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Abstract. In the present paper, we introduce two-dimensional categorified Hall algebras of smooth
curves and smooth surfaces. A categorified Hall algebra is an associative monoidal structure on the
stable 1-category Cohb.RM/ of complexes of sheaves with bounded coherent cohomology on a
derived moduli stack RM. In the surface case, RM is a suitable derived enhancement of the moduli
stack M of coherent sheaves on the surface. This construction categorifies the K-theoretical and
cohomological Hall algebras of coherent sheaves on a surface of Zhao and Kapranov–Vasserot. In
the curve case, we define three categorified Hall algebras associated with suitable derived enhance-
ments of the moduli stack of Higgs sheaves on a curve X , the moduli stack of vector bundles with
flat connections on X , and the moduli stack of finite-dimensional local systems on X , respectively.
In the Higgs sheaves case we obtain a categorification of the K-theoretical and cohomological Hall
algebras of Higgs sheaves on a curve of Minets and Sala–Schiffmann, while in the other two cases
our construction yields, by passing to K0, new K-theoretical Hall algebras, and by passing to HBM

� ,
new cohomological Hall algebras. Finally, we show that the Riemann–Hilbert and the non-abelian
Hodge correspondences can be lifted to the level of our categorified Hall algebras of a curve.

Keywords. Hall algebras, Higgs bundles, flat bundles, local systems, categorification, stable
1-categories
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1. Introduction

In this work we introduce two-dimensional categorified Hall algebras of smooth curves
and smooth surfaces. A categorified Hall algebra is an associative monoidal structure
“à la Hall” on the dg-category Cohb.RM/1 on a derived moduli stack RM. In the sur-
face case, RM is a suitable derived enhancement of the moduli stack M of coherent
sheaves on the surface. This construction categorifies the K-theoretical Hall algebra of
zero-dimensional coherent sheaves on a surface S [85] and the K-theoretical and cohomo-
logical Hall algebras of coherent sheaves on S [25]. In the curve case, we define three
categorified Hall algebras associated with suitable derived enhancements of the moduli
stack of Higgs sheaves on a curve X , the moduli stack of flat vector bundles on X , and
the moduli stack of local systems onX , respectively. In the Higgs sheaves case, we obtain
a categorification of the K-theoretical and cohomological Hall algebras of Higgs sheaves
on a curve [40, 60], while in the other two cases we obtain, as a by-product, the con-
struction of the corresponding K-theoretical and cohomological Hall algebras. While the

1We mean the bounded derived category of complexes of sheaves with coherent cohomology. A
more classical notation would be Db

coh.RM/. In the main body of the paper we will construct stable
1-categories directly, without passing through explicit dg-enhancements. Moreover, associative
monoidal structure is to be technically understood as E1-monoidal structure.
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underlying K-theoretical and cohomological Hall algebras can also be obtained via per-
fect obstruction theories and are insensitive to the derived enhancements we use here, our
categorified versions depend in a substantial way on the existence of a sufficiently nat-
ural derived enhancement. To the best of our knowledge, it is not possible to obtain such
categorifications using perfect obstruction theories.

Before providing precise statements of our results, we shall briefly recall the literature
about K-theoretical and cohomological Hall algebras.

1.1. Review of the Hall convolution product

Let A be an abelian category and denote by MA the corresponding moduli stack of
objects: MA is a geometric derived stack over C parameterizing families of objects in
A. In particular, its groupoid of C-points MA.C/ coincides with the groupoid of objects
of A. Similarly, we can consider the moduli stack Mext

A
parameterizing families of short

exact sequences in A and form the following diagram:

Mext
A

MA �MA MA

p q

0! E1 ! E ! E2 ! 0

.E1; E2/ E

(1.1)

When the maps p and q are sufficiently well behaved, passing to (an oriented) Borel–
Moore homology2 yields a product map

q� ı p
�
WHBM
� .MA/˝ HBM

� .MA/! HBM
� .MA/;

which can then been proven to be associative. In what follows, we refer to the above mul-
tiplicative structure as a “cohomological Hall algebra” (CoHA for short) attached to A.

The existence of the above product does not come for free. Typically, one needs a
certain level of regularity for p (e.g. smooth or lci). In turn, this imposes severe restrictions
on the abelian category A. For instance, if A has cohomological dimension 1, then p is
smooth, but this is typically false when A has cohomological dimension 2. Quite recently,
there has been an increasing amount of research around two-dimensional CoHAs (see e.g.
[25,64–67,82,83]). We will give a thorough review of the historical development in §1.4,
but for the moment let us say that the first goal of this paper is to provide an approach
to the construction of the convolution product à la Hall that can work uniformly in the
two-dimensional setting. The key of our method is to consider a suitable natural derived
enhancements RMA and RMext

A
of the moduli stacks MA and Mext

A
, respectively.

The use of derived geometry is both natural and expected, and made an early explicit
appearance in [44]. The effectiveness of this method can be easily understood via the
following two properties:

2Examples of oriented Borel–Moore homology theories are the G0-theory (i.e., the Grothen-
dieck group of coherent sheaves), Chow groups, elliptic cohomology.
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(1) the map

RpWRMext
A ! RMA �RMA

has better regularity properties than its underived counterpart. When A has cohomo-
logical dimension 2, Rp is typically lci, while p is not.

(2) Oriented Borel–Moore homology theories are insensitive to the derived structure,
hence yielding natural isomorphisms3

HBM
� .MA/ ' HBM

� .RMA/:

These two properties constitute the main leitmotiv of the current paper. The upshot is that
we can use the map Rp in order to construct the Hall product in a much more general
setting.

As announced at the beginning, the use of derived geometry has another pleasant
consequence: it allows us to categorify the CoHAs considered above. The precise formu-
lation of this construction, as well as the study of its first properties, is the second goal of
this work. More specifically, we show that the (derived) convolution diagram induces an
associative monoidal structure

?HallWCohb.RMA/˝ Cohb.RMA/! Cohb.RMA/

on the dg-category of complexes of sheaves with bounded coherent cohomology
on RMA. We refer to this monoidal dg-category as the two-dimensional categorified Hall
algebra (Cat-HA) of A.

From the Cat-HA we can extract a certain number of CoHAs. Most notably, we
recover a CoHA structure on the spectrum of G-theory. Notice that this would be
impossible if we limited ourselves to consider Cohb.RMA/ as a triangulated category
– see e.g. [68, 80]. As a closing remark, let us emphasize that, unlike oriented Borel–
Moore homology theories, our Cat-HA is very sensitive to the derived structure of RMA.
In other words, property (2) above fails in the categorified setting:

Cohb.RMA/ and Cohb.MA/

are no longer equivalent. Furthermore, the same difficulties encountered when trying to
construct the CoHA out of MA prevent, in an even harsher way, endowing Cohb.MA/

with an associative monoidal structure. Indeed, if one simply cares about the construction
of the CoHA, it would be possible to bypass the use of derived geometry by using one
of his shadows, i.e. perfect obstruction theories. However, the complexity of the higher
coherences involved in the construction of the Cat-HA leads us to believe that an approach
to categorification via perfect obstruction theories is highly unlikely.

3This is best seen in the case of the G0-theory – cf. Proposition A.5.
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1.2. Main results

We can summarize the main contributions of this paper as follows: on the one hand,
we construct many examples of two-dimensional categorified Hall algebras (Cat-HAs)
attached to curves and surfaces. On the other hand, we show that from these new Cat-
HAs one can extract the known constructions of K-theoretical Hall algebras of surfaces
and of Higgs sheaves on a curve. As a byproduct, our approach provides K-theoretical
and cohomological Hall algebras associated to flat vector bundles and local systems on a
curve.

Categorified Hall algebras. Let X be a smooth proper C-scheme. In §2 we introduce
a derived enhancement Coh.X/ of the (classical) geometric derived stack of coherent
sheaves on X . Informally, its functor of points assigns to every affine derived C-scheme
S the space of S -flat perfect complexes on X � S . We show in Proposition 2.24 that
Coh.X/ is a geometric derived stack which is locally of finite presentation.

Similarly, we introduce the derived stack Cohext.X/ which, roughly speaking, para-
meterizes extensions of S -flat of perfect complexes on X � S . These derived stacks can
be organized in the convolution diagram

Cohext.X/

Coh.X/ � Coh.X/ Coh.X/

p q (1.2)

of the form (1.1). The main input to our construction is the computation of the tor-
amplitude of the cotangent complex of p:

Proposition 1.1 (see Proposition 3.10). The relative cotangent complex Lp of
pWCohext.X/! Coh.X/ has tor-amplitude within Œ�1; n � 1�, where n is the dimension
of X .

When X is a surface, the cotangent complex of p has tor-amplitude within Œ�1; 1�.
This is to say that p is derived lci, and in particular we obtain a well-defined functor

? WD q� ı p
�
WCohb.Coh.X//˝ Cohb.Coh.X//! Cohb.Coh.X//:

This implies

Theorem 1.2 (see Proposition 4.3). LetX be a smooth and proper complex surface. Then
the functor ? can be promoted to an E1-monoidal structure on the stable 1-category
Cohb.Coh.X//.

We refer to Cohb.Coh.X// together with its E1-monoidal structure? as the categor-
ified Hall algebra of the surface X . In a nutshell, the construction goes as follows. The
convolution diagram considered above is part of a richer combinatorial structure that can
be seen as a simplicial object in derived stacks

��Coh.X/W�! dSt:
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In low dimensions, the simplexes of ��Coh.X/ can be described as follows:

S0Coh.X/ ' Spec.C/; S1Coh.X/ ' Coh.X/; S2Coh.X/ ' Cohext.X/;

and the simplicial maps induce the maps p and q above. The simplicial object ��Coh.X/
is known as the Waldhausen construction of Coh.X/, and one can summarize its main
properties by saying that it is a 2-Segal object in the sense of Dyckerhoff–Kapranov [11].

Its relevance for us is that [11, Theorem 11.1.6] provides a canonical1-functor

2-Seg.dSt/! AlgE1.Corr�.dSt//:

In other words, we can attach to every 2-Segal object an E1-monoid object in the cat-
egory of correspondences in derived stacks. In order to convert these data into the higher
coherences of the Cat-HA, we make use of the Gaitsgory–Rozenblyum correspondence
machine [12]. Let

Corr�.dGeom/rps;lci ,! Corr�.dSt/

be the subcategory whose objects are derived geometric (i.e. higher Artin) stacks, and
whose class of horizontal (resp. vertical) morphisms is the class of maps representable by
proper schemes (resp. lci morphisms). Then the universal property of the .1; 2/-category
of correspondences of Gaitsgory–Rozenblyum provides us with a lax monoidal functor

Cohb
WCorr�.dGeom/rps;lci ! Catst

1;

with values in the 1-category of stable 1-categories. Being lax monoidal, this functor
preserves E1-monoid objects, therefore delivering the Cat-HA.

Remark 1.3. If X is projective and H is an ample divisor, similar results hold for the
stack Cohss; p.m/.X/ of GiesekerH -semistable coherent sheaves on X with reduced Hil-
bert polynomial equal to a fixed monic polynomial p.m/ 2 QŒm�. Moreover, if X is
quasi-projective, the results above hold for the stack Coh�dprop.X/ of coherent sheaves on
X with proper support and dimension of the support less than or equal to an integer d .
Finally, if the surface is toric, minimal variations in our construction (discussed in §4.3)
allow us to consider the toric-equivariant setting.

One can also extend the above construction to obtain Cat-HAs associated to derived
moduli stacks of Simpson’s semistable properly supported sheaves with fixed reduced
Hilbert polynomial on a smooth (quasi-)projective surface. An analysis of these Cat-HAs
has been carried out in [9] when the surface is the minimal resolution of a Kleinian sin-
gularity.

As we said before, our second main source of examples is the two-dimensional Cat-
HAs that can be attached to smooth projective complex curves X . There are three types
of such examples, coming respectively from local systems, flat vector bundles, and Higgs
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sheaves on X .4 A uniform treatment of these Cat-HAs is made possible by Simpson’s
formalism of shapes. These are derived stacks attached to the curve X , written

XB; XdR; XDol:

We refer to the compendium [50] for the precise definition of these derived stacks. How-
ever, let us say straight away that their usefulness lies in the fact that coherent sheaves on
XB (resp. XdR, XDol) canonically coincide with local systems (resp. flat vector bundles,
Higgs sheaves) on X . Using these shapes, we can easily make sense of the derived
enhancements

Coh.XB/; Coh.XdR/; Coh.XDol/

of the classical stacks of local systems, flat vector bundles and Higgs sheaves on X ,
respectively.

The construction of the convolution diagram (and of the 2-Segal object) can be car-
ried out in this setting without any additional difficulty. The key computation of the
tor-amplitude of the map p in this context is discussed in §3.4. Every case has to be
analyzed on its own, because the proof relies on specific features of the type of sheaves
that are considered. From here, the same method discussed for surfaces yields

Theorem 1.4 (see Theorem 4.9). Let X be a smooth projective complex curve. The con-
volution diagram induces an E1-monoidal structure on the stable1-categories

Cohb.Coh.XB//; Cohb.Coh.XdR//; Cohb.Coh.XDol//:

We refer to these E1-monoidal categories as the Betti, de Rham and Dolbeault Cat-
HAs. We denote their underlying tensor products as ? B, ? dR and ?Dol, respectively. Our
formalism also allows considering the natural C�-action on Coh.XDol/' T�Coh.X/ that
“scales the fibers” and so we introduce the corresponding C�-equivariant version of the
Dolbeault Cat-HA (see §4.3).

It is a natural question to try to relate these three Cat-HAs attached to a curve. Our
first result in this direction, concerning the de Rham and the Betti Cat-HAs, is of analytic
nature. It can be informally stated by saying that the Riemann–Hilbert correspondence
respects the Hall convolution structure:

Theorem 1.5 (Cat-HA version of the derived Riemann–Hilbert correspondence). Let X
be a smooth projective complex curve. Then:

4Recall that a Higgs sheaf is a pair .E; 'WE ! �1
X
˝ E/, where E is a coherent sheaf on X

and ' a morphism of OX -modules, called a Higgs field. Here, �1
X

is the sheaf of 1-forms of X . On
the other hand, by a flat vector bundle we mean a vector bundle endowed with a flat connection.
Finally, recall that a local system can be interpreted as a finite-dimensional representation of the
fundamental group of X .
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(1) The convolution diagrams for the analytifications Coh.XdR/
an and Coh.XB/

an

induce an E1-monoidal structure on the stable1-categories Cohb.Coh.XdR/
an/ and

Cohb.Coh.XB/
an/, written

.Cohb.Coh.XdR/
an/;? an

dR/; .Cohb.Coh.XB/
an/;? an

B /:

(2) There is a natural diagram of stable E1-monoidal1-categories and monoidal func-
tors

.Cohb.Coh.XB//;? B/ .Cohb.Coh.XdR//;? dR/

.Cohb.Coh.XB/
an/;? an

B / .Cohb.Coh.XdR/
an/;? an

dR/

where the vertical functors are induced by analytification and the horizontal functor
is induced by the Riemann–Hilbert transformation �RHWX

an
dR! Xan

B of [49]. Further-
more, the horizontal functor is an equivalence.

The new ingredient in this theorem is the use of derived complex analytic geometry,
first introduced by J. Lurie [34] and further expanded by the first-named author [22,48,52].
The key point is to prove that the Riemann–Hilbert correspondence of [49] can be lifted
to the E1-monoidal setting, and this is achieved by the natural transformation �RH already
mentioned in the above statement.

The relation between the de Rham and the Dolbeault categorified Hall algebras is
more subtle. In order to state it, one has to use another shape of Simpson, the Deligne
shape XDel ! A1. Then the derived stack Coh=A1.XDel/ is the derived moduli stack of
Deligne’s � connections on X . Such a stack interpolates the de Rham moduli stack with
the Dolbeault moduli stack: it naturally lives over A1 and one has

Coh=A1.XDel/ �A1 ¹0º ' Coh.XDol/ and Coh=A1.XDel/ �A1 ¹1º ' Coh.XdR/:

We restrict ourselves to the open substack Coh�
=A1.XDel/ � Coh=A1.XDel/ for which the

fiber at zero is the derived moduli stack Cohss; 0.XDol/ of semistable Higgs bundles on X
of degree zero. As before, this yields

Theorem 1.6 (Weak Cat-HA version of the non-abelian Hodge correspondence). Let X
be a smooth projective complex curve. Then the stable1-category Cohb

C�.Coh�
=A1.XDel//

has a natural E1-monoidal structure. In addition, it is a module over Perffilt WD

Perf.ŒA1C=Gm�/ and we have monoidal functors

ˆWCohb
C�.Coh�

=A1.XDel//˝Perffilt PerfC ! Cohb.Coh.XdR//;

‰WCohb
C�.Coh�

=A1.XDel//˝Perffilt Perfgr
! Cohb

C�.Cohss; 0.XDol//;

where Perfgr WD Perf.BGm/.

Conjecture 1.7 (Cat-HA version of the non-abelian Hodge correspondence). The mor-
phisms ˆ and ‰ are equivalences.
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Decategorification. Now, we investigate what algebras we obtain after decategorifying
our Cat-HAs, i.e., after passing to the Grothendieck group. First, we introduce the finer
invariant Cohb

pro, which is more adapted to the study of non-quasi-compact stacks. Among
its features, there is the fact that for every derived stack Y there is a canonical equivalence
(cf. Proposition A.5)

K.Cohb
pro.Y // ' K.Cohb

pro. Y
cl //;

a property that fails if we simply use Cohb instead of Cohb
pro. The construction of Cohb

pro

relies on the machinery developed in §A.
First, our construction provides a categorification of the K-theoretical Hall algebras of

surfaces [25, 85] and the K-theoretical Hall algebras of Higgs sheaves on curves [40, 60]
(see §1.4 for a review of these algebras).

Theorem 1.8. Let X be a smooth quasi-projective complex surface. There exists an
algebra isomorphism between �0K.Cohb

pro.Coh�dprop.X/// and the K-theoretical Hall
algebra of X as defined in [25, 85]. Thus, the CoHA tensor structure on the stable 1-
category Cohb

pro.Coh�d .X// is a categorification of the latter.
Finally, if in addition X is toric, similar results holds in the equivariant setting.

Now, let X be a smooth projective complex curve. Our techniques provide a categor-
ification of the Dolbeault K-theoretical Hall algebra of X [40, 60]:

Proposition 1.9. Let X be a smooth projective complex curve. There exists an algebra
isomorphism between �0K.Cohb

pro;C�.Coh.XDol// and the K-theoretical Hall algebra of
Higgs sheaves on X introduced in [40,60]. Thus, the CoHA tensor structure on the stable
1-category Cohb

pro;C�.Coh.XDol// is a categorification of the latter.

One of the consequences of our construction is the categorification5 of a positive nil-
potent part of the quantum toroidal algebra UCq;t . Rgl1/. This is also known as the elliptic
Hall algebra of Burban and Schiffmann [4].

Proposition 1.10. There exists a ZŒq; t �-algebra isomorphism

�0K.Cohb
pro;C��C�.Coh�0prop.C

2/// ' UCq;t . Rgl1/:

Here, the C� �C�-action on Coh�0prop.C
2/ is induced by the torus action on C2.

In the Betti case, Davison [7] defined the Betti cohomological Hall algebra of X by
using the Kontsevich–Soibelman CoHA formalism and a suitable choice of a quiver with
potential. In [46], the author generalizes such a formalism in the G-theory case. Thus, by
combining the two one obtains a Betti K-theoretical Hall algebra. We expect that this is

5A categorification of UCq;t . Rgl1/ has also been obtained by Neguţ [43]: by means of (smooth)
Hecke correspondences, he defined functors on the bounded derived category of the smooth moduli
space of Gieseker-stable sheaves on a smooth projective surface, which after passing to G-theory,
give rise to an action of the elliptic Hall algebra on the K-theory of such smooth moduli spaces.
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equivalent to our realization of the Betti K-theoretical Hall algebra. Finally, our approach
defines the de Rham K-theoretical Hall algebra of X .

By using the formalism of Borel–Moore homology of higher stacks developed in [25]
and their construction of the Hall product via perfect obstruction theories, we obtain equi-
valent realizations of the COHA of a surface [25] and of the Dolbeault CoHA of a curve
[40, 60]. Moreover, we define the de Rham cohomological Hall algebra of a curve.

1.3. DG-Coherent categorification

At this stage, we would like to clarify what kind of “categorification” we provide and
compare our approach to the other approaches to categorification known in the literature.

Let us start by recalling two well-known categorifications of the quantum group
Uq.nQ/, where nQ is the positive nilpotent part of a simply laced Kac–Moody algebra
gQ and Q is the corresponding quiver. The first one is provided by Lusztig [37, 38], and
we shall call it the perverse categorification of Uq.nQ/. Denote by Rep.Q;d/ the moduli
stack of representations of the quiver Q of dimension d. Then – in modern terms – Lusztig
introduced a graded additive subcategory C.Rep.Q; d// of the bounded derived category
Db.Rep.Q;d// of constructible complexes whose split Grothendieck group is isomorphic
to the d-weight subspace of Uq.nQ/. By using a diagrammatic approach, Khovanov–
Lauda [26–28, 30] and Rouquier [57] provided another categorification Uq.nQ/, which
is a 2-category; we call this the diagrammatic categorification of Uq.nQ/. In addition,
they showed that Uq.nQ/ is the Grothendieck group of the monoidal category of all pro-
jective graded modules over the quiver-Hecke algebra R of Q. A relation between these
two categorifications of the same quantum group was established by Rouquier [58] and
Varagnolo–Vasserot [81]: they proved that there exists an equivalence of additive graded
monoidal categories between

L
d C.Rep.Q;d// and the category of all finitely generated

graded projective R-modules.
Let Q be the affine Dynkin quiver A.1/1 . In [70], the authors constructed another cat-

egorification of the quantum group Uq.nQ/, which they call the coherent categorification.
They showed that there exists a monoidal structure on the homotopy category of the
C�-equivariant dg-category Cohb

C�.Rep.…A1//, where…A1 is the so-called preprojective
algebra of the finite Dynkin quiverA1 and Rep.…A1/ is a suitable derived enhancement of
the moduli stack Rep.…A1/ of finite-dimensional representations of…A1 . Here, there is a
canonical C�-action on Rep.…A1/ which lifts to the derived enhancement. By passing to
the G-theory we obtain another realization of the algebra Uq.nQ/. In loc.cit. the authors
started to investigate the relation between the perverse categorification and the coherent
categorification of Uq.nQ/ when Q D A1.

Since in our paper we do not work with monoidal structures on triangulated categories,
but rather with E1-monoidal structures on dg-categories, our construction provides the
dg-coherent categorification of the K-theoretical Hall algebras of surfaces [25,85], of the
K-theoretical Hall algebras of Higgs sheaves on curves [40, 60], and of the de Rham and
Betti K-theoretical Hall algebras of curves. At this point, one can wonder if there are
perverse categorifications of these K-theoretical Hall algebras.
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Since in general there is no clear guess what moduli stack to consider on the per-
verse side, it is not clear how to define the Lusztig category.6 The only known case so
far is the perverse categorification of UCq;t . Rgl1/, i.e., of the K-theoretical Hall algebra of
zero-dimensional sheaves on C2, due to Schiffmann. The latter is isomorphic to the K-
theoretical Hall algebra of the preprojective algebra …one-loop of the one-loop quiver –
see §1.4.

In [61], Schiffmann constructed perverse categorifications of certain quantum loop
and toroidal algebras, in particular of UCq;t . Rgl1/. In this case, he defined the Lusztig
category C.Coh.X// for the bounded derived category Db.Coh.X// of constructible com-
plexes on the moduli stack Coh.X/ of coherent sheaves on an elliptic curve and he proved
that the split Grothendieck group of C.Coh.X// is isomorphic to UCq;t . Rgl1/. Thus, for this
quantum group we have both a perverse and a dg-coherent categorification. Although it
would be natural to ask what is the relation between them, it seems that the question is
not well-posed since the former categorification comes from an additive category, while
the latter from a dg-category.

A viewpoint which can help us to correctly formulate a question about these two
different categorifications is somehow provided by [63]. In that paper, the authors pointed
out how the two different realizations of UCq;t . Rgl1/ should be reinterpreted as a G-theory
version of the geometric Langlands correspondence (see e.g. [1] and references therein):7

QCoh.Bun.X; n/dR/ ' IndCohNilpGlob
.Bun.XdR; n//;

where the Lusztig category arises from the left-hand side, while a K-theoretical Hall
algebra arises from the right-hand side. Here, X is a smooth projective complex curve
and n a non-negative integer.8

By interpreting [63] as a decategorified version of what we are looking for, we may
speculate the following:

Conjecture 1.11. Let X be a smooth projective complex curve. Then there exist an E1-
monoidal structure on the dg-category Cohb.Bun.X/dR/ and an E1-monoidal equival-
ence between Cohb.Bun.X/dR/ and the categorified Hall algebra9 Cohb.Coh.XdR//.

6Note that in the case treated in [70], the moduli stack considered on the perverse side is
Rep.A.1/1 /, while on the coherent side it is Rep.…A1/. One evident relation between these two
stacks is that the quiver appearing on the former stack is the affinization of the quiver on the latter
stack.

7One usually expects on the left-hand side D-mod.Bun.X; n//, but this is indeed by definition
QCoh.Bun.X; n/dR/.

8One may notice that the K-theoretical Hall algebra considered in [63] is the one associated with
…one-loop while our construction provides a de Rham K-theoretical Hall algebra of X ; the relation
between them should arise from the observation that the moduli stack of finite-dimensional repres-
entations of …one-loop is some sort of “formal neighborhood” of the trivial D-module in Bun.XdR/.

9Or a version of it in which the complexes have fixed singular supports – see [1] for the defini-
tion of singular support in this context.
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It follows that the right “dg-enhancement” of Lusztig’s construction should be
Cohb.Bun.X/dR/. In addition, one should expect that, when X is an elliptic curve, by
passing to the G-theory one recovers UCq;t . Rgl1/.

Finally, one may wonder if there is a diagrammatic description of our categorified Hall
algebras in the spirit of Khovanov–Lauda and Rouquier. Let Y be either a smooth proper
complex scheme S of dimension � 2 or one of Simpson’s shapes of a smooth projective
complex curve X . Then Coh.Y / admits a stratification

Coh.Y / D
G
v2ƒ

Coh.Y; v/

such that the Hall product is graded with respect to it, where ƒ is the numerical Grothen-
dieck group of S in the first case and of X in the second case.

Now, we define10 the following .1; 2/-category U: it is the subcategory inside the
.1; 2/-category of dg-categories such that

� its objects are the dg-categories Cohb.Coh.Y; v//,
� the 1-morphisms between Cohb.Coh.Y; v// and Cohb.Coh.Y; v0// are the functors of

the form�? E forE 2Cohb.Coh.Y;v0 � v//. Here,? denotes the Hall tensor product.

The study of 2-morphisms in U should lead to an analogue of KLR algebras in this setting,
which will be investigated in a future work.

1.4. Historical background on CoHAs

For completeness, we include a review of the literature around two-dimensional CoHAs.
The first instances11 of two-dimensional CoHAs can be traced back to the works of

Schiffmann and Vasserot [63, 65]. Seeking for a “geometric Langlands dual algebra” of
the (classical) Hall algebra of a curve12, the authors were led to introduce a convolution
algebra structure on the (equivariant) G0-theory of the cotangent stack T�Rep.Qg/. Here
Rep.Qg/ is the stack of finite-dimensional representations of the quiver Qg with one
vertex and g loops. When g D 1, the corresponding associative algebra is isomorphic to
a positive part of the elliptic Hall algebra. A study of the representation theory of the
elliptic Hall algebra by using its CoHA description was initiated in [65] and pursued by
Neguţ [42] in connection with gauge theory and deformed vertex algebras.

The extension of this construction to any quiver and, at the same time, to Borel–Moore
homology theory and more generally to any oriented Borel–Moore homology theory was

10We thank Andrea Appel for helping us spelling out the description of U.
11To the best of the authors’ knowledge, the first circle of ideas around two-dimensional CoHAs

can be found in an unpublished manuscript by Grojnowski [17].
12By the (classical) Hall algebra of a curve we mean the Hall algebra associated with the abelian

category of coherent sheaves on a smooth projective curve defined over a finite field. As explained
in [62], conjecturally this algebra can be realized by using the Lusztig’s category (such a conjecture
is true in the genus 0 and 1 case, for example).
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shown e.g. in [82]. Note that T�Rep.Q/ is equivalent to the stack of finite-dimensional
representations of the preprojective algebra …Q of Q. For this reason, sometimes this
CoHA is called the CoHA of the preprojective algebra of Q.

In the Borel–Moore homology case, Schiffmann and Vasserot gave a characterization
of the generators of the CoHA of the preprojective algebra of Q in [67], while a relation
to the (Maulik–Okounkov) Yangian was established in [8,66,83]. Again, when QDQ1, a
connection between the corresponding two-dimensional CoHAs and vertex algebras was
provided in [41, 64] (see also [55]).

In [29], Kontsevich and Soibelman introduced another CoHA, in order to provide a
mathematical definition of Harvey and Moore’s algebra of BPS states [20]. It goes under
the name of three-dimensional CoHA since it is associated with Calabi–Yau categories
of global dimension 3 (such as the category of representations of the Jacobi algebra
of a quiver with potential, the category of coherent sheaves on a CY 3-fold, etc.). As
shown by Davison [56, Appendix] (see also [84]) using a dimensional reduction argu-
ment, the CoHA of the preprojective algebra of a quiver described above can be realized
as a Kontsevich–Soibelman one.

For certain choices of the quiver Q, the cotangent stack T�Rep.Q/ is a stack paramet-
erizing coherent sheaves on a surface. Thus the corresponding algebra can be seen as an
example of a CoHA associated to a surface. This is the case when the quiver is the one-
loop quiver Q1: indeed, T�Rep.Q1/ coincides with the stack Coh0.C2/ parameterizing
zero-dimensional sheaves on the complex plane C2. In particular, the elliptic Hall algebra
can be seen as an algebra attached to zero-dimensional sheaves on C2.

Another example of two-dimensional CoHA is the Dolbeault CoHA of a curve. Let X
be a smooth projective curve and let Higgs.X/ be the stack13 of Higgs sheaves onX . Then
the Borel–Moore homology of the stack Higgs.X/ of Higgs sheaves on X is endowed
with the structure of a convolution algebra. Such an algebra has been introduced by
the second-named author and Schiffmann [60]. In [40], independently Minets has intro-
duced the Dolbeault CoHA in the rank zero case. Thanks to the Beauville–Narasimhan–
Ramanan correspondence, the Dolbeault CoHA can be interpreted as the CoHA of torsion
sheaves on T�X such that their support is proper over X . In particular, Minets’ algebra is
an algebra attached to zero-dimensional sheaves on T�X . Such an algebra coincides with
Neguţ’s shuffle algebra [44] of a surface S when S D T�X .

Neguţ’s algebra of a smooth surface S is defined by means of Hecke correspond-
ences depending on zero-dimensional sheaves on S , and its construction comes from a
generalization of the realization of the elliptic Hall algebra in [65] via Hecke corres-
pondences. Zhao [85] constructed the cohomological Hall algebra of the moduli stack
of zero-dimensional sheaves on a smooth surface S and fully established the relation
between this CoHA and Neguţ’s algebra of S . A stronger, independently obtained result
is due to Kapranov and Vasserot [25], who defined the CoHA associated to a category of
coherent sheaves on a smooth surface S with proper support of a fixed dimension.

13Note that the truncation of the derived stack Coh.XDol/ is isomorphic to Higgs.X/.
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1.5. Outline

In §2 we introduce our derived enhancement of the classical stack of coherent sheaves on a
smooth complex scheme. We also define derived moduli stacks of coherent sheaves on the
Betti, de Rham, and Dolbeault shapes of a smooth scheme. In §3 we introduce the derived
enhancement of the classical stack of extensions of coherent sheaves on both a smooth
complex scheme and on a Simpson’s shape of a smooth complex scheme. In addition,
we define the convolution diagram (1.2) and provide the tor-amplitude estimates for the
map p. §4 is devoted to the construction of the categorified Hall algebra associated with
the moduli stack of coherent sheaves on either a smooth scheme or a Simpson’s shape of
a smooth scheme; in §4.1 we endow such a stack of the structure of a 2-Segal space à la
Dyckerhoff–Kapranov, while in §4.2 by applying the functor Cohb

pro, we obtain one of our
main results, i.e., an E1-monoidal structure on Cohb

pro.Coh.Y //when Y is either a smooth
curve or surface, or a Simpson’s shape of a smooth curve; finally, §4.3 is devoted to the
equivariant case of the construction of the categorified Hall algebra. In §5, we show how
our approach provides equivalent realizations of the known K-theoretical Hall algebras of
surfaces and of Higgs sheaves on a curve. In §6 and §7 we discuss Cat-HA versions of the
non-abelian Hodge correspondence and of the Riemann–Hilbert correspondence, respect-
ively. In particular, in §7 we develop the construction of the categorified Hall algebra in
the analytic setting and we compare the two resulting categorified Hall algebras. Finally,
Appendix A is devoted to the study of the G-theory of non-quasi-compact stacks and the
construction of Cohb

pro.

1.6. Notations and convention

In this paper we freely use the language of 1-categories. Although the discussion is
often independent of the chosen model for 1-categories, whenever needed we identify
them with quasi-categories and refer to [32] for the necessary foundational material.

The notations � and Cat1 are reserved for the 1-categories of spaces and of 1-
categories, respectively. If C 2 Cat1 we denote by C' the maximal 1-groupoid con-
tained in C . We let Catst

1 denote the1-category of stable1-categories with exact func-
tors between them. We also let P rL denote the1-category of presentable1-categories
with left adjoints between them. We let PrL;! be the 1-category of compactly gener-
ated presentable1-categories with morphisms given by left adjoints that commute with
compact objects. Similarly, we let P rL

st (resp. PrL;!
st ) denote the 1-categories of stably

presentable 1-categories with left adjoints between them (resp. left adjoints that com-
mute with compact objects). Finally, we set

Catst;˝
1 WD CAlg.Catst

1/; P rL;˝
st WD CAlg.P rL

st/:

Given an1-category C we denote by PSh.C/ the1-category of �-valued presheaves.
We follow the conventions introduced in [51, §2.4] for 1-categories of sheaves on an
1-site.
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Since we only work over the field C of complex numbers, we reserve the notation CAlg
for the1-category of simplicial commutative rings over C. We often refer to objects in
CAlg simply as derived commutative rings. We denote its opposite by dAff, and we refer
to it as the1-category of affine derived schemes.

In [36, Definition 1.2.3.1] it is shown that the étale topology defines a Grothendieck
topology on dAff. We denote by dSt WD Sh.dAff; �ét/

^ the hypercompletion of the1-topos
of sheaves on this site. We refer to this1-category as the1-category of derived stacks.
For the notion of derived geometric stacks, we refer to [51, Definition 2.8].

Let A 2 CAlg be a derived commutative ring. We let A-Mod denote the stable
1-category of A-modules, equipped with its canonical symmetric monoidal structure
provided by [35, Theorem 3.3.3.9]. Furthermore, we equip it with the canonical t-structure
whose connective part is its smallest full subcategory closed under colimits and extensions
and containing A. Such a t-structure exists in virtue of [35, Proposition 1.4.4.11]. Notice
that there is a canonical equivalence of abelian categories A-Mod~ ' �0.A/-Mod~.

We say that an A-module M 2 A-Mod is perfect if it is a compact object in A-Mod.
We denote by Perf.A/ the full subcategory of A-Mod spanned by perfect complexes.14 On
the other hand, we say that an A-module M 2 A-Mod is almost perfect15 if �i .M/ D 0

for i � 0 and for every n 2 Z the object ��n.M/ is compact in A-Mod�n. We denote by
APerf.A/ the full subcategory of A-Mod spanned by sheaves of almost perfect modules.

Given a morphism f WA! B in CAlg we obtain an1-functor f �WA-Mod! B-Mod,
which preserves (almost) perfect modules. We can assemble these data into an1-functor

QCohW dAffop
! P rL;˝

st :

Since the functor f � preserves (almost) perfect modules, we obtain well defined subfunc-
tors

Perf;APerfW dAffop
! Catst;˝

1 :

Given a derived stack X 2 dSt, we denote by QCoh.X/, APerf.X/ and Perf.X/ the
stable1-categories of quasi coherent, almost perfect, and perfect complexes respectively.
One has

QCoh.X/ ' lim
 �

Spec.A/!X

QCoh.Spec.A//; APerf.X/ ' lim
 �

Spec.A/!X

APerf.Spec.A//;

Perf.X/ ' lim
 �

Spec.A/!X

Perf.Spec.A//:

14It is shown in [35, Proposition 7.2.4.2] that Perf.A/ coincides with the smallest full stable
subcategory of A-Mod closed under retracts and containing A. In particular, Perf.A/ is a stable
1-category which is furthermore idempotent complete.

15Suppose that A is almost of finite presentation over C. In other words, suppose that �0.A/ is
of finite presentation in the sense of classical commutative algebra and that each �i .A/ is coherent
over �0.A/. Then [35, Proposition 7.2.4.17] shows that an A-module M is almost perfect if and
only if �i .M/ D 0 for i � 0 and each �i .M/ is coherent over �0.A/.
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The1-category QCoh.X/ is presentable. In particular, using [35, Proposition 1.4.4.11]
we can endow QCoh.X/ with a canonical t-structure.

Let f WX ! Y be a morphism in dSt. We say that f is flat if the induced functor
f �WQCoh.Y /! QCoh.X/ is t -exact.

Let X 2 dSt. We denote by Coh.X/ the full subcategory of OX -Mod spanned by
F 2 OX -Mod for which there exists an atlas ¹fi W Ui ! Xºi2I such that for every
i 2 I , n 2 Z, the OUi -modules �n.f �i F / are coherent sheaves. We denote by Coh~.X/
(resp. Cohb.X/, CohC.X/, and Coh�.X/) the full subcategory of Coh.X/ spanned
by objects cohomologically concentrated in degree 0 (resp. locally cohomologically
bounded, bounded below, bounded above).

2. Derived moduli stacks of coherent sheaves

Our goal in this section is to define derived enhancements of the classical stacks of coher-
ent sheaves on a proper complex algebraic variety X , of Higgs sheaves on X , of vector
bundles with flat connections on X , and of finite-dimensional representations of the fun-
damental group �1.X/ of X .

2.1. Relative flatness

We start by defining the objects that this derived enhancement will classify.

Definition 2.1. Let f WX ! S be a morphism of derived stacks. We say that a quasi-
coherent sheaf F 2 QCoh.X/ has tor-amplitude within Œa; b� relative to S (resp. tor-
amplitude � n relative to S ) if for every G 2 QCoh~.S/ one has

�i .F ˝ f
�G / D 0; i … Œa; b� (resp. i … Œ0; n�):

We let QCoh�nS .X/ (resp. APerf�nS .X/) denote the full subcategory of QCoh.X/ spanned
by those quasi-coherent sheaves (resp. sheaves of almost perfect modules) F onX having
tor-amplitude � n relative to S . We write

CohS .X/ WD APerf�0S .X/;

and we refer to CohS .X/ as the 1-category of flat families of coherent sheaves on X
relative to S .

Remark 2.2. The1-category CohS .X � S/ is not stable. This is because in general the
cofiber of a map between sheaves of almost perfect modules in tor-amplitude � 0 is only
in tor-amplitude Œ1; 0�. When S is underived, the cofiber sequences F 0 ! F ! F 00 in
APerf.X � S/ whose three terms are all coherent correspond to short exact sequences
of coherent sheaves. In particular, the map F 0 ! F is a monomorphism and the map
F ! F 00 is an epimorphism.
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Remark 2.3. Let A 2 CAlgC be a derived commutative ring and let M 2 A-Mod. Then
M has tor-amplitude� n if and only ifM ˝A �0.A/ has tor-amplitude� n. In particular,
if A is underived and M 2 A-Mod~, then M has tor-amplitude � 0 if and only if M is
flat in the sense of the usual commutative algebra.

We start by studying the functoriality of CohS .Y / in S :

Lemma 2.4. Let

XT X

T S

g0

f 0 f

g

be a pullback square in dSt. Assume that T and S are affine derived schemes. If
F 2 QCoh.X/ has tor-amplitude within Œa; b� relative to S , then g0�.F / 2 QCoh.XT /
has tor-amplitude within Œa; b� relative to T .

Proof. Let F 2 QCoh.X/ be a quasi-coherent sheaf of tor-amplitude Œa; b� relative to S
and let G 2 QCoh~.T /. Since g is representable by affine schemes, so does g0. Therefore,
[50, Proposition 2.3.4] implies that g0� is t -exact and conservative. Therefore, g0�.F /˝
f 0�.G / is in cohomological amplitude Œa; b� if and only if g0�.g

0�.F /˝ f 0�.G // is. Com-
bining [50, Propositions 2.3.4 (1) and 2.3.6 (2)], we see that

g0�.g
0�.F /˝ f 0�.G // ' F ˝ g0�.f

0�.G //;

and using [50, Proposition 2.3.4 (2)] we can rewrite the last term as

F ˝ g0�.f
0�.G // ' F ˝ f �.g�.G //:

Since g� is t -exact, we have g�.G / 2 QCoh~.S/. The conclusion now follows from the
fact that F has tor-amplitude within Œa; b�.

Construction 2.5. Let X 2 dSt and consider the derived stack

APerf.X/W dAffop
! �

sending an affine derived scheme S 2 dAff to the maximal1-groupoid APerf.X � S/'

contained in the stable1-category APerf.X � S/ of almost perfect modules over X � S .
Lemma 2.4 implies that the assignment sending S 2 dAff to the full subspace

CohS .X � S/' of APerf.X � S/' spanned by flat families of coherent sheaves on X
relative to S defines a substack

Coh.X/W dAffop
! �

of APerf.X/. We refer to Coh.X/ as the derived stack of coherent sheaves on X .

In this paper we are mostly interested in this construction when X is a scheme or
one of Simpson’s shapes XB, XdR or XDol. We provide the following useful criterion to
recognize coherent sheaves:
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Lemma 2.6. Let f WX ! S be a morphism in dSt. Assume that there exists a flat effective
epimorphism uWU ! X . Then F 2 QCoh.X/ has tor-amplitude within Œa; b� relative to
S if and only if u�.F / has tor-amplitude within Œa; b� relative to S .

Proof. Let G 2 QCoh~.S/. Then since u is a flat effective epimorphism, we see that the
pullback functor

u�WQCoh.X/! QCoh.U /

is t -exact and conservative. Therefore �i .F ˝ f �G / ' 0 if and only if

u�.�i .F ˝ f
�G // ' �i .u

�.F /˝ u�f �G / ' 0:

The conclusion follows.

As a consequence, we see that, for morphisms of geometric derived stacks, the notion
of tor-amplitude within Œa; b� relative to the base introduced in Definition 2.1 coincides
with the most natural one:

Lemma 2.7. Let X be a geometric derived stack, let S D Spec.A/ 2 dAff and let
f WX ! S be a morphism in dSt. Then F 2 QCoh.X/ has tor-amplitude within Œa; b�
relative to S if and only if there exists a smooth affine covering ¹ui WUi D Spec.Bi /!Xº

such that fi�u�i .F / has tor-amplitude within Œa; b� as A-module16, where fi WD f ı ui .

Proof. Applying Lemma 2.6, we can restrict ourselves to the case whereX D Spec.B/ is
affine. In this case, we first observe that f�WQCoh.X/! QCoh.S/ is t -exact and con-
servative. Therefore, �i .F ˝ f �G / ' 0 if and only if �i .f�.F ˝ f �G // ' 0. The
projection formula yields

f�.F ˝ f
�G / ' f�.F /˝ G ;

and therefore the conclusion follows.

2.2. Deformation theory of coherent sheaves

Let X be a derived stack. We study the deformation theory of the stack Coh.X/. Since
we are also interested in the case where X is one of Simpson’s shapes, we first recall the
following definition:

Definition 2.8. A morphism uWU ! X in dSt is a flat effective epimorphism if

(1) it is an effective epimorphism, i.e. the map �0.U /! �0.X/ is an epimorphism of
discrete sheaves;

(2) it is flat, i.e. the pullback functor u�WQCoh.X/! QCoh.U / is t -exact.

16See [35, Definition 7.2.4.21] for the definition of tor-amplitude within Œa; b�.
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We have the following stability property:

Lemma 2.9. Let X ! S be a morphism in dSt and let U ! X be a flat effective epimor-
phism. If T ! S is representable by affine derived schemes, then

U �S T ! X �S T

is a flat effective epimorphism.

Proof. Combine [32, Proposition 6.2.3.5] and [50, Proposition 2.3.16 (2)].

Example 2.10. (1) If X is a geometric derived stack and uWU ! X is a smooth atlas,
then u is a flat effective epimorphism.

(2) Let X be a connected C-scheme of finite type and let xW Spec.C/! X be a closed
point. Then the induced map Spec.C/ ! XB is a flat effective epimorphism. See
[50, Proposition 3.1.1 (3)].

(3) Let X be a smooth C-scheme. The natural map �X WX ! XdR is a flat effective epi-
morphism. See [50, Proposition 4.1.1 (3, 4)].

(4) Let X be a geometric derived stack. The natural map �X WX ! XDol is a flat effective
epimorphism. See [50, Lemma 5.3.1].

Lemma 2.11. Let uWU ! X be a flat effective epimorphism. Then the square

Coh.X/ Coh.U /

APerf.X/ APerf.U /

is a pullback square.

Proof. We have to prove that for every S 2 dAff, a sheaf F 2 APerf.X � S/ of almost
perfect modules is flat relative to S if and only if its pullback to U � S has the same
property. Since uW U ! X is a flat effective epimorphism, so is S � U ! S � X by
Lemma 2.9. At this point, the conclusion follows from Lemma 2.6.

Since Example 2.10 contains our main applications, we will always work under the
assumption that there exists a flat effective epimorphism U ! X , where U is a geometric
derived stack locally almost of finite type. The above lemma allows us therefore to carry
out the main verifications in the case where X itself is geometric and locally almost of
finite type.

We start with infinitesimal cohesiveness and nilcompleteness. Recall that APerf.X/
is infinitesimally cohesive and nilcomplete for every derived stack X 2 dSt:

Lemma 2.12. Let X 2 dSt be a derived stack. Then APerf.X/ is infinitesimally cohesive
and nilcomplete.

Proof. Combine [50, Propositions 2.2.3 (3) and 2.2.9 (4)] with [50, Theorem 2.2.10].
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In virtue of the above lemma, our task is reduced to proving that the map Coh.X/!
APerf.X/ is infinitesimally cohesive and nilcomplete. Thanks to Lemma 2.11, the essen-
tial case is when X is affine:

Lemma 2.13. Let X 2 dAff be an affine derived scheme. Then the morphism

Coh.X/! APerf.X/

is infinitesimally cohesive and nilcomplete. As a consequence, Coh.X/ is infinitesimally
cohesive and nilcomplete.

Proof. We start with infinitesimal cohesiveness. Let S D Spec.A/ be an affine derived
scheme and letM 2QCoh.S/�1 be a quasi-coherent complex. Let SŒM� WDSpec.A˚M/

and let d WSŒM�! S be a derivation. Finally, let Sd ŒM Œ�1�� be the pushout

SŒM� S

S Sd ŒM Œ�1��

d

d0 f0

f

where d0 denotes the zero derivation. Since the maximal1-groupoid functor

.�/'WCat1 ! �

commutes with limits, it is enough to prove that the square

CohSd ŒMŒ�1��.X � Sd ŒM Œ�1��/ CohS .X � S/ �CohSŒM�.X�SŒM�/ CohS .X � S/

APerf.X � Sd ŒM Œ�1��/ APerf.X � S/ �APerf.X�SŒM�/ APerf.X � S/

is a pullback. Using [36, Theorem 16.2.0.1 and Proposition 16.2.3.1 (6)], we see that the
bottom horizontal map is an equivalence. As the vertical arrows are fully faithful, we
deduce that the top horizontal morphism is fully faithful as well. It is therefore enough to
check that the top horizontal functor is essentially surjective.

Let ';'0WX � S !X � Sd ŒM Œ�1�� be the morphisms induced by f and f0, respect-
ively. Let F 2 APerf.X � Sd ŒM Œ�1��/ be such that '�.F /; '�0 .F / 2 CohS .X � S/. We
want to prove that F 2 CohSd ŒMŒ�1��.X � Sd ŒM Œ�1��/. This question is local on X , so
we can assume thatX is affine. Let pWX � S ! S and qWX � Sd ŒM Œ�1��! Sd ŒM Œ�1��

be the natural projections. Then

f �q�.F / ' p�'
�.F / and f �0 q�.F / ' p�'

�
0 .F /

have tor-amplitude � 0. Since p is affine, p� is t -exact, and therefore the modules
p�'

�.F / and p�'�0 .F / are eventually connective. The conclusion now follows from
[36, Proposition 16.2.3.1 (3)].
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We now turn to nilcompleteness. Let S 2 dAff be an affine derived scheme and let
Sn WD t�n.S/ be its n-th truncation. We have to prove that the diagram

CohS .X � S/ limn CohSn.X � Sn/

APerf.X � S/ limn APerf.X � Sn/

is a pullback. Combining [36, Propositions 19.2.1.5 and 2.7.3.2 (c)] we see that the bottom
horizontal map is an equivalence. As the vertical maps are fully faithful, we deduce that
the top horizontal map is fully faithful as well. Thus, it is enough to check that the top
horizontal map is essentially surjective. Given F 2 APerf.X � S/ denote by Fn its image
in APerf.X � Sn/. We wish to show that if each Fn belongs to CohSn.X � Sn/ then F

belongs to CohS .X � S/. Since the squares

X � S X � Sn

S Sn

are derived pullback, by using derived base change it suffices to check that the equivalence

QCohacn.S/! lim
n

QCohacn.Sn/

respects tor-amplitude � 0, where QCohacn.Y / denotes the full subcategory of QCoh.Y /
spanned by those quasi-coherent sheaves F such that �i .F / D 0 for i � 0. This follows
at once from [36, Proposition 2.7.3.2 (c)].

Corollary 2.14. Let X 2 dSt be a derived stack. Assume that there exists a flat effective
epimorphism uWU ! X , where U is a geometric derived stack. Then the map

Coh.X/! APerf.X/

is infinitesimally cohesive and nilcomplete. In particular, Coh.X/ is infinitesimally cohes-
ive and nilcomplete.

Proof. Combining [50, Propositions 2.2.3 (2) and 2.2.9 (3)], we see that infinitesimally
cohesive and nilcomplete morphisms are stable under pullbacks. Therefore, the first state-
ment is a consequence of Lemmas 2.11 and 2.13. The second statement follows from
Lemma 2.12.

We now turn to study the existence of the cotangent complex of Coh.X/. This is
slightly trickier, because APerf.X/ does not admit a (global) cotangent complex. Never-
theless, it is still useful to consider the natural map Coh.X/! APerf.X/. Observe that
it is .�1/-truncated by construction. In other words, for every S 2 dAff, the induced map

Coh.X/.S/! APerf.X/.S/
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is fully faithful. This is very close to asserting that the map is formally étale, as the fol-
lowing lemma shows:

Lemma 2.15. Let F ! G be a morphism in dSt. Assume that

(1) for every S 2 dAff the map F.S/! G.S/ is fully faithful;

(2) for every S 2 dAff, the natural map F.S/! F.Sred/ �G.Sred/ G.S/ induces a surjec-
tion at the level of �0.

Then F ! G is formally étale.

Proof. First, consider the square

F.S/ F.Sred/

G.S/ G.Sred/

Assumption (1) implies that the vertical maps are .�1/-truncated, hence so is the map
F.S/! F.Sred/ �G.Sred/ G.S/. Assumption (2) implies that it is also surjective on �0,
hence it is an equivalence. In other words, the above square is a pullback.

We now show that F ! G is formally étale. Let S D Spec.A/ be an affine derived
scheme. Let F 2 QCoh�0 and let SŒF � WD Spec.A˚ F / be the split square-zero exten-
sion of S by F . Consider the lifting problem

S F

SŒM� G

The solid arrows induce the following commutative square in � :

F.SŒM�/ F.S/

G.SŒM�/ G.S/

To prove that F ! G is formally étale is equivalent to proving that the square is a pull-
back.

Observe that the above square is part of the following naturally commutative cube:

F..SŒM�/red/ F.Sred/

F.SŒM�/ F.S/

G..SŒM�/red/ G.Sred/

G.SŒM�/ G.S/
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The horizontal arrows of the back square are equivalences, and therefore the back square
is a pullback. The argument we gave at the beginning shows that the side squares are
pullbacks. Therefore, the conclusion follows.

To check condition (1) of the above lemma for F D Coh.X/ and G D APerf.X/, we
need the following variation of the local criterion of flatness.

Lemma 2.16. Let f WX ! S be a morphism in dSt and let F 2 APerf.X/. Assume that

(1) S is an affine derived scheme;

(2) there is a flat effective epimorphism uWU !X , where U is a geometric derived stack;

(3) for every pullback square

Xs X

Spec.K/ S

js

s

where K is a field, j �s .F / 2 APerf.Xs/ has tor-amplitude within Œa; b� relative to
Spec.K/.

Then F has tor-amplitude within Œa; b� relative to S .

Proof. Let Us WD Spec.K/ �S U . Since uWU ! X is a flat effective epimorphism, Lem-
ma 2.9 implies that the same goes for us WUs ! Xs . Therefore, Lemma 2.6 allows us to
replace X by U . Applying this lemma one more time, we can further assume U is an
affine derived scheme. At this point, the conclusion follows from the usual local criterion
for flatness [36, Proposition 6.1.4.5].

Corollary 2.17. Let X 2 dSt be a derived stack and assume there exists a flat effective
epimorphism uWU ! X , where U is a geometric derived stack. Then the natural map
Coh.X/! APerf.X/ is formally étale.

Proof. We apply Lemma 2.15. We already remarked that assumption (1) is satisfied,
essentially by construction. Let now S 2 dAff and let

j WX � Sred ! X � S

be the natural morphism. Let F 2 APerf.X � S/. Then Lemma 2.16 implies that F is flat
relative to S if and only if j �.F / is flat relative to Sred. This implies that assumption (2)
of Lemma 2.15 is satisfied as well, and the conclusion follows.

Since in many cases Perf.X/ admits a global cotangent complex, it is useful to factor
the map Coh.X/! APerf.X/ through Perf.X/. The following lemma provides a useful
criterion to check when this is the case:

Lemma 2.18. Let f WX ! S be a morphism of derived stacks. Let F 2 APerf.X/ be an
almost perfect complex and let a � b be integers. Assume that
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(1) S is an affine derived scheme;

(2) there exists a flat effective epimorphism uWU ! X , where U is a geometric derived
stack locally almost of finite type;

(3) for every ladder of pullback squares

Us Xs Spec.K/

U X S

is

us

js s

u f

where K is a field, u�s j
�
s .F / 2 APerf.Us/ has tor-amplitude within Œa; b�.

Then u�.F / 2 APerf.U / has tor-amplitude within Œa; b� and therefore F belongs to
Perf.X/.

Proof. Since uWU ! X is a flat effective epimorphism, Lemmas 2.6 and 2.9 allow to
replace X by U . In other words, we can assume X to be a geometric derived stack locally
almost of finite type from the very beginning. Applying Lemma 2.6 a second time to an
affine atlas ofX , we can further assumeX is an affine derived scheme, sayX D Spec.B/.

Given a geometric point xWSpec.K/! X , we let B.x/ denote the localization

B.x/ WD colim
x2U�X

OX .U /;

where the colimit ranges over all the open Zariski neighborhoods of the image of x
inside X . It is then enough to prove that for each such geometric point, F ˝B B.x/ is
in tor-amplitude Œa; b�.

Given xW Spec.K/ ! X let s WD f ı xW Spec.K/ ! S . By assumption j �s .F / 2
APerf.Xs/ is in tor-amplitude Œa; b�. Let xxW Spec.K/! Xs be the induced point. Then
x D js ı xx, and therefore x�.F / ' xx�.j �s .F // is in tor-amplitude Œa; b�. Let � denote
the residue field of the local ring �0.B.x//. Since the map �!K is faithfully flat, we can
assume without loss of generality thatK D �. In this way, we are reduced to the situation
of Lemma 2.16 with X D S .

Finally, we remark that since u is an effective epimorphism, the diagram

Perf.X/ Perf.U /

APerf.X/ APerf.U /

u�

u�

is a pullback square. Therefore, an almost perfect complex F 2 APerf.X/ is perfect if and
only if u�.F / is. The proof is complete.

Corollary 2.19. Let X be a derived stack and assume there exists a flat effective epimor-
phism uWU ! X , where U is a smooth geometric derived stack. Then for every S 2 dAff,
the subcategory CohS .X � S/� APerf.X � S/ is contained in Perf.X � S/. In particular,
the natural map Coh.X/! APerf.X/ induces a formally étale map

Coh.X/! Perf.X/:
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Proof. Since u is a flat effective epimorphism, Lemmas 2.6 and 2.9 imply that it is enough
to prove the corollary for U DX . In this case, we have to check that if F 2 APerf.X � S/
is flat relative to S , then it belongs to Perf.X � S/. The question is local on X , and
therefore we can further assume that X is affine and connected. As X is smooth, it is
of pure dimension n for some integer n. It follows that every G 2 Coh~.X/ has tor-
amplitude � n on X . At this point, the first statement follows directly from Lemma 2.18.
As for the second statement, the existence of the factorization follows from what we have
just discussed. Corollary 2.17 implies that Coh.X/! Perf.X/ is formally étale.

Corollary 2.20. Let X be a derived stack and let uW U ! X be a flat effective epi-
morphism, where U is a smooth geometric derived stack. If Perf.X/ admits a global
cotangent complex, then so does Coh.X/.

Proof. This is a direct consequence of Corollary 2.19.

We define

Bun.X/ WD
a
n�0

Map.X;BGLn/:

It is an open substack of Coh.X/. We call it the derived stack of vector bundles on X .

2.3. Coherent sheaves on schemes

We now specialize to the case where X is an underived complex scheme of finite type.
Our goal is to prove that if X is proper, then Coh.X/ is geometric, and provide some
estimates on the tor-amplitude of its cotangent complex. Observe that in this case, X
has universally finite cohomological dimension. Corollary 2.14 shows that Coh.X/ is
infinitesimally cohesive and nilcomplete. In virtue of Lurie’s representability theorem
[36, Theorem 18.1.0.2], in order to prove that Coh.X/ is geometric it is enough to check
that it admits a global cotangent complex and that its truncation is geometric. Recall
that if X is smooth and proper, then Perf.X/ admits a global cotangent complex: see
for instance [50, Corollary 2.3.28]. Therefore, Corollary 2.20 implies that under these
assumptions the same is true for Coh.X/. We can relax the smoothness by carrying out a
more careful analysis as follows:

Lemma 2.21. Let X be a proper, underived complex scheme. Then the derived stack
Coh.X/ admits a global cotangent complex.

Proof. Let S D Spec.A/ be an affine derived scheme and let xWS ! Coh.X/ be a mor-
phism. Let F 2 CohSpec.A/.X � Spec.A// be the corresponding coherent complex on
X � S relative to S . Let

F WD S �Coh.X/ S

be the loop stack based at x and let ıx WS ! F be the induced morphism. Since Coh.X/
is infinitesimally cohesive thanks to Lemma 2.13, [50, Proposition 2.2.4] implies that
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Coh.X/ admits a cotangent complex at x if and only if F admits a cotangent complex
at ıx relative to S � S . We have to prove that the functor

DerF .AI �/WA-Mod! �

defined by

DerF .AIM/ WD fib.F.SŒM�/! F.S//

is representable by an eventually connective module. Here SŒM� WD Spec.A˚M/, and
the fiber is taken at the point x. We observe that

F.SŒM�/ ' fib.MapQCoh.X�S/.d
�
0 .F /; d

�
0 .F //! MapQCoh.X�S/.F ;F //;

the fiber being taken at the identity of F . Unraveling the definitions, we therefore see that

DerF .AIM/ ' MapQCoh.X�S/.F ;F ˝ p
�M/;

where pWX � S ! S is the canonical projection. Since QCoh.S/ and QCoh.X � S/ are
presentable, the adjoint functor theorem shows that it is enough to show that the functor
DerF .AI �/ commutes with arbitrary limits. Since MapQCoh.X�S/.F ;�/ commutes with
limits, it is enough to prove that the functor

F ˝ p�.�/WQCoh.S/! QCoh.X � S/

commutes with limits. Since X is quasi-compact and quasi-separated, we know that
QCoh.X � S/ is generated by a single perfect complex G 2 Perf.X � S/. Since S is
affine, this implies that the functor

p�.G
_
˝�/WQCoh.X � S/

is conservative. Since G is perfect, G_ ˝ � commutes with arbitrary limits, and since
p� a p�, the same holds for p�. Therefore, it is enough to prove that

p�.G
_
˝ .F ˝ p�.�///WQCoh.S/! QCoh.S/

commutes with limits. Using the projection formula, we can rewrite this functor as

p�.G
_
˝ F /˝�WQCoh.S/! QCoh.S/:

It is therefore enough to prove that p�.G_˝F / is a perfect A-module. Since p is proper,
p�.G

_ ˝ F / is almost perfect. In virtue of [35, Proposition 7.2.4.23 (4)], it is there-
fore enough to prove that it has finite tor-amplitude. Observe that G_ ˝ F has finite
tor-amplitude relative to S : indeed, if M is a discrete A-module, then F ˝ p�.M/ is
again discrete because F is flat. Since G is perfect, we deduce that G_˝F ˝p�.M/ has
uniformly bounded cohomological amplitude. Therefore, [50, Proposition 2.3.19] implies
that p�.G_ ˝ F / has finite tor-amplitude over S . In conclusion, we deduce that there
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exists an object E 2 A-Mod together with a natural equivalence

MapA-Mod.E;M/ ' DerF .AIM/:

Now observe that, since F is flat relative to S , for every eventually coconnective M 2
A-Mod, the A-module

MapQCoh.X�S/.F ;F ˝ p
�.M//

is again eventually coconnective. In other words, for every eventually coconnective M ,
the A-module MapA-Mod.E; M/ is eventually coconnective. This implies that E must be
eventually connective. As a consequence, E is a cotangent complex for F at ıx , and
therefore Coh.X/ admits a cotangent complex at the point x, given by EŒ�1�.

We are left to prove that the cotangent complex is global. It is enough to prove that the
cotangent complex of F is global, that is, for every map f W T WD Spec.B/! Spec.A/,
the object f �.E/ represents the functor DerF .BI �/. Consider the derived fiber product

X � T X � S

T S

g

q p

f

Then for any M 2 B-Mod, we have

MapB-Mod.f
�E;M/ ' MapA-Mod.E; f�.M//

' MapQCoh.X�S/.F ;F ˝ p
�.f�.M///

' MapQCoh.X�S/.F ;F ˝ g�.q
�.M///

' MapQCoh.X�S/.F ; g�.g
�.F /˝ q�.M///

' MapQCoh.X�T /.g
�.F /; g�.F /˝ q�.M//:

The conclusion therefore follows from the Yoneda lemma.

Remark 2.22. In the setting of the above corollary, let xWS WD Spec.A/! Coh.X/ be a
point representing a coherent sheaf F onX � S relative to S which is furthermore perfect
in QCoh.X � S/ (this is always the case when X is smooth, see Corollary 2.19). In this
case, the cotangent complex is given explicitly by the formula pC.F ˝ F _/Œ1�, where
pC is the left adjoint to p�. The existence of pC is a consequence of the fact that p is
proper and flat [36, Proposition 6.4.5.3] (see also [50, Proposition 2.3.27]).

As for the truncation of Coh.X/, we have

Lemma 2.23. Let X be a proper, underived complex scheme. Then the truncation
Coh.X/cl coincides with the usual stack of coherent sheaves on X .

Proof. Let S be an underived affine scheme. By definition, a morphism S ! Coh.X/
corresponds to an almost perfect complex F 2 APerf.X � S/ which furthermore has tor-
amplitude � 0 relative to S . As S is underived, having tor-amplitude � 0 relative to S is
equivalent to asserting that F belongs to APerf~.X � S/. The conclusion follows.
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In other words, the derived stack Coh.X/ provides a derived enhancement of the
classical stack17 of coherent sheaves. We therefore get

Proposition 2.24. Let X be a proper, underived complex scheme. Then the derived stack
Coh.X/ is geometric and locally of finite presentation. If furthermore X is smooth, then
the canonical map Coh.X/! Perf.X/ is representable by étale geometric 0-stacks.18

Proof. Lemma 2.23 implies that Coh.X/cl coincides with the usual stack of coherent
sheaves onX , which we know to be a geometric classical stack (cf. [31, Théorème 4.6.2.1]
or [75, Tag 08WC]). On the other hand, combining Corollary 2.14 and Lemma 2.21
we see that Coh.X/ is infinitesimally cohesive, nilcomplete and admits a global cotan-
gent complex. Therefore the assumptions of Lurie’s representability theorem [36, The-
orem 18.1.0.2] are satisfied and so we deduce that Coh.X/ is geometric and locally
of finite presentation. As for the second statement, we already know that Coh.X/ !
Perf.X/ is formally étale. As both stacks are locally of finite type, it follows that this
map is étale as well. Finally, since Coh.X/! Perf.X/ is .�1/-truncated, we see that for
every affine derived scheme S , the truncation of S �Perf.X/ Coh.X/ takes values in Set.
The conclusion follows.

Remark 2.25. Let X be a smooth and proper complex scheme. In this case, the
derived stack Coh.X/ has been considered to some extent in [79]. Indeed, in their work
they provide a geometric derived stack M

1-rig
Perf.X/ classifying families of 1-rigid perfect

complexes (see §3.4 in loc. cit. for the precise definition). There is a canonical map
Coh.X/cl ! .M

1-rig
Perf.X//

cl . One can check that this map is formally étale. Since it is a map
between stacks locally almost of finite type, it follows that it is actually étale. Therefore,
the derived structure of M

1-rig
Perf.X/ induces a canonical derived enhancement of Coh.X/cl .

Unraveling the definitions, we can describe the functor of points of such derived enhance-
ment as follows: it sends S 2 dAff to the full subcategory of Perf.X �S/ spanned by those
F whose pullback to X � Scl is concentrated in cohomological degree 0. Remark 2.3
implies that it canonically coincides with our Coh.X/. However, this method is somehow
non-explicit, and heavily relies on the fact that X is a smooth and proper scheme. Our
method provides instead an explicit description of the functor of points of this derived
enhancement, and allows us to deal with a wider class of stacks X .

Corollary 2.26. Let X be a smooth and proper complex scheme of dimension n. Then
the cotangent complex LCoh.X/ is perfect and has tor-amplitude within Œ�1; n � 1�. In
particular, Coh.X/ is smooth when X is a curve and derived lci when X is a surface.

Proof. It is enough to check that for every affine derived S D Spec.A/ 2 dAff and
every point xW S ! Coh.X/, x�TCoh.X/ is perfect and in tor-amplitude Œ1 � n; 1�.

17The construction of such a stack is described, e.g., in [31, Chapitre 4], [75, Tag 08KA].
18After the first version of the present paper was released, there appeared on arXiv the second

version of [19] in which a similar statement was proved: cf. [19, Theorem 5.2.2].
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Let F 2 APerf.X � Spec.A// be the almost perfect complex classified by x and let
pWX � Spec.A/! Spec.A/ be the canonical projection. Since X is smooth, Corollary
2.19 implies that F is perfect. Moreover, Lemma 2.21 shows that

x�TCoh.X/ ' p�End.F /Œ1�:

Since p is proper and smooth, the pushforward p� preserves perfect complexes (see [36,
Theorem 6.1.3.2]). As End.F / ' F ˝ F _ is perfect, we conclude that x�TCoh.X/ is
perfect.

We are then left to check that it is in tor-amplitude Œ1 � n; 1�. Let

j W Spec.A/cl
! Spec.A/

be the canonical inclusion. It is enough to prove that j �x�TCoh.X/ has tor-amplitude
within Œ1 � n; 1�. In other words, we can assume Spec.A/ to be underived. Using Lem-
ma 2.18 we can further assume S is the spectrum of a field.

First note that for every pair of coherent sheaves G , G 0 2 CohS .X/, p�HomX .G ;G 0/
is coconnective and has coherent cohomology. Since S is the spectrum of a field, it is a
perfect complex. By Grothendieck–Serre duality for smooth proper morphisms of relative
pure dimension between Noetherian schemes (see [6, §3.4], [2, §C.1], and references
therein), we have

.p�End.F //_ ' p�Hom.F ;F ˝ p�X!X Œn�/;

where !X is the canonical bundle of X , and pX the projection from X � S to X . The
right-hand side is n-coconnective. This implies that

�i ..p�End.F //_/ ' 0

for i < n. Since S is the spectrum of a field, �j .p�.End.F /// is projective and

.�j .p�.End.F ////_ ' ��j ..p�End.F //_/:

This shows that p�End.F / has tor-amplitude within Œ�n;0�, and therefore x�TCoh.X/ has
tor-amplitude within Œ1 � n; 1�.19

2.3.1. Non- proper case. We can relax the properness assumption on X by working with
perfect complexes with proper support:

Definition 2.27. Let pWX ! S be a morphism of derived schemes locally almost of
finite presentation and let F 2 APerf.X/ be an almost perfect complex. We say that F

has proper support relative to S if there exists a closed subscheme Z ,! X such that
Z ! S is proper and F jXXZ ' 0.

Perfect complexes with proper support have the following property:

19This argument is borrowed from [18, Example 2.2.3].



M. Porta, F. Sala 1142

Proposition 2.28. Let pWX!S be a morphism between quasi-compact, quasi-separated
derived schemes locally almost of finite presentation and let F 2 APerf.X/ be an almost
perfect complex. If F has proper support relative to S , then for every morphism T ! S

and every perfect complex G 2 Perf.X �S T / one has

pT�.G
_
˝ F / 2 APerf.S/:

In particular, if F has proper support then p�.F / belongs to APerf.S/.
The converse holds true provided that p is separated and F has finite cohomological

amplitude and finite tor-amplitude relative to S .

Proof. To prove the first statement, it is enough to take T D S . Assume first that F has
proper support relative to S . LetZ ,!X be a closed subscheme such thatZ!S is proper
and F jXXZ ' 0. Then for every perfect complex G 2 Perf.X/, we have .G_ ˝ F /jXXZ
' 0, and therefore G_ ˝ F has again proper support relative to S . It is therefore enough
to prove the statement when G D OX . Let C be the full subcategory of APerf.X/ spanned
by those almost perfect complexes F such that p�.F / belongs to APerf.S/. We want to
show that C contains all almost perfect complexes with proper support relative to S . Let
F be such an object, and assume furthermore that F 2 APerf~.X/ ' APerf~. Xcl /. Then
the question only concerns the classical truncations ofX and S . In this case, there exists a
nilthickeningZ0 ofZ together with a map j WZ0! Xcl , a coherent sheaf F 0 2 APerf~.Z0/
and an isomorphism j�.F

0/' F . We can therefore compute the pushforward of F along
X ! S as the pushforward of F 0 along Z0 ! S . As the latter map is again proper, we
deduce that p�.F / belongs to APerf.S/. Since X is quasi-compact, it is straightforward
to deduce that whenever F has bounded cohomological amplitude and proper support
relative to S , then p�.F / belongs to APerf.S/. Finally, since X is quasi-compact and
quasi-separated, we see that the functor p� has finite cohomological dimension. It is then
possible to extend the result to the whole category of almost perfect complexes onX with
proper support relative to S .

Assume now that p is separated and let F be a bounded almost perfect complex onX
such that for every G 2 Perf.X/, one has p�.G_ ˝ F / 2 APerf.S/. We want to prove
that it has proper support. Since F is cohomologically bounded, it is enough to prove
that for every i 2 Z, �i .F / has proper support. Since �i .F / belongs to APerf~.X/ '
APerf~. Xcl /, we can assume that both X and S are underived, and that F is discrete.
Let Z WD supp.F / and observe that since F is coherent, this is a closed subset of X .
Since p is separated, it is enough to prove that the map Z ! S is universally closed.
Since the assumptions on F are stable under arbitrary base change along T ! S , we
see that it is enough to prove that Z ! S is closed. Let Z0 � Z be a closed subset.
Since F is coherent, Z is closed in X and therefore so is Z0. Using [76], we can find a
perfect complex G on X such that the support of G coincides exactly with Z0. It follows
that G_ ˝ F is again supported exactly on Z0, and furthermore p�.G_ ˝ F / is almost
perfect. In particular, the support of p�.G_ ˝ F / is closed, and therefore it coincides
with the image of the support of G_ ˝ F , which was Z0. This completes the proof.
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Let nowX be a quasi-projective (underived) scheme and let Perfprop.X/ be the derived
moduli stack parameterizing families of perfect complexes on X with proper support.
There is a natural map Perfprop.X/! Perf.X/, and we set

Cohprop.X/ WD Perfprop.X/ �Perf.X/ Coh.X/:

This derived stack is infinitesimally cohesive and nilcomplete. Furthermore, we have

Proposition 2.29. The derived stacks Perfprop.X/ and Cohprop.X/ admit a global cotan-
gent complex.

Proof. It is enough to observe that in the proof of Lemma 2.21 one only needs to know
that for every affine derived scheme S and every G 2 Perf.X/, the complex p�.G_˝F /

is almost perfect in QCoh.S/. This is true in this setting thanks to Proposition 2.28.

Remark 2.30. The derived stack Perf.X/ does not admit a global cotangent complex.
Nevertheless, one can show that it admits a pro-cotangent complex in the sense of [13,
Definition 1.4.1.4]. The natural inclusion Perfprop.X/! Perf.X/ then becomes formally
étale, in the sense that the relative pro-cotangent complex is zero.

Remark 2.31. Let X be a smooth compactification of X . Then there is a natural map
Cohprop.X/! Cohprop.X/, which is furthermore representable by open Zariski immer-
sions.

The truncation of Cohprop.X/ coincides with the classical stack of coherent sheaves
with proper support. As shown in [75, Tag 0DLX], this moduli stack is a geometric clas-
sical stack. We deduce that Cohprop.X/ is a geometric derived stack.

2.3.2. Other examples of moduli stacks. Let X be a smooth projective complex scheme
and let H be a fixed ample divisor. Recall that for any polynomial P.m/ 2 QŒm� there
exists an open substack Cohcl P .X/ of Coh.X/cl parameterizing flat families of coherent
sheaves F on X with fixed Hilbert polynomial P , i.e., for n� 0,

dimH 0.X;F ˝ OX .nH// D P.n/:

We denote by CohP .X/ its canonical derived enhancement.20 Similarly, we define
BunP .X/.

For any non-zero polynomial P.m/ 2 QŒm� of degree d , we denote by P.m/red its
reduced polynomial, which is defined as P.m/=˛d , where ˛d is the leading coefficient
of P.m/. Given a monic polynomial p, define

Cohp.X/ WD
a

P redDp

CohP .X/ and Bunp.X/ WD
a

P redDp

BunP .X/:

20The construction of such a derived enhancement follows from [69, Proposition 2.1].
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Assume that deg.p/ D dim.X/. Recall that Gieseker H -semistability is an open prop-
erty.21 Thus there exists an open substack Cohss; p.X/cl of Cohp.X/cl parameterizing
families of H -semistable coherent sheaves on X with fixed reduced polynomial p;
we denote by Cohss; p.X/ its canonical derived enhancement. Similarly, we define
Bunss; p.X/.

Finally, let 0 � d � dim.X/ be an integer and define

Coh�d .X/ WD
a

deg.P /�d

CohP .X/:

Remark 2.32. Let X be a smooth projective complex curve. Then the assignment of a
monic polynomial p.m/ 2 QŒm� of degree 1 is equivalent to the assignment of a slope
� 2 Q. In addition, in the one-dimensional case we have Bunss; �.X/ ' Cohss; �.X/.

Finally, assume that X is only quasi-projective. As above, we can define the derived
moduli stack Coh�dprop.X/ of coherent sheaves on X with proper support and dimension of
the support � d .

2.4. Coherent sheaves on Simpson’s shapes

Let X be a smooth and proper complex scheme. In this section, we introduce derived
enhancements of the classical stacks of finite-dimensional representations of �1.X/, of
vector bundles with flat connections on X and of Higgs sheaves on X . In order to treat
these three cases in a uniform way, we shall consider Simpson’s shapes XB, XdR, and
XDol and coherent sheaves on them (cf. [50] for a small compendium of the theory of
Simpson’s shapes).

2.4.1. Moduli of local systems. LetK 2 � fin be a finite space. We letKB 2 dSt be its Betti
stack, that is, the constant stack

KBW dStop
! �

associated to K (cf. [50, §3.1]).
The first result of this section is the following:

Proposition 2.33. The derived stack Coh.KB/ is a geometric derived stack, locally of
finite presentation.

To prove this statement, we will apply Lurie’s representability theorem [36, The-
orem 18.1.0.2]. We need some preliminary results.

Set

Bunn.KB/ WDMap.KB;BGLn/ for n � 0; Bun.KB/ WD
a
n�0

Bunn.KB/:

21See [24, Definition 1.2.4] for the definition of H -semistability of coherent sheaves on project-
ive schemes and [24, Proposition 2.3.1] for the openness of H -semistability in families.
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Lemma 2.34. The truncation of Bunn.KB/ corresponds to the classical stack of finite-
dimensional representations of �1.K/.

Proof. This follows from [50, Proposition 3.1.1 (2) and Remark 3.1.2].

Lemma 2.35. The canonical map Bun.KB/! Coh.KB/ is an equivalence.

Proof. We can view both Coh.KB/ and Bun.KB/ as full substacks of Perf.KB/. It is
therefore enough to show that they coincide as substacks of Perf.KB/. Suppose first that
K is discrete. Then it is equivalent to a disjoint union of finitely many points, and therefore

KB ' Spec.C/I ' Spec.C/q � � � q Spec.C/:

In this case

Perf.KB/ ' Perf � � � � � Perf:

If S2dAff, an S -point of Perf.KB/ is therefore identified with an object in Fun.I;Perf.S//.
Having tor-amplitude � 0 with respect to S is equivalent to having tor-amplitude � 0
on SI , and therefore the conclusion follows in this case. Using the equivalence SkC1 '
†.Sk/, we deduce that the same statement is true when K is a sphere. We now observe
that since K is a finite space, we can find a sequence of maps

K0 D ; ! K1 ! � � � ! K` D K;

such that each map Ki ! KiC1 fits in a pushout diagram

Smi �

Ki KiC1

The conclusion therefore follows by induction.

Proof of Proposition 2.33. We can assume without loss of generality thatK is connected.
Let xW � ! K be a point and let

ux WSpec.C/ ' �B ! KB

be the induced morphism. Then [50, Proposition 3.1.1 (3)] implies that ux is a flat
effective epimorphism. Therefore, Corollary 2.14 implies that Coh.KB/ is infinitesimally
cohesive and nilcomplete. Since Spec.C/ is smooth, Corollary 2.20 implies that there is
a formally étale map

Coh.KB/! Perf.KB/:

Since K is a finite space, Perf.KB/ is a geometric derived stack (cf. [50, §3.2]), and in
particular it admits a global cotangent complex. Therefore, so does Coh.KB/.
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We are left to prove that its truncation is geometric. Recall that the classical stack
of finite-dimensional representations of �1.K/ is geometric (cf. e.g. [72]). Thus, the
geometricity of the truncation follows from Lemmas 2.34 and 2.35. Therefore, Lurie’s
representability theorem [36, Theorem 18.1.0.2] applies.

Now let X be a smooth and proper complex scheme. Define the stacks

CohB.X/ WD Coh.XB/ and BunB.X/ WD Bun.XB/:

Lemma 2.35 supplies a canonical equivalence CohB.X/'BunB.X/ and Proposition 2.33
shows that they are locally geometric and locally of finite presentation. We refer to this
stack as the derived Betti moduli stack of X . In addition, we shall call

BunnB.X/ WDMap.XB;BGLn/

the derived stack of of n-dimensional representations of the fundamental group �1.X/
of X . The terminology is justified by Lemma 2.34.

Example 2.36. (1) Consider the case X D P1C . We have

BunnB.P
1
C/

cl
' BGLn:

However, BunnB.P1C/ has an interesting derived structure. To see this, let

xWSpec.C/! BunnB.P
1
C/

be the map classifying the constant sheaf Cn

P1C
. This map factors through BGLn, and it

classifies Cn 2 ModC D QCoh.Spec.C//. The tangent complex of BGLn at this point is
given by EndC.Cn/Œ1�, and in particular it is concentrated in homological degree �1. On
the other hand, [50, Corollary 3.1.4 (2)] shows that the tangent complex of BunnB.P1C/ at x
is computed by

R�.S2IEnd.Cn

P1C
//Œ1� ' End.Cn/Œ1�˚ End.Cn/Œ�1�:

In particular, BunnB.P1C/ is not smooth (although it is lci), and therefore it does not coin-
cide with BGLn.

(2) Assume more generally that X is a smooth projective complex curve. Then
BunnB.X/ can be obtained as a quasi-Hamiltonian derived reduction.22 Indeed, let X 0 be
the topological space X top minus a disk D. Then one can easily see that X 0 deformation
retracts onto a wedge of 2gX circles, where gX is the genus of X . We get

BunnB.X/ ' BunnB.X
0/ �BunnB .S1/ BunnB.D/:

22See [59] for the notion of Hamiltonian reduction in the derived setting.
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Since BunnB.S1/ ' ŒGLn=GLn� (see, e.g., [5, Example 3.8]), and BunnB.D/ ' BunnB.pt/,
we obtain

BunnB.X/ ' BunnB.X
0/ �ŒGLn=GLn� Œpt=GLn�:

Thus, BunnB.X/ is the quasi-Hamiltonian derived reduction of BunnB.X 0/. By further using
BunnB.X 0/ ' BunnB.S1/�2gX , the derived stack BunnB.X/ reduces to

BunnB.X/ ' ŒGL�2gXn �GLn pt=GLn�:

Generalizing the above example (1), we have:

Corollary 2.37. Let X be a smooth and proper complex scheme of dimension n. Then
the cotangent complex LCohB.X/ is perfect and has tor-amplitude within Œ�1; 2n � 1�. In
particular, CohB.X/ is derived lci when X is a curve.

Proof. Recall that Corollary 2.20 provides a canonical formally étale map CohB.X/!

Perf.XB/. Thus, the cotangent complex LCohB.X/ at a point xW S ! CohB.X/, where
S 2 dAff is an affine derived scheme, is isomorphic to the cotangent complex LPerf.XB/ at
the point QxWS ! CohB.X/! Perf.XB/.

Via [50, Proposition 3.1.1 (2)], we see that Qx corresponds to an object L in
Fun.Xhtop; Perf.S//.23 On the other hand, [50, Proposition 3.1.3] allows one to further
identify this1-category with the1-category of local systems on Xan. Since XB is cat-
egorically proper (cf. [50, Proposition 3.1.1 (4)]), to check tor-amplitude of LPerf.XB/ at
the point Qx it is enough to assume that S is underived. In addition, since L arises from
the point x, we see that it is discrete. Applying the characterization of the derived global
sections of any F 2 QCoh.XB/ in [50, Corollary 3.1.4], we finally deduce that

TCohB.X/;x ' R�.Xan
IEnd.L//Œ1�:

As this computes the (shifted) singular cohomology of Xan with coefficients in End.L/,
the conclusion follows.

2.4.2. Moduli of flat bundles. Let X be a smooth, proper and connected scheme over C.
The de Rham shape of X is the derived stack XdR 2 dSt defined by

XdR.S/ WD X. S
cl

red/

for any S 2 dAff (cf. [50, §4.1]). Here, we denote by Tred the underlying reduced scheme
of an affine scheme T 2 Aff.

Define the stacks

CohdR.X/ WD Coh.XdR/ and BundR.X/ WD Bun.XdR/:

23Here, .�/htopW dSchlaft ! � is the natural functor sending a (derived) C-scheme locally almost
of finite type to the underlying homotopy type of its analytification.
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Lemma 2.38. There is a natural equivalence

CohdR.X/ ' BundR.X/:

Proof. First, recall that there exists a canonical map �X WX ! XdR (see [50, §4.1]).
We can see both derived stacks as full substacks of Map.XdR;Perf/. Let S 2 dAff and

let xW S ! Map.XdR; BGLn/. Then x classifies a perfect complex F 2 Perf.XdR � S/

such that G WD .�X � idS /�.F / 2 Perf.X � S/ has tor-amplitude � 0 and rank n. Since
the map X � S ! S is flat, it follows that G has tor-amplitude � 0 relative to S , and
therefore x determines a point in CohdR.X/.

Conversely, let xWS ! CohdR.X/. Let F 2 Perf.XdR � S/ be the corresponding per-
fect complex and let G WD .�X � idS /�.F /. Then by assumption G has tor-amplitude � 0
relative to S . We wish to show that it has tor-amplitude � 0 on X � S . Using Lemma
2.18, we see that it is enough to prove that for every geometric point sW Spec.K/! S ,
the perfect complex j �.G / 2 Perf.XK/ has tor-amplitude� 0. HereXK WD Spec.K/�X
and j WXK ! X is the natural morphism. Consider the commutative diagram

XK X � S

.XK/dR XdR � S

�XK

j

�X�idS

jdRjdR

Then

j �s G ' ��XKj
�
dRF :

We therefore see that j �G comes from aK-point of CohdR.X/. By [23, Theorem 1.4.10],
j �G is a vector bundle onX , i.e. that it has tor-amplitude� 0. The conclusion follows.

Proposition 2.39. The derived stack Coh.XdR/ is a geometric derived stack, locally of
finite presentation.

Proof. Consider the canonical map �X WX ! XdR. Then [50, Proposition 4.1.1 (3, 4)]
shows that �X is a flat effective epimorphism. Thus, Coh.XdR/ fits into the pullback
square (see Lemma 2.11 and Corollary 2.19)

Coh.XdR/ Coh.X/

Perf.XdR/ Perf.X/

and since Perf.X/ and Perf.XdR/ are geometric (see [79, Corollary 3.29] and [50, §4.2],
respectively) and Coh.X/ is geometric because of Proposition 2.24, we conclude that
Coh.XdR/ is geometric as well.

We shall call CohdR.X/ the derived de Rham moduli stack of X .
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2.4.3. Moduli of Higgs sheaves. Let X be a smooth, proper and connected complex
scheme. Let

TX WD SpecX .SymOX
.LX //

be the derived tangent bundle to X and let cTX WD XdR �.TX/dR TX be the formal comple-
tion of TX along the zero section. The natural commutative group structure of TX relative
to X (seen as an associative one) lifts to cTX . Thus, we define the Dolbeault shape XDol

of X as the relative classifying stack

XDol WD BXcTX;
while we define the nilpotent Dolbeault shape Xnil

Dol of X as

Xnil
Dol ' BXTX:

We define

CohDol.X/ WD Coh.XDol/ and Cohnil
Dol.X/ WD Coh.Xnil

Dol/;

and

BunDol.X/ WD Bun.XDol/ and Bunnil
Dol.X/ WD Bun.Xnil

Dol/:

Proposition 2.40. The derived stacks CohDol.X/;Cohnil
Dol.X/;BunDol.X/;Bunnil

Dol.X/ are
geometric and locally of finite presentation.

Proof. First, recall that there exist canonical maps �X WX ! XDol and �nil
X WX ! Xnil

Dol (cf.
[50, §5.1]).

By [50, Lemma 5.3.1], �X and �nil
X are flat effective epimorphisms. Thanks to

Lemma 2.11 and Corollary 2.19, we are left to check that Perf.XDol/ and Perf.Xnil
Dol/

are geometric and locally of finite presentation (cf. [50, §5.4.2]).

We call CohDol.X/ the derived Dolbeault moduli stack of X , while Cohnil
Dol.X/ is

the derived nilpotent Dolbeault moduli stack of X . The truncation CohDol.X/
cl (resp.

Cohnil
Dol.X/

cl ) coincides with the moduli stack of Higgs sheaves (resp. nilpotent Higgs
sheaves) on X .

We denote by |X WCohnil
Dol.X/! CohDol.X/ and | bun

X WBunnil
Dol.X/! BunDol.X/ the

canonical maps induced by {X WXDol ! Xnil
Dol.

Remark 2.41. Let X be a smooth and proper complex scheme. Define the geometric
derived stack

Higgsnaïf.X/ WD T�Œ0�Coh.X/ D SpecCoh.X/.Sym.TCoh.X///:

There is a natural morphism

CohDol.X/! Higgsnaïf.X/;
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which is an equivalence when X is a smooth and projective curve (see, e.g., [15]). In
higher dimensions, this morphism is no longer an equivalence. This is due to the fact that
in higher dimensions the symmetric algebra and the tensor algebra on TCoh.X/ differ.

Let X be a smooth projective complex scheme. For any monic p.m/ 2 QŒm�, we set

CohpDol.X/ WD Perf.XDol/ �Perf.X/ Cohp.X/;

Cohnil; p
Dol .X/ WD Perf.Xnil

Dol/ �Perf.X/ Cohp.X/;

and

BunpDol.X/ WD Perf.XDol/ �Perf.X/ Bunp.X/;

Bunnil; p
Dol .X/ WD Perf.Xnil

Dol/ �Perf.X/ Bunp.X/;

These are geometric derived stacks locally of finite presentation.
As shown by Simpson [71, 72], the higher-dimensional analogue of the semistability

condition for Higgs bundles on a curve (introduced, e.g., in [45]) is an instance of the
Gieseker stability condition for modules over a sheaf of rings of differential operators,
when such a sheaf is induced by �1X with zero symbol (see [71, §2] for details). This
semistability condition is an open property for flat families (cf. [71, Lemma 3.7]). Thus,
there exists an open substack Cohss; p

Dol .X/
cl of CohpDol.X/

cl parameterizing families of
semistable Higgs sheaves on X with fixed reduced polynomial p.m/; we denote by

Cohss; p
Dol .X/

its canonical derived enhancement. Similarly, we define Cohnil; ss; p
Dol .X/, Bunss; p

Dol .X/ and
Bunnil; ss; p

Dol .X/. These are geometric derived stacks locally of finite presentation.
Finally, for any integer 0 � d � dim.X/, set

Coh�dDol .X/ WD Perf.XDol/ �Perf.X/ Coh�d .X/;

Cohnil;�d
Dol .X/ WD Perf.Xnil

Dol/ �Perf.X/ Coh�d .X/:

These are geometric derived stacks locally of finite presentation.

Remark 2.42. Let X be a smooth projective complex curve and let � 2 Q (which cor-
responds to a choice of a reduced Hilbert polynomial). Then Cohss; �

Dol .X/ ' Bunss; �
Dol .X/

and Cohnil; ss; �
Dol .X/ ' Bunnil; ss; �

Dol .X/.

3. Derived moduli stack of extensions of coherent sheaves

Our goal in this section is to introduce and study a derived enhancement of the moduli
stack of extensions of coherent sheaves on a proper complex algebraic variety X . As
usual, we also deal with the case of Higgs sheaves, vector bundles with flat connection and
finite-dimensional representation of the fundamental group ofX . We will see in Section 4
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that the derived moduli stack of extensions of coherent sheaves is a particular case of
a more fundamental construction, known as the Waldhausen construction. If on the one
hand it is a certain property of the Waldhausen construction (namely, its being a 2-Segal
object) the main responsible for the higher associativity of the Hall convolution product at
the categorified level, at the same time the analysis carried out in this section of the stack
of extensions of coherent sheaves yields a fundamental input for the overall construction.
More specifically, we will show that when X is a surface, certain maps are derived lci,
which is the key step in establishing the categorification we seek.

3.1. Extensions of almost perfect complexes

Let �1 be the 1-simplex, and define the functor

APerf�
1��1
W dAffop

! �

by

APerf�
1��1.Spec.A// WD Fun.�1 ��1;APerf.A//':

We let APerf ext denote the full substack of APerf�
1��1 whose Spec.A/-points corres-

ponds to diagrams

F1 F2

F4 F3

in APerf.A/ which are pullbacks and where F4 ' 0.
Observe that the natural map APerf ext

! APerf�
1��1 is representable by Zariski

open immersions. There are three natural morphisms

evi WAPerf ext
! APerf; i D 1; 2; 3;

which at the level of functors of points send a fiber sequence

F1 ! F2 ! F3

to F1, F2 and F3, respectively.
Let Y 2 dSt be a derived stack. We define

APerf�
1��1.Y / WDMap.Y;APerf�

1��1/;

APerf ext.Y / WDMap.Y;APerf ext/:

Once again, the morphism

APerf ext.Y /! APerf�
1��1.Y /
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is representable by Zariski open immersions. Moreover, the morphism evi induces a mor-
phism APerf ext.Y /! APerf.Y /, which we still denote evi .

Let now Y 2 dSt be a derived stack. In §2 we introduced the derived moduli stack
Coh.Y /, parameterizing coherent sheaves on Y . It is equipped with a natural map
Coh.Y /! APerf.Y /. We define Cohext.Y / as the pullback

Cohext.Y / APerf ext.Y /

Coh.Y /�3 APerf.Y /�3

ev1�ev2�ev3 (3.1)

and we refer to it as the derived moduli stack of extensions of coherent sheaves.

Remark 3.1. Let Y 2 dSt be a derived stack. Assume there exists a flat effective epi-
morphism uW U ! Y from a geometric derived stack U . Then Corollary 2.17 implies
that the natural map Coh.Y /! APerf.Y / is formally étale. Since formally étale maps
are stable under pullback, the very definition of Cohext.Y / shows that the natural map
Cohext.Y /! APerf ext.Y / is formally étale as well.

Analogous considerations can be made for Perf.Y / instead of APerf.Y /. In particular,
there are well defined stacks Perf�

1��1.Y / and Perf ext.Y /. The commutative diagram

Perf ext.Y / APerf ext.Y /

Perf.Y /�3 APerf.Y /�3

(3.2)

is a pullback, and the horizontal arrows are formally étale. When there is a flat effective
epimorphism uWU ! Y from a smooth geometric derived stack U , Corollary 2.19 shows
that the map Cohext.Y / ! APerf ext.Y / factors through Perf ext.Y /, and that the map
Cohext.Y /! Perf ext.Y / is formally étale as well.

Similarly, we define Bunext.Y / as the pullback with respect to a diagram of the form
(3.1) with Coh.Y /�3 replaced with Bun.Y /�3.

3.2. Explicit computations of cotangent complexes

In this section we carry out the first key computation: we give explicit formulas for the
cotangent complexes of the the stack Perf ext.Y / and of the map ev3 � ev1WPerf ext.Y /!

Perf.Y /�Perf.Y /. We assume throughout this section that Y is a derived stack satisfying
the following assumptions:

(1) Y has finite local tor-amplitude [50, Definition 2.3.15].

(2) Y is categorically proper [50, Definition 2.3.21].

(3) There exists an effective epimorphism uWU ! Y , whereU is a quasi-compact derived
scheme.
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These hypotheses guarantee in particular the following: for every S 2 dAff let

pS WY � S ! S

be the natural projection. Then the pullback functor

p�S WPerf.S/! Perf.Y � S/

admits a left adjoint, which will be denoted pSC. See [50, Proposition 2.3.27] for the
construction and the main properties of this functor.

Proposition 3.2. Let Y 2 dSt be a derived stack satisfying assumptions (1)–(3). Then
Perf ext.Y / admits a global cotangent complex. Furthermore, let S D Spec.A/ 2 dAff be
an affine derived scheme and let xWS ! Perf ext.Y / be a morphism. Write

F1 ! F2 ! F3

for the fiber sequence in Perf.Y � S/ classified by x. Then x�LPerf ext.Y /Œ1� coincides with
the colimit in Perf.S/ of the diagram

pSC.F2 ˝ F _3 / pSC.F3 ˝ F _3 /

pSC.F1 ˝ F _2 / pSC.F2 ˝ F _2 /

pSC.F1 ˝ F _1 /

(3.3)

Proof. First of all, we consider the diagram

Perf ext.Y / Perf�
1��1.Y /

APerf ext.Y / APerf�
1��1.Y /

Since (3.2) is a pullback, we see that the above square is a pullback. In particular, the
top horizontal morphism is a Zariski open immersion. It is therefore enough to compute
the cotangent complex of Perf�

1��1.Y / at the induced point, which we still denote by
xWS ! Perf�

1��1.Y /.
Write

F WD S �
Perf�1��1 .Y /

S;

and let ıx W S ! F be the diagonal morphism induced by x. Using [50, Proposi-
tion 2.2.3 (1, 3)] we see that Perf�

1��1 and hence Perf�
1��1.Y / WDMap.Y;Perf�

1��1/

are infinitesimally cohesive. Thus, [50, Proposition 2.2.4] guarantees that

x�L
Perf�1��1 .Y /

' ı�xLF Œ�1�:



M. Porta, F. Sala 1154

We therefore focus on the computation of ı�xLF . Given f; gW T D Spec.B/! S , write
fY and gY for the induced morphisms

fY ; gY WY � T ! Y � S:

We can identify F.T / with the1-groupoid of commutative diagrams

f �Y F1 f �Y F2 f �Y F3

g�YF1 g�YF2 g�YF3

˛1 ˛2 ˛3

in Perf.Y � T /, where ˛1, ˛2 and ˛3 are equivalences. In other words, F.T / fits in the
following limit diagram:

F.T / � Map'.f �Y F3; g
�
YF3/

� Map'.f �Y F2; g
�
YF2/ Map.f �Y F2; g

�
YF3/

Map'.f �Y F1; g
�
YF1/ Map.f �Y F1; g

�
YF2/

Here the mapping and isomorphism spaces are taken in Perf.Y � T /. We have to represent
the functor

DerF .S I �/WQCoh.S/! �

which sends G 2 QCoh.S/ to the space

fibıx .F.SŒG �/! F.S//:

Write YS WD Y � S and let pS WYS ! S be the natural projection, so that

.YS /Œp
�
SG � ' Y � SŒG �:

Let d0WYS Œp�SG �! YS be the zero derivation. Observe now that

¹idFi º �Map.Fi ;Fi / Map.d�0Fi ; d
�
0Fi / ' ¹idFi º �Map.Fi ;Fi / Aut.d�0Fi /:

We are therefore free to replace Aut.d�0Fi / by Map.d�0Fi ; d
�
0Fi / in the diagram com-

puting F.SŒG �/. Unraveling the definitions, we can thus identify DerF .S I G / with the
pullback diagram

DerF .S IG / � Map.F3;F3 ˝ p�SG /

� Map.F2;F2 ˝ p�SG / Map.F2;F3 ˝ p�SG /

Map.F1;F1 ˝ p�SG / Map.F1;F2 ˝ p�SG /
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Since F1, F2 and F3 are perfect, they are dualizable. Moreover, [50, Proposi-
tion 2.3.27 (1)] guarantees the existence of a left adjoint pSC for p�S . We can therefore
rewrite the above diagram as

DerF .S IG / � Map.pSC.F3 ˝ F _3 /;G /

� Map.pSC.F2 ˝ F _2 /;G / Map.pSC.F2 ˝ F _3 /;G /

Map.pSC.F1 ˝ F _1 /;G / Map.pSC.F1 ˝ F _2 /;G /

where now the mapping spaces are computed in Perf.Y � S/. Therefore, the Yoneda
lemma implies that DerF .S I G / is representable by the colimit of the diagram (3.3) in
Perf.Y � S/. At this point, [50, Proposition 2.3.27 (2)] guarantees that Perf ext.Y / also
admits a global cotangent complex.

Remark 3.3. There are two natural morphisms

fib; cofibWPerf�
1

.Y /! Perf ext.Y /;

which send a morphism ˇWF ! G to the fiber sequence

fib.ˇ/! F ! G .resp. F ! G ! cofib.ˇ//:

Applying [32, Proposition 4.3.2.15] twice, we see that these morphisms are equivalences.
Let yWSpec.A/! Perf�

1��1.Y / be a morphism classifying a diagram

F1 F2

0 F3

Let xW Spec.A/! Perf�
1

.Y / be the point corresponding to F1 ! F2. Then we have a
canonical morphism

x�L
Perf�1 .Y /

Œ1�! y�L
Perf�1��1 .Y /

Œ1�;

which in general is not an equivalence. When the point y factors through the open
substack Perf ext.Y /, the above morphism becomes an equivalence.

Next, we compute the cotangent complex of ev3 � ev1. We start with a couple of
preliminary considerations:

Definition 3.4 ([50, Definition A.2.1]). Let Y be a derived stack and let F 2 Perf.Y / be
a perfect complex on F . The linear stack24 associated to F over Y is the derived stack

24Note that sometimes in the literature this stack (or rather its truncation) is also called the cone
stack. See e.g. [25, §2.1].
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VY .F / 2 dSt=Y defined as

VY .F / WD SpecY .SymOY
.F //:

In other words, for every f WS D Spec.A/! Y , one has

Map=Y .S;VY .F // ' MapA-Mod.f
�.F /; A/:

Construction 3.5. Let Y 2 dSt be a derived stack satisfying assumptions (1)–(3). Let

Y � Perf.Y / � Perf.Y /

Y � Perf.Y / Perf.Y / � Perf.Y / Y � Perf.Y /

pr1
q

pr2

be the natural projections. Let F 2 Perf.Y � Perf.Y // be the universal family of perfect
complexes on Y and for i D 1; 2 set

Fi WD pr�i .F / 2 Perf.Y � Perf.Y / � Perf.Y //:

We set

G WD HomY�Perf.Y /�Perf.Y /.F2;F1/Œ�1�:

Using [50, Corollary 2.3.29] we see that the functor

q�WPerf.Perf.Y / � Perf.Y //! Perf.Y � Perf.Y / � Perf.Y //

admits a left adjoint qC. We can therefore consider the linear stack

VPerf.Y /�Perf.Y /.qCG /;

equipped with its natural projection � WVPerf.Y /�Perf.Y /.qCG /! Perf.Y / � Perf.Y /.

Proposition 3.6. Let Y 2 dSt be a derived stack satisfying assumptions (1)–(3). Keeping
the notation of the above construction, there is a natural commutative diagram

Perf ext.Y / VPerf.Y /�Perf.Y /.qCG /

Perf.Y / � Perf.Y /
ev3�ev1

�

�

where � is furthermore an equivalence.

Proof. For any S 2 dAff and any point xW S ! Perf.Y / � Perf.Y /, we can identify the
fiber at x of the morphism

MapdSt.S;VPerf.Y /�Perf.Y /.qCG //! MapdSt.S;Perf.Y / � Perf.Y //
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with the mapping space

MapPerf.S/.x
�qC.G /;OS /:

Consider the pullback square

Y � S Y � Perf.Y / � Perf.Y /

S Perf.Y / � Perf.Y /

y

qS q

x

The base change for the plus pushforward (cf. [50, Corollary 2.3.29 (2)]) allows us to
rewrite

x�qC.G / ' qSCy
�.G /:

Therefore, we have

MapPerf.S/.x
�qC.G /;OS / ' MapPerf.S/.qSCy

�.G /;OS /

' MapPerf.Y�S/.y
�.G /;OY�S /

' MapPerf.Y�S/.OY�S ; y
�.G_//

' ��0�.Y � S;HomY�S .y
�F1; y

�F2/Œ1�/:

We therefore see that any choice of a fiber sequence

y�F1 ! F ! y�F2

in Perf.Y � S/ gives rise to a point S ! VPerf.Y /�Perf.Y /.qCG /. This provides us with a
canonical map

Perf ext.Y /! VPerf.Y /�Perf.Y /.qCG /;

which induces, for every point xWS ! Perf.Y / � Perf.Y /, an equivalence

MapdSt=Perf.Y /�Perf.Y /
.S;Perf ext.Y // ' MapdStPerf.Y /�Perf.Y /

.S;VPerf.Y /�Perf.Y /.qCG //:

The conclusion follows.

Corollary 3.7. Let Y be a derived stack satisfying the assumptions of Proposition 3.6.
Then the cotangent complex of the map

ev3 � ev1WPerf ext.Y /! Perf.Y / � Perf.Y /

is computed as

.ev3 � ev1/
�
�
qC.HomY�Perf.Y /�Perf.Y /.F2;F1/Œ�1�/

�
:

Proof. This is immediate from Proposition 3.6 and [35, Proposition 7.4.3.14].
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3.3. Extensions of coherent sheaves on schemes

We now specify the constructions of the previous section to the case where Y is a
smooth and proper complex scheme. Assumptions (1)–(3) are satisfied in this case [50,
Example 2.3.1]. Our goal is to provide estimates on the tor-amplitude of the cotangent
complexes of Cohext.Y / and of the map ev3 � ev1WCohext.Y /! Coh.Y / � Coh.Y /:

Proposition 3.8. Let X be a smooth and proper complex scheme of dimension n. Then
the cotangent complex LCohext.X/ is perfect and has tor-amplitude within Œ�1; n � 1�. In
particular, Cohext.X/ is smooth when X is a curve and derived lci when X is a surface.

Remark 3.9. Notice that Perf ext.X/ is not smooth, even if X is a smooth projective
complex curve.

Proof of Proposition 3.8. Let Spec.A/ 2 dAff and let xWSpec.A/!Cohext.X/ be a point.
We have to check that x�TCohext.X/ is perfect and in tor-amplitude Œ1 � n; 1�. Since the
map Cohext.X/! Perf ext.X/ is formally étale, we can use Proposition 3.2 to compute
the cotangent complex, and hence the tangent one. Let

F1 ! F2 ! F3

be the fiber sequence in Perf.X � Spec.A// corresponding to the point x. Let
pWX � Spec.A/! Spec.A/ be the canonical projection. Using Remark 3.3 we see that
x�TCohext.X/ fits in the pullback diagram

x�TCohext.X/ p�.F
_
2 ˝ F2/Œ1�

p�.F
_
1 ˝ F1/Œ1� p�.F

_
1 ˝ F2/Œ1�

Since X is smooth and proper, p� preserves perfect complexes. Therefore, x�TCohext.X/

is perfect.
In order to check that it has tor-amplitude within Œ1 � n; 1�, it is sufficient to check

that its pullback to Spec.�0.A// has tor-amplitude within Œ1 � n; 1�. In other words, we
can suppose from the very beginning that A is discrete. In this case, F1, F2 and F3 are
discrete as well and the map F1 ! F2 is a monomorphism. Since X is an n-dimensional
scheme, the functor p� has cohomological dimension n. It is therefore sufficient to check
that ��n.x�TCohext.X// D 0. We have a long exact sequence

Extnp.F1;F1/˚ Extnp.F2;F2/! Extnp.F1;F2/

! ��n.x
�TCohext.X//! ExtnC1p .F1;F1/˚ ExtnC1p .F2;F2/:

By using Grothendieck–Serre duality (as in the second part of the proof of Corol-
lary 2.26), one can show that

ExtnC1p .F1;F1/ D 0 and ExtnC1p .F2;F2/ D 0:
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We are thus left to check that the map

Extnp.F1;F1/˚ Extnp.F2;F2/! Extnp.F1;F2/

is surjective. It is enough to prove that

Extnp.F2;F2/! Extnp.F1;F2/

is surjective. We have a long exact sequence

Extnp.F2;F2/! Extnp.F1;F2/! ExtnC1p .F3;F2/:

The same argument as above shows that ExtnC1p .F3; F2/ D 0. The proof is therefore
complete.

Proposition 3.10. Let X be a smooth and proper complex scheme of dimension n. Then
the relative cotangent complex of the map

ev3 � ev1WCohext.X/! Coh.X/ � Coh.X/ (3.4)

is perfect and has tor-amplitude within Œ�1; n � 1�. In particular, it is smooth when X is
a curve and derived lci when X is a surface.

Remark 3.11. When X is a curve, Corollary 2.26 and Proposition 3.8 imply that
Cohext.X/ and Coh.X/ are smooth. This immediately implies that ev3 � ev1 is derived
lci, hence the above corollary improves this result.

Proof of Proposition 3.10. Let S 2 dAff and let xWS ! Perf ext.X/ be a point classifying
a fiber sequence

F1 ! F2 ! F3

in Perf.X � S/. If F1 and F3 have tor-amplitude � 0 relative to S , then so does F2. This
implies that the diagram

Cohext.X/ Perf ext.X/

Coh.X/ � Coh.X/ Perf.X/ � Perf.X/

ev3�ev1 ev3�ev1

is a pullback square. Smooth and proper schemes are categorically proper and have finite
local tor-amplitude [50, Example 2.3.1]. Therefore the assumptions of Proposition 3.6
are satisfied. Since the horizontal maps in the above diagram are formally étale, we can
use Corollary 3.7 to compute the relative cotangent complex of the morphism (3.4). This
immediately implies that this relative cotangent complex is perfect, and we are left to
prove that it has tor-amplitude within Œ�1;n� 1�. For this reason, it is enough to prove that
for any (underived) affine scheme S 2 Aff and any point xW S ! Cohext.X/, the perfect
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complex x�Lev3�ev1 has tor-amplitude within Œ�1; n � 1�. Let F1 ! F2 ! F3 be the
extension classified by x and let qS WY � S ! S be the canonical projection. Base change
for plus pushforward (see [50, Proposition 2.3.27 (2)]) reduces our task to computing the
tor-amplitude of

qSC.HomX�S .F3;F1/Œ�1�/ ' .qS�.HomX�S .F1;F3/Œ1�//
_:

Moreover, since S is arbitrary, it is enough to prove that

�i .qS�.HomX�S .F1;F3/Œ1�// ' 0

for i � 1 � n. However,

�i .qS�.HomX�S .F1;F3/Œ1�// ' Ext�iC1q .F1;F3/:

Since S is underived, F1 and F3 belong to QCoh~.X � S/. Since X has dimension n, it
follows that Extjq.F1;F3/ ' 0 for j > n. The conclusion follows.

Corollary 3.12. LetX be a smooth and proper complex scheme of dimension n. Then the
relative cotangent complex of the map

ev3 � ev1WBunext.X/! Bun.X/ � Bun.X/

is perfect and has tor-amplitude within Œ�1; n � 1�.

Proof. The assertion follows by noticing that the diagram

Bunext.X/ Cohext.X/

Bun.X/ � Bun.X/ Coh.X/ � Coh.X/

ev3�ev1 ev3�ev1

is a pullback square.

3.4. Extensions of coherent sheaves on Simpson’s shapes

In this section, we carry out an analysis similar to the one of the previous section in the
case where Y is one of Simpson’s shapes XB; XdR, and XDol, where X is a smooth and
proper scheme.

3.4.1. Betti shape. Let K be a finite connected space. By [50, Proposition 3.1.1 (4)], KB

is categorically proper and it has finite local tor-amplitude. In addition, by [50, Propos-
ition 3.1.1 (3)], the map Spec.C/ ' �B ! XB is an effective epimorphism. Thus, the
assumptions of Corollary 3.7 are satisfied. Therefore, the relative cotangent complex of
the map

ev3 � ev1WCohext.KB/! Coh.KB/ � Coh.KB/ (3.5)
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at a point S ! Cohext.KB/ classifying an extension F1 ! F ! F2 in Perf.KB � S/ is
computed by the pullback along the projection S �Coh.KB/�Coh.KB/ Cohext.KB/! S of

qSC.HomKB�S .F2;F1/Œ�1�/:

Here qS WKB � S ! S is the natural projection. In particular, we obtain:

Proposition 3.13. Suppose that KB has cohomological dimension � m. The relative
cotangent complex of the map (3.5) has tor-amplitude within Œ�1; m � 1�. Furthermore,
if K is the space underlying a complex scheme X of complex dimension n, then we can
take m D 2n.

Proof. It is enough to prove that for every unaffine derived scheme S 2 Aff and every point
xWS !Cohext.KB; u/ classifying an extension F1! F ! F2 in Perf.KB � S/ of perfect
complexes of tor-amplitude � 0 relative to S , the complex qSC.HomKB�S .F2;F1/Œ�1�/

has cohomological amplitude within Œ�1; m � 1�. Unraveling the definitions, this is
equivalent to checking that the complex qS�.HomKB�S .F1; F2// has cohomological
amplitude within Œ�m; 0�. The latter follows from the assumption on the cohomological
dimension of KB and from Lemma 2.35.

Now let X be a smooth and proper complex scheme. Define the stacks

Cohext
B .X/ WD Cohext.X

top
B / and Bunext

B .X/ WD Bunext.X
top
B /:

These stacks are geometric and locally of finite presentation since the stacks Perf ext.X
top
B /

and Perf�
1��1.X

top
B / are so. By using similar arguments as in the proof of Proposi-

tion 3.8, we find that the cotangent complex LCohext
B .X/

is perfect and has tor-amplitude
within Œ�1; 2n � 1�. Finally, by Lemma 2.35 we get Cohext

B .X/ ' Bunext
B .X/.

Corollary 3.14. If X is a smooth projective complex curve and K WD X top, then the map
(3.5) is derived locally complete intersection.

3.4.2. De Rham shape. Let X be a smooth and proper complex scheme of dimension n.
First note that, by [50, Proposition 4.1.1 (6)], XdR is categorically proper and it has
finite local tor-amplitude. Moreover, by [50, Proposition 4.1.1 (3)], the canonical map
�X WX ! XdR is an effective epimorphism.

Define the stacks

Cohext
dR.X/ WD Cohext.XdR/ and Bunext

dR.X/ WD Bunext.XdR/:

These stacks are geometric and locally of finite presentation since the stacks Perf ext.XdR/

and Perf�
1��1.XdR/ are so.

Since XdR satisfies the assumptions of Proposition 3.2, by using similar arguments as
in the proof of Proposition 3.8, we get that the cotangent complex LCohext

dR.X/
is perfect

and has tor-amplitude within Œ�1; 2n � 1�. Finally, by Lemma 2.38 we get Cohext
dR.X/ '

Bunext
dR.X/.
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As in the case of the Betti shape, we deduce that the relative cotangent complex of the
map

ev3 � ev1WCohext
dR.X/! CohdR.X/ � CohdR.X/ (3.6)

at a point xWS ! Cohext.XdR/ classifying an extension F1! F ! F2 in Perf.XdR � S/

is computed by the pullback along the projection S �CohdR.X/�CohdR.X/ Cohext
dR.X/! S

of

qSC.HomXdR�S .F2;F1/Œ�1�/:

Here qS WXdR � S ! S is the natural projection. In particular, we obtain

Proposition 3.15. Suppose that X is connected and of dimension n. Then the relative
cotangent complex of the map (3.6) has tor-amplitude within Œ�1; 2n � 1�.

Proof. It is enough to prove that for every unaffine derived scheme S 2 Aff and every point
xWS ! Cohext

dR.X/ classifying an extension F1 ! F ! F2 in PerfdR.X � S/ of perfect
complexes of tor-amplitude � 0 relative to S , the complex qSC.HomXdR�S .F2;F1/Œ�1�/

has cohomological amplitude within Œ�1; 2n� 1�. Unraveling the definitions, this is equi-
valent to qS�.HomXdR�S .F1;F2// having cohomological amplitude within Œ�2n; 0�. In
other words, we have to check that

ExtiXdR�S
.F1;F2/ D 0

for i > 2n. This follows from [23, Theorem 2.6.11] and [3, §11].

Corollary 3.16. If X is a smooth projective complex curve, then the map (3.6) is derived
locally complete intersection.

3.4.3. Dolbeault shape. Let X be a smooth and proper complex scheme. By [50, Lem-
mas 5.3.2 and 5.3.3], XDol and Xnil

Dol are categorically proper and they have finite local
tor-amplitude. Moreover, by [50, Lemma 5.3.1], the canonical maps �X WX ! XDol and
�nil
X WX ! Xnil

Dol are effective epimorphisms.
Define the stacks

Cohext
Dol.X/ WD Cohext.XDol/; Bunext

Dol.X/ WD Bunext.XDol/;

Cohnil; ext
Dol .X/ WD Cohext.Xnil

Dol/; Bunnil; ext
Dol .X/ WD Bunext.Xnil

Dol/:

These stacks are geometric and locally of finite presentation since Perf ext.XDol/,
Perf�

1��1.XDol/ and Perf ext.Xnil
Dol/, Perf�

1��1.Xnil
Dol/ are so.

Since XDol and Xnil
Dol satisfy the assumptions of Proposition 3.2, by using similar argu-

ments as in the proof of Proposition 3.8 we get that the cotangent complexes LCohext
Dol.X/

and LCohnil; ext
Dol .X/ are perfect and have tor-amplitude within Œ�1; 2n � 1�.
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As in the case of the Betti and de Rham shapes, we thus deduce that the relative
cotangent complex of the map

ev3 � ev1WCohext
Dol.X/! CohDol.X/ � CohDol.X/ (3.7)

at a point xWS ! Cohext
Dol.X/ classifying an extension F1 ! F ! F2 in Perf.XDol � S/

is computed by the pullback along the projection S �CohDol.X/�CohDol.X/ Cohext
Dol.X/! S

of

qSC.HomXDol�S .F2;F1/Œ�1�/:

Here qS WXDol � S ! S is the natural projection. In particular, we obtain

Proposition 3.17. Suppose that X is connected and of dimension n. Then the relative
cotangent complex of the map (3.7) has tor-amplitude within Œ�1; 2n � 1�.

Proof. It is enough to check that for every unaffine derived scheme S 2 Aff and every point
xWS ! Cohext

Dol.X/ classifying an extension F1 ! F ! F2 in Perf.XDol � S/ of perfect
complexes of tor-amplitude� 0 relative to S , the complex qSC.HomXDol�S .F2;F1/Œ�1�/

has cohomological amplitude within Œ�1; 2n� 1�. Unraveling the definitions, this is equi-
valent to checking that the complex qS�HomXDol�S .F1;F2/ has cohomological amplitude
within Œ�2n; 0�. In other words, we have to check that

ExtiXDol�S
.F1;F2/ D 0

for i > 2n. This follows from the BNR correspondence [72, Lemma 6.8] (cf. also [16, §4]
and [60, §2.3]).

Corollary 3.18. If X is a smooth projective complex curve, then the map (3.7) is derived
locally complete intersection.

4. Two-dimensional categorified Hall algebras

4.1. Convolution algebra structure for the stack of perfect complexes

Most of the results in this section are due to T. Dyckerhoff and M. Kapranov [11]. For the
convenience of the reader we briefly recall their constructions.

Let

T WD Hom�.Œ1�;�/W�! Cat1;

where � is the simplicial category. We write Tn instead of T.Œn�/. Given any C-linear
stable1-category C , we let

��C W�
op
! Cat1

be the subfunctor of Fun.T .�/;C/ that sends Œn� to the full subcategory �nC of CTn WD

Fun.Tn;C/ spanned by those functors F WTn! C satisfying the following two conditions:
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(1) F.i; i/ ' 0 for every 0 � i � n;

(2) for every 0 � i; j � n � 1, i � j � 1, the square

F.i; j / F.i C 1; j /

F.i; j C 1/ F.i C 1; j C 1/

is a pullback in C .

We refer to ��C as the 1-categorical Waldhausen construction on C . It follows from
[11, Theorem 7.3.3] that ��C is a 2-Segal object in Cat1. Consider the functor

dAffop
��op

! Cat1

defined by sending .Spec.A/; Œn�/ to �nAPerf.A/. We denote by

��APerfW�op
! Fun.dAffop;Cat1/

the corresponding functor. Since limits are computed objectwise in Fun.dAffop; Cat1/,
we see that ��APerf is a 2-Segal object in Fun.dAffop;Cat1/. The maximal1-groupoid
functor .�/'WCat1 ! S is a right adjoint, and in particular it commutes with limits. We
let

��APerfW�op
! dSt

be the functor obtained by ��APerf by applying the maximal 1-groupoid functor. The
above considerations show that ��APerf is a 2-Segal object in dSt.

Let now X be a derived stack. The functor Map.X;�/W dSt! dSt commutes with
limits, and therefore the simplicial derived stack

��APerf.X/ WDMap.X; ��APerf/

is again a 2-Segal object in dSt. The same construction can be performed using Perf
instead of APerf: thus we obtain 2-Segal objects ��Perf and ��Perf.X/ in dSt.

As in Section 3, we extract a full substack of coherent sheaves as follows. For every
n � 0, let N WD n.nC 1/=2. Evaluation at .i; j / 2 Tn induces a well defined map
�nAPerf.X/! APerf.X/N . We define �nCoh.X/ by the fiber product

�nCoh.X/ �nAPerf.X/

Coh.X/N APerf.X/N

Notice that for n D 2 this construction yields a canonical identification �2Coh.X/ '
Cohext.X/. We will prove

Lemma 4.1. The simplicial object ��Coh.X/ is a 2-Segal object.
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Proof. Using [11, Proposition 2.3.2 (3)], it remains to check that for every n � 3 and
every 0 � i < j � n, the natural morphism

�nCoh.X/! Sn�jCiC1Coh.X/ �S1Coh.X/ Sj�iCoh.X/

is an equivalence. Here the morphism is induced by the maps Œn � j C i C 1�! Œn� and
Œj � i �! Œn� corresponding to the inclusions

¹0; 1; : : : ; i; j; j C 1; : : : ; nº � ¹0; : : : ; nº and ¹i; i C 1; : : : ; j º � ¹0; : : : ; nº:

We have the following commutative diagram:

�nCoh.X/ Sn�jCiC1Coh.X/ �S1Coh.X/ Sj�iCoh.X/

�nAPerf.X/ Sn�jCiC1APerf.X/ �S1APerf.X/ Sj�iAPerf.X/

The bottom horizontal map is an equivalence. After evaluating on S 2 dAff, we see that the
vertical maps are induced by fully faithful functors. It is therefore enough to check that
the top horizontal functor is essentially surjective. Unraveling the definitions, we have
to check the following condition. Let F W Tn ! APerf.X � S/ be a semigrid of length n
and write Fa;b for the image of .a; b/ 2 Tn. Then if Fa;b 2 CohS .X � S/ for a; b 2
¹0; 1; : : : ; i; j; j C 1; : : : ; nº or for a; b 2 ¹i; i C 1; : : : ; j º, then Fa;b 2 CohS .X � S/ for
all a;b. A simple induction argument reduces our task to proving the following statement:
Suppose that

G0 G1

G2 G3

is a pullback square in Perf.X � S/. Assume that G0, G2 and G3 belong to CohS .X � S/.
Then G1 belongs to CohS .X �S/ as well. Since G0 and G3 have tor-amplitude� 0 relative
to S , we see that, locally on X , for every G 2 Coh~.S/ one has

�k.p�.G1 ˚ G2/˝ G / ' 0

for k � 1, where pWX � S ! S is the canonical projection. However, �k.p�.G2/˝ G /

' 0 because G2 has tor-amplitude � 0 relative to S . Therefore �k.p�.G1/˝ G / ' 0 as
well. The proof is therefore complete.

Recall now from [11, Theorem 11.1.6] that if T is a presentable 1-category then
there is a canonical functor

2-Seg.T /! AlgE1.Corr�.T //:

Here Corr�.T / denotes the .1; 2/-category of correspondences equipped with the sym-
metric monoidal structure induced from the cartesian structure on T . See [12, §7.2.1 &
§9.2.1]. As E1-monoid objects in correspondences play a significant role for us, we intro-
duce the following terminology:
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Definition 4.2. Let T be an1-category with finite products. We define the1-category
of E1-monoid objects in T as the1-category AlgE1.Corr�.T //.

Taking T D dSt, we therefore obtain the following result:

Proposition 4.3. Let X 2 dSt be a derived stack. The 2-Segal object ��APerf.X/ .resp.
��Perf.X/, ��Coh.X// endows APerf.X/ .resp. Perf.X/, Coh.X// with the structure
of an E1-monoid object in dSt.

We conclude this section with an analysis of the geometricity of �nCoh.X/. First, we
observe that �nPerf canonically coincides with Toën–Vaquié’s moduli of objects,

�nPerf 'M�nPerf:

To show that �nPerf is locally geometric and locally of finite presentation, we use the
following two lemmas.

We will make use of the following notation: if C is an 1-category, C! denotes the
full subcategory spanned by compact objects of C .

Lemma 4.4. Let C 2 PrL;!
C be a compactly generated C-linear stable 1-category and

let I be a finite category. Then:

(1) The canonical map Ind.Fun.I;C!//! Fun.I;C/ is an equivalence.25

(2) Assume furthermore that the idempotent completion of I is finite. If C is of finite type
.resp. proper/, then so is Fun.I;C/.

Proof. The canonical functor

Fun.I;C!/! Fun.I;C/

is fully faithful. [32, Proposition 5.3.4.13] shows that it lands in the full subcategory
Fun.I; C/! of Fun.I; C/ spanned by compact objects. Therefore, [32, Proposi-
tion 5.3.5.11 (1)] shows that the induced map Ind.Fun.I; C!// ! Fun.I; C/ is fully
faithful. We now observe that compact objects in Fun.I; C/ coincide with Fun.I; C!/.
We already saw one inclusion. For the converse, for every i 2 I consider the functor
given by evaluation at i ,

evi W Fun.I;C/! C :

Since C is presentable, we see that both left and right Kan extensions along ¹iº ,! I exist,
providing a left adjoint Li and a right adjoint Ri to evi . Moreover, since I is finite, the
functorRi is computed by a finite limit, and thereforeRi commutes with filtered colimits.
Equivalently, evi preserves compact objects. This implies that every object in Fun.I;C/!

25When I is a finite poset, this is a consequence of [32, Proposition 5.3.5.15]. Notice that Warn-
ing 5.3.5.16 there does not apply because for us I is a category, and not an arbitrary simplicial
set.
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takes values in C! . To complete the proof of statement (1), it is enough to prove that
Fun.I;C/ is compactly generated. Let F 2 Fun.I;C/ be a functor. Our goal is to prove
that the canonical map

colim
G2Fun.I;C/!

=F

G ! F

is an equivalence. Since the functors evi are jointly conservative and they commute with
colimits, it is enough to check that for every i 2 I the induced map

colim
G2Fun.I;C/!

=F

G.i/! F.i/

is an equivalence. We can factor this map as

colim
G2Fun.I;C/!

=F

G.i/! colim
X2C!

=F.i/

X ! F.i/:

Since C is compactly generated, the second map is an equivalence. Therefore, it is enough
to prove that the functor

evi W Fun.I;C/!=F ! C!=F .i/

is cofinal. Let ˛WX ! F.i/ be a morphism with X 2 C! . We will prove that the 1-
category

E WD Fun.I;C/!=F �C!
=F.i/

.C!=F .i//˛=

is filtered, hence contractible. Let J be a finite category and let AW J ! E be a diagram.
For every j 2 J , we get a map

X ! Aj .i/! F.i/:

Since Li a evi , we see that A induces a diagram

zAWJ ! Fun.I;C/!Li .X/==F :

Let xAWJ F ! Fun.I;C/Li .X/==F be the colimit extension of zA. Since evi commutes with
filtered colimits, Li commutes with compact objects, hence Li .X/ is a compact object.
Since J is a finite category and since compact objects are closed under finite colimits, we
deduce that xA factors through Fun.I;C/!

Li .X/==F
. Applying evi , we obtain the required

extension J F ! E of A. The proof of (1) is therefore complete.
To prove (2), we first observe that

Fun.I;C/ ' FunR.PSh.I /op;C/ ' PSh.I /˝ C ;

where the last equivalence follows from [35, Proposition 4.8.1.17]. We can further rewrite
it as

PSh.I /˝ C ' .PSh.I /˝C-Mod/˝C-Mod C ' Fun.I;C-Mod/˝C-Mod C :
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It is therefore enough to prove that Fun.I;C-Mod/ is smooth and proper. Observe that the
collection of objects ¹Li .C/ºi2I of Fun.I;C-Mod/ are compact objects and they generate
the category, because the evaluation functors evi are jointly conservative. Since I is a
finite category, the object

E WD
M
i2I

Li .C/

is a single compact generator for Fun.I;C-Mod/. Moreover, the end formula for the map-
ping spaces in Fun.I;C-Mod/ shows that for F;G 2 Fun.I;C-Mod/! ' Fun.I;Perf.C//,
Map.F;G/ is perfect. In other words, Fun.I;C-Mod/ is proper. To prove that it is smooth
as well, it is enough to check that it is of finite type [79, Proposition 2.14]. Combining
Lemma 2.11 and Corollary 2.12 in loc. cit., it suffices to show that it is a compact object
in PrL;!

C . Let ¹D˛º be a filtered diagram in PrL;!
C and let

D WD colim
˛

D˛:

We have

MapPrL;!C

�
Fun.I;C-Mod/; colim

˛
D˛

�
' MapPrL;!

�
PSh.I /; colim

˛
D˛

�
' MapCat1

�
PSh.I /! ; colim

˛
D!
˛

�
:

Now, PSh.I /! is the idempotent completion of I , which is finite by assumption. There-
fore, it is a compact object in Cat1, and we can rewrite the above expression as

MapPrL;!C

�
Fun.I;C-Mod/; colim

˛
D˛

�
' colim

˛
MapCat1.I;D

!
˛ /

' colim
˛

MapPrL;!C
.Fun.I;C-Mod/;D˛/:

This shows that Fun.I;C-Mod/ is compact, and the proof is complete.

Lemma 4.5. Let C be a C-linear stable k-linear1-category. If C is of finite type .resp.
proper/ then �nC is of finite type .resp. proper/.

Proof. There is a natural inclusion �n�1 ,! Tn, sending Œi � to the map .0; i C 1/W

�1 ! �n. Left Kan extension along this map provides a canonical map

Fun.�n�1;C/! Fun.Tn;C/;

which factors through �nC . Proceeding by induction on n and applying [32, Proposi-
tion 4.3.2.15] we see that the induced functor

Fun.�n�1;C/! �nC

is an equivalence. Since �n�1 is idempotent complete and finite, the conclusion follows
from Lemma 4.4.
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Corollary 4.6. Let X be a derived stack and assume that

(1) there exists a flat effective epimorphism uWU ! X , where U is a smooth geometric
stack;

(2) the derived stack Perf.X/ is locally geometric and locally of finite presentation.

Then for every n � 0, the derived stack �nCoh.X/ is geometric and locally of finite
presentation.

4.2. Categorified Hall algebras

Having the 2-Segal object ��Coh.X/ at our disposal, we now explain how to extract a
categorified Hall algebra out of it. As a first step, we endow

QCoh.Coh.X//

with the structure of an E1-monoid object. The main technical idea involved is the univer-
sal property of the .1; 2/-category of correspondences proved in [12, Theorem 7.3.2.2]
and [39, Theorem 4.4.6], which we will use below.

Since we are mostly interested in obtaining a convolution algebra structure on the G-
theory spectrum of Coh.X/, we need to replace QCoh with Cohb. As the stack Coh.X/
is typically not quasi-compact, it is important for us to work within the framework of
Appendix A and to take some extra care in correctly defining the category of sheaves
Cohb.Coh.X//.

Let Corr�.dSchqcqs/ be the symmetric monoidal .1; 2/-category of correspondences
on quasi-compact and quasi-separated derived schemes. Combining [78, Proposition 1.4]
with [12, Theorem 7.3.2.2] we obtain a functor

QCohWCorr.dSchqcqs/! Catst
1:

Using [39, Theorem 4.4.6], we see that the above functor can be upgraded to a symmetric
monoidal functor

QCohWCorr�.dSchqcqs/! Catst
1:

Finally, using [12, Proposition 9.2.3.4] we can extend this to a right-lax symmetric mon-
oidal functor

QCohWCorr�.dGeom/rep;all ! Catst
1;

where Corr�.dGeom/rep;all is the full subcategory of Corr�.dGeom/ where vertical mor-
phisms are representable by derived schemes. Informally speaking, we can describe this
functor as follows:

� it sends a derived geometric stack F 2 Corr�.dGeom/ to QCoh.F /;
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� it sends a 1-morphism

X0 Y

X1

p

q

to the composition

QCoh.X0/
p�

��! QCoh.Y /
q�
�! QCoh.X1/I

� the right-lax symmetric monoidal structure is given by

�WQCoh.Z/˝ QCoh.Y /! QCoh.Z � Y /:

Denoting by prZ WZ � Y ! Z and prY WZ � Y ! Y the two natural projections we have

F � G WD pr�ZF ˝OZ�Y pr�Y G :

Let X be a derived stack. As shown in Proposition 4.3, the stack Coh.X/ defines
an E1-monoid object in Corr�.dSt/, the monoidal structure being canonically encoded in
the 2-Segal object ��Coh.X/. In the main examples considered in this paper, Coh.X/ is
furthermore geometric: see Propositions 2.24, 2.33, 2.39, and 2.40. In this case, we can
apply QCoh and obtain a stably monoidal1-category

QCoh.Coh.X// 2 AlgE1.Catst
1/: (4.1)

Now, we would like to define an E1-monoidal structure on Cohb.Coh.X//. This will
be achieved by restricting the functor QCoh to a right-lax monoidal functor Cohb from
the category of correspondences. As said before, since Coh.X/ is typically not quasi-
compact, we need to work in the framework developed in Appendix A.

In Corollary A.2 we construct a fully faithful and limit-preserving embedding

.�/indW dGeom! Ind.dGeomqc/:

Since .�/ind commutes with limits, we see that the simplicial object

.��Coh.X//ind 2 Fun.�op; Ind.dGeomqc//

is a 2-Segal object, and therefore defines an E1-monoidal structure on Coh.X/ind in
Corr�.Ind.dGeomqc//. When the context is clear, we drop the subscript .�/ind in the above
expression.

On the other hand, Corollary A.14 provides a right-lax symmetric monoidal functor

QCohproWCorr�.Ind.dGeomqc//rps;all ! Pro.Catst
1/:

In particular, we obtain a refinement of (4.1), i.e., the stable pro-category

“lim”
UbCoh.X/

QCoh.U / 2 Pro.Catst
1/
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acquires a canonical E1-monoidal structure. The colimit is taken over all quasi-compact
open substacks of Coh.X/ (but an easy cofinality argument shows that one can also
employ a chosen quasi-compact exhaustion of Coh.X/).

Now, we see how to replace QCoh by Cohb.

Definition 4.7. A morphism f WX! Y in Ind.dGeomqc/ is said to be ind-derived lci if for
every Z 2 dGeomqc and any morphism Z! Y , the pullback X �Y Z is a quasi-compact
derived geometric stack and the map X �Y Z ! Z is derived lci.

Lemma 4.8. Let f WX ! Y 2 dGeom be a quasi-compact derived lci morphism. Then
the induced morphism

findWXind ! Yind

is ind-derived lci.

Proof. Using Lemma A.1 (1) we can choose an open Zariski exhaustion

; D U0 ,! U1 ,! � � � ,! U˛ ,! U˛C1 ,! � � �

of Y , where each U˛ is a quasi-compact derived geometric stack. Set

V˛ WD U˛ �Y X:

Since f is quasi-compact, the V˛ are quasi-compact derived stacks and they form an
open Zariski exhaustion of X . Let f˛W V˛ ! U˛ be the induced morphism, which is lci.
Therefore, Lemma A.1 (3) implies that

Xind ' “colim”V˛ and Yind ' “colim”U˛;

and find ' “colim” f˛ . Let Z 2 dGeomqc be a quasi-compact derived geometric stack
and let gWZ ! Y be a morphism. Using Lemma A.1 (2), we find an index ˛ such that g
factors through U˛ . In particular, the pullback Z �Y X fits in the following ladder:

Z �Y X V˛ X

Z U˛ Y
g˛

Since the morphism V˛ ! U˛ is quasi-compact and derived lci, so isZ �Y X ! Z. This
completes the proof.

Consider now the subcategory Corr�.Ind.dGeomqc//rps;lci of Corr�.Ind.dGeomqc//rep;all

where the horizontal arrows are taken to be ind-derived lci morphisms and the vertical
arrows to be morphisms representable by proper schemes. Consider the restriction of
QCoh to this subcategory:

QCohproWCorr�.Ind.dGeomqc//rps;lci ! Pro.Catst
1/:
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Let f WX! Y be a morphism in Ind.dGeomqc/which is representable by proper schemes.
Using Lemma A.1 (1), we can choose an open Zariski exhaustion

; D U0 ,! U1 ,! � � � ,! U˛ ,! U˛C1 ,! � � �

of Y , where each U˛ is a quasi-compact derived stack. Let V˛ WD U˛ �Y X and let
f˛W V˛ ! U˛ be the induced morphism. Since f is representable by proper schemes,
V˛ is again quasi-compact and therefore we obtain a compatible open Zariski exhaus-
tion of X . Thanks to derived base change, we can therefore compute the pushforward in
Pro.Catst

1/ by

f� WD “lim”
˛

f˛�W “lim”
˛

QCoh.V˛/! “lim”
˛

QCoh.U˛/:

Since each f˛ is representable by proper schemes, this functor restricts to a morphism

f�W “lim”
˛

Cohb.V˛/! “lim”
˛

Cohb.U˛/:

Using [78, Lemma 2.2], we similarly deduce that if f W X ! Y is a morphism in
Ind.dGeomqc/ which is ind-derived lci, then the pullback functor restricts to a morphism

f �W “lim”
˛

Cohb.U˛/! “lim”
˛

Cohb.V˛/:

This implies that QCohpro admits a right-lax monoidal subfunctor

Cohb
proWCorr�.Ind.dGeomqc//rps;lci ! Pro.Catst

1/:

Applying the tor-amplitude estimates obtained in §3, we obtain the following result:

Theorem 4.9. Let X be one of the following derived stacks:

(1) a smooth proper complex scheme of dimension either 1 or 2;

(2) the Betti, de Rham or Dolbeault stack of a smooth projective curve.

Then the composition

Cohb
pro.Coh.X// � Cohb

pro.Coh.X//
�
�! Cohb

pro.Coh.X/ � Coh.X//
q�ıp

�

����! Cohb
pro.Coh.X//;

where the map on the right-hand side is induced by the 1-morphism in correspondences

Cohext.X/

Coh.X/ � Coh.X/ Coh.X/

qp (4.2)

endows Cohb
pro.Coh.X// with the structure of an E1-monoidal stable1-pro-category.

Proof. By Proposition 4.3 we know that ��Coh.X/ is a 2-Segal object in dSt. Using
Corollary A.2, we see that .��Coh.X//ind is a 2-Segal object in Corr�.dSt/, and therefore
it defines an E1-monoid object in Corr�.Ind.dGeomqc//. Proposition 3.6 shows that the
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map p is quasi-compact. On the other hand, Proposition 3.10 shows that p is lci when
X is a smooth and proper complex scheme of dimension 1 or 2, while Corollaries 3.14,
3.16 and 3.18 show that the same is true when X is the Betti, de Rham or Dolbeault stack
of a smooth projective curve. Therefore, Lemma 4.8 shows that in all these cases pind is
ind-derived lci. Moreover, the morphism q is representable by proper schemes: indeed,
one can show that q is representable by Quot schemes26 and it is known that these are
proper schemes. The 2-Segal condition therefore guarantees that .��Coh.X//ind endows
Coh.X/ind with the structure of an E1-monoid object in Corr�.Ind.dGeomqc//rps;lci.
Applying the right-lax monoidal functor Cohb

proWCorr�.Ind.dGeomqc//rps;lci! Pro.Catst
1/,

we conclude that Cohb
pro.Coh.X// inherits the structure of an E1-monoid object in

Pro.Catst
1/.

Since E1-monoid objects in Pro.Catst
1/ are (by definition) the same as E1-monoidal

categories in Pro.Catst
1/, we refer to the corresponding tensor structure as the CoHA

tensor structure on Cohb
pro.Coh.X//. We denote this monoidal structure by? .

Remark 4.10. Let X be a smooth projective complex scheme of dimension either 1
or 2. Then the moduli stacks introduced in §2.3.2 are E1-monoid objects in
Corr�.Ind.dGeomqc//rps;lci. If X is quasi-projective, then Cohprop.X/ (resp. Coh�dprop.X/)
is an E1-monoid object in Corr�.Ind.dGeomqc//rps;lci (resp. for any integer d � dim.X/).

Similarly, for the Dolbeault shape, a statement similar to that of Theorem 4.9 holds
for all the moduli stacks introduced in §2.4.3.

4.3. The equivariant case

The main results of §4.1 and of §4.2 carry over without additional difficulties in the
equivariant setting. Let us sketch how to modify the key constructions.

LetX 2 dSt be a derived stack and letG 2Mongp
E1
.dSt�/ be a grouplike E1-monoid in

derived stacks acting on X . Typically, G will be an algebraic group. Since the monoidal
structure on dSt is cartesian, we can use [35, Proposition 4.2.2.9] to reformulate the datum
of the G-action on X as a diagram

AG;X W�
op
��1 ! dSt

satisfying the relative 1-Segal condition. Informally speaking, AG;X is the diagram

� � � G2 �X G �X X

� � � G2 G Spec.k/

26In the de Rham and Dolbeault cases, one has to consider Quot schemes of ƒ-modules à la
Simpson; cf. [71, proof of Theorem 3.8]. To show the properness of q in the Betti case, one can
either use the global quotient description of the Betti moduli stack, e.g. in [47, §1.2], or apply
the derived Riemann–Hilbert correspondence of [49] and use the invariance of properness under
analytification.
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which encodes at the same time the E1-structure on G and the action on X . We denote
the geometric realization of the top simplicial object by ŒX=G�, while it is customary to
denote the geometric realization of the bottom one by BG.

We now define

��PerfG.X/W�op
! dSt=BG

by setting

��PerfG.X/ WDMap=BG.ŒX=G�; ��Perf � BG/:

We also write PerfG.X/ for �1PerfG.X/. Notice that

Spec.k/ �BG ��PerfG.X/ 'Map.X; ��Perf/:

We can therefore unpack the datum of the map ��PerfG.X/! BG by saying that G acts
canonically on ��Perf.X/. From this point of view, we have a canonical equivalence27

��PerfG.X/ ' Œ��Perf.X/=G�:

As an immediate consequence we find that

Cohb.PerfG.X// ' Cohb
G.Perf.X//:

The right-hand side is the G-equivariant stable 1-category of bounded coherent com-
plexes on Perf.X/. Since the functor

Map=BG.ŒX=G�; .�/ � BG/W dSt! dSt=BG

commutes with limits, we deduce

Proposition 4.11. The simplicial derived stack ��PerfG.X/W�op
! dSt=BG is a 2-Segal

object.

Assume now that G is geometric (e.g. an affine group scheme) and that there exists a
geometric derived stack U equipped with the action of G and a G-equivariant, flat effect-
ive epimorphism uWU !X . Then the induced morphism ŒU=G�! ŒX=G� is an effective
epimorphism which is flat relative to BG. We define ��CohG.X/ 2 Fun.�op; dSt=BG/ as
follows. Given an affine derived scheme S D Spec.A/ and a morphism xWS ! BG, we
set

Map=BG.S; ��CohG.X// WD .��CohS .S �BG ŒX=G�//
'
2 Fun.�op; S/:

We immediately obtain

Corollary 4.12. Let X be a geometric derived stack. Then the simplicial derived stack
��CohG.X/W�op

! dSt=BG is a 2-Segal object.

27This is nothing but a very special case of the descent for 1-topoi; see [32, Theorem 6.1.3.9
and Proposition 6.1.3.10].
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The above 2-Segal object endows Coh.X/ with the structure of a G-equivariant E1-
convolution algebra in dSt.

Corollary 4.13. Let X 2 dSt be a derived stack and let uWU ! X be a flat effective epi-
morphism from a geometric derived stack U . Assume that the 2-Segal object ��Coh.X/
endows Coh.X/ with the structure of an E1-monoid object in Corr�.dSt/rps;lci. Let G be a
smooth algebraic group acting on both U and X , and assume that u has a G-equivariant
structure. Then the G-equivariant 2-Segal object ��CohG.X/ induces an E1-monoidal
structure on Cohb

pro.CohG.X// ' Cohb
pro;G.Coh.X//.

Proof. Similarly to the proof of Theorem 4.9, all we need to check is that the map

ev3 � ev1WCohext
G .X/! CohG.X/ � CohG.X/

is quasi-compact and derived lci and that the map

ev2WCohext
G .X/! CohG.X/

is representable by proper schemes. Observe that for i D 1; 2; 3 the right and the outer
squares in the commutative diagram

Cohext.X/ Coh.X/ Spec.k/

Cohext
G .X/ CohG.X/ BG

evi

evi

are pullback squares. Therefore so is the left one. The conclusion now follows because
Spec.k/! BG is a smooth atlas and from the analogous statements for Coh.X/, which
have been proven in the proof of Theorem 4.9.

5. Decategorification

Now, we investigate what happens to our construction when we decategorify, i.e., when
we pass to the G-theory (introduced in §A.2). A first consequence of our Theorem 4.9 is
the following:

Proposition 5.1. Let Y be one of the following derived stacks:

(1) a smooth proper complex scheme of dimension either 1 or 2;

(2) the Betti, de Rham or Dolbeault stack of a smooth projective curve.

The CoHA tensor structure on Cohb
pro.Coh.Y // endows G.Coh.Y // with the structure of

an E1-monoid object in Sp.

Remark 5.2. Up to our knowledge, the above result provides the first construction of a
Hall algebra structure on the full G-theory spectrum of Coh.Y /. Furthermore, the above
results hold also for the stack Coh�dprop.S/, where S is a smooth (quasi-)projective complex
surface and 0 � d � 2 is an integer.
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Taking �0 ofG.Coh.Y //, we obtain an associative algebra structure onG0.Coh.Y //.
When Y is the de Rham shape of a curve, this is a K-theoretical Hall algebra associated to
flat vector bundles on the curve, and it has not been previously considered in the literature.
On the other hand, in [25, 85] and in [60] the authors considered the cases of Y being
a surface or the Dolbeault shape of a curve, respectively. Below, we briefly review the
construction in [25] and prove that the two algebra structures on G0.Coh.Y // obtained
using our method or theirs agree.

Let S be a smooth (quasi-)projective complex surface and let 0 � d � 2 be an integer.
To lighten the notation, write

Y WD Coh�dprop.S/; Y ext
WD Coh�d;ext

prop .S/;

Y0 WD Ycl ; Y ext
0 WD Ycl ext:

Proposition 3.6 implies that

Y ext
D SpecY�Y .SymOY�Y

.E_//;

where E 2 Perf.Y � Y / is a certain perfect complex on Y � Y . Let

i WY0 � Y0 ! Y � Y

be the natural inclusion and let E0 WD i
�.E/. SeteY ext

WD SpecY0�Y0.SymOY0�Y0
.E_0 //:

Consider the commutative diagram

Y ext
0

eY ext Y ext

Y0 � Y0 Y � Y

�

p0

j

zp p

i

The right square is a pullback, by construction. Therefore, the diagram

Cohb.eY ext/ Cohb.Y ext/

Cohb.Y0 � Y0/ Cohb.Y � Y /

j�

zp�

i�

p�

canonically commutes. Passing to G-theory, the functors i� and j� induce equivalences,
thereby identifying p� et zp�.

We now compare ��1� ı zp
�WG.Y0 � Y0/!G.Y ext

0 /with the construction of the virtual
pullback p0Š by Kapranov–Vasserot. In [25, §3.3], they take as additional input an explicit
resolution of E0 as a 3-term complex

E�0 WD � � � ! 0! E�10
d0

�! E00
d1

�! E10 ! 0! � � � :
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Let E�00 be the 2-term complex E�10 ! E00 and set

E�0 WD VY0�Y0..E
�0
0 /_/ and E1 WD VY0�Y0..E

1
0 /
_/:

The canonical projection � WE�0 ! Y0 � Y0 is smooth and the differential d1 induces a
section

sWE�0 ! ��E1 WD E1 �Y0�Y0 E
�0

such that

eY ext E�0

E�0 ��E1

t

t s

0

is a derived pullback square. Therefore, we can factor zpWeY ext ! Y0 � Y0 as

eY ext E�0

Y0 � Y0

t

zp
�

As in loc.cit. the operation pŠ0 is defined as the composition sŠ ı ��WG0.Y0 � Y0/ !
G0.Y

ext
0 /, to compare the two constructions it is enough to verify that

sŠ D ��1� ı t
�

as functionsG0.E�0/!G0.Y
ext
0 /. This follows at once by unraveling the definition of sŠ.

Thus our construction of the Hall product on G0.Y / ' G0.Y0/ coincides with theirs, and
we obtain

Theorem 5.3. Let S be a smooth .quasi-/projective complex surface and let 0 � d � 2
be an integer. There exists an algebra isomorphism between

�0.limK.Cohb
pro.Coh�dprop.S////

and the K-theoretical Hall algebra of S as defined in [25, 85]. Thus, the CoHA tensor
structure on the stable1-category Cohb

pro.Coh�d .S// is a categorification of the latter.
Finally, if in addition S is toric, similar results holds in the equivariant setting.

5.1. The equivariant case

Let Coh0.C2/ WD Coh�0prop.C
2/ be the geometric derived stack of zero-dimensional coher-

ent sheaves on C2. Note that the natural C� � C�-action on C2 lifts to an action on
Coh0.C2/.
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A convolution algebra structure on the Grothendieck group GC��C�
0 . Coh0.C2/cl /

of the truncation of Coh0.C2/ has been defined in [63, 65]. In those papers, the con-
volution product is defined by using an explicit presentation of Coh0.C2/cl as disjoint
union of quotient stacks. Moreover, as proved in those papers, the convolution algebra on
GC��C�
0 . Coh0.C2/cl / is isomorphic to a positive nilpotent part UCq;t . Rgl1/ of the elliptic

Hall algebra Uq;t . Rgl1/ of Burban and Schiffmann [4].
In [25, Proposition 6.1.5], the authors showed that the convolution product defined

by using virtual pullbacks coincides with the convolution product defined by using the
explicit description of Coh0.C2/cl in terms of quotient stacks. Thanks to this result
(which holds also equivariantly), by arguing as in the previous section, one can show
the following.

Proposition 5.4. There exists a ZŒq; t �-algebra isomorphism

�0K.Cohb
pro;C��C�.Coh0.C2/// ' UCq;t . Rgl1/:

Thus, .Cohb
pro;C��C�.Coh0.C2//;?/ is a categorification of UCq;t . Rgl1/. Here, Coh0.C2/

WD Coh�0prop.C
2/.

Let X be a smooth projective complex curve and let Higgsnaïf.X/ WD T�Œ0�Coh.X/
(see Remark 2.41). Recall that C� acts by “scaling the Higgs fields”.

The Grothendieck group GC�
0 . Higgsnaïf.X/cl / of the truncation of Higgsnaïf.X/ is

endowed with a convolution algebra structure as constructed in [60] and in [40] for the
rank zero case. In the rank zero case, the construction of the product follows the one in
[63, 65] discussed above, while in the higher rank case one uses a local description of
Higgsnaïf.X/ as a quotient stack; then the construction of the product is performed locally
and one glues suitably to get a global convolution product. By similar arguments and
thanks to Remark 2.41, we have the following

Proposition 5.5. Let X be a smooth projective complex curve. There exists an algebra
isomorphism between

�0.limK.Cohb
pro;C�.Coh.XDol///

and the K-theoretical Hall algebra of Higgs sheaves on X introduced in [40, 60]. Thus,
the CoHA tensor structure on the stable1-category Cohb

pro;C�.Coh.XDol// is a categor-
ification of the latter.

Remark 5.6. The Betti K-theoretical Hall algebra of a smooth projective complex curve
X can be defined by using a K-theoretic analog of the Kontsevich–Soibelman CoHA
formalism due to Pădurariu [46] for the quiver with potential defined by Davison [7]. We
expect that this algebra is isomorphic to our decategorification of the Betti Cat-HA.

Finally, it is relevant to mention that our approach defines the de Rham K-theoretical
Hall algebra of a smooth projective curve X . The nature of this algebra is at the moment
mysterious. Note that [63] gives an indication that the algebra should at least contain the
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K-theoretical Hall algebra of the preprojective algebra of the g-loop quiver, where g is
the genus of X .

Remark 5.7. By using the formalism of Borel–Moore homology of higher stacks
developed in [25] and their construction of the Hall product via virtual pullbacks, we
obtain equivalent realizations of the COHA of a surface by [25] and of the Dolbeault
CoHA of a curve [40, 60]. Moreover, we define the de Rham cohomological Hall algebra
of a curve.

6. A Cat-HA version of the Hodge filtration

In this section, we shall present a relation between the de Rham categorified Hall algebra
and the Dolbeault categorified Hall algebra, which is induced by the Deligne categori-
fied Hall algebra .Cohb

C�.Coh.XDel//;?Del/. Deligne’s �-connections interpolate Higgs
bundles with vector bundles with flat connections, and they were used by Simpson [73]
to prove the non-abelian Hodge correspondence. For this reason, the relation we prove
in this section can be interpreted as a version of the Hodge filtration in the setting of
categorified Hall algebras.

6.1. Categorical filtrations

We let

Perffilt
WD Perf.ŒA1C=Gm�/; Perfgr

WD Perf.BGm/:

The two morphisms

BGm
j
�! ŒA1C=Gm�

i
 � Spec.C/ ' ŒGm=Gm�

induce canonical morphisms

j �WPerffilt
! Perfgr; Perffilt

! Perf:

The group structure on BGm endows Perfgr with a Künneth monoidal structure. The same
holds for Perffilt. With respect to these monoidal structures, the above functors are sym-
metric monoidal.

Definition 6.1. Let C be a stable C-linear1-category. A lax filtered structure on C is an
1-category C� 2 Perffilt-Mod.Catst

1/ equipped with a functor

ˆWC� ˝Perffilt Perf! C :

We refer to the datum .C ; C�; ˆ/ as the datum of a lax filtered stable .C-linear/
1-category. We say that a lax filtered1-category is filtered if ˆ is an equivalence.
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Definition 6.2. Let .C ; C�; ˆ/ be a lax filtered stable 1-category. A lax associated
graded category is an1-category G 2 Perfgr-Mod.Catst

1/ together with a morphism

‰WC� ˝Perffilt Perfgr
! G :

We say that .G ; ‰/ is the associated graded if the morphism ‰ is an equivalence.

6.2. Hodge filtration

LetX be a smooth projective complex curve. We will apply the formalism in the previous
section with C D Cohb

pro.Coh.XdR// and G D Cohb
pro;C�.Cohss; 0.XDol//.

Let XDel be the deformation to the normal bundle of the map X ! XdR as construc-
ted in [13, §9.2.4]. Then XDel admits a canonical Gm-action and it is equipped with a
canonical Gm-equivariant map XDel ! A1. We refer to XDel as Deligne’s shape of X .
Furthermore, we let

XDel;Gm WD ŒXDel=Gm�

be the quotient by the action of Gm. We refer to XDel;Gm as the equivariant Deligne shape
of X . See also [50, §6.1] for a more in-depth treatment of the Deligne shape. We define
Coh=A1.XDel/ as the functor

.dAff=A1/
op
! �

sending S ! A1 to the maximal1-groupoid CohS .S �A1 XDel/
' contained in the1-

category of families of coherent sheaves on S �A1 XDel that are flat relative to S . Simil-
arly, we define Coh=ŒA1=Gm�

.XDel;Gm/ as the functor

.dAff=ŒA1=Gm�
/op
! �

sending S ! ŒA1=Gm� to the maximal 1-groupoid CohS .S �ŒA1=Gm�
XDel;Gm/

' con-
tained in the1-category of families of coherent sheaves on S �ŒA1=Gm�

XDel;Gm that are
flat relative to S .

Proposition 6.3. The derived stack Coh=A1.XDel/ .resp. Coh=ŒA1=Gm�
.XDel;Gm// is a geo-

metric derived stack, locally of finite presentation in dSt=A1 .resp. dSt=ŒA1=Gm�
/.

Proof. Given a morphism Y ! S of derived stacks we write

Perf=S .Y / WDMap=S .Y;Perf � S/:

The canonical mapX �A1!XDel (resp.X � ŒA1=Gm�!XDel;Gm ) is a flat effective
epimorphism as an A1-map (resp. ŒA1=Gm�-map) (cf. [50, §6.1]). Thus, Coh=A1.XDel/

and Coh=ŒA1=Gm�
.XDel;Gm/ fit into the pullback squares (cf. Lemma 2.11 and Corol-

lary 2.19)

Coh=A1.XDel/ Coh.X/ �A1

Perf=A1.XDel/ Perf.X/ �A1

Coh=ŒA1=Gm�
.XDel;Gm/ Coh.X/ � ŒA1=Gm�

Perf=ŒA1=Gm�
.XDel;Gm/ Perf.X/ � ŒA1=Gm�
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Since Perf=A1.XDel/ and Perf.X/ � A1 (resp. Perf=ŒA1=Gm�
.XDel;Gm/ and Perf.X/ �

ŒA1=Gm�) are geometric as derived stacks over A1 (resp. ŒA1=Gm�) by [50, §6.1.1]
and [79, Corollary 3.29] respectively, and Coh.X/ � A1 (resp. Coh.X/ � ŒA1=Gm�) is
geometric in dSt=A1 (resp. dSt=ŒA1=Gm�

) because of Proposition 2.24, we conclude that
Coh=A1.XDel/ and Coh=ŒA1=Gm�

.XDel;Gm/ are geometric as well.

We have canonical maps Coh=A1.XDel/!A1 and Coh=ŒA1=Gm�
.XDel;Gm/!ŒA

1=Gm�.
Unraveling the definitions, we see that

Coh=A1.XDel/ �A1 ¹0º ' Coh.XDol/ and Coh=A1.XDel/ �A1 ¹1º ' Coh.XdR/;

while
Coh=ŒA1=Gm�

.XDel;Gm/ �ŒA1=Gm�
BGm ' CohC�.XDol/

Coh.XDel;Gm/ �ŒA1=Gm�
ŒGm=Gm� ' Coh.XdR/ � BGm:

(6.1)

We also consider the open substack Coh�
=A1.XDel/�Coh=A1.XDel/ for which the fiber

at zero is the derived moduli stack Cohss; 0.XDol/ of semistable Higgs bundles on X of
degree zero (cf. [74, §7]).

Similarly, we can define the derived moduli stacks of extensions of Deligne’s �-
connections. Thus, we have the convolution diagram in dSt=A1 :

Cohext
=A1.XDel/

Coh=A1.XDel/ �A1 Coh=A1.XDel/ Coh=A1.XDel/

p q

and the convolution diagram in dSt=ŒA1=Gm�
:

Cohext
=ŒA1=Gm�

.XDel;Gm/

Coh=ŒA1=Gm�
.XDel;Gm/ �ŒA1=Gm�

Coh=ŒA1=Gm�
.XDel;Gm/ Coh=ŒA1=Gm�

.XDel;Gm/

p q

Because of Corollaries 3.16 and 3.18, it follows that the map p above is derived lci.
A similar result holds when we restrict to the open substack Coh�

=A1.XDel/ and the cor-
responding open substack of extensions. Following the same arguments as in §4, we can
encode such convolution diagrams into 2-Segal objects, and obtain the following:

Proposition 6.4. Let X be a smooth projective complex curve. Then

� there is a 2-Segal object ��Coh=A1.XDel/ which endows Coh=A1.XDel/ with the struc-
ture of an E1-monoid object in Corr�.dGeom=A1/lci;rps;

� there is a 2-Segal object ��Coh=ŒA1=Gm�
.XDel;Gm/which endows Coh=ŒA1=Gm�

.XDel;Gm/

with the structure of an E1-monoid object in Corr�.dGeom=ŒA1=Gm�
/lci;rps.

A similar result holds for Coh�
=A1.XDel/ and Coh�

=ŒA1=Gm�
.XDel;Gm/.
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Corollary 6.5. Cohb
pro.Coh=A1.XDel// and Cohb

pro.Coh=ŒA1=Gm�
.XDel;Gm// are E1-

monoid objects in Pro.Catst
1/. A similar result holds for Coh�

=A1.XDel/ and
Coh�

=ŒA1=Gm�
.XDel;Gm/.

By combining the results above with (6.1), we get

Theorem 6.6. Let X be a smooth projective complex curve. Then

Cohb
pro;C�.Coh.�/

=A1
.XDel// ' Cohb

pro.Coh.�/
=ŒA1=Gm�

.XDel;Gm//

is a module over Perffilt and we have E1-monoidal functors

ˆ.�/WCohb
pro;C�.Coh.�/

=A1
.XDel//˝Perffilt PerfC ! Cohb.Coh.XdR//;

‰.�/WCohb
pro;C�.Coh.�/

=A1
.XDel//˝Perffilt Perfgr

! Cohb
C�.Coh.ss; 0/.XDol//:

Following Simpson [74, §7], we expect the following to be true:

Conjecture 6.7 (Cat-HA version of the non-abelian Hodge correspondence). The
morphisms ˆ� and ‰� are equivalences, i.e., Cohb

pro.Coh.XdR// is filtered by
Cohb

pro;C�.Coh�
=A1.XDel// with associated graded Cohb

pro;C�.Cohss; 0.XDol//.

7. A Cat-HA version of the Riemann–Hilbert correspondence

In this section we briefly consider a complex analytic analogue of the theory developed
so far. Thanks to the foundational work on derived analytic geometry [22,34,48,51] most
of the constructions and results obtained so far carry over in the analytic setting. After
sketching how to define the derived analytic stack of coherent sheaves, we focus on two
main results. The first is the construction of a monoidal functor between the algebraic
and the analytic categorified Hall algebras coming from non-abelian Hodge theory. The
second is to provide an equivalence between the analytic categorified Betti algebra and
the de Rham one. This equivalence is an instance of the Riemann–Hilbert correspondence,
and it is indeed induced by the main results of [22, 49].

7.1. The analytic stack of coherent sheaves

We refer to [22, §2] for a review of derived analytic geometry. Using the notations intro-
duced there, we denote by AnPerf the complex analytic stack of perfect complexes (see
§4 in loc. cit.). Similarly, given derived analytic stacks X and Y , we let AnMap.X; Y /
be the derived analytic stack of morphisms between them.

Fix a derived geometric analytic stack X . We wish to define a substack of AnPerf.X/
WD AnMap.X;AnPerf/ classifying families of coherent sheaves on X . The same ideas
of §2 apply, but as usual some extra care to deal with the notion of flatness in analytic
geometry is needed.

Definition 7.1. Let S be a derived Stein space and let f WX ! S be a morphism of
derived analytic stacks. We say that an almost perfect complex F 2 APerf.X/ has tor-
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amplitude within Œa; b� relative to S (resp. tor-amplitude � n relative to S ) if for every
G 2 APerf~.S/ one has

�i .F ˝ f
�G / ' 0; i … Œa; b� .resp. i > n/:

We let APerf�nS .X/ denote the full subcategory of APerf.X/ spanned by those sheaves of
almost perfect modules F on X having tor-amplitude � n relative to S . We write

CohS .X/ WD APerf�0S .X/;

and we refer to it as the 1-category of flat families of coherent sheaves on X relative
to Y .

The above definition differs from [53, Definitions 7.1 & 7.2]. We prove in Lemma 7.3
that they are equivalent.

Lemma 7.2. Let X be a derived analytic stack, let S 2 dStnC and let f WX ! S be a
morphism in dAnSt. Assume that there exists a flat28 effective epimorphism uWU ! X .
Then F 2 APerf.X/ has tor-amplitude within Œa; b� relative to S if and only if u�.F / has
tor-amplitude within Œa; b� relative to S .

Proof. Let G 2 APerf~.S/. Then since u is a flat effective epimorphism, we see that
the pullback functor u�W APerf.X/ ! APerf.U / is t -exact and conservative. Therefore
�i .F ˝ f

�G / ' 0 if and only if

u�.�i .F ˝ f
�G // ' �i .u

�.F /˝ u�f �G / ' 0:

The conclusion follows.

Lemma 7.3. Let f WX ! S be a morphism of derived analytic stacks. Assume that X
is geometric and that S is a derived Stein space. Then F 2 QCoh.X/ has tor-amplitude
within Œa; b� relative to S if and only if there exists a smooth Stein covering ¹ui WUi ! Xº

such that �.Ui Iu�i F / has tor-amplitude within Œa; b� as �.S IOalg
S /-module.

Proof. Using Lemma 7.2, we can reduce the problem to the case where X is a derived
Stein space. Notice that F ˝OX f

�G 2 APerf.X/. Therefore, Cartan’s theorem B applies
and shows that �i .F ˝OX f

�G / D 0 if and only if �i .f�.F ˝OX f
�G // D 0. Observe

now that there is a canonical morphism

�F ;G Wf�.F /˝OS G ! f�.F ˝OX f
�G /:

When G D OS this morphism is obviously an equivalence. We claim that it is an equival-
ence for any G 2 APerf.S/.

28A morphism f WU ! X of derived analytic stacks is said to be flat if the pullback functor
f �WAPerf.X/! APerf.U / is t -exact.
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This question is local on S . Write AS WD �.S IO
alg
S /. Using [22, Lemma 4.12] we

can restrict ourselves to the case where G ' "�S .M/ for some M 2 APerf.AS /. Here
"�S WAS -Mod! OS -Mod is the functor introduced in [22, §4.2]. In this case, we see that
since �F ;G is an equivalence when G D OS , it is also an equivalence whenever M (and
hence G ) is perfect. In the general case, we use [35, 7.2.4.11 (5)] to find a simplicial object
P � 2 Fun.�op;APerf.AS // such that

jP �j 'M:

Write P � WD "�S .P
�/. Reasoning as in [53, Corollary 3.5], we deduce that

jP �j ' "�S .M/ ' G :

It immediately follows that

F ˝OX f
�G ' jF ˝OX f

�P �j;

and proving that �F ;G is an equivalence is reduced to checking that f� preserves the above
colimit. Since the above diagram as well as its colimit takes values in APerf.X/, we can
apply Cartan’s theorem B. The descent spectral sequence degenerates, and therefore the
conclusion follows.

Corollary 7.4. Let f WX ! S be a morphism as in the previous lemma. Let j W Scl ! S

be the canonical morphism and consider the pullback diagram

X0 X

Scl S

f0

i

f

j

Then an almost perfect complex F 2 APerf.X/ has tor-amplitude within Œa; b� relative to
S if and only if i�F has tor-amplitude within Œa; b� relative to Scl .

Proof. The map j is a closed immersion and therefore so is i . In particular, for any
G 2 APerf. Scl / the canonical map

f �j�.G /! i�f
�
0 .G /

is an equivalence.29 Moreover, the projection formula holds for i , and i� is t -exact. Sup-
pose that F has tor-amplitude within Œa; b� relative to S . Let G 2 APerf~. Scl /. Then

i�.i
�F ˝OX0

f �0 G / ' F ˝OX i�f
�
0 G ' F ˝OX f

�j�G :

Since j� is t -exact, we have j�G 2 APerf~.S/, and therefore the above tensor product is
concentrated in homological degree Œa; b�. In other words, i�F has tor-amplitude within
Œa; b� relative to Scl . For the converse, it is enough to observe that j� induces an equival-
ence APerf~. Scl / ' APerf~.S/.

29Ultimately, this can be traced back to the unramifiedness of the analytic pregeometry Tan.C/.
See [53, Lemma 6.1] for an argument in the non-archimedean case.
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Definition 7.5. Let S 2 dStnC and let f WX ! S be a morphism in dAnSt. A morphism
uW U ! X is said to be universally flat relative to S if for every derived Stein space
S 0 2 dSt and every morphism S 0 ! S the induced map S 0 �S U ! S 0 �S X is flat.
We say that a morphism uWU ! X is universally flat if it is universally flat relative to
Spec.C/.

Remark 7.6. Let S be an affine derived scheme and let f WX ! S and uWU ! X be
morphisms of derived stacks. If f is flat, then for every morphism S 0 ! S of affine
derived schemes, the morphism S 0 �S U ! S 0 �S X is flat; see [50, Proposition 2.3.16].
In the analytic setting, it is difficult to prove a similar result, because it essentially relies
on base change for maps between derived affine schemes (see [50, Proposition 2.3.4]),
which is not available in the analytic setting.

Corollary 7.7. Let X be a derived analytic stack and let S be a derived Stein space.
Assume that there exists a universally flat effective epimorphism uWU ! X where U is
geometric and underived. Let f W S 0 ! S be a morphism of derived Stein spaces and
consider the pullback

X � S 0 X � S

S 0 S

g

q p

f

If F 2 APerf.X � S/ has tor-amplitude within Œ0; 0� relative to S , then g�F has tor-
amplitude within Œ0; 0� relative to S 0.

Proof. Since uWU !X is universally flat, the morphismsU �S!X �S andU �S 0!
X � S 0 are flat. Therefore Lemma 7.2 shows that we can restrict ourselves to the case
X D U . Using Corollary 7.4, we can reduce the problem to the case where S and S 0 are
underived. Since the question is local on X , we can furthermore assume that X is a Stein
space. At this point, the conclusion follows directly from [10, §8.3, Proposition 3].

Using the above corollary, we can therefore define a derived analytic stack
AnCoh.X/, which is a substack of AnPerf.X/.

In what follows, we will often restrict ourselves to the study of AnCoh.Xan/, where
now X is an algebraic variety. Combining [22, Proposition 5.2 & Theorem 5.5] we see
that if X is a proper complex scheme, then there is a natural equivalence30

Perf.X/an
' AnPerf.Xan/: (7.1)

We wish to extend this result to Coh.X/an and AnCoh.Xan/. Let us start by constructing
the map between them. The map Perf.X/an ! AnPerf.Xan/ is obtained by adjunction
from the map

Perf.X/! AnPerf.Xan/ ı .�/an;

30The derived analytification functor has been first introduced in [34, Remark 12.26] and studied
extensively in [48, §4]. For a review, see [22, §3.1].
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which, for S 2 dAffafp, is induced by applying .�/'W Cat1 ! � to the analytification
functor

Perf.X � S/! Perf.Xan
� San/:

It is therefore enough to check that this functor respects the two subcategories of families
of coherent sheaves relative to S and San, respectively.

Lemma 7.8. Let f WX ! S be a morphism of derived complex stacks locally almost of
finite presentation. Suppose that X is geometric and that S is affine. Then F 2 APerf.S/
has tor-amplitude within Œa; b� relative to S if and only if F an 2 APerf.Xan/ has tor-
amplitude within Œa; b� relative to San.

Proof. Suppose first that F an has tor-amplitude within Œa; b� relative to San. Let G 2

APerf~.S/. Then we have to check that �i .F ˝OX f
�G / D 0 for i … Œa; b�. As the ana-

lytification functor .�/an is t -exact and conservative, this is equivalent to checking that
we have �i ..F ˝OX f

�G /an/ D 0. But

.F ˝OX f
�G /an

' F an
˝OXan f

an�.G an/; (7.2)

and the conclusion follows from the fact that G an 2 APerf~.San/.
Suppose now that F has tor-amplitude within Œa; b� relative to S D Spec.A/. We can

check that F an has tor-amplitude within Œa; b� relative to San locally on San. For every
derived Stein open subspace jU WU � San, write

AU WD �.U IO
alg
San jU /:

Write aU W Spec.AU / ! S for the morphism induced by the canonical map A ! AU .
Consider the two pullback squares

XU X

Spec.AU / S

bU

fU f

aU

Xan
U Xan

U San

iU

f an
U

f an

jU

There is a natural analytification functor relative to U ,

.�/an
U WAPerf.XU /! APerf.Xan

U /:

Moreover, the canonical map

i�U .H
an/! .b�U .H //an

U

is an equivalence for every H 2 APerf.X/.
Fix now G 2 APerf.San/. If G ' . zG /an for some zG 2 APerf~.S/, then the equivalence

(7.2) shows that

�i .F
an
˝OXan f

an�.G // D 0
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for i … Œa; b�. In the general case, we choose a double covering ¹Vi b Ui b Sanº by
relatively compact derived Stein open subspaces of San. Using [22, Lemma 4.12] we can
find zGi 2 APerf.AVi / such that G jVi ' "

�
Vi
. zGi /. Here "�Vi is the functor introduced in [22,

§4.2]. At this point, we observe that Lemma 2.4 guarantees that b�U .F / has tor-amplitude
within Œa; b� relative to Spec.AU /. The conclusion then follows from the argument given
in the first case.

As a consequence, we find a morphism

Coh.X/! AnCoh.Xan/ ı .�/an;

which by adjunction induces

�X WCoh.X/an
! AnCoh.Xan/;

which is compatible with the morphism Perf.X/an ! AnPerf.Xan/.

Proposition 7.9. If X is a proper complex scheme, the natural transformation

�X WCoh.X/an
! AnCoh.Xan/

is an equivalence.

Proof. Reasoning as in the proof of the equivalence (7.1) in [22, Proposition 5.2], we
restrict ourselves to checking that for every derived Stein space U 2 dStnC and every
compact derived Stein subspace K of U , the natural morphism

“colim”
K�V�U

CohSpec.AV /.Spec.AV / �X/! “colim”
K�V�U

CohV .V �X
an/

is an equivalence in Ind.Catst
1/. Here the colimit is taken over the family of open Stein

neighborhoods V of K inside U . Using [22, Lemma 5.13] we see that for every V , the
functor

CohSpec.AV /.Spec.AV / �X/! CohV .V �X
an/

is fully faithful. The conclusion now follows by combining [22, Proposition 5.15] and the
“only if” direction of Lemma 7.8.

7.2. Categorical Hall algebras in the C-analytic setting

LetX 2 dAnSt be a derived analytic stack. In the previous section, we have introduced the
analytic stack AnCoh.X/ parameterizing families of sheaves of almost perfect modules
over X of tor-amplitude � 0 relative to the base. Similarly, we can define the derived
analytic stacks AnPerf ext, AnPerf ext.X/, and AnCohext.X/. We deal directly with the
Waldhausen construction.

We define the simplicial derived analytic stack

��AnPerfW dStnop
C ! Fun.�op; �/
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by sending an object Œn� 2 � and a derived Stein space S to the full subcategory of31

�nPerf.S/ ,! Fun.Tn;Perf.S//:

Since each Tn is a finite category, [22, Corollary 7.2] and the flatness of the relative
analytification proven in [52, Proposition 4.17] imply that the natural map

.��Perf/an
! ��AnPerf

is an equivalence. Moreover, [22, Proposition 7.3] implies that the analytification com-
mutes with the limits appearing in the 2-Segal condition. We can therefore deduce that
��AnPerf is a 2-Segal object in dAnSt. From this, we deduce immediately that for every
derived analytic stack X , AnMap.X; ��AnPerf/ is again a 2-Segal object. At this point,
the same reasoning as for Lemma 4.1 yields

Proposition 7.10. Let X 2 dAnSt be a derived geometric analytic stack. Then
��AnCoh.X/ is a 2-Segal object in dAnSt, and therefore it endows the derived analytic
stack AnCoh.X/ with the structure of an E1-monoid object.

The morphism (7.2) can be naturally upgraded to a natural transformation

��Coh.X/! ��AnCoh.Xan/ ı .�/an

in Fun.�op; dSt/. By adjunction, we therefore find a morphism of simplicial objects

.��Coh.X//an
! ��AnCoh.Xan/:

Remark 7.11. Suppose that X is such that each �nCoh.X/ is geometric. Then [22, Pro-
position 7.3] implies that .��Coh.X//an is a 2-Segal object in dAnSt.

Let Y 2 dAnSt be a derived analytic stack and let uWU ! Y be a flat effective epi-
morphism from an underived geometric analytic stack U . As above, we are able to define
the derived stack AnCoh.Y /. Notice that AnCoh.Y / only depends on Y and not on U .
However, as in the algebraic case, the proof of the functoriality of AnCoh.Y / relies on
the existence of U and on Lemma 7.7. In addition, we have

AnCoh.Y / ' AnPerf.Y / �AnPerf.U / AnCoh.U /:

This is the analytic counterpart of Lemma 2.11.
Similarly, we can define AnCohext.Y / and AnBunext.Y / and more generally their

Waldhausen analogues ��AnCoh.Y / and ��AnBun.Y /. We immediately obtain

Proposition 7.12. Let Y 2 dAnSt be a derived analytic stack and let uWU ! Y be a flat
effective epimorphism from an underived geometric analytic stack U . Then ��AnCoh.Y /
is a 2-Segal object and it endows AnCoh.Y / with the structure of an E1-monoid object
in dAnSt.

31See §4.1 for the notations used here.
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As a particular case, let X be a smooth proper connected analytic space. Simpson’s
shapes XB, XdR, XDol, and XDel also exist in derived analytic geometry (as introduced e.g.
in [22, §5.2]). We have the following analytic analog of Proposition 4.3.

Corollary 7.13. LetX 2 dAnSt be a derived geometric analytic stack and let Y be one of
the following stacks: XB, XdR, or XDol. Then ��AnCoh.Y / is a 2-Segal object in dAnSt,
and therefore it endows the derived analytic stack AnCoh.Y / with the structure of an
E1-monoid object.

Our next step is to construct the categorified Hall algebras in the analytic setting. The
lack of quasi-coherent sheaves in analytic geometry forces us to consider a variation of
the construction considered in §4.2. We start with the following construction:

Construction 7.14. Let Tdisc.C/ be the full subcategory of SchC spanned by finite-
dimensional affine spaces AnC . Given an1-topos X, sheaves on X with values in CAlgC

can be canonically identified with product preserving functors Tdisc.C/ ! X. We let
RTop.Tdisc.C// denote the1-category of1-topoi equipped with a sheaf of derived com-
mutative C-algebras. The construction performed in [33, Notation 2.2.1] provides us with
a functor

�W .RTop.Tdisc.C///
op
! CAlgC:

Equipping both1-categories with the cocartesian monoidal structure, we see that � can
be upgraded to a right-lax symmetric monoidal structure. Composing with the symmet-
ric monoidal functor QCohW CAlgC ! Catst

1 we therefore obtain a right-lax symmetric
monoidal functor

.RTop.Tdisc.C///
op
! Catst

1:

We denote the sheafification of this functor with respect to the étale topology on
RTop.Tdisc.C// (see [33, Definition 2.3.1]) by

O-ModW .RTop.Tdisc.C///
op
! Catst

1:

Observe that O-Mod is canonically endowed with a right-lax symmetric monoidal struc-
ture.

Consider the natural forgetful functor

.�/alg
W dAnC !

RTop.Tdisc.C//:

Equipping both 1-categories with the cartesian monoidal structure, we see that .�/alg

can be upgraded to a left-lax monoidal functor. We still denote by O-Mod the composition

.dAnC/
op .�/alg

���! .RTop.Tdisc.C///
op O-Mod
����! Catst

1;

which canonically inherits the structure of a right-lax monoidal functor. GivenX 2 dAnC ,
we denote by OX -Mod its image via this functor.
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This functor admits a canonical subfunctor

APerfW dAnop
C ! Catst

1;

which sends a derived C-analytic space to the full subcategory of OX -Mod spanned by
sheaves of almost perfect modules. Observe that sheaves of almost perfect modules are
closed under exterior product, and therefore APerf inherits the structure of a right-lax
monoidal functor. Moreover, if f WX ! Y is proper, then [48, Theorem 6.5] implies that
the functor

f�WOX -Mod! OY -Mod

restricts to a functor
f�WAPerf.X/! APerf.Y /;

which is right adjoint to f �.

Lemma 7.15. Let
X 0 X

Y 0 Y

u

g f

v

be a pullback square in dAnC . Assume that the truncations of X;X 0; Y and Y 0 are separ-
ated analytic spaces. If f is proper then the commutative diagram

APerf.Y / APerf.Y 0/

APerf.X/ APerf.X 0/

v�

f � g�

u�

is vertically right adjointable.

Proof. We adapt the proof of [53, Theorem 6.8] to the complex analytic setting. The key
input is unramifiedness for the pregeometry Tan.C/, proven in [34, Proposition 11.6],
which has as a consequence Proposition 11.12 (3) in loc. cit. In turn, this implies that the
statement of this lemma holds true when g is a closed immersion. Knowing this, Steps 1
and 2 of the proof of [53, Theorem 6.8] apply without changes. Step 3 applies as well, with
the difference that in the C-analytic setting we can reduce to the case where Y 0 D Sp.C/
is the C-analytic space associated to a point. In particular, the map Y 0 D Sp.C/! Y is
now automatically a closed immersion, and therefore the conclusion follows.

Let dAnsep
C denote the full subcategory of dAnC spanned by derived C-analytic spaces

whose truncation is a separated analytic space. Lemma 7.15 shows that the assumptions of
[12, Theorem 3.2.2(b)] are satisfied with horizD all and vertD proper. As a consequence,
we can extend APerf to a functor

APerfWCorr.dAnsep
C /isom

proper;all ! Catst
1:
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Moreover, the considerations in [12, §3.3.1] show that this functor inherits a canonical
right-lax monoidal structure. Using [12, Theorem 8.6.1.5] we obtain (via right Kan exten-
sion) a right-lax monoidal functor

APerfWCorr.dAnSt/isom
all;rps ! Catst

1:

Here rps denotes the class of 1-morphisms representable by proper derived C-analytic
spaces.

Given a derived C-analytic space X , we denote by Cohb.X/ the full subcategory of
APerf.X/ spanned by locally cohomologically bounded sheaves of almost perfect mod-
ules.

Lemma 7.16. Let f WX ! Y be a morphism of derived geometric analytic stacks. If f
is lci32 then it has finite tor-amplitude and in particular it induces a functor

f �WCohb.Y /! Cohb.X/:

Proof. The argument of [54, Corollary 2.9] applies.

As a consequence, we obtain a right-lax monoidal functor

Cohb
WCorr�.dAnSt/rps;lci ! Catst

1:

Finally, we want to restrict ourselves to derived geometric analytic stacks. In partic-
ular, we need that AnCoh.Y / and the corresponding 2-Segal space to be geometric. So,
first note that if Y 2 dSt is a derived stack, then we obtain as before a natural transforma-
tion

��Coh.Y /an
! ��AnCoh.Y / (7.3)

in Fun.�op; dAnSt/.
Let X be a smooth and proper complex scheme. By [22, Proposition 5.2],

AnPerf.X/ is equivalent to the analytification Perf.X/an of the derived stack Perf.X/ D
Map.X; Perf/. Thus, AnPerf.X/ is a locally geometric derived stack, locally of finite
presentation.

Lemma 7.17. The map (7.3) induces an equivalence .��Coh.X//an ' ��AnCoh.Xan/.
In particular, for each n � 0 the derived analytic stack �nAnCoh.Xan/ is locally geomet-
ric and locally of finite presentation.

Proof. When n D 1, this is exactly the statement of Proposition 7.9. The proof of the
general case is similar, and there are no additional subtleties.

Let X be a smooth proper connected complex scheme. As proved in [22, §5.2], the
analytification functor commutes with Simpson’s shape functor, i.e., we have the follow-
ing canonical equivalences:

.XdR/
an
' .Xan/dR; .XB/

an
' .XB/

an; .XDol/
an
' .Xan/Dol:

32In this setting, it means that the analytic cotangent complex Lan
X=Y

introduced in [52] is perfect
and has tor-amplitude within Œ0; 1�.
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Lemma 7.18. Let � 2 ¹B; dR;Dolº. Then (7.3) induces an equivalence .��Coh.X�//an '

��AnCoh..Xan/�/. In particular, for each n � 0 the derived analytic stack
�nAnCoh..Xan/�/ is locally geometric and locally of finite presentation.

Proof. The proof of Proposition 7.9 applies, with the following caveat: rather than invok-
ing [22, Lemma 5.13 & Proposition 5.15], we instead use Propositions 5.26 (for the de
Rham case), 5.28 (for the Betti case) and 5.32 (for the Dolbeault case) in [22].

Finally, we are able to give the analytic counterpart of Theorem 4.9:

Theorem 7.19. Let Y be one of the following derived stacks:

(1) a smooth proper complex scheme of dimension either one or two;

(2) the Betti, de Rham or Dolbeault stack of a smooth projective curve.

Then the composition

Cohb.AnCoh.Y an// � Cohb.AnCoh.Y an//
�
�! Cohb.AnCoh.Y an/ � AnCoh.Y an//

q�ıp
�

����! Cohb.AnCoh.Y an//;

where the map on the right-hand side is induced by the 1-morphism in correspondences

AnCohext.Y an/

AnCoh.Y an/ � AnCoh.Y an/ AnCoh.Y an/

qp

endows Cohb.AnCoh.Y // with the structure of an E1-monoidal stable1-category.

Proof. The only main point to emphasize is how to use the tor-amplitude estimates for the
map p in the algebraic case (i.e., Proposition 3.10 and Corollaries 3.14, 3.16, and 3.18)
in the analytic setting. First of all, we use Lemmas 7.17 and 7.18 to identify the 2-Segal
object ��AnCoh.Y an/ with .��Coh.Y //an. Then it remains to check that pan is derived
lci, where now p is the map appearing in (4.2). This follows by combining Lemma 7.8
and [52, Theorem 5.21].

Corollary 7.20. Let Y be as in Theorem 7.19. Then the derived analytification functor
induces a morphism in AlgE1.Catst

1/,

Cohb.Coh.Y //! Cohb.AnCoh.Y an//:

Proof. By using Lemmas 7.17 and 7.18, we have Cohb.Coh.Y /an/'Cohb.AnCoh.Y an//

as E1-monoid objects. The analytification functor .�/an promotes to a symmetric mon-
oidal functor

.�/an
WCorr�.dSt/! Corr�.dAnSt/:

Combining Lemma 7.8 and [52, Theorem 5.21], we conclude that .�/an preserves lci mor-
phisms. Moreover, [52, Lemma 3.1 (3)] and [51, Proposition 6.3], we see that .�/an also
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preserves proper morphisms. Finally, using the derived GAGA theorems [48, Theorems
7.1 & 7.2] we see that .�/an takes morphisms which are representable by proper schemes
to morphisms which are representable by proper analytic spaces.33 Therefore, it restricts
to a symmetric monoidal functor

.�/an
WCorr�.dSt/rps;lci ! Corr�.dAnSt/rps;lci:

The analytification functor for coherent sheaves induces a natural transformation of right-
lax symmetric monoidal functors

Cohb
! Cohb

ı .�/an:

Here both functors are considered as functors dSt! Cat1. Using the universal property
of the category of correspondences, we can extend this natural transformation of right-
lax symmetric monoidal functors defined over the category of correspondences. The key
point is to verify that if pWX ! Y is a proper morphism of geometric derived stacks
locally almost of finite presentation, then the diagram

Cohb.X/ Cohb.Xan/

Cohb.Y / Cohb.Y an/

.�/an

p� pan
�

.�/an

commutes. This is a particular case of [48, Theorem 7.1]. The conclusion follows.

7.3. The derived Riemann–Hilbert correspondence

Let X be a smooth proper connected complex scheme. In [49, §3] there is constructed a
natural transformation

�RHWX
an
dR ! Xan

B ;

which induces for every derived analytic stack Y 2 dAnSt a morphism

��RHWAnMap.Xan
dR; Y /! AnMap.Xan

B ; Y /:

It is then shown in [49, Theorem 6.11] that this map is an equivalence when Y DAnPerf.34

Taking Y D ��AnPerf, we see that �RH induces a morphism of 2-Segal objects

��RHW ��AnPerf.Xan
dR/! ��AnPerf.Xan

B /:

By applying the functor 2-Seg.dAnSt/ ! AlgE1.Corr�.dAnSt//, we therefore conclude
that

��RHWAnPerf.Xan
dR/! AnPerf.Xan

B /

acquires a natural structure of morphism between E1-monoid objects:

33Using [51, Proposition 6.3] it is enough to prove that the analytification takes representable
morphisms with geometric target to representable morphisms. This immediately follows from [51,
Proposition 2.25].

34See [22, Corollary 7.6] for a discussion of which other derived analytic stacks Y see �RH as an
equivalence.
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Proposition 7.21. The morphism

��RHW ��AnPerf.Xan
dR/! ��AnPerf.Xan

B /

is an equivalence. Moreover, it restricts to an equivalence

��RHW ��AnCohdR.X/! SAnCohB.X/:

Proof. Fix a derived Stein space S 2 dStnC . Then [49, Theorem 6.11] provides an equi-
valence of stable1-categories

Perf.Xan
dR � S/ ' Perf.Xan

B � S/:

Therefore, for every n � 0 we obtain an equivalence

�nAnPerf.Xan
dR/.S/ ' Fun.Tn;Perf.Xan

dR � S// ' Fun.Tn;Perf.Xan
B � S//

' �nAnPerf.Xan
B /.S/:

The first statement follows at once. The second statement follows automatically given the
commutativity of the natural diagram

Xan

Xan
dR Xan

B

�X

�RH

Theorem 7.22 (CoHA version of the derived Riemann–Hilbert correspondence). There
is an equivalence of stable E1-monoidal1-categories

.Cohb.AnCohdR.X//;?
an
dR/ ' .Cohb.AnCohB.X//;?

an
B /

Remark 7.23. In the algebraic setting we considered the finer invariant Cohb
pro, which is

more adapted to the study of non-quasi-compact stacks. Among its features, there is the
fact that for every derived stack Y there is a canonical equivalence (cf. Proposition A.5)

K.Cohb
pro.Y // ' K.Cohb

pro. Y
cl //:

In the C-analytic setting, a similar treatment is possible, but it is more technically
involved. In the algebraic setting, the construction of Cohb

pro relies on the machinery
developed in §A, which provides a canonical way of organizing exhaustion by quasi-
compact substacks into a canonical ind-object. In the C-analytic setting, one cannot
proceed verbatim, because quasi-compact C-analytic substacks are extremely rare and it
is not true that every geometric derived analytic stack admits an open exhaustion by quasi-
compact ones. Rather, one would have to use compact Stein subsets; see [22, Definition
2.14]. Combining [36, Corollary 4.5.1.10] and [22, Theorem 4.13], it would then be pos-
sible to compare the K-theory of the resulting pro-category of bounded coherent sheaves
on a derived analytic stack Y with the one of the classical trucation Ycl . We will not
develop the full details here.
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Appendix A. Ind quasi-compact stacks

The main object of study of the paper is the derived stack Coh.S/ of coherent sheaves
on S , where S is a smooth and proper scheme or one of Simpson’s shapes of a smooth
and proper scheme. This stack is typically not quasi-compact, and this requires some
care when studying its invariants, such as the G-theory. For example, when X is a quasi-
compact geometric derived stack, the inclusion i W Xcl ,! X induces a canonical equival-
ence

i�WG. X
cl /

�
�! G.X/:

This relies on Quillen’s theorem of the heart and the equivalence Coh~. Xcl / ' Coh~.X/
induced by i�. In particular, one needs quasi-compactness of X to ensure that the t-
structure on Cohb.X/ is (globally) bounded. In this appendix, we set up a general frame-
work to deal with geometric derived stacks that are not necessarily quasi-compact.

A.1. Open exhaustions

Let j W dGeomqc ,! dSt be the inclusion of the full subcategory of dSt spanned by quasi-
compact geometric derived stacks. Left Kan extension along j induces a functor

‰W dSt! PSh.dGeomqc/:

Lemma A.1. Let X 2 dGeom be a locally geometric derived stack.

(1) There exists a . possibly transfinite/ sequence

; D U0 ,! U1 ,! � � � ,! U˛ ,! U˛C1 ,! � � �

of quasi-compact Zariski open substacks of X whose colimit is X .

(2) Let Y 2 dGeomqc be a quasi-compact geometric derived stack. For any exhaustion
of X by quasi-compact Zariski open substacks of X as in the previous point, the
canonical morphism

colim
˛

MapdSt.Y; U˛/! MapdSt.Y;X/

is an equivalence.

(3) The object ‰.X/ belongs to the full subcategory Ind.dGeomqc/ of PSh.dGeomqc/.

Proof. Let V ! X be a smooth atlas, where V is a scheme. Let V 0 ,! V be the inclusion
of a quasi-compact open Zariski subset. Let

V 0� WD
LC.V 0 ! X/

be the Čech nerve of V 0 ! X and set

U 0 WD jV 0� j:
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The canonical map U 0 ! X is representable by open Zariski immersions, and U 0 is a
quasi-compact stack. Since this construction is obviously functorial in V 0, we see that any
exhaustion of V by quasi-compact Zariski open subschemes induces a similar exhaustion
of X , thus completing the proof of (1).

We now prove (2). Fix an exhaustion of X by quasi-compact Zariski open substacks
ofX as in (1). For every index ˛, the mapU˛!U˛C1 is an open immersion and therefore
it is .�1/-truncated in dSt. Using [32, Proposition 5.5.6.16], we see that

MapdSt.Y; U˛/! MapdSt.Y; U˛C1/

is .�1/-truncated as well. The same holds for the maps MapdSt.Y; U˛/! MapdSt.Y; X/.
As a consequence, the map

colim
˛

MapdSt.Y; U˛/! MapdSt.Y;X/

is .�1/-truncated. To prove that it is an equivalence, we are left to check that it is surjective
on �0. Let f WY ! X be a morphism. Write Y˛ WD U˛ �X Y . Then the sequence ¹Y˛º is
an open exhaustion of Y , and since Y is quasi-compact there must exist an index ˛ such
that Y˛ D Y . This implies that f factors through U˛ , and therefore the proof of (2) is
achieved.

As for (3), this immediately follows from (2) and [32, Corollary 5.3.5.4 (1)].

Corollary A.2. The functor ‰ restricts to a limit preserving functor

.�/indW dGeom! Ind.dGeomqc/:

A.2. G-theory of non-quasi-compact stacks

As a consequence, when X is a locally geometric derived stack, we can canonically pro-
mote Cohb.X/ to a pro-category

Cohb
pro.X/ WD Cohb.Xind/ ' “lim”

˛
Cohb.U˛/ 2 Pro.Catst

1/:

In particular, we can give the following definition:

Definition A.3. Let X 2 dGeom be a locally geometric derived stack. The pro-spectrum
of G-theory of X is

Gpro.X/ WD K.Cohb
pro.X// 2 Pro.Sp/:

The spectrum of G-theory of X is the realization of Gpro.X/:

G.X/ WD limGpro.X/ 2 Sp:

Remark A.4. If X is quasi-compact, then Xind is equivalent to a constant ind-object. As
a consequence, both Cohb

pro.X/ and Gpro.X/ are equivalent to constant pro-objects and
G.X/ simply coincides with the spectrum K.Cohb.X//.
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Proposition A.5. Let X 2 dGeom be a locally geometric derived stack. The inclusion
i W Xcl ,! X induces a canonical equivalence

i�WGpro. X
cl /

�
�! Gpro.X/;

and therefore an equivalence

i�WG. X
cl /

�
�! G.X/:

Proof. Choose an exhaustion ¹U˛º of X by quasi-compact open Zariski subsets as in
Lemma A.1 (1). Then ¹ Ucl

˛º is an exhaustion of Xcl , and the map i�WGpro. X
cl /!Gpro.X/

can be computed as

“lim”
˛

K.Cohb. Ucl
˛//! “lim”

˛
K.Cohb.U˛//:

Since each U˛ is quasi-compact, this is a levelwise equivalence. Therefore, it is also an
equivalence at the level of pro-objects. The second statement follows by passing to real-
izations.

Definition A.6. Let X 2 dGeom be a locally geometric derived stack. We define

G0.X/ WD �0G.X/:

Remark A.7. In [25,60], the authors defined G0 of a non-quasi-compact geometric clas-
sical stack Y as the limit of the G0.V˛/ for an exhaustion ¹V˛º of Y by quasi-compact
Zariski open substacks.

The relation between the above two definitions is as follows. Let X 2 dGeom be a
locally geometric derived stack and let ¹U˛º be an exhaustion of X by quasi-compact
Zariski open substacks. Then there exists a short exact sequence

0! lim̨1 �1G.U˛/! G0.X/! lim̨G0.U˛/! 0

in the abelian category of abelian groups.

Remark A.8. Now, we discuss the quasi-compactness of the moduli stacks of coherent
sheaves we deal with in the main body of the paper.

Let Y be a smooth projective complex variety. First, recall that the classical stack
Coh.Y /cl decomposes into the disjoint union

Coh.Y /cl
D

G
P

CohP .Y /cl ;

with respect to the Hilbert polynomials of coherent sheaves. Here, the stacks on the right-
hand side are introduced in §2.3.2. We have a corresponding decomposition at the level
of derived enhancements

Coh.Y / D
G
P

CohP .Y /: (A.1)
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Now, fix P.m/ 2 QŒm�. As shown e.g. in the proof of [31, Théorème 4.6.2.1], there
exists an exhaustion ¹UPn ºn2N of CohP .Y / by quasi-compact open substacks such that
the truncation Ucl P

n is a quotient stack by a certain open subset of a Quot scheme for any n.
By [25, Proposition 4.1.1], a similar description holds for the moduli stack Cohprop.Y / of
coherent sheaves with proper support on a smooth quasi-projective complex variety Y .
Note that the decomposition (A.1) for the stack Coh0.Y / WD Coh�0prop.Y / reduces to

Coh0.Y / D
G

k2Z�0

Cohk0.Y /:

By using the explicit description of the U kn ’s, one can show that Cohk0.Y /cl is a quasi-
compact quotient stack, hence the stack Cohk0.Y / is quasi-compact.

Now, let Y be a smooth projective complex curve. The moduli stack CohDol.Y / is not
quasi-compact. On the other hand, the moduli stacks BunnB.Y / and BunndR.Y / are quasi-
compact quotient stacks. The truncations of these stacks are quotients by the Betti and de
Rham representation spaces respectively (cf. [72]). The derived stacks are quotients by
the derived versions of these representation spaces (see e.g. [47, §1.2]).

A.3. Correspondences

We finish this section by providing a formal extension of Gaitsgory–Rozenblyum cor-
respondence machine in the setting of not necessarily quasi-compact stacks. Let S be an
.1; 2/-category, seen as an .1; 1/-category weakly enriched in Cat1, in the sense of
[14, 21]. We write Cat.2/1 for Cat1 thought as weakly enriched over itself in the natural
way (i.e. for the .1; 2/-category of .1; 1/-categories). Consider the 2-categorical Yoneda
embedding

yWS! 2-Fun.S1-op;Cat.2/1 /:

Then [21, Corollary 6.2.7] guarantees that is 2-fully faithful. We let 2-Ind.S/ be the full
2-subcategory of 2-Fun.S1-op;Cat.2/1 / spanned by those functors that commute with finite
Cat1-limits. The fully faithful functor S! Cat1 induces a fully faithful embedding

Ind.S1-cat/! .2-Fun.S1-op;Cat.2/1 //
1-cat:

We let 2-Ind.S/ be the full 2-subcategory of 2-Fun.S1-op; Cat.2/1 / spanned by the essen-
tial image of the above functor.35 By construction, the 1-category underlying 2-Ind.S/
coincides with Ind.S1-cat/.

Remark A.9. We are not sure about the intrinsic meaning of the above definition of
2-Ind.S/ from a 2-categorical perspective. It is probably too little to be the correct 2-Ind
construction, and we are not aware whether it satisfies some 2-categorical universal prop-
erty. If “colim”˛ x˛ and “colim”ˇ yˇ are two objects in 2-Ind.S/ in theabove sense, the

35We thank Andrea Gagna and Ivan Di Liberti for helping us conceiving this definition.



Two-dimensional categorified Hall algebras 1199

mapping category is given by the formula

Fun2-Ind.S/

�
“colim”

˛
x˛; “colim”

ˇ
yˇ

�
D lim̨ colim

ˇ
FunS.x˛; yˇ /:

This is all that is needed in what follows.

We now equip C with three markings Choriz, Cvert and Cadm satisfying the condi-
tions of [12, §7.1.1.1]. We define three markings Ind.C/horiz, Ind.C/vert and Ind.C/adm

on Ind.C/ by declaring that a morphism f WX ! Y in Ind.C/ belongs to Ind.C/horiz (resp.
Ind.C/vert, Ind.C/adm) if it is representable by morphisms in Choriz (resp. Cvert, Cadm). It
is then straightforward to check that the conditions of [12, §7.1.1.1] are again satisfied.
Next, we let

ˆWCop
! Cat1

be a functor and let ˆhoriz be its restriction to .Choriz/
op. Passing to ind-objects, we obtain

a functor
ˆind
W Ind.C/op

! Pro.Cat1/:

We let ˆind
horiz be its restriction to .Ind.C/horiz/

op. Before stating the next key proposition,
we recall the definition of bivariance:

Definition A.10. A functor ˆWCop ! Cat1 is said to be Cvert-right bivariant if for every
morphism f WX ! Y in Cvert, the functor ˆ.f /Wˆ.Y / ! ˆ.X/ admit a right adjoint
ˆ�.f /. A Cvert-right bivariant functor is said to have base change with respect to Choriz if
for every pullback diagram

W X

Z Y

g0

f 0 f

g

where f 2 Cvert and g 2 Choriz, the square

ˆ.Y / ˆ.Z/

ˆ.X/ ˆ.W /

ˆ.g/

ˆ.f / ˆ.f 0/

ˆ.g0/

is vertically right adjointable.

Remark A.11. In [12, Chapter 7], the above property is not directly considered. It rather
corresponds to the right Beck–Chevalley property (see Definition 7.3.2.2 in loc. cit.) for
functors with values in .Cat.2/1 /2-op.

Proposition A.12. Keeping the above notation and assumptions, suppose furthermore
that

(1) ˆ is Cvert-right bivariant and has base change with respect to Choriz.
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(2) Every object in Ind.C/ can be represented as a filtered colimit whose transition maps
belong to Choriz.

Then ˆind
horiz is Ind.C/vert-right bivariant and has base change with respect to Ind.C/horiz.

Proof. Let f W X ! Y be a morphism in Ind.C/. Choose a representation Y '

“colim”˛ Y˛ , where the transition maps belong to Choriz. For every index ˛, we let

X˛ WD Y˛ �Y X

and we let f˛WX˛! Y˛ be the induced morphism. By definition of Ind.C/vert,X˛ belongs
to C and f˛ is a morphism in Cvert. The morphism

ˆ.f˛/Wˆ.Y˛/! ˆ.X˛/

admits a left adjoint ˆŠ.f˛/. Since ˆhoriz satisfies the right Beck–Chevalley property with
respect to Cvert, the morphisms ˆŠ.f˛/ assemble into a morphism

ˆŠ.f /W “lim”
˛

ˆ.X˛/! “lim”
˛

ˆ.Y˛/

in 2-Pro.Cat.2/1 /. The triangular identities for the adjunction ˆŠ.f˛/ a ˆ.f˛/ induce tri-
angular identities exhibiting ˆŠ.f / as a left adjoint to ˆ.f / in the .1; 2/-category
2-Pro.Cat.2/1 /. For every morphism Z ! Y in Ind.C/horiz, we let Z˛ WD Y˛ �Y Z. The
induced morphism Z˛ ! Y˛ belongs to Choriz by definition. In this way, we can describe
the Beck–Chevalley transformation for the diagram

ˆ.Y / ˆ.X/

ˆ.Z/ ˆ.X �Y Z/

in terms of the Beck–Chevalley transformation for the diagram

ˆ.Y˛/ ˆ.X˛/

ˆ.Z˛/ ˆ.X˛ �Y˛ Z˛/

which holds by assumption.

Seeing Pro.Cat1/ as the underlying 1-category of 2-Pro.Cat.2/1 /, we obtain

Corollary A.13. Keeping the above notation, assume Cvert�Choriz and CvertDCadm. Then
under the assumptions of Proposition A.12, the functor

ˆind
W Ind.C/op

! Pro.Cat1/

uniquely extends to a functor

ˆind
corrWCorr.Ind.C//vert

vert;horiz ! 2-Pro.Cat.2/1 /;
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and its restriction to Corr.Ind.C//vert;horiz factors through the maximal .1; 1/-category
Pro.Cat1/ of 2-Pro.Cat.2/1 /.

Proof. It is enough to apply [12, Theorem 7.3.2.2 (b)] to the .1; 2/-category

S D 2-Pro.Cat.2/1 /
2-op:

See also [39, Theorem 4.2.6].

Corollary A.14. There exists a uniquely defined right-lax symmetric monoidal functor

QCohproWCorr�.Ind.dGeomqc//rps;all ! Pro.Cat1/:

Proof. Take C D dSchqc and D D dGeomqc. For C , we take horizD all and admD vertD
proper. Observe that condition (5) in [12, §7.1.1.1] is satisfied. Consider the functor

QCohW .dSchqc/op
! Cat1:

Applying [12, Theorem 7.3.2.2], we obtain a functor

QCohWCorr.dSchqc/
proper
proper;all ! Cat.2/1 :

For C ;D we now take horiz D all and vert D rps (morphisms that are representable by
proper schemes) and adm D isom. Then [12, Theorem 8.6.1.5] supplies an extension
of QCoh,

QCohWCorr.dGeomqc/
rps
rps;all ! Cat.2/1 :

Thanks again to [12, Theorem 7.3.2.2], the above functor is uniquely determined by its
restriction

QCohW .dGeomqc/op
! Cat1:

This is our ˆ. It satisfies the hypothesis of Proposition A.12. Thus, applying Corol-
lary A.13, we obtain a functor

QCohWCorr.Ind.dGeomqc//
rps
rps;all ! 2-Pro.Cat.2/1 /;

which we restrict to a functor

QCohproWCorr.Ind.dGeomqc//rps;all ! Pro.Cat1/:

Combining [39, Theorem 4.4.6] and [12, Proposition 9.3.2.4] we conclude that we can
upgrade these constructions to right-lax symmetric monoidal functors.
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