulation model. Two
different gust wavelengths of 33 m/s (first diagram) and
84 m/s (second diagram) corresponding to a vertical gust
velocity of around 13.5 m/s and 16 m/s are depicted. In both
cases the input gust is estimated adequately. In all four cases
the estimations show a slight delay compared to the actual
gust. This is due to the fact that the disturbance acts on the
front part of the aircraft first. The sensed pitching moments
however, result from the gust acting on the wing, i.e., the
middle part of the aircraft. Thus, the resulting delay in the
estimation is approximately the time the gust needs to travel
from the front of the aircraft to the wing section.
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Fig. 1. Estimated disturbances for the design ( ) and verification
( ) case compared to the real disturbances ( ) for a gust wavelength
of 33 m/s (first diagram) and 84 m/s (second diagram).

Besides the actual estimation performance, the decoupling
of the control inputs needs to be ensured. To test the
decoupling, a step-like elevator input of 10 degree over
5 seconds is used to simulate a pilot input command. In
Fig. 2 the resulting estimator outputs for the design and
verification case are depicted. As expected, the estimate is
not equal zero due to the consideration of the full aircraft
model. However, it is sufficiently small, so that a disturbance
can be distinguished from these unwanted signal excitations
by setting an adequate threshold. Note that for the design
case ( ) the signal is naturally smaller compared to the
verification case ( ).
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Fig. 2. Disturbance estimator response to a step-like elevator input for the
design ( ) and the verification ( ) case to verify the control input
decoupling.



C. Control Strategy

Having an estimate of the gust available, a non-linear
control strategy is developed. When a gust hits the aircraft,
the increased angle of attack on the wings leads to an in-
creased lift on the wings. This lift increases the encountered
wing bending moment. The idea is to symmetrically and
rapidly deflect the ailerons, so that the additional lift resulting
from the wind gust gets reduced. If the disturbance estimate
exceeds a defined threshold value, the ailerons are deflected,
where the direction of the deflection depends on the gust
direction. This direction is determined from the change
in the (sensed) angle of attack α. The proposed control
law is a bang-bang like controller with a threshold based
triggering. The threshold is selected based on simulations.
The controller stays active as long the gust estimate exceeds
its threshold but at least one second after activation to avoid
a rapid on and off switching.

AC

Cη

Oe

> τth

CLA

q

nz

ξi
ξo

η

d̃

d

i

α

Fig. 3. Closed loop structure including aircraft dynamics, baseline con-
troller, disturbance observer, triggering logic, and load alleviation controller.

The overall structure of the closed loop system is depicted
in Fig. 3. The baseline controller Cη uses the measurements
load factor nz and the pitch rate q from the aircraft AC as in-
puts to generate the elevator deflection η. It ensures adequate
handling and disturbance rejection in the longitudinal, rigid
body motion of the aircraft. The disturbances d are acting on
the aircraft as unknown inputs. The aircraft in this illustration
also includes the sensor and actuator dynamics. If the gust
estimate d̃ of the estimator Oe is above the defined threshold
τth, the load alleviation is triggered via the Boolean variable
i. The angle of attack α is used to determine the direction
of the load alleviation aileron command.

V. CLOSED LOOP LOAD VERIFICATION

This section reports the verification results gathered from
the full order closed loop model of the aircraft. The closed
loop includes besides the full aircraft dynamics, the baseline
controller, the load reduction control strategy, second order
actuator models, and second order sensor dynamics with time
delays. For the load alleviation quantification a full spectrum

of 1-cosine gusts acting vertically from below and above
are simulated. Gust wavelengths from 9 m/s to 107 m/s are
simulated, resulting in 22 gust simulations. During each gust
simulation, the maximum value of the bending moment on
six different wing-span locations is recorded and the worst
case over the 22 simulations is calculated at each span wing
location. The wing span of the aircraft is around 11.9 meters.
The results are then normalized with the corresponding max-
imum allowable value of the bending moment at the specific
locations. For comparison the simulations are performed
once with and once without gust load alleviation controller
activated.

In Fig. 4 the results of the described load verification are
presented. For both, the design case and the verification case,
the loads are decreased. While for the baseline controller
the worst case over the wing is around 1, i.e., matching the
maximum allowable loads, the worst case when including the
load alleviation controller is around 0.94 at a wing span of
around 10 m, achieving a worst case load reduction of about
6%. As load reduction results in both cases are rather similar,
the robustness over mass and center of gravity changes of
the proposed disturbance observer and the load alleviation
control algorithm is confirmed.
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Fig. 4. Load analysis results for the design ( ) and verification ( )
case without ( , ) and with ( , ) load alleviation controller.

VI. CONCLUSION
In this paper an approach to design linear disturbance

estimators of minimal order using the nullspace based de-
sign technique as well as advanced model approximation
techniques has been presented. The proposed method has
been successfully applied to a generic business jet aircraft
model. Based on the estimated disturbance a control strategy
has been employed to reduce the maximum wing bending
moments encountered due to wind gusts.
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