
HAL Id: hal-02088897
https://hal.science/hal-02088897

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representative volume element size determination for
viscoplastic properties in polycrystalline materials

S. Yang, Justin Dirrenberger, Eric Monteiro, Nicolas Ranc

To cite this version:
S. Yang, Justin Dirrenberger, Eric Monteiro, Nicolas Ranc. Representative volume element size deter-
mination for viscoplastic properties in polycrystalline materials. International Journal of Solids and
Structures, 2019, 158, pp.210-219. �10.1016/j.ijsolstr.2018.09.011�. �hal-02088897�

https://hal.science/hal-02088897
https://hal.archives-ouvertes.fr


Representative volume element size determination for viscoplastic

properties in polycrystalline materials

S. Yang, J. Dirrenberger ∗, E. Monteiro, N. Ranc

PIMM laboratory, Arts et Métiers ParisTech, Cnam, CNRS, Paris 75013, France

a r t i c l e i n f o 

Article history:

Received 26 February 2018

Revised 18 July 2018

Available online 11 September 2018

Keywords:

Representative volume element

Computational homogenization

Crystal plasticity finite element method

Apparent viscoplastic parameter

Intrinsic dissipation

a b s t r a c t 

The size of representative volume element (RVE) for 3D polycrystalline material is investigated. A statisti- 

cal RVE size determination method is applied to a Voronoi tessellation-based pure copper microstruc- 

ture. The definition of RVE has remained problematic in the literature for properties related to non- 

linear viscoplastic behavior, e.g. apparent viscoplastic parameter, intrinsic plastic dissipation. Computa- 

tional homogenization for elastic and plastic properties is performed within a crystal plasticity finite ele- 

ment framework, over many realizations of the stochastic microstructural model, using periodic boundary

conditions. The generated data undergoes statistical treatment, from which RVE sizes are obtained. The

method used for determining RVE sizes was found to be operational, even for viscoplasticity. The mi- 

croscale analysis of the full-field simulation results reveals microstructure-relate heterogeneities which

shed new light on the problem of RVE size determination for nonlinear properties.

1. Introduction

In the past decades, full-field numerical simulation of polycrys- 

talline materials based on finite element analysis has been widely 

developed to investigate the mechanical behavior, allowing the 

analysis of stress and strain fields at a scale that is not easily as- 

sessable experimentally ( Barbe et al., 2001 ; Roters et al., 2011 ). 

Most of the authors in the literature dedicated to the simulation 

of polycrystals usually consider a population of virtual polycrys- 

talline samples made of several hundred grains, validating this ar- 

bitrary choice by analyzing the mean value and standard deviation 

for a given property computed on such population ( Shenoy et al., 

20 07, 20 08; Robert et al., 2012 ; Martin et al., 2014 ; Sweeney et al., 

2015 ; Cruzado et al., 2017, 2018 ). Nevertheless, the development 

of full-field simulation of polycrystalline materials results in shed- 

ding new light on the relationship between the microstructural de- 

scription at the dislocation or grain scale and the local mechanical 

behavior ( Cailletaud et al., 2003a ). The homogenized macroscopic 

response of a polycrystalline material sample will depend on its 

size, hence yielding the question of representativity for such vir- 

tual samples. To bring an answer to this question, one must have 

a proper definition of what an RVE is. 

In homogenization methods, the concept of RVE was firstly pro- 

posed by Hill (1963) as “a sample that is the structurally typical of 

the whole microstructure for a given material, i.e. containing a suffi- 
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ciently large number of heterogeneities, while being small enough to 

be considered homogeneous from a continuum mechanics viewpoint ”. 

The quantification of RVE size has been problematic until vari- 

ous statistical approaches were proposed in the past two decades 

( Gusev, 1997; Terada et al., 20 0 0; Kanit et al., 2003; Gitman 

et al., 2007 ). Based on several statistical hypotheses, Kanit et al. 

(2003) proposed a statistical approach to determine the minimal 

RVE size for a considered property, in which, the RVE size could be 

associated with a given precision of the estimated overall property 

and the number of realizations with a given volume size V . Prac- 

tically, it is applicable in order to determine the minimal number 

of realizations to consider for a given volume size, in order to esti- 

mate the effective property with a given precision ( Bironeau et al., 

2016 ). 

Using this approach, Kanit et al. (2003) studied the RVE sizes of 

a two-phase 3D Voronoi mosaic for linear elasticity, thermal con- 

ductivity and volume fraction, under uniform displacement, trac- 

tion and periodic boundary conditions (PBC) ( Michel et al., 1999 ). 

The results showed that the PBC held an advantage of conver- 

gence rate of the mean apparent properties in comparison to other 

boundary conditions, due to the vanishing of boundary layer ef- 

fects. A slow rate of convergence for the considered properties 

would yield a large RVE sizes ( Dirrenberger et al., 2014 ). Also con- 

sidering the large calculation cost in the case of crystal plasticity, 

it is preferable to rely on PBC in order to optimize the computa- 

tion strategy, as it was done in other investigations ( Pelissou et al., 

2009 and Jean et al., 2011 ). 

https://doi.org/10.1016/j.ijsolstr.2018.09.011
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The statistical method of Kanit et al. (2003) was implemented 

for the estimation of RVE size, not only for linear mechanical prop- 

erties and morphological property, but also for plastic properties: 

Madi et al. (2006) evaluated the RVE size for 2D/3D viscoplastic 

composite materials. In their study, the macroscopic strain rate of 

the 2D/3D material was modeled using a Norton flow rule. Based 

on the von Mises criterion, an apparent viscoplastic parameter P 
app
v 

was firstly defined as the coupling of two parameters of the Nor- 

ton flow rule K and n, i.e. P 
app 
v = 1/K 

n . The authors showed that the

value of P 
app 
v converged towards a constant value with an increas- 

ing volume of simulation and that the RVE size for P 
app 
v was found

to be smaller than the ones for elastic moduli. In the present work, 

we will rely on this definition of the apparent viscoplastic param- 

eter, as it is adapted for describing the nonlinear behavior of a 

macroscopically isotropic polycrystalline viscoplastic material. 

As a matter of fact, the concept of RVE has often been used in 

investigations associated with the average mechanical response of 

2D and 3D polycrystalline material. The definition of RVE size can 

stem from finite element meshing considerations or convergence 

of mean values for a considered property. For instance, Barbe et al. 

(2001) described the RVE for a cubic polycrystalline mesh as an 

equilibrium between the number of grains (238) and the average 

number of integration points per grain (660) attainable within typ- 

ical computational means. More recently, Sweeney et al. (2015) es- 

timated the energetic parameter of CoCr stent material in high cy- 

cle fatigue by averaging in 5 RVEs with 138–140 grains. Cruzado 

et al. (2017, 2018) simulated the cyclic deformation of metallic al- 

loys with 20 RVEs and a size of 300 grains, which showed an error 

less than 10% for elastoviscoplastic properties. Similar determina- 

tion of material RVE size can also be found in Shenoy et al. (2007, 

2008), Martin et al. (2014), Gillner and Mu ̈nstermann (2017), Te- 

ferra and Graham-Brady (2018) . In these Refs, RVE size is defined 

as a few realizations with a few hundred grains which can realize 

a convergence of mean properties. However, these analyses do not 

allow for a rigorous statistical definition of the RVE size. 

Rather than relying solely on the convergence of mean proper- 

ties, the method proposed in Kanit et al. (2003) makes use of the 

rate of convergence of the ensemble variance of the mean proper- 

ties with respect to the volume size, thus enabling the definition 

and estimation of a statistical RVE size for each considered prop- 

erty. However, to the knowledge of the authors, no one ever as- 

sessed the RVE size for polycrystalline material in the framework 

of CPFEM with the statistical RVE method. 

Additional consideration has to be made regarding the appar- 

ent properties to be considered as criteria for RVE size determina- 

tion in viscoplasticity. The first one should be the definition of in- 

trinsic dissipation within the context of crystal plasticity. Secondly, 

the definition of the apparent viscoplastic parameter P 
app 
v will be

considered in the crystal plasticity framework. Meanwhile, for the 

crystal plasticity behavior, material heterogeneity is mainly due to 

the local grain orientation, which can introduce strong stress con- 

centrations, leading to early onset of plasticity. Both grain orienta- 

tion and the choice of crystal plastic behavior are likely to influ- 

ence directly the value of RVE size for mechanical properties, as it 

will be discussed in the paper. 

Overall, in this paper, the RVE size of polycrystalline pure cop- 

per will be studied in framework of CPFEM. In the following sec- 

tions, the material behavior and constitutive model are discussed 

first. Then, the periodic mesh generation and the computational 

homogenization method are described in detail, alongside with the 

various loading cases corresponding to the different properties to 

be considered for estimating the RVE sizes. Results from computa- 

tion and statistical analysis are then presented and discussed. Cal- 

culations for RVE are performed in the last section of the paper, 

and comparison is made for the different RVE sizes depending on 

the considered property. 

In the following, vectors are underlined face and written in mi- 

nuscule, e.g. x . Second-rank are bold and slant face, e.g. x and X , 

and fourth-rank tensors are bold and straight face capitals, e.g. X . 

Others are scalar. 

2. Crystal plasticity constitutive model

The material involved in this paper was pure polycrystalline 

copper. Both anisotropic crystal elasticity and plasticity were con- 

sidered for its behavior. The cubic elasticity is characterized by 3 

independent elastic constants, taken from Musienko et al. (2007) . 

The crystal plasticity model considered in the present work 

was introduced and implemented by Meric et al. (1991) and 

Cailletaud (1992) in the finite element code ZeBuLoN/ZSet. 1 The 

Meric–Cailletaud model was chosen for its ability to account for 

kinematic hardening. This model is popular within the crystal plas- 

ticity community and has been used in many previous works on 

computational mechanics for polycrystalline material ( Barbe et al., 

2001; Cailletaud et al., 2003b; Diard et al., 2005; Gérard et al., 

2009 ). 

The model is briefly summarized here. The constitutive rela- 

tions are defined hereafter: 

˙ γ s = 

〈 | τ s − X 

s | − R 0 − R 

s

K 

〉n

sign ( τ s − X 

s ) = 

˙ v s sign ( τ s − X 

s ) 

X 

s = C αs ; ˙ αs = ˙ γ s − D αs ˙ v s , with αs ( t = 0 ) = 0

R 

s = bQ 

∑ 

r

h sr q 
r = Q 

∑ 

r

h sr 

(
1 − e −b v r 

)
˙ q s = ( 1 − b q s ) ̇ v s = v · e −b v s

m 

s = 

(
g s � l 

s + l 
s 
� g s 

)
/ 2 

τ s = m 

s : σ; ˙ ε 

p = 

∑ 

s

˙ γ s m 

s (1) 

where for polycrystalline pure copper, 12 slip systems are associ- 

ated with the calculation, i.e. 4 slip planes g s of type {111} and 3 

directions of slip l 
s 

of type 〈 110 〉 , which depend on the Euler an- 

gles of the grains. The Schmid tensor m 

s is used to compute the 

resolved shear stress τ s and the plastic strain rate ˙ ε p . For each slip 

system, the slip rate ˙ γ s is defined as a power-law function of τ s . 

The parameters K and n relate to the sensitivity of materials to the 

strain rate. υs represents the accumulated plastic strain for the slip 

system s . The couples of thermodynamical force and state variable, 

( X 

s , αs ) and ( R s ,q s ), respectively are associated with the kinematic 

and isotropic hardening. A series of material parameters is used to 

define the kinematic hardening ( C, D ), and the isotropic hardening 

( R 0 , Q, b ). The symmetric interaction matrix h sr describes the effect 

of slip on system s on the shear resistance of slip system r , as il- 

lustrated by Meric et al. (1991) . This includes self-hardening ( s = r ) 

and latent hardening ( s � = r ). 

Finally, the material parameters for a high-purity copper, K, n, 

R 0 , Q, b and h sr , are given in Table 1 . 

3. Computational approach

3.1. Definition of apparent elastic properties 

The micromechanical linear elastic behavior at each integration 

point in the finite element simulation is described by Hooke’s law 

using the fourth-rank linear elasticity tensor C , such that: 

σ( x ) = C ( x ) : ε ( x ) (2) 

1 ZeBuLon/ZSet: http://www.zset-software.com/ .
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Table 1

The parameters of pure copper cubic elasticity and plasticity ( Musienko et al., 2007 ).

Elasticity Flow Isotropic hardening Kinematic hardening Interaction slip

Cubic Norton Nonlinear Nonlinear h sr 
∗

C11 = 159.3 GPa n = 10 R 0 = 1.8 MPa D = 600 h 1 = 1, h 2 = 4.4, 

C12 = 121.9 GPa K = 5 MPa s 1/n Q = 6 C = 4500 h 3 = 4.75, h 4 = 4.75, 

C44 = 80.9 GPa b = 15 h 5 = 4.75, h 6 = 5 

∗ Note: h 1 = h sr (s = r); h 2 = h 21 , h 31 , h 32 , h 54 , h 64 , h 65 , h 87 , h 97 , h 98 , h 11,10 , h 12,10 , h 12,11 ; h 3 = h 52 , h 63 , h 75 , h 83 , 

h 91 , h 94 , h 10,6 , h 10,8 , h 11,1 , h 11,4 , h 12,2 , h 12,7 ; h 4 = h 41 , h 72 , h 86 , h 10,3 , h 11,9 , h 12,5 ; h 5 = h 42 , h 43 , h 51 , h 61 , h 71 , h 73 , h 76 , 

h 82 , h 84 , h 85 , h 92 , h 96 , h 10,1 , h 10,2 , h 10,5 , h 10,9 , h 11,3 , h 11,5 , h 11,7 , h 11,8 , h 12,3 , h 12,4 , h 12,6 , h 12,9 ; h 6 = h 53 , h 62 , h 74 , h 81 , 

h 93 , h 95 , h 10,4 , h 10,7 , h 11,2 , h 11,6 , h 12,1 , h 12,8 .

For a given volume V, the fourth-rank tensor of apparent mod- 

uli C 

app can be defined by the macroscopic relations: 

� = σ = 

1

V 

∫ 
V

σdV = C 

app : E (3) 

where � and E are the macroscopic stress and strain second-rank 

tensors. 

For an elementary volume V large enough ( V > V RVE ), the appar- 

ent properties do not depend on the boundary conditions ( Huet, 

1990; Sab, 1992 ) and equal to the effective properties of the con- 

sidered material, so that: 

C 

app = C 

eff (4) 

The following two macroscopic strain conditions E μ and E k 

were used in the elastic tests, aiming at computing the apparent 

shear modulus μapp and apparent bulk modulus k app : 

E μ = 

[ 

0 1 / 2 0 

1 / 2 0 0 

0 0 0 

]
; E k = 

[ 

1 / 9 0 0 

0 1 / 9 0 

0 0 1 / 9 

]
(5) 

Then the apparent shear and bulk modulus can be defined from 

the elastic strain energy density for the macroscopic strain given in 

Eq. (6) using the Hill–Mandel condition ( Hill, 1967 ), such that: 

k app = � : E k = T r ( �) 
μapp = � : E μ = �12 

(6) 

3.2. Definition of apparent plastic property 

In this work, the notion of apparent viscoplastic parameter 

is considered as defined in Madi et al. (2006) for characterizing 

viscoplasticity. For the concerned polycrystalline copper, two hy- 

potheses are made: 

(1) The von Mises criterion is defined for isotropic material be- 

havior. In the present case, although the local material behavior is 

anisotropic, the macroscopic behavior is considered isotropic, since 

the grains have been generated with a statistically isotropic distri- 

bution of orientation. Therefore, the von Mises criterion is suitable 

for macroscopic numerical considerations. Based on von Mises cri- 

terion, the total plastic deformation is equal to the sum of micro 

shear deformation on all activated slip systems for each element of 

volume, as described in the following equations: 

˙ e p = � : ˙ E 

v =
12 ∑ 

s

τ s ˙ γ s = σ̄ · ˙ p , σ̄ = 

√
3 J 2 

(
S i j 

)
(7) 

where, ˙ e p is the macroscopic plastic energy rate. σ̄ denotes the 

equivalent uniaxial tensile stress, which is associated with J 2 (S ij ) 

the second invariant of the deviatoric part S ij of the macroscopic 

stress tensor �. E 

v is the macroscopic viscoplastic strain tensor. p 

is the equivalent accumulated viscoplastic strain. Local quantities, 

such as the resolved shear stress and plastic slip rate on each slip 

systems are computed in the local material frame, and then ex- 

pressed in the macroscopic frame before averaging. 

(2) The apparent global plastic strain rate can be also approxi- 

mated by a simple Norton flow rule: 

˙ p = 

⎛ 

⎝
√

3 J 2 
(
S i j 

)
K 

app 

⎞ 

⎠
n app

(8) 

Generally, this assumption can be valid, only if all local 

materials have the same parameters n and K , as stated by 

Rougier et al. (1993) in case of creep. The same K and n parameters 

are used for each slip system in the present work, hence allowing 

us to rely on Eq. (8) for pure polycrystalline copper. 

Combining Eqs. (7) and ( 8 ), one can obtain: 

˙ e p = � : ˙ E 

v =
12 ∑ 

s

τ s ˙ γ s = 

√
3 J 2 

(
S i j 

)
·

⎛ 

⎝
√

3 J 2 
(
S i j 

)
K 

app 

⎞ 

⎠
n app

(9) 

For the sake of comparison, we rely on the concept of apparent 

viscoplastic parameter P 
app 
v as defined by Madi et al. (2006) for

isotropic viscoplastic behavior, such that: 

P app 
v = 

1 

K 

app n 
app (10) 

Then the Eq. (9) becomes: 

˙ e p = � : ˙ E 

v =
12 ∑ 

s

τ s ˙ γ s = P app
v 

(√
3 J 2 

(
S i j 

))n app +1

(11) 

The procedure for determining P 
app 
v is as follows: for each re- 

alization, a uniaxial tensile test is carried out under PBC with 

prescribed macroscopic strain rate control. As polycrystalline pure 

copper is a rather strain rate insensitive material at room tempera- 

ture ( Carreker and Hibbard, 1953 ), only one strain rate of 10 −3 s −1 

is considered. The duration of the test is 0.1 s. Therefore, the max- 

imum macro strain is 10 −4 , which is in the scope of the practical 

use for the Meric–Cailletaud model ( Meric et al., 1991; Cailletaud, 

1992 ). At the end of tensile test, output values ( 
√ 

3 J 2 ( S i j ) , ˙ e p ) are 

computed. Using the least square fitting method, the value of P 
app
v 

is identified as the coefficient of the fitted power law, as shown 

in Fig. 1 . The best fit is obtained by increasing the volume size: 

R 2 ≥ 0.9 for 8gr, 0.92 for 27gr, 0.94 for 64gr, 0.96 for 125gr, 0.98 

for 216gr and 0.99 for 343gr, R 2 being the statistical coefficient of 

determination. 

Furthermore, in order to determine the RVE size of polycrys- 

talline copper for viscoplasticity, the intrinsic dissipation energy 

density during tensile test was also chosen as one plastic property 

to estimate the RVE size. For each slip system, the intrinsic dissipa- 

tion power is defined as the plastic power minus the stored power 

associated with isotropic and kinematic hardening, as proposed by 

Chrysochoos et al. (1989) . 

˙ d s 1 = τ s ˙ γ s − X 

s ˙ αs − R 

s ˙ q s (12) 



Fig. 1. A fitting result of ˙ e p v s 
√ 

3 J 2 ( S i j ) , under 343 number of grains; P app 
v is 

1.168e −11 and the corresponding values of n app and K app are 7.45 and 29.29, re- 

spectively.

The spatially intrinsic dissipation energy density during the ten- 

sile test is computed as follows: 

d tension 
1 = 

∫ 
t 

1 

V 

∫ ∫ ∫ 
V

∑ 

s

˙ d s 1 d V d t (13) 

3.3. Determination of RVE size 

Based on mathematical morphology considerations, for an er- 

godic stationary random function Z(x) , one can compute the en- 

semble variance D 

2 
Z 
(V ) of its average value Z̄ (V ) over the volume 

V ( Matheron, 1971; Cailletaud et al., 1994; Kanit et al., 2003 ): 

D 

2 
Z ( V ) = D 

2
Z

(
A 3 

V 

)
(14) 

where D 

2 
Z 

is the point variance of Z(x) in volume V and A 3 is the 

integral range of the random function Z(x) , defined as: 

A 3 = 

1

D 

2 
Z 

∫ 
R 3

W̄ 2 ( h ) dh (15) 

where h is a two-point segment, and W̄ 2 (h ) is the centered 2nd 

order correlation function such that, for a prescribed property Z 

and for x ∈ V : 

W̄ 2 ( h ) = 

(
Z ( x + h ) − Z̄ 

)(
Z ( x ) − Z̄ 

)
(16) 

In case of the Voronoi mosaic model, the value of A 3 is de- 

termined as a constant of 1.179 given by Gilbert (1962) . Us- 

ing a modified scaling law with exponent γ , as proposed by 

Lantuéjoul (1990) , the variance can be rewritten as follows: 

D 

2 
Z ( V ) = D 

2
Z

(
A 

∗
3 

V 

)γ

(17) 

A 

∗
3 

is also homogeneous to a volume of material like A 3 and can 

readily be used to determine RVE sizes. But there is not a direct 

definition as Eq. (15) , anymore. 

In the case of a two-phase material, Kanit et al. (2003) assumed 

that Z̄ was equal to the arithmetic average of considered property 

with Z 1 for phase 1 and Z 2 for phase 2. The point variance D 

2 
Z 

of 

the random variable Z was given by: 

D 

2 
Z = P ( 1 − P ) ( Z 1 − Z 2 ) 

2 (18) 

where P is the volume fraction of phase 1 in volume V . When it 

comes to polycrystalline material, we can suppose that the mi- 

crostructure contains a large number of phases, i.e. grains. For each 

phase or grain, the material behavior is different because of the 

difference of orientation. Eq. (18) can then be extended to multi- 

phase microstructures, as follows: 

D 

2 
Z = 

T ∑ 

i

P i 
(
Z i − Z̄ 

)2
(19) 

where T is the number of grains or phase number. 

Finally, in order to determine the RVE size, Dirrenberger et al. 

(2014) reformulated Eq. (17) to reduce the information of D 

2 
Z and 

A 

∗
3 
, as follows: 

D 

2 
Z ( V ) = G V 

−γ (20) 

with G = D 

2 
Z 
A 

∗γ
3 

, since A 

∗
3 

cannot be deduced independently. Thus 

only two parameters G and γ are needed to identify from the sta- 

tistical data obtained by linearization as follows: 

l ogD 

2 
Z ( V ) = l ogG − γ logV (21) 

Following the method proposed in Kanit et al. (2003) , the rela- 

tive sampling error in the effective properties arises: 

εrel = 

2 D Z ( V )

Z̄
√ 

n 

⇒ ε2
rel = 

4 G

Z̄ 2 n V 

γ
(22) 

hence yielding the definition of the RVE size, for a given relative 

error εrel 

V RVE = 

γ

√
4 G 

ε2 
rel 

Z̄ 2 n 

(23) 

3.4. Periodic three-dimensional mesh generation 

In this paper, a methodology is employed for generating and 

meshing 3D random polycrystals. The associated mesh optimiza- 

tion approach and statistical work of mesh quality are fully pre- 

sented in the reference paper by Quey et al. (2011) . The corre- 

sponding algorithms are implemented and distributed in an open- 

source software package: Neper. 2 Thanks to the self-contained 

codes in Neper, the Voronoi tesselation can be constructed with 

a periodicity constraint, needed for PBC. For the sake of simplic- 

ity and comparison with results from the literature ( Madi et al., 

2006 ), an isotropic morphological and crystallographic texture is 

considered. In order to obtain the isotropic distribution of the grain 

orientation for a periodic sample, the arbitrary shaft points of all 

crystals in the sample must span uniformly the surface of a sphere, 

as suggested by Néda et al. (1999) . For the sake of achieving the 

condition, the three Euler angles ( α, β , γ ) in the Z –X –Z type of 

each generated grain cell will be given different distribution rules: 

α and γ are generated randomly with a uniform distribution on 

[0, 2 π ], while, β is chosen randomly in the range [0, π ] with 

a weighted distribution and the weight factor sin( β) should be 

randomly in the range [0, 1]. Afterwards, the microstructure was 

meshed with linear tetrahedral elements as shown in Fig. 2 b. At 

least 300 elements were used for each grain, which is a reason- 

able value, considering the usual practice in the full-field simula- 

tion literature ( Cailletaud et al., 2003a ; Roters et al., 2011; Cruzado 

et al. 2015 ). The grain size in the generated microstructure follows 

a normal distribution function with a mean value of 20 μm and 

a standard deviation of 13.5 μm. Fig. 2 c represents an example of 

equivalent von Mises stress distribution at a macroscopic strain of 

0.01%, and the stress within grains microstructure was observed by 

slicing perpendicularly to Z axis, as shown in Fig. 2 d. 

http://creativecommons.org/licenses/by/4.0/


Fig. 2. (a) 3D periodic generation of a polycrystalline sample (343 grains); (b) periodic meshing with tetrahedral elements; (c) The von Mises stress distribution with strain

of 0.1% after tensile test; (d) XY workplace of (c) on half Z.

Table 2

Number of realizations N used for all considered domain sizes.

Domain size/Gran number (V) 8 27 64 125 216 343

Mesh generation time 15 s 1.5 min 6 min 13 min 22 min 35 min

Elastic calculation time 1.2 s 3 s 6.7 s 15 s 27 s 42 s

Plastic calculation time 2 min 6.7 min 18 min 37.6 min 97.6 min 194.2 min

Number of realizations for u app 514 140 56 28 16 10

Number of realizations for k app 466 112 41 19 15 10

Number of realizations for d tension
1 352 90 40 28 14 8

Number of realizations for P app 
v 56 38 26 16 12 6

4. Results and discussion

According to the approach described hereinabove, several real- 

izations were generated for statistical analysis, with different num- 

ber of grains, ranging from 8 to 343, as listed in Table 2 . The gen- 

erated microstructure has a mean grain size (diameter) of 20 μm. 

Thus, the actual volume size is directly related to the number of 

grains. For the sake of simplicity, we used the number of grains 

in place of the volume size ( V ). Generally, the number of realiza- 

tions N should be different for each domain size in order to achieve 

a similar measurement error for all sizes considered. Using Eq. 

(22) the measurement error for all domain sizes were controlled 

at under 1% for elastic properties, under 3% for intrinsic dissipa- 

tion. On the contrary, the measurement error remains high, just 

under 120% for apparent viscoplastic parameter P 
app 
v , mostly due

to the large intrinsic variability of the property. To accomplish the 

generation and meshing of microstructures, a computer equipped 

with an Intel Core i7-4750HQ CPU @ 2.0 GHz and 8GB RAM was 

employed. The consumed time of meshing, as well as elastic and 

plastic calculations for one realization is also presented for refer- 

ence in Table 2 . 

4.1. Isotropy of mean apparent moduli 

The microstructures used in tensile tests in framework of 

CPFEM are expected to be macroscopically isotropic. If a small 

volume element V is considered, it may not exhibit an isotropic 

behavior. Therefore, it is necessary to check whether the gener- 

ated polycrystal is isotropic or not. For that purpose, six compu- 

tations are necessary for finding the 21 components of apparent 

elastic tensor C 

app on each realization, using PBC. From averaging 

all the realizations, the obtained full elastic moduli tensors with 

the intervals of confidence corresponding to plus and minus two 



Table 3

The mean values and variance of components of C app .

C app with V = 27, N = 140 

177,772 ± 21,975 83,450 ± 17,823 83,492 ± 19,330 150 ± 8234 −437 ± 10,666 700 ± 11,035 

– 176,163 ± 24,036 85,471 ± 15,358 379 ± 11,011 218 ± 8101 282 ± 13,208 

– – 176,090 ± 24,364 969 ± 12,566 385 ± 11,306 −174 ± 7793 

– – – 4 8,64 8 ± 9537 −207 ± 7245 287 ± 7467 

– – – – 46,647 ± 11,579 10 ± 7240 

– – – – – 46,723 ± 10,862 

C app with V = 125, N = 28 

192,435 ± 10,455 95,170 ± 7999 95,911 ± 6895 35 ± 4256 467 ± 6260 −667 ± 4638 

– 189,378 ± 8427 98,150 ± 8934 187 ± 5717 124 ± 3503 344 ± 5591 

– – 188,587 ± 5096 −555 ± 5096 −580 ± 5366 107 ± 3604 

– – – 50,776 ± 5729 132 ± 3515 154 ± 3574 

– – – – 48,361 ± 4418 94 ± 3864 

– – – – – 47,623 ± 4940 

C app with V = 343, N = 10 

195,062 ± 5184 98,622 ± 4276 98,900 ± 1214 −217 ± 2640 656 ± 3267 234 ± 3345 

– 193,190 ± 3821 101,367 ± 3177 −53 ± 3122 −85 ± 2160 −544 ± 3445 

– – 192,721 ± 5921 1 ± 2780 510 ± 2207 −159 ± 2019 

– – – 50,830 ± 2715 −146 ± 1824 −212 ± 2358 

– – – – 48,241 ± 1757 56 ± 2700 

– – – – – 48,023 ± 3837 

standard deviations ( ±2 D Z ) are given in Table 3 for different vol- 

ume sizes (components in MPa). The standard deviation decreases 

with increasing volume size. The averaged tensor components ob- 

tained for 343 grains are characteristic of isotropic elasticity since 

C 11 ≈ C 22 ≈ C 33 and C 12 ≈ C 13 ≈ C 23 with a maximal error of 5%, and 

C 44 ≈ C 55 ≈ C 66 are approximately equal to 
C 11 −C 22 

2 with a maxi- 

mal error of 10%. The remaining components should vanish in the 

isotropic case, and here, they take up less than 1% of C 11 . It can be 

also observed that the elastic moduli tensor components have not 

reached their converged values for smaller volumes, which is likely 

due to a bias of representatively as studied by ( Hazanov and Huet, 

1994; Huet, 1997; Hazanov, 1998 ) 

4.2. The apparent elastic and plastic properties 

After confirming the isotropy of the generated microstructures, 

elastic properties k app and μapp are investigated, as well as the 

intrinsic dissipation and the apparent viscoplastic parameter for 

all realizations. Fig. 3 illustrates the changes of the four appar- 

ent parameters with respect to volume size, including mean value 

and standard deviation. Increasing the volume size, the mean val- 

ues of μapp and k app increase gradually and stabilize respectively 

at 49,031 ± 1085 MPa and 130,972 ± 2385 MPa on the 343 volume 

size, which are consistent with common values for polycrystalline 

pure copper. Similar convergence behavior can be observed for 

d tension 
1 

. Its mean value reaches 53 J/m 

3 with the corresponding in- 

tervals of confidence of 4.3 J/m 

3 on the 343 volume size, which is 

in the same magnitude level as previous studies for metals, such 

as Chrysochoos and Martin (1989) and Chrysochoos et al. (2009) . 

The definition of P 
app 
v consists of two parameters, K 

app and n app .

The fluctuation of both parameters may yield a large change of 

P 
app 
v in magnitude. For better presenting, the order of magnitude

log ( P app 
v ) was drawn vs . the volume size in Fig. 3 as the substi- 

tute of P 
app 
v . However, the relative error, floating around 9%, is a

little higher than those of elastic properties and intrinsic dissipa- 

tion because of fewer realizations. When the volume size increases 

to 343, the fluctuation tends to weaken, and the averaged value 

of log( P app 
v ) stabilizes at −10.74, with a fluctuation range of ±0.8.

Interestingly, this value is also approximately the combination of 

the two parameters of the single crystal constitutive law, K = 5 and 

n = 10, producing the value of 10 −10.7 as the definition of P v = 

1 
K n 

. 

Considering a large enough volume of polycrystalline pure copper 

at the strain rate of 10 −3 s −1 , the following equation can be possi- 

bly satisfied: 

P app 
v = 

1 

K 

app n 
app = P e f f 

v = 

1

K 

n 
(24) 

Nevertheless, the apparent parameters K 

app and n 

app are not 

necessarily equal to the actual values of K and n for the single crys- 

tal behavior law. Here they converge at 29.06 and 7.32 for 343 vol- 

ume sizes, respectively, with a relative error of about 3% for both 

K and n . 

4.3. Fluctuation of apparent properties and RVE sizes 

As specified in Eq. (23) , in order to compute RVE sizes, three 

variables ( D Z , Z̄ , γ ) have to be estimated. A linear fitting was done 

according to Eq. (21) in the logarithm scale for the four proper- 

ties, as shown in Fig. 4 . The slope values of each line corresponds 

to different values of γ , which are close to 1 for μapp , k app and 

d tension 
1 

. P 
app 
v exhibits a γ value of 4.9 meaning that the defined 

apparent viscoplastic parameter has a much faster statistical con- 

vergence rate than the other investigated properties. The intercept 

term b can be used to work out the variables, G . 

In order to explain the discrepancies observed for γ , the point 

deviation D Z in each realization is also computed for the four prop- 

erties using Eq. (19) , and the results are specified in Fig. 5 . On 343 

volume size, D μapp , D k app , and D 

d tension 
1 

have converged at 11,713, 

4774, and 34, with small fluctuations. By normalizing the point de- 

viation D Z over the converged property Z̄ ( D Z / ̄Z ), one can find that 

the intrinsic dissipation energy has higher inner deviation than the 

apparent elastic properties (68.4% for d tension 
1 

, 3.8% and 23% for k app 

and μapp , respectively for 343 volume size). For D 

P 
app 
v 

, this value 

can reach at over 100, because of the nonlinearity and high sen- 

sitivity of this parameter. This implies that the orientation distri- 

bution seems to have a stronger impact on the plastic behavior 

variability in comparison to its effect on elastic properties. Also, it 

seems that the high γ exponent for D 

2 
P 

app 
v 

(V ) could be correlated 

with the nonlinearity and sensitivity of the viscoplastic parameter. 

One of the advantages of relying on microstructural computa- 

tion is the ability to consider each grain or phase individually. For 

this purpose, Fig. 6 illustrates the impact of grain orientation on 

crystal plasticity, by analyzing the local heterogeneities of the plas- 

tic behavior in a realization with 343 grains, including von Mises 



Fig. 3. The mean values and variances for the four apparent properties with increasing volume size. The error bar means plus and minus two standard deviations ( ± 2 D z ). 

Fig. 4. Linear fitting for variances of four apparent properties vs . volume sizes.

stress and plastic energy rate evolution with respect to equivalent 

macroscopic uniaxial tensile stress. The curves for the two proper- 

ties were drawn for each grain and the whole volume. As shown 

in the von Mises curves, grains in the volume hold different equiv- 

alent stress, ranging from 6 MPa to 16 MPa. Some grains actually 

remain in the elastic regime during the tensile test. Meanwhile, 

grains yield heterogeneous plastic power depending on the grain 

orientation for the same equivalent macroscopic uniaxial tensile 

stress, as shown on the right hand side in Fig. 6 . These hetero- 

Table 4

The associated variables in Eq. (23) for four apparent properties.

Variables μapp k app d tension
1 P app 

v 

γ 1.07 1.17 1.12 4.90

G 2.82E8 2.29E9 4073.80 9.12E −10 

Z̄ 49,031.18 130,972.25 53.03 2.19E −11 

Table 5

RVE sizes estimated from computation with n = 1. 

Relative error 1% 2% 5% 10%

V μapp 2756 753 135 37

V k app 1504 461 96 29

V d tension 
1 

17,894 5190 1010 293

V P app 
v 

2788 2101 1445 1089

geneities are related to the local grain orientation, local anisotropic 

elasticity and anisotropic crystal plasticity framework. 

Finally, all the associated variables in Eq. (23) for four appar- 

ent properties were obtained and listed in Table 4 . The minimum 

domain sizes that are necessary to reach a given precision are fi- 

nally shown for four apparent properties, in Table 5 . In general, for 

a given material, the RVE size depends on the specific investigated 

property. For polycrystalline pure copper, as Table 5 shows, the in- 

equality exists: V k app < V μapp < V 
d tension 

1 
, V 

P 
app 
v 

. Furthermore, the RVE 

size for P 
app 
v does not depend too much on the chosen preci- 

sion, in comparison to the other three properties. In practical use, 

for a 5% relative error, a volume size of 135 grains can be con- 

sidered for elastic properties, while for intrinsic dissipation and 

apparent viscoplastic parameter, the volume sizes must be larger 



Fig. 5. The point deviation of four apparent properties for each volume size, in which the error bar represents plus and minus two standard deviations on the variance.

Fig. 6. The heterogeneities of von Mises stress vs . macroscopic strain (left) and plastic energy rate evolution with respect to the equivalent uniaxial tensile stress (right) for

each grain in one volume with 343 grains (black lines represent each grain; red lines are for the whole volume).

than 1010 grains and 1445 grains, respectively. If a higher preci- 

sion is required, more realizations can be also considered, such as 

for a precision of 1% with n = 50 realizations, V RV E 
μapp = 71, V RV E 

k app = 54, 

V RV E 
d tension 

1 

= 545 and V RV E 
P 

app 
v 

= 1254. 

However, in the case of isotropic plasticity behavior, the RVE 

size for the same property P 
app 
v used by Madi et al. (2006) was

found smaller than for the isotropic elastic ones. A different con- 

clusion in the present results is likely due to the difference of 

material behavior, i.e. anisotropic elasticity and crystal plastic- 

ity. As discussed before about the deviation D Z , crystal plastic- 

ity highly depends on the grain orientation, as different activated 

slip systems produce different plastic deformations. The effect of 

anisotropic elasticity appears to yield lower statistical heterogene- 

ity than the crystal plasticity behavior, i.e. yielding a smaller RVE 

size in comparison. 

Based on Fig. 6 , it appears that plastic deformation takes place 

in most grains during the tensile test, but localization operates in 

only a minority of grains, i.e. less than 10% of them. This plastic 

strain localization and stress concentration phenomenon could ex- 

plain a high γ exponent for D 

2 
P 

app 
v 

(V ) . As a matter of fact, a pat- 

tern of localization will form for any number of grains due to the 

morphological and material anisotropies. Therefore, a large num- 

ber of grains is not needed for ensemble variance convergence on 



the averaged value of the viscoplastic parameter. Results from Eq. 

(23) and Table 5 might lead to another conclusion: the RVE size 

for P 
app 
v is rather large and only decreases slowly with increasing

the relative error. This is due to the high intrinsic point variance 

of P 
app 
v , i.e. G in Eq. (22) . This variability is related to the nonlin- 

ear nature of the localization phenomena. This large point variance 

counterbalances the effect of a fast ensemble variance convergence. 

One could argue that the point variance of P 
app 
v is likely to be re- 

lated to a strong material heterogeneity as induced in the present 

work by elastic anisotropy and crystal plasticity. 

5. Conclusions and prospects

Aiming at computing the intrinsic dissipation of pure cop- 

per based on a crystal plasticity framework, virtual polycrystalline 

samples were generated based on EBSD microstructural analysis, 

and the RVE size for various mechanical properties was estimated. 

A statistical analysis method was used to determine the RVE size 

of polycrystalline pure copper for four properties, including two 

isotropic elastic properties: shear and bulk modulus, the viscoplas- 

tic parameter and the intrinsic dissipation energy density during a 

tensile test. The main conclusions are listed below: 

1. The statistical RVE method developed by Kanit et al. (2003) ,

is applicable to viscoplastic polycrystalline materials modeled

within a crystal plasticity finite element framework.

2. RVE sizes obtained are smaller for elastic properties than for

plastic properties, likely due to the anisotropic elastoviscoplas- 

tic model chosen for the material behavior, as well as the poly- 

crystalline nature of the samples, both inducing stronger het- 

erogeneities in the mechanical fields. This conclusion is oppo- 

site to the ones made by Madi et al. (2006) , while considering

an isotropic elastoplastic biphasic material.

3. The computational microstructural study allowed to character- 

ize the local heterogeneities associated with plasticity, hence

giving an insight on the microstructural behavior explaining the

statistical macroscopic trends observed.

4. The viscoplastic parameter is related to the nonlinear phe- 

nomenon of plastic localization, inducing strong local variabil- 

ity for P v . This inherent intrinsic heterogeneity leads to a high

point variance, which itself will invariably yield larger RVE size

in comparison to linear properties.

The statistical analysis provided in this paper can be applied

to other polycrystalline materials for various properties, given that 

a microstructural morphological model is available for generating 

a virtual statistical population of samples. Introducing more infor- 

mation about the microstructure of materials appears as a neces- 

sity for improving the predictive capability of such statistical tech- 

niques. Further work will involve the extension of the present ap- 

proach to the fatigue of metallic polycrystalline materials. The fa- 

tigue strength of polycrystalline materials is a longstanding prob- 

lem in mechanical design, especially in the very high cycle fatigue 

regime, where the stress level is much lower than traditional fa- 

tigue limit ( Bathias and Paris, 2004 ; Stanzl-Tschegg et al., 2007 ; 

Phung et al., 2014 ; Torabian et al., 2016a, 2016b, 2017a, 2017b ). In 

order to reduce experiment duration time, many authors have re- 

sorted to the method of self-heating tests, in which the thermo- 

mechanical response of the material during cyclic loading is ana- 

lyzed and the intrinsic dissipation is taken as the fatigue damage 

indicator to evaluate fatigue strength at various stress levels in the 

high and very high cycles fatigue domain ( Luong 1995 ; La Rosa 

et Risitano 20 0 0 ; Boulanger et al., 2004 ; Doudard et al., 2010 ; 

Chrysochoos et al., 2008 ; Connesson et al., 2011 ; Blanche et al., 

2015 ; Guo et al., 2015 ). Physically, coming from the irreversibility 

of the plastic deformation, intrinsic dissipation is assumed to be 

related to the microplastic deformation in gigacycle fatigue regime, 

i.e. the crystal slipping behavior at the grain scale. The approach 

developed in the present work could thus be used to determine 

the RVE size associated with intrinsic dissipation during very-high 

cycle fatigue. Relying on full-field crystal plasticity finite element 

analysis could thus further our understanding of the damage phe- 

nomena taking place at the microscale. 
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