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    Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions

Introduction

We denote by f = f (t, x, v) the density of a population of charged particles of mass m, charge q, depending on time t, position x and velocity v. We consider the Vlasov-Poisson equations, with a strong external non vanishing magnetic field

B ε (x) = B ε (x)e(x), B ε (x) = B(x) ε , |e(x)| = 1, x ∈ R 3
where ε > 0 is a small parameter. In the three dimensional setting the Vlasov equation writes

∂ t f ε + v • ∇ x f ε + q m {E[f ε (t)](x) + v ∧ B ε (x)} • ∇ v f ε = 0, (t, x, v) ∈ R + × R 3 × R 3 . ( 1 
)
The electric field

E[f ε (t)] = -∇ x Φ[f ε (t)] derives from the potential Φ[f ε (t)](x) = q 4π 0 R 3 R 3 f ε (t, x , v ) |x -x | dv dx (2) 
which satisfies the Poisson equation

-∆ x Φ[f ε (t)] = q 0 R 3 f ε (t, x, v) dv, (t, x) ∈ R + × R 3
whose fundamental solution is z → 1 4π|z| , z ∈ R 3 \ {0}. Here 0 represents the electric permittivity. For any particle density f = f (x, v), the notation E[f ] stands for the Poisson electric field

E[f ](x) = q 4π 0 R 3 R 3 f (x , v ) x -x |x -x | 3 dv dx (3) 
and ρ[f ], j[f ] are the charge and current densities respectively

ρ[f ] = q R 3 f (•, v) dv, j[f ] = q R 3 f (•, v)v dv.
The above system is supplemented by the initial condition

f ε (0, x, v) = f in (x, v), (x, v) ∈ R 3 × R 3 . (4) 
We are interested in the asymptotic behavior of the problem (1), ( 3), (4) when ε goes to 0. This study is motivated by the analysis of tokamak plasmas. The main application concerns the energy production through thermonuclear fusion, which can be achieved by plasma confinement at high temperatures and pressures. We concentrate on magnetic confinement. The strength of the magnetic field allows to hold the plasma without physical contact with the material surface. Under the action of magnetic fields, the charged particles rotate around the magnetic lines. The radius of this circular motion, which is called the Larmor radius, is proportional to the inverse of the strength of the magnetic field. Therefore strong magnetic fields guarantee good confinement properties. But strong magnetic fields introduce also high cyclotronic frequencies, corresponding to small periods of rotation of the particles around the magnetic lines, leading to instabilities, when simulating numerically such regimes. We are face to a multi-scale problem and a theoretical study is required for handle the Vlasov-Poisson system perturbed by a strong external magnetic field. The theoretical study of kinetic equations with strong magnetic field led naturally to the guiding-center theory, which consists in the asymptotic behavior of the charged particle dynamics under slowly varying magnetic fields, on the typical gyroradius length. For such magnetic fields, the dynamics inherits the features of the motion under uniform magnetic fields : some motion invariants become adiabatic invariants [START_REF] Kulsrud | Adiabatic invariants of the harmonic oscillator[END_REF][START_REF] Gardner | Adiabatic invariants of periodic classical systems[END_REF], the drifts across the field lines, due to the magnetic gradient and magnetic curvature are small [START_REF] Alfvén | On the motion of charged particles in a magnetic field[END_REF][START_REF] Northrop | Adiabatic motion of charged particles[END_REF][START_REF] Northrop | Extensions of guiding center motion to higher order[END_REF]. Many works concentrated on the development of a Hamiltonian theory for the guiding-center motion [START_REF]Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic[END_REF][START_REF] Gardner | Adiabatic invariants of periodic classical systems[END_REF]. In [START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF][START_REF] Littlejohn | Variational principles of guiding centre motion[END_REF][START_REF] Cary | Non canonical Hamiltonian mechanics and its application to magnetic field line flow[END_REF][START_REF] Cary | Hamiltonian theory of guiding-center motion[END_REF][START_REF] Garbet | Neoclassical equilibrium in gyrokinetic simulations[END_REF] the authors used the Lie transform perturbation theory for non canonical Hamiltonian mechanics. For the variational derivation of non linear gyrokinetic Vlasov-Maxwell equations based on Lagrangian and Hamiltonian perturbation methods, we refer to [START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF].

Very recently, rigorous results for gyrokinetics based on variational averaging have been established in [START_REF] Possanner | Gyrokinetics from variational averaging : existence and error bounds[END_REF]. In particular, the author investigates the error estimates for the gyrokinetic approximations of the Vlasov equation. For the mathematical analysis of the gyrokinetic approximation of the Vlasov-Poisson equations, we refer to [START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF][START_REF] Saint-Raymond | The gyro-kinetic approximation for the Vlasov-Poisson system[END_REF][START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyro-kinetic approximation[END_REF][START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF].

The notion of two-scale convergence, introduced in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Guetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], is another tool allowing the treatment of the Vlasov equation with strong external magnetic field. Mathematical results were obtained in [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF][START_REF] Frénod | Long time behavior of the two-dimensional Vlasovequation with strong external magnetic field[END_REF][START_REF] Frénod | The finite Larmor radius approximation[END_REF]. The setting of uniform magnetic fields is particularly well adapted for using the two-scale convergence, the fast variable being related to the fast periodic cyclotronic motion.

In this study we follow the averaging techniques [START_REF] Bogoliubov | Asymptotic methods in the theory of nonlinear oscillations[END_REF]. The main idea consists in separating the slow and fast time scales of the problems, and eliminating the fast oscillations by averaging over the characteristic time of the fast motion. The motion equations of a charged particle under the action of a given electro-magnetic field (E = E(t, x), B ε = B ε (x)e(x)) are

dX ε dt = V ε (t), dV ε dt = q m E(t, X ε (t)) + ω ε c (X ε (t))V ε (t) ∧ e(X ε (t)) (5) 
where ω ε c (x) = qB ε (x) m is the cyclotronic frequency. When the magnetic field is strong

B ε (x) = B(x)
ε , a high frequency appears ω ε c (x) = qB(x) mε = ωc(x) ε , justifying the evolution with respect to two time variables, t and s = t/ε. We are searching for X ε (t) = X(t, t/ε) + εX 1 (t, t/ε) + ..., V ε (t) = V (t, t/ε) + εV 1 (t, t/ε) + ... .

Combining ( 5), [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF] yields at the dominant order

∂ s X = 0, ∂ s V = ω c (X)V (t, s) ∧ e(X) (7) 
and at the next one

∂ t X + ∂ s X 1 = V (t, s) (8) 
∂ t V + ∂ s V 1 = q m E(t, X) + (∇ x ω c (X) • X 1 )V ∧ e(X) + ω c (X)V 1 ∧ e(X) + ω c (X)V ∧ ∂ x e(X)X 1 .
(9) The position remains constant along the fast dynamics X = X(t). It is easily seen that the fast dynamics possesses other invariants : R(t) = |V ∧ e(X)|, Z(t) = V • e(X). We separate the two time scales, that is, we identify a slow dynamics given by (X, R, Z), looking for the slow time variations of these quantities. Thanks to [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF], we know that the orthogonal velocity rotates in the plan orthogonal to the magnetic lines. Averaging with respect to s the equation [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] leads to dX dt = ω c (X(t)) 2π 2π ωc(X) 0 V (t, s) ds = Z(t)e(X(t)).

The equation ( 8) also writes

∂ s X 1 + V (t, s) ∧ e(X(t)) ω c (X(t)) = 0. ( 10 
)
Up to a second order term, during a cyclotronic period, the charged particle describes a circle of center X 1 + (V ∧ e(X))/ω c (X), radius εR(t)/|ω c (X)|, in the plan orthogonal to e(X(t))

X ε (t) ≈ X(t) + εX 1 (t, t/ε) = X(t) + ε X 1 + V (t, t/ε) ∧ e(X(t)) ω c (X(t)) -ε V (t, t/ε) ∧ e(X(t)) ω c (X(t)) .

The slow time variations of the parallel velocity Z come by averaging the parallel component in [START_REF] Bostan | Gyrokinetic models for strongly magnetized plasmas with general magnetic shape[END_REF]. Thanks to the invariance [START_REF] Bostan | The effective Vlasov-Poisson system for strongly magnetized plasmas[END_REF], one gets dZ dt = q m E(t, X(t))•e(X(t))-ω c 2π 2π ωc 0

V ∧∂ x e(V ∧e) ds•e = q m E(t, X(t))•e(X(t))+ R 2 (t) 2 div x e see [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] for more details. Taking the scalar product by V in [START_REF] Bostan | Gyrokinetic models for strongly magnetized plasmas with general magnetic shape[END_REF] and observing, by integration by parts, that the average of (ω c (X

)V 1 ∧ e(X) -∂ s V 1 ) • V vanishes, we obtain 1 2 d dt (R 2 + Z 2 ) = q m E(t, X(t)) • e(X(t)) Z(t)
and therefore dR dt = -Z(t)R(t) 2 div x e(X(t)).

Introducing the magnetic moment µ(x, v) = m|v∧e(x)| 2 2B(x) , thanks to div x (Be) = 0, we obtain the well known system of characteristics in the phase space given by position, parallel velocity and magnetic moment [START_REF] Hazeltine | Plasma confinement[END_REF][START_REF] Goldston | Introduction to plasma physics[END_REF][START_REF] Cary | Hamiltonian theory of guiding-center motion[END_REF] dX dt = Z(t)e(X(t)), dZ dt = qE(t, X(t)) -µ∇ x B(X(t)) m • e(X(t)), dµ dt = 0.

The previous system corresponds to a transport equation in the phase space (x, z, µ), whose solution describes the behavior of (f ε ) ε>0 when ε 0. In other words, averaging applies as well at the transport operator level. Using an Ansatz for the particle densities (f ε ) ε>0 , we identify the model satisfied by the dominant particle density in that Ansatz and analyze the error estimate with respect to the particle densities (f ε ) ε>0 . These arguments are well understood now and led to many formal asymptotic models, associated to different regimes. The convergence and the error estimates were studied as well, see [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] for a first order error analysis in the setting of the Vlasov equation with three dimensional general strong magnetic field. The same work presents also a formal derivation, based on averaging, of a second order approximation, which emphasizes the well known drifts across the magnetic field lines. For the first order approximation and error analysis of the two dimensional Vlasov-Poisson system with strong magnetic field, we refer to [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | The effective Vlasov-Poisson system for strongly magnetized plasmas[END_REF]. Very recently, a second order approximation was studied in [START_REF] Filbet | Asymptotics of the three dimensional Vlasov equation in the large magnetic field limit[END_REF] for the three dimensional non linear (and also linear) Vlasov equation, with general strong magnetic field. The authors consider a self-consistent electric field given by the convolution of the charge density by a smooth given vector field in W 3,∞ . The analysis is performed in the setting of well prepared initial conditions.

The present work concentrates on the non linear Vlasov-Poisson system with strong magnetic field. We justify rigorously the second order approximation for three dimensional general strong magnetic fields, when considering well prepared initial conditions. To the best of our knowledge, a rigorous proof for second order estimates has not been reported yet, in the setting of the Vlasov-Poisson system, with general three dimensional magnetic field. Our approach relies on averaging, and combines standard results on first order and second order elliptic operators.

To any transport operator, whose characteristic flow preserves the Lebesgue measure, it is possible to associate an average operator, along this characteristic flow, thanks to von Neumann's ergodic mean theorem [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]. It happens that the above mentionned average operator coincides with the orthogonal projection over the subspace of functions which are left invariant along the characteristic flow. For the main properties of the average operators we refer to [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF]. The average operators are very useful tools when analyzing the Vlasov-Poisson system with strong external magnetic field in different regimes, like the guiding center approximation, or the finite Larmor radius regime [START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF][START_REF] Bostan | Gyrokinetic models for strongly magnetized plasmas with general magnetic shape[END_REF][START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF]. Moreover it is possible to handle the multi-scale analysis of general linear first order PDEs and to perform a complete error analysis [START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF]. The averaging techniques also play a central role when constructing uniformly accurate methods for oscillatory evolution problems [START_REF] Chartier | A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations[END_REF][START_REF] Crouseilles | Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations[END_REF][START_REF] Crouseilles | Uniformly accurate particle-in-cell method for the long time two-dimensional Vlasov-Poisson equation with strong magnetic field[END_REF][START_REF] Filbet | Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field[END_REF][START_REF] Hairer | A filtered Boris algorithm for charged particle dynamics in a strong magnetic field[END_REF]. Theoretical and numerical results for the Vlasov-Maxwell system with strong magnetic field were obtained in [START_REF] Filbet | On the Vlasov-Maxwell system with a strong magnetic field[END_REF].

The derivation of the second order approximation follows by averaging techniques, by taking advantage of the invariants of the cyclotronic motion. The computations simplify when a complete family of functional independent invariants is available for the fast dynamics. The expression of the average operator simplifies as well, when the characteristic flow is periodic. This is not the case in the general three dimensional framework, but after performing a suitable change of coordinates, the fast dynamics can be reduced to a periodic motion, with a complete family of functional independent invariants, as emphasized in the present work. We investigate the properties of the second order approximation for (1), [START_REF] Arsen'ev | Global existence of weak solution of Vlasov's system of equations[END_REF], see Section 6. Following the same lines as in the proof of Theorem 2.1, we establish the well posedness of the second order approximation for (1), [START_REF] Arsen'ev | Global existence of weak solution of Vlasov's system of equations[END_REF]. For any k ∈ N, the notation C k b stands for k times continuously differentiable functions, whose all partial derivatives, up to order k, are bounded. For any smooth vector field ξ : R 3 → R 3 , the notation ∂ x ξ stands for the Jacobian matrix field. The notation ω ε c = ωc ε = qB mε represents the cyclotronic frequency.

Theorem 1.1 Consider a non negative, smooth, compactly supported initial particle density fin ∈ C 1 c (R 3 × R 3 ) and a smooth magnetic field

B ε = B ε ∈ C 2 b (R 3 ) such that inf x∈R 3 |B ε (x)| = B ε 0 > 0 (that is B ε 0 = B 0 ε , inf x∈R 3 |B(x)| = B 0 > 0), div x B ε = 0. For any T > 0, there is ε T > 0 such that for 0 < ε ≤ ε T there exists a unique particle density fε ∈ C 1 c ([0, T ] × R 3 × R 3 ), whose Poisson electric field belongs to C 1 ([0, T ] × R 3 ) E[ fε (t)](x) = q 4π 0 R 3 R 3 fε (t, x , ṽ ) x -x |x -x | 3 dṽ dx , (t, x) ∈ R + × R 3 satisfying ∂ t fε + c[(ṽ • e)e] • ∇ x,ṽ fε + q m (E[ι ε fε ] • e)e • ∇ ṽ fε + div x e ṽ ∧ (e ∧ ṽ) 2 • ∇ ṽ fε (11) + c[ ṽε D [ fε ] ] • ∇ x,ṽ fε + (ṽ • e) ω ε c (∂ x ee ∧ e) • ∇ x ω ε c ω ε c ṽ ∧ (e ∧ ṽ) 2 • ∇ ṽ fε + (ṽ • e)(ṽ ε ∧D [ fε ] • ∂ x ee)e • ∇ ṽ fε + ṽε ∧D [ fε ] • ∇ x ω ε c ω ε c ṽ -(ṽ • e)e 2
• ∇ ṽ fε = 0 and fε (0, x, ṽ) = fin (x, ṽ), (x, ṽ) ∈ R 3 × R 3

where

ι ε = 1 + (ṽ • e) e • rot x e ω ε c , ṽε D = ṽε ∧D + ṽε GD + ṽε CD ṽε ∧D [ fε ] = E[ fε ] ∧ e B ε , ṽε GD = - m|ṽ ∧ e| 2 2qB ε ∇ x B ε ∧ e B ε , ṽε CD = - m(ṽ • e) 2 qB ε ∂ x ee ∧ e
and for any vector field ξ • ∇ x , the notation c[ξ] • ∇ x,ṽ stands for the vector field

c[ξ] • ∇ x,ṽ = ξ • ∇ x + (∂ x eξ ⊗ e -e ⊗ ∂ x eξ)ṽ • ∇ ṽ.
If the initial particle density fin satisfies (ṽ ∧ e) • ∇ ṽ fin = 0 then, at any time t ∈ [0, T ], the particle density fε (t) satisfies (ṽ∧e)•∇ ṽ fε (t) = 0. Moreover, if for some integer k ≥ 2 we have

fin ∈ C k c (R 3 ×R 3 ), B ε ∈ C k+1 (R 3 ), then fε ∈ C k ([0, T ]×R 3 ×R 3 ) and E[ fε ] ∈ C k ([0, T ]×R 3
). Notice that the advection along the parallel velocity and parallel electric field enter the model [START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF] as O(1) terms. The advections along the electric cross field drift, magnetic gradient drift and magnetic curvature drift appear as O(ε) terms, as usual. All the other contributions, except for the last one in [START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF] are due to the curvature of the magnetic lines. Clearly, non neglecting the curvature of the magnetic lines leads to many corrections with respect to the model with straight magnetic lines.

When the initial conditions are well prepared, we prove that the solutions of the previous model allow us to approximate the solutions of the Vlasov-Poisson system (1), (3) up to a second order term with respect to ε. We point out that performing the error analysis in the general three dimensional framework is far from obvious, most of the time the authors considering the two dimensional setting, with uniform magnetic field. The present method provides a complete rigorous error analysis for any three dimensional magnetic field shape. By well prepared initial conditions we understand

Definition 1.1 A family (g ε ) 0<ε≤1 ⊂ C 1 c (R 3 × R 3 ) is said well prepared if sup 0<ε≤1 (ṽ ∧ e) • ∇ ṽ gε L 2 (R 3 ×R 3 ) ε 2 < +∞, sup 0<ε≤1 c 0 [g ε ] • ∇ x,ṽ (g ε -gε ) L 2 (R 3 ×R 3 ) ε < +∞ where c 0 [ f ] • ∇ x,ṽ = (ṽ • e)e • ∇ x + q m (E[ f ] • e)e • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e)]
• ∇ ṽ and the notation • stands for the average along the characteristic flow of the vector field ω c (x) (ṽ ∧ e(x)) • ∇ ṽ, see Proposition 3.1.

Theorem 1.2 Let B ∈ C 4 b (R 3 ) be a smooth magnetic field, such that inf x∈R 3 |B(x)| = B 0 > 0, div x B = 0.
We consider a family of non negative, smooth, uniformly compactly supported particle densities

(g ε ) 0<ε≤1 ⊂ C 3 c (R 3 × R 3 ) ∃ R x, R ṽ > 0 : supp gε ⊂ {(x, ṽ) : |x| ≤ R x and |ṽ| ≤ R ṽ}, sup 0<ε≤1 gε C 3 (R 3 ×R 3 ) < +∞.
We assume that (g ε ) 0<ε≤1 are well prepared. We denote by (f ε ) ε>0 the solutions of the Vlasov-Poisson equations with external magnetic field (1), ( 3) on [0, T ], corresponding to the initial conditions

f ε (0, x, v) = (g ε + εg 1 ε ) x + ε v ∧ e(x) ω c (x) , v -ε E[g ε ] ∧ e(x) B(x) , (x, v) ∈ R 3 × R 3 ( 12 
)
where b(x, ṽ)

• ∇ x,ṽ = ω c (x)(ṽ ∧ e(x)) • ∇ ṽ c 0 [g ε ] • ∇ x,ṽ gε -c 0 [g ε ] • ∇ x,ṽ gε + b • ∇ x,ṽ g1 ε = 0, g1 ε = 0 (13) 
and T < inf 0<ε≤1 T (f ε (0)) see Theorem 2.1. For ε small enough, we consider the solution fε on [0, T ] of the problem (11) corresponding to the initial condition fε (0) = gε , 0 < ε ≤ ε T cf. Theorem 1.1 (see also Proposition (5.8)). Therefore there exists a constant C T > 0 such that for any

0 < ε ≤ ε T sup t∈[0,T ]    R 3 R 3 f ε (t, x, v) -( fε + ε f 1 ε ) t, x + ε v ∧ e ω c , v -ε E[ fε (t)] ∧ e B 2 dvdx    1/2 ≤ C T ε 2 where c 0 [ fε ] • ∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε + b • ∇ x,ṽ f 1 ε = 0, f 1 ε = 0. As in Definition 1.1, c 0 [ f ] • ∇ x,ṽ = (ṽ • e)e • ∇ x + q m (E[ f ] • e)e • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e)]
• ∇ ṽ and the notation • stands for the average along the characteristic flow of the vector field b(x, ṽ) • ∇ x,ṽ = ω c (x) (ṽ ∧ e(x)) • ∇ ṽ, see Proposition 3.1.

The fact that the fluctuation f 1 ε , entering the second order approximation for f ε , follows by inverting the operator -b•∇ x,ṽ on the zero average function c 0 [ fε ]•∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε comes easily, once we substract from ( 22) its average, see Section 4, [START_REF] Northrop | Adiabatic motion of charged particles[END_REF]. Accordingly, we consider the solutions (f ε ) ε>0 of the Vlasov-Poisson equations with external magnetic field (1), (3) corresponding to the initial conditions [START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF], where the fluctuations (g 1 ε ) ε>0 solve [START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF]. Notice also that determining explicitly the limit model, by computing the average of all vector fields it is far to be an easy task. It requires several auxiliary results, see Lemma 5.1, Propositions 5.1, 5.2 which are not obvious, and many technical computations. But the convergence result and error estimate are completely independent on that. When establishing the second order estimate, we only appeal to the approximation model written in the average form, without any explicit computation of the vector field averages entering this formulation. Therefore, in order to understand the asymptotic analysis, at the first reading, the readers can skip all details related to the explicit computation of these vector field averages.

Our paper is organized as follows. In Section 2 we discuss the well posedness of the Vlasov-Poisson problem with external magnetic field. We indicate uniform estimates with respect to the magnetic field. The average operators, together with their main properties are introduced in Section 3. The second order approximation of the Vlasov-Poisson problem is derived in Sections 4, 5. The error estimate relies on the construction of a corrector term. The well posedness of the limit model is discussed in Section 6.

2 Classical solutions for the Vlasov-Poisson problem with external magnetic field

The Vlasov-Poisson equations are now well understood. We refer to [START_REF] Arsen'ev | Global existence of weak solution of Vlasov's system of equations[END_REF] for weak solutions, and to [START_REF] Ukai | On the classical solution in the large time of the two dimensional Vlasov equations[END_REF][START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF][START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in 3 dimensions for general initial data[END_REF] for strong solutions. For studying the Vlasov-Poisson equations with external magnetic field we can adapt the arguments in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF][START_REF] Rein | Collisionless kinetic equations from astrophysics -the Vlasov-Poisson system[END_REF]. Motivated by the asymptotic behavior when the magnetic field becomes strong, we are looking for classical solutions, satisfying uniform bounds with respect to the magnetic field. At least locally in time such solutions exist, see Appendix A for the main lines of the proof.

Theorem 2.1 Consider a non negative, smooth, compactly supported initial particle density

f in ∈ C 1 c (R 3 × R 3 ) such that supp f in ⊂ {(x, v) ∈ R 3 × R 3 : |x| ≤ R in x , |v| ≤ R in v } and a smooth magnetic field B ∈ C 1 b (R 3 ). Let T < T (f in ) := m 0 q 2 R in v (12π) 1/3 f in 1/3 L 1 f in 2/3 L ∞ .
There is a unique particle density

f ∈ C 1 c ([0, T ] × R 3 × R 3 ), whose Poisson electric field is smooth E[f ] ∈ C 1 ([0, T ] × R 3 ), satisfying ∂ t f + v • ∇ x f + q m (E[f (t)] + v ∧ B) • ∇ v f = 0, (t, x, v) ∈ [0, T ] × R 3 × R 3 (14) E[f (t)](x) = q 4π 0 R 3 R 3 f (t, x , v ) x -x |x -x | 3 dv dx , (t, x) ∈ [0, T ] × R 3 (15) f (0, x, v) = f in (x, v), (x, v) ∈ R 3 × R 3 . ( 16 
)
The bound for the L ∞ norm of the Poisson electric field E[f ] and the size of the support of the particle density f are not depending on the magnetic field. Moreover, if for some integer k ≥ 2 we have

f in ∈ C k c (R 3 × R 3 ), B ∈ C k b (R 3 ), then f ∈ C k ([0, T ] × R 3 × R 3 ) and E[f ] ∈ C k ([0, T ] × R 3 ). Remark 2.1 1.
The solution constructed in Theorem 2.1 preserves the particle number and the total energy

d dt R 3 R 3 f (t, x, v) dvdx = 0, t ∈ [0, T ] d dt R 3 R 3 m|v| 2 2 f (t, x, v) dvdx + 1 8π 0 R 3 R 3 ρ[f (t)](x)ρ[f (t)](x ) |x -x | dx dx = 0.
2. We have the following balance for the total momentum

d dt R 3 R 3 f (t, x, v)mv dvdx -q R 3 R 3 f (t, x, v)v ∧ B dvdx = R 3 ρ[f (t)]E[f (t)] dx = 0 R 3 1 supp ρ[f (t)] div x E[f (t)] E[f (t)] dx = 0 R 3 1 supp ρ[f (t)] div x E[f (t)] ⊗ E[f (t)] - |E[f (t)]| 2 2 I 3 dx = 0.
When the magnetic field is uniform, we obtain the conservation of the parallel momentum

d dt R 3 R 3 f (t, x, v)m(v • e) dvdx = 0 and d dt R 3 R 3 f (t, x, v)m(v ∧ e) dvdx = qB m R 3 R 3 f (t, x, v)m(v ∧ e) dvdx ∧ e
saying that the orthogonal momentum rotates at the cyclotronic frequency

ω c = qB m R 3 R 3 f (t, x, v)m(v ∧ e) dvdx = cos(ω c t) R 3 R 3 f in (x, v)m(v ∧ e) dvdx
+ sin(ω c t)

R 3 R 3 f in (x, v)m(v ∧ e) ∧ e dvdx, t ∈ [0, T ].

Average operators and main properties

We intend to investigate the asymptotic behavior of the particle densities (f ε ) ε>0 satisfying (1), ( 3), (4) when ε > 0 becomes small. We assume that the initial particle density and the external magnetic field B ε = B ε e are smooth

f in ≥ 0, f in ∈ C 1 c (R 3 × R 3 ), B = Be ∈ C 1 b (R 3 )
and let us consider T < T (f in ). Under the above assumptions, we know by Theorem 2.1 that there exists ε T > 0 such that for every 0 < ε ≤ ε T , there is a unique strong solution

f ε ∈ C 1 c ([0, T ] × R 3 × R 3 ), E ε := E[f ε ] ∈ C 1 ([0, T ] × R 3
) for the Vlasov-Poisson problem with external magnetic field B ε = B ε e. As noticed in the proof of Theorem 2.1, we have uniform estimates with respect to ε for the L ∞ norm of the electric field E ε and the size of the support of the particle density f ε . Let us denote by (X ε , V ε )(t; t 0 , x, v) the characteristics associated to (1)

dX ε dt = V ε (t; t 0 , x, v), dV ε dt = q m [E ε (t, X ε (t; t 0 , x, v)) + V ε (t; t 0 , x, v) ∧ B ε (X ε (t; t 0 , x, v))] (17) X ε (t 0 ; t 0 , x, v) = x, V ε (t 0 ; t 0 , x, v) = v.
The strong external magnetic field induces a large cyclotronic frequency ω ε c = qB ε /m = ω c /ε, ω c = qB/m, and thus a fast dynamics. We are looking for quantities which are left invariant with respect to this fast motion. By direct computations we obtain

d dt X ε (t) + ε V ε (t) ∧ e(X ε (t)) ω c (X ε (t)) = (V ε (t) • e(X ε (t)) e(X ε (t)) + ε E ε (t, X ε (t)) B(X ε (t)) ∧ e(X ε (t)) + ε V ε (t) ∧ ∂ x e(X ε (t))V ε (t) ω c (X ε (t)) -ε (∇ x ω c (X ε (t)) • V ε (t)) V ε (t) ∧ e(X ε (t)) ω 2 c (X ε (t))
saying that the variations of x+ε v∧e(x) ωc(x) , along the characteristic flow [START_REF] Chartier | A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations[END_REF], over one cyclotronic period, is very small. Notice that the electro-magnetic force writes

q m E ε (t, x) + ω c ε v ∧ e(x) = q m (E ε (t, x) • e(x)) e(x) + ω c (x) ε v -ε E ε (t, x) ∧ e(x) B(x) ∧ e(x)
and therefore we introduce the relative velocity with respect to the electric cross field drift

ṽ = v -ε E ε (t, x) ∧ e(x) B(x) . (18) 
Accordingly, at any time t ∈ R + , we consider the new particle density

f ε (t, x, ṽ) = f ε t, x, ṽ + ε E[f ε (t)](x) ∧ e(x) B(x) , (x, ṽ) ∈ R 3 × R 3 . (19) 
It is easily seen that the particle densities f ε , f ε have the same charge density

ρ[ f ε (t)] = q R 3 f ε (t, •, ṽ) dṽ = q R 3 f ε (t, •, v) dv = ρ[f ε (t)], t ∈ R + implying that the Poisson electric fields corresponding to f ε , f ε coincide E[f ε (t)] = E[ f ε (t)], t ∈ [0, T ].
Therefore we can use the same notation E ε (t) for denoting them. We assume that the magnetic field satisfies

B 0 := inf x∈R 3 |B(x)| > 0 or equivalently ω 0 := inf x∈R 3 |ω c (x)| > 0 ( 20 
)
and therefore [START_REF] Crouseilles | Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations[END_REF], [START_REF] Crouseilles | Uniformly accurate particle-in-cell method for the long time two-dimensional Vlasov-Poisson equation with strong magnetic field[END_REF] are well defined. Notice that the particle densities ( f ε ) ε>0 are smooth,

f ε ∈ C 1 c ([0, T ] × R 3 × R 3
) and uniformly compactly supported with respect to ε (use the uniform bound for the electric fields (E ε ) ε and the hypothesis [START_REF] Filbet | Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field[END_REF]). Appealing to the chain rule leads to the following problem in the phase space (x, ṽ)

∂ t f ε + ṽ + ε E ε ∧ e B • ∇ x f ε -ε ∂ t E ε ∧ e B + ∂ x E ε ∧ e B ṽ + ε E ε ∧ e B • ∇ ṽ f ε + ω c ε ṽ ∧ e + q m (E ε • e) e • ∇ ṽ f ε = 0, (t, x, ṽ) ∈ [0, T ] × R 3 × R 3 (21) f ε (0, x, ṽ) = f in x, ṽ + ε E[f in ](x) ∧ e(x) B(x) , (x, ṽ) ∈ R 3 × R 3 .
We are looking for a representation formula for the time derivative of the electric field E ε , in terms of the particle density f ε . Thanks to the continuity equation

∂ t ρ[f ε ] + div x j[f ε ] = 0 we write ∂ t E[f ε ] = 1 4π 0 R 3 ∂ t ρ[f ε (t)](x -x ) x |x | 3 dx = - 1 4π 0 R 3 div x j[f ε ](x -x ) x |x | 3 dx = - 1 4π 0 div x R 3 x |x | 3 ⊗ j[f ε (t)](x -x ) dx = - 1 4π 0 div x R 3 x -x |x -x | 3 ⊗ j[ f ε (t)](x ) + ερ[ f ε (t)](x ) E ε (t, x ) ∧ e(x ) B(x ) dx .
We introduce as well the new Larmor center x = x + ε ṽ∧e(x) ωc(x) , which is a second order approximation of the Larmor center x + ε v∧e(x) ωc(x) . The idea will be to decompose the transport field in the Vlasov equation in such a way that x remains invariant with respect to the fast dynamics. We will distinguish between the orthogonal and parallel directions, taking as reference direction the magnetic line passing through the new Larmor center x, that is e(x) (which is left invariant with respect to the fast dynamics) ṽ = [ṽ -(ṽ • e(x))e(x)] + (ṽ • e(x))e(x).

Finally the Vlasov equation [START_REF] Filbet | Asymptotics of the three dimensional Vlasov equation in the large magnetic field limit[END_REF] writes

∂ t f ε +c ε [ f ε (t)]•∇ x,ṽ f ε +εa ε [ f ε (t)]•∇ x,ṽ f ε + b ε ε •∇ x,ṽ f ε = 0, (t, x, ṽ) ∈ [0, T ]×R 3 ×R 3 (22)
where the autonomous vector field b ε ε • ∇ x,ṽ is given by

b ε ε • ∇ x,ṽ = [ṽ -(ṽ • e(x)) e(x) + εA ε x (x, ṽ)] • ∇ x + ω c (x) ε (ṽ ∧ e(x))
• ∇ ṽ and for any particle density f ,

a ε [ f ] • ∇ x,ṽ , c ε [ f ] • ∇
x,ṽ stand for the vector fields

a ε [ f ] • ∇ x,ṽ = E[ f ] ∧ e B -A ε x • ∇ x + -∂ x E[ f ] ∧ e B ṽ + ε E[ f ] ∧ e B ( 23 
) + 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ j[ f ] + ερ[ f ] E[ f ] ∧ e B (x ) dx ∧ e(x) • ∇ ṽ c ε [ f ] • ∇ x,ṽ = (ṽ • e(x)) e(x) • ∇ x + ω c (x)ṽ ∧ e(x) -e(x) ε + q m (E[ f ] • e(x)) e(x) • ∇ ṽ = q m (E[ f ] • e(x)) e(x) -ω c ṽ ∧ 1 0 ∂ x e x + εs ṽ ∧ e(x) ω c (x) ṽ ∧ e(x) ω c (x) ds • ∇ ṽ + (ṽ • e(x)) e(x) • ∇ x . (24) 
The vector field A ε x (x, ṽ) • ∇ x will be determined by imposing that the Larmor center x is left invariant by the fast dynamics

b ε • ∇ x,ṽ x + ε ṽ ∧ e(x) ω c (x) = 0.
After some computations, the above condition writes

I 3 + ε∂ x ṽ ∧ e ω c A ε x (x, ṽ) = -∂ x ṽ ∧ e ω c [ṽ -(ṽ • e(x)) e(x)] - e(x) -e(x) ε ∧ (ṽ ∧ e(x))
and therefore A ε x (x, ṽ) is well defined for a.a. (x, ṽ) ∈ R 3 ×R 3 . Notice that for ε small enough, that is

ε ∂ x ṽ ∧ e ω c L ∞ < 1 the vector field A ε x is well defined on R 3 × R 3 . In particular A ε x is well defined if ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 < 1.

Remark 3.1

The vector field in the Vlasov equation ( 22) is divergence free

div x,ṽ c ε [ f ] + εa ε [ f ] + b ε ε = εdiv x E[ f ] ∧ e B -εdiv ṽ ∂ x E[ f ] ∧ e B ṽ = 0.
We intend to study the asymptotic behavior of [START_REF] Filbet | On the Vlasov-Maxwell system with a strong magnetic field[END_REF], when ε goes to 0 by averaging with respect to the flow of the fast dynamics generated by the advection field b ε (x,ṽ) ε • ∇ x,ṽ cf. [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF][START_REF] Bostan | The effective Vlasov-Poisson system for strongly magnetized plasmas[END_REF][START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF][START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF]. In order to do that, we concentrate on the main properties of this flow. As in the two dimensional framework, we establish the periodicity of the fast dynamics. 20) and e ∈ C 2 b (R 3 ). We denote by (X ε (s; x, ṽ), Ṽε (s; x, ṽ)) the characteristic flow of the autonomous vector field b ε (x, ṽ) • ∇ x,ṽ dX ε ds = ε[I 3 -e( Xε (s; x, ṽ)) ⊗ e( Xε (s; x, ṽ))] Ṽε (s; x, ṽ) + ε 2 A ε x (X ε (s; x, ṽ), Ṽε (s; x, ṽ))

Proposition 3.1 Let B ∈ C 1 b (R 3 ) verifying (
d Ṽε ds = ω c (X ε (s; x, ṽ)) Ṽε (s; x, ṽ) ∧ e( Xε (s; x, ṽ))

X ε (0; x, ṽ) = x, Ṽε (0; x, ṽ) = ṽ (using the notation Xε (s; x, ṽ) = X ε (s; x, ṽ) + ε Ṽε (s; x, ṽ) ∧ e(X ε (s; x, ṽ))/ω c (X ε (s; x, ṽ)))and by (X(s; x, ṽ), Ṽ(s; x, ṽ)) the characteristic flow of the autonomous vector field b(x, ṽ) • ∇ x,ṽ = ω c (x) (ṽ ∧ e(x)) • ∇ ṽ dX ds = 0, d Ṽ ds = ω c (X(s; x, ṽ)) Ṽ(s; x, ṽ) ∧ e(X(s; x, ṽ)), X(0; x, ṽ) = x, Ṽ(0; x, ṽ) = ṽ.

1. For any (x, ṽ

) ∈ R 3 × R 3 and ε > 0 such that ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 < 1 (25) 
the characteristic s → (X ε , Ṽε )(s; x, ṽ) is periodic, with smallest period S ε (x, ṽ) > 0.

2. For any (x, ṽ) ∈ R 3 × R 3 and ε > 0 such that

ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 ≤ 1 2
we have

|X ε (s; x, ṽ) -X(s; x, ṽ)| = |X ε (s; x, ṽ) -x| ≤ ε 2|ṽ| ω 0 , s ∈ R 2π ω c L ∞ ≤ S ε (x, ṽ) ≤ 2π ω 0 , 2π ω c L ∞ ≤ S(x, ṽ) := 2π |ω c (x)| ≤ 2π ω 0 |S ε (x, ṽ) -S(x, ṽ)| ≤ ε ∇ω c L ∞ 4π|ṽ| ω 3 0 , | Ṽε (s; x, ṽ) -Ṽ(s; x, ṽ)| ≤ ε|ṽ| 2 5 ∂ x e L ∞ ω 0 + 4π ∇ x ω c L ∞ ω 2 0 , s ∈ 0, 2π ω 0 and |A ε x (x, ṽ)| ≤ 4|ṽ| 2 ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 |A ε x (x, ṽ) -A x (x, ṽ)| ≤ ε|ṽ| 3 7 ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 2 + 1 2 ∂ 2 x e L ∞ ω 2 0 where A x (x, ṽ) = -∂ x ṽ ∧ e(x) ω c (x) [ṽ -(ṽ • e(x)) e(x)] -∂ x e ṽ ∧ e(x) ω c (x) ∧ (ṽ ∧ e(x)).
In particular, when ∇ x ω c = 0, we have S ε (x, ṽ) = S(x, ṽ) = 2π/|ω c |.

For any continuous function

u ∈ C(R 3 × R 3 ) we define the averages along the flows of b • ∇ x,ṽ , b ε • ∇ x,ṽ u (x, ṽ) = 1 S(x, ṽ) S(x,ṽ) 0 u(X(s; x, ṽ), Ṽ(s; x, ṽ)) ds, (x, ṽ) ∈ R 3 × R 3 u ε (x, ṽ) = 1 S ε (x, ṽ) S ε (x,ṽ) 0 u(X ε (s; x, ṽ), Ṽε (s; x, ṽ)) ds, (x, ṽ) ∈ R 3 × R 3 . For any R x , R ṽ ∈ R + we have u L ∞ (B(Rx)×B(R ṽ )) ≤ u L ∞ (B(Rx)×B(R ṽ )) u ε L ∞ (B(Rx)×B(R ṽ )) ≤ u L ∞ (B(R ε x )×B(R ṽ )) , R ε x = R x + 2εR ṽ/ω 0 where B(R) stands for the closed ball of radius R in R 3 . 4. If u is Lipschitz continuous, then for any (x, ṽ) ∈ R 3 × R 3 and ε > 0 such that ε|ṽ| ∂xe L ∞ ω 0 + ∇xωc L ∞ ω 2 0 ≤ 1 2 we have | u ε (x, ṽ) -u (x, ṽ)| ε ≤ Lip(u) |ṽ| ω 0 2 + 5 ∂ x e L ∞ |ṽ| + 4π ∇ x ω c L ∞ |ṽ| ω 0 + sup |ṽ |=|ṽ| |u(x, ṽ )| ∇ x ω c L ∞ 4|ṽ| ω 2 0 .

For any function

u ∈ C 1 c (R 3 × R 3 ) we have the inequality u -u L 2 (R 3 ×R 3 ) ≤ 2π ω 0 b • ∇ x,ṽ u L 2 (R 3 ×R 3 ) .

For any function

u ∈ C 1 (R 3 × R 3 ), we have u ∈ C 1 (R 3 × R 3 ) and c i • ∇ x,ṽ u = c i • ∇ x,ṽ u , div x,ṽ (uc i ) = div x,ṽ ( u c i ), 1 ≤ i ≤ 6 where c i • ∇ x,ṽ = ∂ x i + (∂ x i e ⊗ e -e ⊗ ∂ x i e)ṽ • ∇ ṽ, i ∈ {1, 2, 3} c 4 • ∇ x,ṽ = [ṽ -(ṽ • e) e] • ∇ ṽ, c 5 • ∇ x,ṽ = e • ∇ ṽ, c 6 • ∇ x,ṽ = (ṽ ∧ e) • ∇ ṽ.
The vector fields {c i • ∇ x,ṽ , i = 4} are divergence free, and div x,ṽ c 4 = 2.

Proof.

1. We use the notation Xε (s; x, ṽ) = X ε (s; x, ṽ) + ε Ṽε (s; x, ṽ) ∧ e(X ε (s; x, ṽ))/ω c (X ε (s; x, ṽ)).

It is easily seen that | Ṽε (s)| = |ṽ|, s ∈ R and therefore we have

ε| Ṽε (s; x, ṽ)| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 < 1, s ∈ R saying that A ε x (X ε (s;
x, ṽ), Ṽε (s; x, ṽ)) is well defined for any s ∈ R. By the definition of A ε x we know that Xε (s) remains constant with respect to s ∈ R

Xε (s; x, ṽ) = x + ε ṽ ∧ e(x) ω c (x) , s ∈ R implying that the parallel velocity is left invariant d ds Ṽε (s) • e( Xε (s)) = 0, s ∈ R
and that the orthogonal velocity rotates around e(x)

Ṽε (s; x, ṽ) = R - s 0 ω c (X ε (σ; x, ṽ)) dσ, e(x) ṽ, s ∈ R.
Here the notation R(θ, e) stands for the rotation of angle θ around the axis e

R(θ, e)ξ = cos θ(I 3 -e ⊗ e)ξ -sin θ(ξ ∧ e) + (ξ • e) e, ξ ∈ R 3 .
As ω c has constant sign, there is a unique S ε (x, ṽ) > 0 such that

sgn ω c S ε (x,ṽ) 0 ω c (X ε (σ; x, ṽ)) dσ = S ε (x,ṽ) 0 |ω c (X ε (σ; x, ṽ))| dσ = 2π
and therefore Ṽε (S ε (x, ṽ); x, ṽ) = ṽ. We claim that X ε (S ε (x, ṽ); x, ṽ) = x. It is enough to use the invariance of the Larmor center

X ε (S ε ) + ε Ṽε (S ε ) ∧ e(X ε (S ε )) ω c (X ε (S ε )) = x + ε ṽ ∧ e(x) ω c (x)
and to observe that

|X ε (S ε ) -x| = ε ṽ ∧ e(x) ω c (x) - ṽ ∧ e(X ε (S ε )) ω c (X ε (S ε )) ≤ ε|ṽ| e(X ε (S ε )) ω c (X ε (S ε )) - e(x) ω c (x) ≤ ε|ṽ| ∂ x e ω c L ∞ |X ε (S ε ) -x| ≤ ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 |X ε (S ε ) -x|.
Our conclusion follows by [START_REF] Frénod | The finite Larmor radius approximation[END_REF]. 2. By the definition of the vector field A ε x (x, ṽ) • ∇ x , we deduce

|A ε x (x, ṽ)| ≤ ∂ x ṽ ∧ e ω c L ∞ |ṽ| + ∂ x e L ∞ |ṽ| 2 ω 0 + ε ∂ x ṽ ∧ e ω c L ∞ |A ε x (x, ṽ)| ≤ 2|ṽ| 2 ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 + ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 |A ε x (x, ṽ)| ≤ 2|ṽ| 2 ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 + |A ε x (x, ṽ)| 2 implying that |A ε x (x, ṽ)| ≤ 4|ṽ| 2 ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 .
Notice that

I 3 + ε∂ x ṽ ∧ e(x) ω c (x) A ε x (x, ṽ) -A x (x, ṽ) ≤ 2 ∂ x ṽ ∧ e(x) ω c (x) L ∞ ε ∂ x e L ∞ |ṽ| 2 ω 0 + ε ∂ x e 2 L ∞ |ṽ| 3 ω 2 0 + |ṽ| e(x) -e(x) ε -∂ x e(x) ṽ ∧ e(x) ω c (x) ≤ ε 3 ∂ x e L ∞ ω 0 + 2 ∇ x ω c L ∞ ω 2 0 ∂ x e L ∞ ω 0 |ṽ| 3 + ε 2 ∂ x e 2 L ∞ ω 2 0 |ṽ| 3
and therefore

|A ε x (x, ṽ) -A x (x, ṽ)| ≤ I 3 + ε∂ x ṽ ∧ e(x) ω c (x) A ε x (x, ṽ) -A x (x, ṽ) + ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 |A ε x (x, ṽ)| ≤ 7ε|ṽ| 3 ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 2 + ε ∂ 2 x e L ∞ 2ω 2 0 |ṽ| 3 .
The invariances of x and |ṽ| yield

|X ε (s) -x| = ε ṽ ∧ e(x) ω c (x) -ε Ṽε (s) ∧ e(X ε (s)) ω c (X ε (s)) ≤ ε 2|ṽ| ω 0 , s ∈ R.
It is easily seen that 2π/ ω c L ∞ ≤ S ε (x, ṽ) ≤ 2π/ω 0 . Notice that we have

|ω c (x)| -∇ x ω c L ∞ 2ε|ṽ| ω 0 ≤ |ω c (X ε (σ))| ≤ |ω c (x)| + ∇ x ω c L ∞ 2ε|ṽ| ω 0 .
Averaging with respect to σ ∈ [0, S ε (x, ṽ)], we obtain

|ω c (x)| -∇ x ω c L ∞ 2ε|ṽ| ω 0 ≤ 2π S ε (x, ṽ) ≤ |ω c (x)| + ∇ x ω c L ∞ 2ε|ṽ| ω 0 .
Thanks to the formula |ω c (x)| = 2π S(x,ṽ) , we deduce

2π 1 S ε (x, ṽ) - 1 S(x, ṽ) ≤ ε ∇ x ω c L ∞ 2|ṽ| ω 0 and |S ε (x, ṽ) -S(x, ṽ)| = S ε (x, ṽ)S(x, ṽ) 1 S ε (x, ṽ) - 1 S(x, ṽ) ≤ ε ∇ x ω c L ∞ 4π|ṽ| ω 3 0 .
It remains to compare the velocities Ṽε (s; x, ṽ), Ṽ(s; x, ṽ). We will use the inequality

R(θ, e) -R(θ , e ) ≤ |θ -θ | + 5|e -e |, θ, θ ∈ R, |e| = |e | = 1.
For any s ∈ [0, 2π/ω 0 ] we write

|( Ṽε -Ṽ)(s; x, ṽ)| = R - s 0 ω c (X ε (σ)) dσ, e(x) ṽ -R - s 0 ω c (X(σ)) dσ, e(x) ṽ ≤ s 0 |ω c (X ε (σ)) -ω c (X(σ))| dσ + 5|e(x) -e(x)| |ṽ| ≤ 2π ω 0 ∇ x ω c L ∞ 2ε|ṽ| ω 0 + 5 ∂ x e L ∞ ε|ṽ| ω 0 |ṽ| = ε|ṽ| 2 5 ∂ x e L ∞ ω 0 + 4π ∇ x ω c L ∞ ω 2 0 . 3. It is a direct consequence of the invariances X(s; x, ṽ) = x, | Ṽ(s; x, ṽ)| = |ṽ| X ε (s; x, ṽ) + ε Ṽε (s; x, ṽ) ∧ e(X ε (s; x, ṽ)) ω c (X ε (s; x, ṽ)) = x + ε ṽ ∧ e(x) ω c (x) , | Ṽε (s; x, ṽ)| = |ṽ|.
4. It is a direct consequence of the previous statements. We have

| u ε (x, ṽ) -u (x, ṽ)| ≤ 1 S ε (x, ṽ) S ε (x,ṽ) 0 |u(X ε (s), Ṽε (s)) -u(X(s), Ṽ(s))| ds + 1 S ε (x, ṽ) - 1 S(x, ṽ) S ε (x,ṽ) 0 |u(X(s), Ṽ(s))| ds + 1 S(x, ṽ) S ε (x,ṽ) S(x,ṽ) |u(X(s), Ṽ(s))| ds
Our conclusion follows by noticing that 1 S ε (x, ṽ)

S ε (x,ṽ) 0 |u(X ε (s), Ṽε (s)) -u(X(s), Ṽ(s))| ds ≤ Lip(u) sup 0≤s≤2π/ω 0 |X ε (s) -X(s)| + | Ṽε (s) -Ṽ(s)| ≤ εLip(u) |ṽ| ω 0 2 + 5 ∂ x e L ∞ |ṽ| + 4π ∇ x ω c L ∞ ω 0 |ṽ| and 1 S ε (x, ṽ) - 1 S(x, ṽ) S ε (x,ṽ) 0 |u(X(s), Ṽ(s))| ds + 1 S(x, ṽ) S ε (x,ṽ) S(x,ṽ) |u(X(s), Ṽ(s))| ds ≤ 4ε|ṽ| sup |ṽ |=|ṽ| |u(x, ṽ )| ∇ x ω c L ∞ ω 2 0 . 5. For any (x, ṽ) ∈ R 3 × R 3 u (x, ṽ) -u(x, ṽ) = 1 S(x, ṽ) S(x,ṽ) 0 [u(X(s; x, ṽ), Ṽ(s; x, ṽ)) -u(x, ṽ)] ds = 1 S(x, ṽ) S(x,ṽ) 0 s 0 d dσ u(X(σ; x, ṽ), Ṽ(σ; x, ṽ)) dσds = 1 S(x, ṽ) S(x,ṽ) 0 s 0 (b • ∇u)(X(σ; x, ṽ), Ṽ(σ; x, ṽ)) dσds = 1 2π 2π 0 θ |ωc(x)| 0 (b • ∇u)(X(σ; x, ṽ), Ṽ(σ; x, ṽ)) dσdθ implying that | u (x, ṽ) -u(x, ṽ)| ≤ 1 2π 2π 0 2π ω 0 0 |(b • ∇u)(X(σ; x, ṽ), Ṽ(σ; x, ṽ))| dσdθ = 2π ω 0 0 |(b • ∇u)(X(σ; x, ṽ), Ṽ(σ; x, ṽ))| dσ.
Taking into account that (x, ṽ) → (X(σ; x, ṽ), Ṽ(σ; x, ṽ)) is measure preserving, it is easily seen that

u -u L 2 ≤ 2π ω 0 0 (b • ∇u)(X(σ; •, •), Ṽ(σ; •, •)) L 2 dσ = 2π ω 0 b • ∇u L 2 .
6. For any (x, ṽ

) ∈ R 3 × R 3 we have u (x, ṽ) = 1 2π 2π 0 u(x, R(-θ, e(x))ṽ) dθ = 1 2π 2π 0 u(x, cos θ(ṽ -(ṽ • e(x))e(x) + sin θ(ṽ ∧ e(x)) + (ṽ • e(x))e(x)) dθ and therefore u ∈ C 1 (R 3 × R 3 ), provided that e ∈ C 1 (R 3 )
. By direct computations we check that all the vector fields (c i • ∇ x,ṽ ) 1≤i≤6 are in involution with respect to (ṽ ∧ e) • ∇ ṽ, see Remark 3.2 for a more general result. Thanks to the commutation between the flows of c i • ∇ x,ṽ and (ṽ ∧ e) • ∇ ṽ, we deduce easily that the average operator along the flow of (ṽ ∧ e) • ∇ ṽ commutes with the flow of c i • ∇ x,ṽ , and thus with c i • ∇ x,ṽ , for 1 ≤ i ≤ 6. It remains to observe that the average along the flow of (ṽ ∧ e) • ∇ ṽ coincides with the average along the flow of ω c (ṽ ∧ e) • ∇ ṽ. The divergences of the vector fields (c i • ∇ x,ṽ ) 1≤i≤6 are constant along the flow of b • ∇ x,ṽ , implying that

div x,ṽ ( u c i ) = c i • ∇ x,ṽ u + u div x,ṽ c i = c i • ∇ x,ṽ u + u div x,ṽ c i = div x,ṽ (uc i ) , 1 ≤ i ≤ 6.

Remark 3.2

For further developments, notice that for any vector field ξ(x) • ∇ x , the vector field

c[ξ] • ∇ x,ṽ = ξ(x) • ∇ x + ṽ ∧ (∂ x eξ ∧ e) • ∇ ṽ = ξ(x) • ∇ x + (∂ x eξ ⊗ e -e ⊗ ∂ x eξ)ṽ • ∇ ṽ
is in involution with respect to (ṽ ∧ e) • ∇ ṽ. For justifying that, it is convenient to use, for any a ∈ R 3 , the notation M [a], standing for the matrix of the linear application

v ∈ R 3 → a ∧ v ∈ R 3 .
We appeal to the formulae

M [a]M [b] = b ⊗ a -(a • b)I 3 , M [a ∧ b] = b ⊗ a -a ⊗ b, a, b ∈ R 3 .
The commutator between (ṽ ∧ e) • ∇ ṽ and c[ξ] • ∇ x,ṽ writes

(ṽ ∧ e) • ∇ ṽ(ξ(x), ṽ ∧ (∂ x eξ ∧ e)) -[ξ • ∇ x + ṽ ∧ (∂ x eξ ∧ e) • ∇ ṽ](0, ṽ ∧ e) = (0, -M [∂ x eξ ∧ e](ṽ ∧ e) -M [ṽ]∂ x eξ -M [e]M [∂ x eξ ∧ e]ṽ).
We are done provided that

M [∂ x eξ ∧ e]M [e] + M [∂ x eξ] -M [e]M [∂ x eξ ∧ e] = 0.
Indeed, we have

M [e]M [∂ x eξ ∧ e] -M [∂ x eξ ∧ e]M [e] = (∂ x eξ ∧ e) ⊗ e -e ⊗ (∂ x eξ ∧ e) = M [e ∧ (∂ x eξ ∧ e)] = M [∂ x eξ]
Notice that the periods S, S ε are left invariant along the flows of b•∇ x,ṽ , b ε •∇ x,ṽ respectively, as well as the averages u

, u ε . If u is a C 1 function, we have b • ∇ x,ṽ u (x, ṽ) = 1 S(x, ṽ) S(x,ṽ) 0 d ds u(X(s), Ṽ(s)) ds = 0, (x, ṽ) ∈ R 3 × R 3
and similarly b ε • ∇ x,ṽ u ε = 0. We introduce the application T ε : R

3 × R 3 → R 3 × R 3 , given by T ε (x, ṽ) = x + ε ṽ ∧ e(x) ω c (x) , ṽ , (x, ṽ) ∈ R 3 × R 3 .
It is easily seen that for any application ϕ(x, ṽ) in the kernel of b • ∇ x,ṽ i.e., ϕ(x, ṽ) = ψ(x, |ṽ ∧ e(x)|, ṽ • e(x)), the composition ϕ • T ε belongs to the kernel of b ε • ∇ x,ṽ . Indeed we have (ϕ • T ε )(x, ṽ) = ϕ(x, ṽ) = ψ(x, |ṽ ∧ e(x)|, ṽ • e(x))

saying that ϕ • T ε is left invariant along the flow of b ε • ∇ x,ṽ . Another useful formula is ∂ x,ṽ T ε b ε = λ ε b • T ε , λ ε (x, ṽ) = ω c (x) ω c (x) , x = x + ε ṽ ∧ e(x) ω c (x) (26) 
and can be obtained by direct computation. Notice that for any ṽ ∈ R 3 , ε > 0 such that (25) holds true, the application

x → x + ε ṽ∧e(x) ωc(x) is a C 1 diffeomorphism of R 3
. Indeed, the above application is injective on R 3 , because

x 1 + ε ṽ ∧ e(x 1 ) ω c (x 1 ) = x 2 + ε ṽ ∧ e(x 2 ) ω c (x 2 ) implies |x 1 -x 2 | = ε ṽ ∧ e(x 2 ) ω c (x 2 ) - e(x 1 ) ω c (x 1 ) ≤ ε|ṽ| ∂ x e L ∞ ω 0 + ∇ x ω c L ∞ ω 2 0 |x 1 -x 2 |
and therefore x 1 = x 2 , thanks to [START_REF] Frénod | The finite Larmor radius approximation[END_REF]. Observe that the Jacobian matrix

I 3 + ε∂ x ṽ∧e(x) ωc(x)
is invertible, for any x ∈ R 3 and therefore the image of

x → x + ε ṽ∧e(x) ωc(x) is an open non empty set in R 3 . It is easily seen that this image is also a closed set in R 3 . As R 3 is connected, we deduce that {x + ε ṽ∧e(x) ωc(x) , x ∈ R 3 } = R 3 and that x → x + ε ṽ∧e(x) ωc(x) is a C 1 diffeomorphism of R 3 .
We establish now the following relation between the averages along the flows of b • ∇ x,ṽ , b ε • ∇ x,ṽ . Proposition 3.2 Consider (x, ṽ) ∈ R 3 × R 3 and ε > 0 satisfying (25).

1. For any s ∈ R we have

T ε ((X ε , Ṽε )(s; x, ṽ)) = (X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ)) and Λ ε (S ε (x, ṽ); x, ṽ) = S ε (x,ṽ) 0 λ ε ((X ε , Ṽε )(σ; x, ṽ)) dσ = S(T ε (x, ṽ))
where the function Λ ε is defined by

Λ ε (s; x, ṽ) = s 0 λ ε ((X ε , Ṽε )(σ; x, ṽ)) dσ. 2. Let u ∈ C 0 (R 3 × R 3 ) be a function such that supp u ⊂ {(x, ṽ) : |ṽ| ≤ R} for some R > 0. For any ε > 0 satisfying εR ∂xe L ∞ ω 0 + ∇xωc L ∞ ω 2 0 < 1 we have λ ε u • T ε ε = λ ε ε u • T ε . 3. Assume that ∇ x ω c = 0. Let u ∈ C 0 (R 3 × R 3 ) be a function such that supp u ⊂ {(x, ṽ) : |ṽ| ≤ R} for some R > 0. For any ε > 0 satisfying εR ∂xe L ∞ ω 0 < 1 we have u • T ε ε = u • T ε .
Proof.

1. As A ε x (x, ṽ) is well defined for any (x, ṽ) ∈ R 3 × R 3 and ε > 0 satisfying [START_REF] Frénod | The finite Larmor radius approximation[END_REF], and since | Ṽε (s; x, ṽ)| = |ṽ|, we deduce that (X ε (s; x, ṽ), Ṽε (s; x, ṽ)) exists for any s ∈ R. Let us consider Λ ε (s; x, ṽ) = s 0 λ ε ((X ε , Ṽε )(σ; x, ṽ)) dσ, s ∈ R and γ ε (s; x, ṽ) = T ε (X ε (s; x, ṽ), Ṽε (s; x, ṽ)). Observe, thanks to [START_REF] Garbet | Neoclassical equilibrium in gyrokinetic simulations[END_REF], that dγ ε ds = ∂T ε (X ε (s; x, ṽ), Ṽε (s; x, ṽ))b ε (X ε (s; x, ṽ), Ṽε (s; x, ṽ))

= λ ε (X ε (s; x, ṽ), Ṽε (s; x, ṽ))b(T ε (X ε (s; x, ṽ), Ṽε (s; x, ṽ)))

= dΛ ε ds (s; x, ṽ)b(γ ε (s; x, ṽ)).

Notice also that

d ds (X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ)) = dΛ ε ds (s; x, ṽ)b((X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ))).
Since γ ε (s; x, ṽ) and (X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ)) coincide at s = 0

γ ε (0; x, ṽ) = T ε (x, ṽ) = (X, Ṽ)(0; T ε (x, ṽ))
we deduce that

T ε (X ε (s; x, ṽ), Ṽε (s; x, ṽ)) = γ ε (s; x, ṽ) = (X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ)), s ∈ R. (27) 
Recall that Xε (s; x, ṽ) = x, s ∈ R and

S ε (x,ṽ) 0 |ω c (X ε (σ; x, ṽ))| dσ = 2π. Therefore we obtain Λ ε (S ε (x, ṽ); x, ṽ) = S ε (x,ṽ) 0 ω c (X ε (σ; x, ṽ)) ω c ( Xε (σ; x, ṽ)) dσ = 1 |ω c (x)| S ε (x,ṽ) 0 |ω c (X ε (σ; x, ṽ))| dσ = 2π |ω c (x)| = S(T ε (x, ṽ)).
2. Consider first (x, ṽ) ∈ R 3 × R 3 such that |ṽ| > R. Obviously we have | Ṽ(s; x, ṽ)| = |ṽ| > R and u (x, ṽ) = 1 S(x,ṽ) S(x,ṽ) 0 u(X(s; x, ṽ), Ṽ(s; x, ṽ)) ds = 0. Similarly we have | Ṽε (s; x, ṽ)| = |ṽ| > R and

λ ε u • T ε ε = 1 S ε (x, ṽ) S ε (x,ṽ) 0 λ ε ((X ε , Ṽε )(s;
x, ṽ))u( Xε (s; x, ṽ), Ṽε (s; x, ṽ)) ds = 0 where Xε = X ε + ε Ṽε ∧e(X ε ) ωc(X ε ) . Therefore our conclusion holds true in this case. Consider now |ṽ| ≤ R. Thanks to the first statement, we can write

λ ε u • T ε ε (x, ṽ) = 1 S ε (x, ṽ) S ε (x,ṽ) 0 λ ε ((X ε , Ṽε )(s; x, ṽ))u( Xε (s; x, ṽ), Ṽε (s; x, ṽ)) ds = 1 S ε (x, ṽ) S ε (x,ṽ) 0 d ds Λ ε (s; x, ṽ)u((X, Ṽ)(Λ ε (s; x, ṽ); T ε (x, ṽ))) ds = 1 S ε (x, ṽ) S(T ε (x,ṽ)) 0 u((X, Ṽ)(σ; T ε (x, ṽ))) dσ = 1 S ε (x, ṽ) S ε (x,ṽ) 0 λ ε ((X ε , Ṽε )(σ; x, ṽ)) dσ u (T ε (x, ṽ)) = ( λ ε ε u • T ε ) (x, ṽ).
3. It comes from the points 1. and 2. with λ ε = 1.

Remark 3.3

The conclusions of the second and third statement in Proposition 3.

2 remain valid for |ṽ| ≤ R, εR ∂xe L ∞ ω 0 + ∇xωc L ∞ ω 2 0 < 1 if u ∈ C 0 (R 3 × R 3 ).
When establishing the convergence toward the limit model, we need to introduce a corrector term. More exactly, we need to invert the operator (ṽ ∧ e(x)) • ∇ ṽ on the set of zero average functions. We will use the following result.

Proposition 3.3 Let z ∈ C 0 (R 3 × R 3 ) be a continuous function, of zero average z (x, ṽ) = 1 2π 2π 0 z (x, R(-θ, e(x))ṽ) dθ = 0, (x, ṽ) ∈ R 3 × R 3 .
1. There is a unique continuous function u of zero average whose derivative along the flow of (ṽ ∧ e(x)) • ∇ ṽ is z

(ṽ ∧ e(x)) • ∇ ṽu = z(x, ṽ), (x, ṽ) ∈ R 3 × R 3 .
If z is bounded, so is u, and

u C 0 (B(Rx)×B(R ṽ )) ≤ π z C 0 (B(Rx)×B(R ṽ )) , for any R x , R ṽ > 0. If supp z ⊂ B(R x ) × B(R ṽ), then supp u ⊂ B(R x ) × B(R ṽ).
2. If z is of class C 1 , then so is u and we have for any R x , R ṽ > 0

∇ ṽu C 0 (B(Rx)×B(R ṽ )) ≤ π √ 3 ∇ ṽz C 0 (B(Rx)×B(R ṽ )) ∇ x u C 0 (B(Rx)×B(R ṽ )) ≤ C ∇ x z C 0 (B(Rx)×B(R ṽ )) + R ṽ ∇ ṽz C 0 (B(Rx)×B(R ṽ ))
for some constant C depending on ∂ x e L ∞ .

Proof.

1. It is easily seen that u(x, ṽ) = 1 2π 2π 0 (θ -2π)z(x, R(-θ, e(x))ṽ) dθ, (x, ṽ) ∈ R 3 × R 3 .
2. We appeal to the vector fields (c i • ∇ x,ṽ ) 1≤i≤6 which are in involution with (ṽ ∧ e) • ∇ ṽ, see the last statement in Proposition 3.1, Remark 3.2. We have

(ṽ ∧ e(x)) • ∇ ṽ(c i • ∇ x,ṽ u) = c i • ∇ x,ṽ z c i • ∇ x,ṽ z = c i • ∇ x,ṽ z = 0, c i • ∇ x,ṽ u = c i • ∇ x,ṽ u = 0.
As before, we have

(c i •∇ x,ṽ u)(x, ṽ) = 1 2π 2π 0 (θ-2π)(c i •∇ x,ṽ z)(x, R(-θ, e(x))ṽ) dθ, (x, ṽ) ∈ R 3 ×R 3 , 1 ≤ i ≤ 6.
Since |ṽ ∧ e(x)| is left invariant by the flow of (ṽ ∧ e(x)) • ∇ ṽ, we also have for any (x, ṽ) such that ṽ ∧ e(x) = 0

(c i • ∇ x,ṽ u)(x, ṽ) |ṽ ∧ e(x)| = 1 2π 2π 0 (θ -2π) c i • ∇ x,ṽ z | • ∧ e| (x, R(-θ, e(x))ṽ) dθ, i ∈ {4, 6}.
We deduce that for any (x, ṽ) ∈ B(R x ) × B(R ṽ) such that ṽ ∧ e(x) = 0

|(c i • ∇ x,ṽ u)(x, ṽ)| |ṽ ∧ e(x)| ≤ π ∇ ṽz C 0 (B(Rx)×B(R ṽ ) , i ∈ {4, 6}.
We also have for any (x, ṽ)

∈ B(R x ) × B(R ṽ) |(e•∇ ṽu)(x, ṽ)| = |(c 5 •∇ x,ṽ u)(x, ṽ)| ≤ π c 5 •∇ x,ṽ z C 0 (B(Rx)×B(R ṽ ) ≤ π ∇ ṽz C 0 (B(Rx)×B(R ṽ ) .
We obtain, for any (x, ṽ) ∈ B(R x ) × B(R ṽ) such that ṽ ∧ e(x) = 0

|∇ ṽu(x, ṽ)| 2 = |(c 4 • ∇ x,ṽ u)(x, ṽ)| 2 |ṽ ∧ e(x)| 2 + |(c 5 • ∇ x,ṽ u)(x, ṽ)| 2 + |(c 6 • ∇ x,ṽ u)(x, ṽ)| 2 |ṽ ∧ e(x)| 2 ≤ 3π 2 ∇ ṽz 2 C 0 (B(Rx)×B(R ṽ ) .
As u is C 1 (because z is assumed C 1 ), we deduce

∇ ṽu C 0 (B(Rx)×B(R ṽ ) ≤ π √ 3 ∇ ṽz C 0 (B(Rx)×B(R ṽ )) .
The estimate for ∇ x u C 0 (B(Rx)×B(R ṽ )) follows immediately, using the fields

c i • ∇ x,ṽ , i ∈ {1, 2, 3} c i • ∇ x,ṽ u C 0 (B(Rx)×B(R ṽ )) ≤ π c i • ∇ x,ṽ z C 0 (B(Rx)×B(R ṽ )) , i ∈ {1, 2, 3}
and the previous estimate for ∇ ṽu C 0 (B(Rx)×B(R ṽ )) .

The limit model and convergence result

We concentrate now on the formal derivation of the limit model in [START_REF] Filbet | On the Vlasov-Maxwell system with a strong magnetic field[END_REF], as ε goes to 0. We expect that the solution of [START_REF] Filbet | On the Vlasov-Maxwell system with a strong magnetic field[END_REF] writes

f ε = fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε + . . . (28) 
where b • ∇ x,ṽ fε = 0, f 1 ε = 0. The idea is to split the contributions at any order into average and fluctuation. As fε ∈ ker b • ∇ x,ṽ , we know that fε

• T ε ∈ ker b ε • ∇ x,ṽ and thus fε • T ε ε = fε • T ε . By Proposition 3.2 we also have λ ε f 1 ε • T ε ε = λ ε ε f 1 ε • T ε = 0 and therefore f ε ε = fε • T ε + O(ε 2 ), f ε -f ε ε = ελ ε f 1 ε • T ε + O(ε 2 ).
Accordingly, at the leading order, the particle density f ε has no fluctuation (provided that the initial condition will be well prepared) and the averages at the orders 1, ε combine together in fε • T ε . For any smooth compactly supported particle density f = f (x, ṽ) we introduce the notations, motivated by ( 23), ( 24)

a[ f ] • ∇ x,ṽ = E[ f ] ∧ e B -A x (x, ṽ) • ∇ x -∂ x E[ f ] ∧ e B ṽ • ∇ ṽ + 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ j[ f ](x ) dx ∧ e(x) • ∇ ṽ c 0 [ f ] • ∇ x,ṽ = (ṽ • e) e • ∇ x + q m (E[ f ] • e) e • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e)] • ∇ ṽ (29) c 1 [ f ] • ∇ x,ṽ = lim ε 0 ∂T ε c ε [ f • T ε ] -λ ε (x, ṽ)(c 0 [ f ] • T ε ) ε • ∇ x,ṽ . (30) 
The last notation is justified by the expansion

c ε [ f • T ε ] • ∇ x,ṽ ( f • T ε ) = λ ε (x, ṽ)(c 0 [ f ] • ∇ x,ṽ f ) • T ε + ε(c 1 [ f ] • ∇ x,ṽ f ) • T ε + O(ε 2 ) (31)
for any smooth particle density f , which will be used in the sequel. The expression for the vector field c 1 [ f ] • ∇ x,ṽ follows by straightforward computations, see Proposition 5.6, using the definition

c ε [ f ] • ∇ x,ṽ = (ṽ • e(x)) e(x) • ∇ x + q m (E[ f ] • e(x)) e(x) • ∇ ṽ -ω c (x)ṽ ∧ e(x) -e(x) ε • ∇ ṽ.
Taking the average of ( 22) along the flow (X ε , Ṽε ) yields

∂ t f ε (t) ε + c ε [ f ε (t)] • ∇ x,ṽ f ε (t) ε + ε a ε [ f ε (t)] • ∇ x,ṽ f ε (t) ε = 0. ( 32 
)
Motivated by ( 28), we have

∂ t f ε ε = (∂ t fε ) • T ε + O(ε 2 ).
For the contribution of the term εa

ε [ f ε ] • ∇ x,ṽ f ε observe that a ε [ f ε ] • ∇ x,ṽ f ε = a[ f ε ] • ∇ x,ṽ f ε + O(ε) (33) 
= a[ fε

• T ε ] • ∇ x,ṽ ( fε • T ε ) + O(ε) = λ ε (a[ fε ] • ∇ x,ṽ fε ) • T ε + O(ε). It remains to analyze the contribution of c ε [ f ε ] • ∇ x,ṽ f ε . Since f 1 ε = 0, we have ρ[ f 1 ε ] = 0, E[ f 1 ε ] = 0, E[λ ε f 1 ε • T ε ] = O(ε) and therefore c ε [ f ε ] • ∇ x,ṽ f ε = c ε [ fε • T ε + ελ ε f 1 ε • T ε ] • ∇ x,ṽ ( fε • T ε + ελ ε f 1 ε • T ε ) + O(ε 2 ) (34) = c ε [ fε • T ε ] • ∇ x,ṽ ( fε • T ε ) + εc ε [ fε • T ε ] • ∇ x,ṽ (λ ε f 1 ε • T ε ) + O(ε 2 ) = λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε + ελ ε (c 1 [ fε ] • ∇ x,ṽ fε ) • T ε + ελ ε (c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε + O(ε 2
). Thanks to the second statement in Proposition 3.2, we have

ε a ε [ f ε ] • ∇ x,ṽ f ε ε = ε λ ε (a[ fε ] • ∇ x,ṽ fε ) • T ε + O(ε) ε (35) = ε λ ε ε a[ fε ] • ∇ x,ṽ fε • T ε + O(ε 2 ) = ε a[ fε ] • ∇ x,ṽ fε • T ε + O(ε 2 ) and c ε [ f ε ] • ∇ x,ṽ f ε ε = λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε ε + ε λ ε (c 1 [ fε ] • ∇ x,ṽ fε ) • T ε ε (36) + ε λ ε (c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε ε + O(ε 2 ) = λ ε ε c 0 [ fε ] • ∇ x,ṽ fε • T ε + ε λ ε ε c 1 [ fε ] • ∇ x,ṽ fε • T ε + ε λ ε ε c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε + O(ε 2 ) = c 0 [ fε ] • ∇ x,ṽ fε • T ε + ε c 1 [ fε ] • ∇ x,ṽ fε • T ε + ε c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε + O(ε 2 )
where in the last equality we have used the relation

λ ε ε = 1 + O(ε 2 )
. By combining (32), ( 35), [START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF] and keeping all the terms up to the second order, we find the following model for the particle density fε

∂ t fε + c 0 [ fε ] • ∇ x,ṽ fε + ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε + ε c 0 [ fε ] • ∇ x,ṽ f 1 ε = 0, b • ∇ fε = 0. ( 37 
)
We need another equation for the fluctuation f 1 ε . Replacing in [START_REF] Filbet | On the Vlasov-Maxwell system with a strong magnetic field[END_REF] the expressions in ( 33), (34) yields

∂ t fε • T ε + ελ ε (∂ t f 1 ε • T ε ) + λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε + ελ ε ((a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε ) • T ε + ελ ε (c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε + b ε ε • ∇ x,ṽ ( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) = O(ε 2 ). ( 38 
)
Taking the difference between ( 38) and (37) (after composition with T ε ) leads to

ελ ε (∂ t f 1 ε • T ε ) + λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε -c 0 [ fε ] • ∇ x,ṽ fε • T ε + ελ ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε ) • T ε -ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε • T ε + ελ ε (c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε -ε c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε + b ε • ∇ x,ṽ (λ ε f 1 ε • T ε + ε f 2 ε • T ε ) = O(ε 2 ) because fε • T ε ∈ ker b ε • ∇ x,ṽ . As λ ε = 1 + O(ε)
, the previous equation also writes

ε∂ t f 1 ε • T ε + λ ε c 0 [ fε ] • ∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε • T ε + (λ ε -1) c 0 [ fε ] • ∇ x,ṽ fε • T ε + ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε -(a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε • T ε (39) + ε c 0 [ fε ] • ∇ x,ṽ f 1 ε -c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε + b ε • ∇ x,ṽ f 1 ε • T ε -ε ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) f 1 ε • T ε + ε f 2 ε • T ε = O(ε 2 ).
Notice that by [START_REF] Garbet | Neoclassical equilibrium in gyrokinetic simulations[END_REF] we have

b ε • ∇ x,ṽ ( f 1 ε • T ε ) = b ε • t ∂T ε (∇ x,ṽ f 1 ε ) • T ε = λ ε (b • ∇ x,ṽ f 1 ε ) • T ε and εb ε • ∇ x,ṽ f 2 ε • T ε - ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) f 1 ε • T ε = εb ε • ∇ x,ṽ f 2 ε - ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) f 1 ε • T ε = ελ ε b • ∇ f 2 ε - ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) f 1 ε • T ε .
The equality [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF] suggests that the fluctuation f 1 ε satisfies the problem

c 0 [ fε ] • ∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε + b • ∇ x,ṽ f 1 ε = 0, f 1 ε = 0. ( 40 
)
Moreover, considering the contributions of order ε in (39) leads to the definition of the corrector f 2

ε ∂ t f 1 ε - ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) c 0 [ fε ] • ∇ x,ṽ fε + (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε (41) 
-(a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε + c 0 [ fε ] • ∇ x,ṽ f 1 ε -c 0 [ fε ] • ∇ x,ṽ f 1 ε + b • ∇ x,ṽ f 2 ε - ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) f 1 ε = 0.
We have obtained the limit model ( 37), [START_REF] Northrop | Adiabatic motion of charged particles[END_REF], to be supplemented by an initial condition.

The well posedness of this model will be established in Section 6. We will discuss the existence/uniqueness of smooth solutions on any time interval [0, T ], if ε is small enough cf. Theorem 1.1. Notice that (37), ( 40) is a regular reformulation of the Vlasov-Poisson system with strong external magnetic field. Indeed, replacing ε by 0 in [START_REF] Littlejohn | Variational principles of guiding centre motion[END_REF] leads to the zero order model

∂ t f0 + (ṽ • e) e • ∇ x f0 + q m (E[ f0 ] • e) e • ∇ ṽ f0 -[ṽ ∧ (∂ x e(ṽ ∧ e)] • ∇ ṽ f0 = 0, b • ∇ f0 = 0.
We are ready now to establish rigorously the second order approximation f ε = fε

• T ε + ελ ε f 1 ε • T ε + O(ε 2 ). Proof. (of Theorem 1.2) Clearly we have sup ε>0 { ρ[g ε ] L 1 (R 3 ) + ρ[g ε ] L ∞ (R 3 ) } < +∞.
By Proposition 3.3 we obtain supp (g

1 ε ) ⊂ {(x, ṽ) ∈ R 3 × R 3 : |x| ≤ R x, |ṽ| ≤ R ṽ} and it is easily seen that supp f ε (0) ⊂ (x, v) ∈ R 3 × R 3 : |v| ≤ R ε v := R ṽ + ε E[g ε ] L ∞ B 0 , |x| ≤ R ε x := R x + ε R ε v ω 0 .
Therefore the particle densities (f ε (0)) 0<ε≤1 are uniformly compactly supported and we have sup

ε>0 f ε (0) C 2 (R 3 ×R 3 ) < +∞. Notice that inf ε>0 T (f ε (0)) > 0, see Theorem 2.
1, and thus we can pick a time 0 < T < inf ε>0 T (f ε (0)). By Theorem 2.1 we know that (f ε ) ε are uniformly

compactly supported in [0, T ] × R 3 × R 3 and sup t∈[0,T ] f ε (t) C 2 (R 3 ×R 3 ) + ∂ t f ε (t) C 1 (R 3 ×R 3 ) + E[f ε (t)] C 2 (R 3 ) < +∞, ε > 0. We deduce that ( f ε ) ε are uniformly compactly supported in [0, T ] × R 3 × R 3 and sup t∈[0,T ] f ε (t) C 2 (R 3 ×R 3 ) + ∂ t f ε (t) C 1 (R 3 ×R 3 ) < +∞, ε > 0.
The particle densities ( gε ) ε are uniformly compactly supported in R 3 ×R 3 , we have sup

ε>0 gε C 3 (R 3 ×R 3 ) <
+∞, and therefore we know by Theorem 1.1 that the particle densities ( fε

) ε are uniformly compactly supported in [0, T ] × R 3 × R 3 and sup ε>0,t∈[0,T ] fε (t) C 3 (R 3 ×R 3 ) + ∂ t fε (t) C 2 (R 3 ×R 3 ) + E[ fε (t)] C 3 (R 3 ) < +∞.
Clearly we have c 0

[ fε ] • ∇ x,ṽ fε , c 0 [ fε ] • ∇ x,ṽ fε ∈ C 2 c (R 3 × R 3 ) and by Proposition 3.3 applied to c 0 [ fε ] • ∇ x,ṽ fε ω c - c 0 [ fε ] • ∇ x,ṽ fε ω c + (ṽ ∧ e) • ∇ ṽ f 1 ε = 0, f 1 ε = 0 we deduce that f 1 ε (t) ∈ C 2 c (R 3 × R 3 ). We also have ∂ t (c 0 [ fε ] • ∇ x,ṽ fε ), ∂ t c 0 [ fε ] • ∇ x,ṽ fε ∈ C 1 c (R 3 × R 3
) and by appealing one more time to Proposition 3.3 (noticing that

∂ t f 1 ε = ∂ t f 1 ε = 0), we obtain ∂ t f 1 ε (t) ∈ C 1 c (R 3 × R 3 ) and sup ε>0,t∈[0,T ] f 1 ε (t) C 2 (R 3 ×R 3 ) + ∂ t f 1 ε (t) C 1 (R 3 ×R 3 ) < +∞.
Finally we define the corrector f 2 ε by solving [START_REF] Northrop | Extensions of guiding center motion to higher order[END_REF]. More exactly we define f

2 ε = ṽ∧e(x) ωc(x) • ∇xωc ωc(x) f 1 ε + u ε , where u ε = 0 and ∂ t f 1 ε - ṽ ∧ e(x) ω c (x) • ∇ x ω c ω c (x) c 0 [ fε ] • ∇ x,ṽ fε + (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε -(a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε + c 0 [ fε ] • ∇ x,ṽ f 1 ε -c 0 [ fε ] • ∇ x,ṽ f 1 ε + b • ∇ x,ṽ u ε = 0.
Thanks to Proposition 3.3, see also the expression of the field c 1 [ fε ] • ∇ x,ṽ cf. Proposition 5.6, it is easily seen that sup

ε>0,t∈[0,T ] [ u ε (t) C 1 (R 3 ×R 3 ) + ∂ t u ε (t) C 0 (R 3 ×R 3 ) ] < +∞ which implies sup ε>0,t∈[0,T ] [ f 2 ε (t) C 1 (R 3 ×R 3 ) + ∂ t f 2 ε (t) C 0 (R 3 ×R 3 ) ] < +∞. ( 42 
)
Multiplying [START_REF] Northrop | Adiabatic motion of charged particles[END_REF] by λ ε , one gets after composition with

T ε λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε -λ ε c 0 [ fε ] • ∇ x,ṽ fε • T ε + b ε • ∇ x,ṽ ( f 1 ε • T ε ) = 0. (43) 
Similarly, multiplying (41) by ελ ε yields, after composition with

T ε ∂ t (ελ ε f 1 ε • T ε ) -ελ ε ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) c 0 [ fε ] • ∇ x,ṽ fε • T ε (44) + ελ ε ((a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε ) • T ε -ελ ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε • T ε + ελ ε (c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε -ελ ε c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε + εb ε • ∇ x,ṽ ( f 2 ε • T ε ) -εb ε • ∇ x,ṽ ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) f 1 ε • T ε = 0.
A straightforward computation shows that the functions

δ ε := b ε • ∇ x,ṽ λ ε -1 + ε ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) ( f 1 ε • T ε ) + λ ε -1 + ελ ε ṽ ∧ e(x) ω c (x) • ∇ x ω c (x) ω c (x) c 0 [ fε ] • ∇ x,ṽ fε • T ε satisfy sup ε>0,t∈[0,T ] δ ε (t) C 0 (R 3 ×R 3 ) ε 2 < +∞. (45) 
Combining ( 43), ( 44) we obtain

∂ t (ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) + λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε -c 0 [ fε ] • ∇ x,ṽ fε • T ε (46) + ε((a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε ) • T ε -ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε • T ε + ε(c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε -ε c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε + b ε ε • ∇ x,ṽ ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε = ε 2 ∂ t f 2 ε • T ε + δ ε + δε where δε := ε(1 -λ ε ) ((a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε ) • T ε -(a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε • T ε + ε(1 -λ ε ) (c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε -c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε .
Clearly, the functions ( δε ) ε satisfy sup

ε>0,t∈[0,T ] δε (t) C 0 (R 3 ×R 3 ) ε 2 < +∞. (47) 
Adding to [START_REF] Rein | Collisionless kinetic equations from astrophysics -the Vlasov-Poisson system[END_REF] the equation [START_REF] Littlejohn | Variational principles of guiding centre motion[END_REF] satisfied by fε (after composition with T ε ), together with the constraint b ε ε • ∇ x,ṽ ( fε • T ε ) = 0, we deduce

∂ t ( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) + λ ε (c 0 [ fε ] • ∇ x,ṽ fε ) • T ε + ε(c 1 [ fε ] • ∇ x,ṽ fε ) • T ε + ε(c 0 [ fε ] • ∇ x,ṽ f 1 ε ) • T ε + ε(a[ fε ] • ∇ x,ṽ fε ) • T ε + b ε ε • ∇ x,ṽ fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε = ε 2 ∂ t f 2 ε • T ε + δ ε + δε . ( 48 
)
We compare [START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyro-kinetic approximation[END_REF] to the model of the particle density f ε

∂ t f ε + c ε [ f ε ] • ∇ x,ṽ f ε + εa ε [ f ε ] • ∇ x,ṽ f ε + b ε ε • ∇ x,ṽ f ε = 0. ( 49 
)
We are looking for an estimate of the L 2 norm of

r ε := f ε -fε • T ε -ελ ε f 1 ε • T ε -ε 2 f 2 ε • T ε .
Taking the difference between ( 49) and (48) yields

∂ t r ε + c ε [ f ε ] + εa ε [ f ε ] + b ε ε • ∇ x,ṽ r ε + T ε c + εT ε a = -ε 2 ∂ t f 2 ε • T ε -δ ε -δε (50)
where the transport terms T ε c , T ε a write

T ε c (t, x, ṽ) = c ε [ f ε (t)] • ∇ x,ṽ ( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) -λ ε (c 0 [ fε (t)] • ∇ x,ṽ fε ) • T ε -ε c 1 [ fε ] • ∇ x,ṽ fε + c 0 [ fε ] • ∇ x,ṽ f 1 ε • T ε T ε a (t, x, ṽ) := a ε [ f ε (t)] • ∇ x,ṽ ( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) -(a[ fε ] • ∇ x,ṽ fε ) • T ε .
By Remark 3.1 we know that the vector field c

ε [ f ε ] + εa ε [ f ε ] + b ε ε • ∇ x,
ṽ is divergence free and therefore, multiplying (50) by r ε and integrating by parts yield

1 2 d dt R 3 R 3 (r ε ) 2 dṽdx + R 3 R 3 T ε c (t, x, ṽ)r ε (t, x, ṽ) dṽdx + ε R 3 R 3 T ε a (t, x, ṽ)r ε (t, x, ṽ) dṽdx (51) = - R 3 R 3 ε 2 ∂ t f 2 ε • T ε + δ ε + δε r ε (t, x, ṽ) dṽdx.
We denote by C any constant depending on m, 0 , q, T, ω c , e and the uniform bounds satisfied by the initial particle densities (g ε ) ε , but not on ε. The bounds ( 42), ( 45), [START_REF] Saint-Raymond | The gyro-kinetic approximation for the Vlasov-Poisson system[END_REF] and the uniform compactness of the supports of fε , f 1 ε , f 2 ε imply immediately that

R 3 R 3 ε 2 ∂ t f 2 ε • T ε + δ ε + δε r ε (t) dṽdx ≤ Cε 2 r ε (t) L 2 (R 3 ×R 3 ) , t ∈ [0, T ], 0 < ε ≤ ε T .
(52) We claim that the following inequalities hold true

T ε c (t) L 2 (R 3 ×R 3 ) ≤ C(ε 2 + r ε (t) L 2 (R 3 ×R 3 ) ), t ∈ [0, T ], 0 < ε ≤ ε T (53) 
and

T ε a (t) L 2 (R 3 ×R 3 ) ≤ C(ε + r ε (t) L 2 (R 3 ×R 3 ) ), t ∈ [0, T ], 0 < ε ≤ ε T . (54) 
Let us analyze first (54). By Proposition 3.1, we know that |A ε x (x, ṽ)-A x (x, ṽ)| ≤ Cε|ṽ| 3 , and thanks to the uniform bounds of ( fε ) ε , ( f 1 ε ) ε , ( f 2 ε ) ε (together with the uniform compactness of their supports), we deduce that (use also the uniform compactness of the supports of ( f ε ) ε>0 , the boundedness of (E[ f ε ]) ε>0 in L ∞ cf. Theorem 2.1 and the elliptic regularity results in order to bound (E[ f ε ]) ε>0 in L 2 , together with their space derivatives [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF])

a ε [ f ε ] • ∇( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) -(a[ fε ] • ∇ fε ) • T ε L 2 ≤ Cε + a[ f ε ] • ∇( fε • T ε ) -(a[ fε ] • ∇ fε ) • T ε L 2 ≤ Cε + (∂T ε a[ f ε ] -a[ fε ] • T ε ) • (∇ fε ) • T ε L 2 ≤ Cε + (a[ f ε ] -a[ fε • T ε ]) • (∇ fε ) • T ε L 2 .
By elliptic regularity results, the quantity

(a[ f ε ] -a[ fε • T ε ]) • (∇ fε ) • T ε L 2
is bounded by the L 2 norms of charge and current densities

ρ[ f ε ] -ρ[ fε • T ε ] L 2 + j[ f ε ] -j[ fε • T ε ] L 2
and thus by the L 2 norms of the particle densities f εfε • T ε L 2 ≤ r ε L 2 + Cε, saying that (54) holds true. We concentrate now on (53). It is easily seen, by elliptic regularity results, that

(c ε [ f ε ] -c ε [ fε • T ε + ελ ε f 1 ε • T ε ]) • ∇( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) L 2 (55) ≤ C f ε -fε • T ε -ελ ε f 1 ε • T ε L 2 ≤ C( r ε L 2 + ε 2 ).
As the particle density f 1 ε has zero average, we deduce that ρ[ f 1 ε ] = 0 and therefore

E[ελ ε f 1 ε • T ε ] L 2 = ε E[λ ε f 1 ε • T ε -f 1 ε ] L 2 ≤ Cε λ ε f 1 ε • T ε -f 1 ε L 2 ≤ Cε 2 .
The above estimate allows us to write

(c ε [ fε • T ε + ελ ε f 1 ε • T ε ] -c ε [ fε • T ε ]) • ∇( fε • T ε + ελ ε f 1 ε • T ε + ε 2 f 2 ε • T ε ) L 2 ≤ Cε 2 . ( 56 
)
We are done if we establish the estimate

c ε [ fε • T ε ] • ∇( fε • T ε + ελ ε f 1 ε • T ε ) -λ ε (c 0 [ fε ] • ∇ fε ) • T ε (57) -ε(c 1 [ fε ] • ∇ fε + c 0 [ fε ] • ∇ f 1 ε ) • T ε L 2 ≤ Cε 2
since, in that case (53) will be a consequence of (55), ( 56), (57). It is easily seen that

c ε [ fε • T ε ] • ∇(ελ ε f 1 ε • T ε ) -ε(c 0 [ fε ] • ∇ f 1 ε ) • T ε L 2 ≤ Cε 2 .
It remains to prove that

c ε [ fε • T ε ] • ∇( fε • T ε ) -λ ε (c 0 [ fε ] • ∇ fε ) • T ε -ε(c 1 [ fε ] • ∇ fε ) • T ε L 2 ≤ Cε 2 . ( 58 
)
This comes by the definition of the vector fields c 0 , c 1 , c ε and the regularity of the particle densities ( fε ) ε , see ( 29), ( 30), ( 24), [START_REF] Hairer | A filtered Boris algorithm for charged particle dynamics in a strong magnetic field[END_REF]. Indeed, for any smooth, compactly supported particle density f we have

c ε [ f • T ε ] • ∇( f • T ε ) -λ ε (c 0 [ f ] • ∇ f ) • T ε -ε(c 1 [ f ] • ∇ f ) • T ε = ε F f (ε, x, ṽ) -F f (0, x, ṽ) ε -∂ ε F f (0, x, ṽ) • (∇ f ) • T ε + ε(c 1 [ f ] -c 1 [ f ] • T ε ) • (∇ f ) • T ε where F f (ε, x, ṽ) = ∂T ε c ε [ f • T ε ] -λ ε (x, ṽ)c 0 [ f ] • T ε . Clearly, when f ∈ C 2 c (R 3 × R 3 ), the function F f is twice differentiable with respect to ε. Moreover, as sup t∈[0,T ],0<ε≤ε T fε (t) C 2 (R 3 ×R 3 ) < +∞ and { fε (t) : t ∈ [0, T ], 0 < ε ≤ ε T } are uniformly compactly supported, we have c ε [ fε • T ε ] • ∇( fε • T ε ) -λ ε (c 0 [ fε ] • ∇ fε ) • T ε -ε(c 1 [ fε ] • ∇ fε ) • T ε L 2 ≤ ε F fε (ε) -F fε (0) ε -∂ ε F fε (0) • (∇ fε ) • T ε L 2 + ε(c 1 [ fε ] -c 1 [ fε ] • T ε ) • (∇ fε ) • T ε L 2 ≤ Cε 2 + ε (c 1 [ fε ] -c 1 [ fε ] • T ε ) • (∇ fε ) • T ε L 2
By the expression of c 1 [ fε ], see Proposition 5.6, it is clear that

(c 1 [ fε ] -c 1 [ fε ] • T ε ) • (∇ fε ) • T ε L 2 ≤ Cε
and (58) follows. Coming back to (51), we obtain thanks to (52), ( 53), (54)

r ε (t) L 2 ≤ [ r ε (0) L 2 + Ctε 2 ] exp(Ct), 0 ≤ t ≤ T, 0 < ε ≤ ε T .
The well preparation of the initial particle densities (f ε (0)) ε guarantees that sup ε>0 r ε (0) L 2 ε 2 < +∞. Indeed, for justifying this, it is enough to check

sup ε>0 f ε (0) -fε (0) • T ε -ε f 1 ε (0) • T ε L 2 ε 2 < +∞. ( 59 
)
As the family of electric fields (E

[g ε ]) ε is bounded in L ∞ ([0, T ] × R 3 ), we have sup ε>0 ρ[f ε (0)] -ρ[g ε ] L 1 + ρ[f ε (0)] -ρ[g ε ] L ∞ ε < +∞ implying that sup ε>0 E[f ε (0)] -E[g ε ] L ∞ ε < +∞.
By direct estimates we obtain

sup ε>0 f ε (0) -gε • T ε -εg 1 ε • T ε L 2 ε 2 < +∞ ( 60 
)
By the fifth statement in Proposition 3.1 we have

sup ε>0 gε • T ε -fε (0) • T ε L 2 ε 2 ≤ Csup ε>0 gε -gε L 2 ε 2 ≤ 2πCsup ε>0 (ṽ ∧ e) • ∇ ṽ gε L 2 ε 2 < +∞ (61) 
and

sup ε>0 g1 ε • T ε -f 1 ε (0) • T ε L 2 ε ≤ Csup ε>0 g1 ε -f 1 ε (0) L 2 ε (62) ≤ 4π ω 0 Csup ε>0 c 0 [g ε ] • ∇g ε -c 0 [ gε ] • ∇ gε L 2 ε = 4π ω 0 Csup ε>0 c 0 [g ε ] • ∇(g ε -gε ) L 2 ε < +∞.
Notice that in the last equality we have used ρ

[g ε ] = ρ[ gε ], implying that E[g ε ] = E[ gε ] and therefore c 0 [g ε ] = c 0 [ gε ]
. Combining (60), (61), (62) yields (59) and therefore

sup t∈[0,T ],0<ε≤ε T r ε (t) L 2 ε 2 < +∞.
We deduce that sup

t∈[0,T ],0<ε≤ε T f ε (t) -fε (t) • T ε -ε f 1 ε (t) • T ε L 2 ε 2 < +∞ and in particular sup t∈[0,T ],0<ε≤ε T E[ f ε (t)] -E[ fε (t)] L 2 ε < +∞.
Finally one gets for any t ∈

[0, T ], 0 < ε ≤ ε T    R 3 R 3 f ε (t, x, v) -( fε + ε f 1 ε ) t, x + ε v ∧ e(x) ω c (x) , v -ε E[ fε (t)] ∧ e(x) B(x) 2 dvdx    1/2 = R 3 R 3 f ε (t, x, ṽ) -( fε + ε f 1 ε ) t, x + ε ω c ṽ + ε E[ f ε (t)] ∧ e B(x) ∧ e, ṽ + ε (E[ f ε (t)] -E[ fε (t)]) ∧ e B(x) 2 dṽdx    1/2 ≤ f ε (t) -( fε (t) + ε f 1 ε (t)) • T ε L 2 (R 3 ×R 3 ) + R 3 R 3 ( fε + ε f 1 ε ) t, x + ε ṽ ∧ e(x) ω c (x) , ṽ -( fε + ε f 1 ε ) t, x + ε ṽ ∧ e ω c + ε 2 ω c (E[ f ε (t)] ∧ e) ∧ e B(x) , ṽ + ε E[ f ε -fε ] ∧ e B(x) 2 dṽdx    1/2 ≤ Cε 2 + Cε E[ f ε (t)] -E[ fε (t)] L 2 (R 3 ) ≤ Cε 2 .

Equivalent formulation of the limit model

In the previous section we proved a second order error estimate for the solution of the Vlasov-Poisson system with strong external magnetic fields (corresponding to smooth, well prepared initial conditions), with respect to the solution of

∂ t fε + c 0 [ fε ] • ∇ x,ṽ fε + ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε + ε c 0 [ fε ] • ∇ x,ṽ f 1 ε = 0, b • ∇ fε = 0 (63) c 0 [ fε ] • ∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε + b • ∇ x,ṽ f 1 ε = 0, f 1 ε = 0. ( 64 
)
In order to establish the existence/uniqueness of smooth solution for the above system, we are looking for an equivalent formulation. More exactly, we will compute the averages of the vector fields a[ fε ] • ∇ x,ṽ , c 0 [ fε ] • ∇ x,ṽ , c 1 [ fε ] • ∇ x,ṽ cf. [START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF]. Let us consider the vector field b(x, ṽ) • ∇ x,ṽ = (ṽ ∧ e(x)) • ∇ ṽ. By Proposition 3.1 (see proof of statement 6), Remark 3.2, we know that the vector fields (c i • ∇ x,ṽ ) 1≤i≤6 are in involution with respect to b • ∇ x,ṽ and that the average operators along the characteristic flows of b • ∇ x,ṽ , b • ∇ x,ṽ coincide. We introduce also the vector field ν(x, ṽ) • ∇ x,ṽ = -(ṽ • e) |ṽ ∧ e| 2 t ∂ x e(ṽ ∧ e) • ∇ x + ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ, |ṽ ∧ e| > 0 which will be used, together with the invariants of b • ∇ x,ṽ , for computing the average vector fields. A straightforward computation leads to the following result.

Lemma 5.1

Assume that e ∈ C 2 (R 3 ). Let us denote by Y = (X, Ṽ) the characteristic flow of the vector field b • ∇ x,ṽ = (ṽ ∧ e(x)) • ∇ ṽ Y (θ; y) = (x, R(-θ, e(x))ṽ) = (x, cos θ(ṽ -(ṽ • e)e) + sin θ(ṽ ∧ e) + (ṽ • e)e) for any θ ∈ R, y = (x, ṽ) ∈ R 3 × R 3 . The vector field ν(x, ṽ) • ∇ x,ṽ verifies t ∂Y (θ; y)ν(Y (θ; y)) = ν(y), θ ∈ R, y = (x, ṽ), |ṽ ∧ e(x)| > 0.

The average of a vector field is defined as follows.

Proposition 5.1

Assume that e ∈ C 1 (R 3 ). Let χ • ∇ x,ṽ be a continuous vector field on R 3 × R 3 . There is a continuous vector field in involution with respect to b • ∇ x,ṽ , denoted χ • ∇ x,ṽ (the average of χ • ∇ x,ṽ with respect to b • ∇ x,ṽ ), such that

χ • ∇ x,ṽ u = χ • ∇ x,ṽ u for any function u ∈ C 1 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) = C 1 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) and χ • ν = χ • ν.

Proof.

Let us introduce the group (ϕ(θ)) θ∈R cf. [START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF] 

ϕ(θ)χ = ∂Y (-θ; Y (θ; •))χ(Y (θ; •)), θ ∈ R
and consider the vector field

χ = 1 2π 2π 0 ϕ(θ)χ dθ.
It is easily seen that if χ is continuous, so is χ , and that χ is left invariant by the group (ϕ(θ)) θ∈R , saying that χ is in involution with respect to b • ∇ x,ṽ . For any function

u ∈ C 1 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) we have u • Y (θ; •) = u and thus ϕ(θ)χ • ∇u = ∂Y (-θ; Y (θ; •))χ(Y (θ; •)) • t ∂Y (θ; •)(∇u)(Y (θ; •)) = (χ • ∇u)(Y (θ; •)).
We deduce that

χ • ∇u = 1 2π 2π 0 ϕ(θ)χ • ∇u dθ = 1 2π 2π 0 (χ • ∇u)(Y (θ; •)) dθ = χ • ∇u .
Similarly, thanks to Lemma 5.1, we have for any (x, ṽ) such that |ṽ ∧ e(x)| > 0

ϕ(θ)χ • ν = ∂Y (-θ; Y (θ; •))χ(Y (θ; •)) • t ∂Y (θ; •)ν(Y (θ; •)) = (χ • ν)(Y (θ; •)) implying that χ • ν = 1 2π 2π 0 ϕ(θ)χ • ν dθ = 1 2π 2π 0 (χ • ν)(Y (θ; •)) dθ = χ • ν , |ṽ ∧ e(x)| > 0.
Remark 5.1

Recall that the vector fields

c i • ∇ x,ṽ = ∂ x i + (∂ x i e ⊗ e -e ⊗ ∂ x i e)ṽ • ∇ ṽ, i ∈ {1, 2, 3} c 4 • ∇ x,ṽ = (ṽ -(ṽ • e) e) • ∇ ṽ, c 5 • ∇ x,ṽ = e • ∇ ṽ, c 6 • ∇ x,ṽ = b • ∇ x,ṽ = (ṽ ∧ e) • ∇ ṽ
are in involution with respect to b • ∇ x,ṽ . For any continuous vector field χ(x, ṽ) • ∇ x,ṽ we have

χ(x, ṽ) = 6 i=1 α i (x, ṽ)c i (x, ṽ), (x, ṽ) ∈ (R 3 × R 3 ) \ E, E = {(x, ṽ) : b(x, ṽ) = 0}
where

(α 1 , α 2 , α 3 ) = χ x , α 4 = χ ṽ -(∂ x eχ x ⊗ e -e ⊗ ∂ x eχ x )ṽ |ṽ ∧ e| 2 • (ṽ -(ṽ • e) e) α 5 = [χ ṽ -(∂ x eχ x ⊗ e -e ⊗ ∂ x eχ x )ṽ] • e, α 6 = χ ṽ -(∂ x eχ x ⊗ e -e ⊗ ∂ x eχ x )ṽ |ṽ ∧ e| 2 • (ṽ ∧ e).
It is easily seen that for any vector field d • ∇ x,ṽ in involution with respect to b • ∇ x,ṽ and any function α, we have ϕ(θ)(αd) = α(Y (θ; •))ϕ(θ)d = α(Y (θ; •))d, implying that αd = α d and thus for any (x, ṽ)

∈ (R 3 × R 3 ) \ E (see Remark 3.2 for the definition of c[ χ x ] • ∇ x,ṽ ) χ (x, ṽ) • ∇ x,ṽ = 6 i=1 α i (x, ṽ)c i (x, ṽ) • ∇ x,ṽ = c[ χ x ] • ∇ x,ṽ + (χ ṽ -(ṽ • e)∂ x eχ x ) • (ṽ -(ṽ • e) e) ṽ -(ṽ • e) e |ṽ ∧ e| 2 • ∇ ṽ + (χ ṽ • e) + (∂ x eχ x • ṽ) e • ∇ ṽ + (χ ṽ -(ṽ • e)∂ x eχ x ) • (ṽ ∧ e) ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ = c[ χ x ] • ∇ x,ṽ + ∂ x e : (ṽ -(ṽ • e) e) ⊗ χ x ṽ ∧ (e ∧ ṽ) |ṽ ∧ e| 2 + χ ṽ • (ṽ -(ṽ • e) e) ṽ -(ṽ • e) e |ṽ ∧ e| 2 • ∇ ṽ + χ ṽ • e e • ∇ ṽ + (χ ṽ -(ṽ • e)∂ x eχ x ) • (ṽ ∧ e) ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ.
In particular for any (x, ṽ)

∈ (R 3 × R 3 ) \ E we have (χ x , 0) • ∇ x,ṽ = c[ χ x ] • ∇ x,ṽ + ∂ x eχ x • (ṽ -(ṽ • e) e) e -(ṽ • e) ṽ -(ṽ • e) e |ṽ ∧ e| 2 • ∇ ṽ - (ṽ • e) |ṽ ∧ e| 2 ∂ x eχ x • (ṽ ∧ e) (ṽ ∧ e) • ∇ ṽ = χ x • ∇ x + ṽ ∧ (∂ x e χ x ∧ e) • ∇ ṽ + ∂ x eχ x • (ṽ -(ṽ • e) e) ṽ ∧ (e ∧ ṽ) |ṽ ∧ e| 2 • ∇ ṽ -∂ x eχ x • (ṽ ∧ e) (ṽ • e) |ṽ ∧ e| 2 (ṽ ∧ e) • ∇ ṽ and (0, χ ṽ) • ∇ x,ṽ = χ ṽ • (ṽ -(ṽ • e) e) ṽ -(ṽ • e) e |ṽ ∧ e| 2 • ∇ ṽ + χ ṽ • e e • ∇ ṽ + χ ṽ • (ṽ ∧ e) ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ.
The notation (χ x , 0) • ∇ x,ṽ stands for the average of the vector field χ x • ∇ x and the notation

χ x • ∇ x stands for χ x 1 ∂ x 1 + χ x 2 ∂ x 2 + χ x 3 ∂ x 3 .
We need to eliminate f 1 ε in (63), by solving (64). We will use the following result. Proposition 5.2 Assume that e ∈ C 2 (R 3 ). Let χ • ∇ x,ṽ be a C 1 vector field on R 3 × R 3 . There is a continuous vector field ξ • ∇ x,ṽ in involution with respect to b • ∇ x,ṽ such that for any

function u ∈ C 2 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) χ • ∇ x,ṽ u 1 = ξ • ∇ x,ṽ u where χ • ∇ x,ṽ u -χ • ∇ x,ṽ u + b • ∇ x,ṽ u 1 = 0, u 1 = 0.
Proof. We introduce the C 1 vector field

ζ = 1 2π 2π 0 (θ -2π)ϕ(θ)(χ -χ ) dθ.
Notice that for any θ ∈ R we have ∇u = ∇(u(Y (θ;

•))) = t ∂Y (θ; •)(∇u)(Y (θ; •)), implying that ϕ(θ)(χ -χ ) • ∇u = ∂Y (-θ; Y (θ; •))(χ -χ )(Y (θ; •)) • t ∂Y (θ; •)(∇u)(Y (θ; •)) = ((χ -χ ) • ∇u) • Y (θ; •) = -(b • ∇ x,ṽ u 1 ) • Y (θ; •).
Therefore one gets

ζ • ∇u = - 1 2π 2π 0 (θ -2π) d dθ {u 1 • Y (θ, •)} dθ = - 1 2π [(θ -2π)u 1 • Y (θ; •)] 2π 0 + 1 2π 2π 0 u 1 • Y (θ; •) dθ = -u 1 .
As the vector field χ • ∇ x,ṽ is in involution with respect to b • ∇ x,ṽ and u 1 has zero average, we have

χ • ∇u 1 = χ • ∇ u 1 = 0 implying that χ • ∇u 1 = (χ -χ ) • ∇u 1 = -(χ -χ ) • ∇(ζ • ∇u) . ( 65 
)
A straightforward computation shows that d dθ ϕ(θ)ζ = ϕ(θ)(χ -χ ) and as before we have

(χ -χ ) • ∇u 1 (Y (θ; •)) = ϕ(θ)(χ -χ ) • ∇(u 1 • Y (θ; •)) = d dθ ϕ(θ)ζ • ∇(u 1 • Y (θ; •)).
After integration by parts one gets

χ • ∇u 1 = (χ -χ ) • ∇u 1 = 1 2π 2π 0 d dθ ϕ(θ)ζ • ∇(u 1 • Y (θ; •)) dθ (66) = - 1 2π 2π 0 ϕ(θ)ζ • ∇[(b • ∇u 1 ) • Y (θ; •)] dθ = 1 2π 2π 0 ϕ(θ)ζ • ∇{[(χ -χ ) • ∇u] • Y (θ; •)} dθ = ζ • ∇((χ -χ ) • ∇u) .
Combining (65), (66) yields

χ • ∇u 1 = 1 2 [ζ, χ -χ ] • ∇u = 1 2 [ζ, χ -χ ] • ∇u
and our conclusion follows by taking ξ = 1 2 [ζ, χ -χ ] . We indicate now some formulae which will be used in the sequel (see Appendix B for the computation details). For any ξ ∈ R 3 , the notation M [ξ] stands for the matrix of the linear application

v ∈ R 3 → ξ ∧ v ∈ R 3 .

Proposition 5.3

We have the equalities 1. ṽ = (ṽ • e) e, M [ṽ] = (ṽ • e)M [e]

2.

ṽ ⊗ ṽ = |ṽ ∧ e| 2 2 (I 3 -e ⊗ e) + (ṽ • e) 2 e ⊗ e

3.

ṽ ⊗ (ṽ -(ṽ • e) e) = (ṽ -(ṽ • e) e) ⊗ (ṽ -(ṽ • e) e) = (ṽ ∧ e) ⊗ (ṽ ∧ e)

= |ṽ ∧ e| 2 2 (I 3 -e ⊗ e).
4.

ṽ ⊗ (ṽ ∧ e) = |ṽ ∧ e| 2 2 M [e], ṽ • ∂ x e(ṽ ∧ e) = |ṽ ∧ e| 2 2 rot x e • e 5. ∂ x ṽ ∧ e(x) ω c (x) (ṽ -(ṽ • e) e) = M [ṽ]∂ x e ω c (ṽ -(ṽ • e) e) = |ṽ ∧ e| 2 2 rot x e • e ω c e - ∇ x ω c ∧ e ω 2 c
6.

A x = |ṽ ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c
7.

(ṽ -(ṽ • e) e) ⊗ (ṽ -(ṽ • e) e) ⊗ (ṽ -(ṽ • e) e) = 0 8.

∂ x eA x • (ṽ -(ṽ • e) e) = (ṽ • e)|ṽ ∧ e| 2 2ω c div x e (rot x e • e) ∂ x eA x • (ṽ ∧ e) = (ṽ • e)|ṽ ∧ e| 2 2ω c ∂ x eM [e]∂ x e : M [e]
9.

∂ x e ∂ x ṽ ∧ e(x) ω c (x) e • (ṽ -(ṽ • e) e) = - |ṽ ∧ e| 2 2 (rot x e • e) ∇ x ω c • e ω 2 c
10.

ṽ ∧ ∂ x e(ṽ ∧ e) = -|ṽ ∧ e| We compute now the average of the vector fields a

[ f ] • ∇ x,ṽ , c 0 [ f ] • ∇ x,ṽ , c 1 [ f ] • ∇ x,ṽ .
Proposition 5.4

For any particle density f ∈ C 1 c (R 3 × R 3 ), the average of the vector field

a[ f ] • ∇ x,ṽ = (ṽ ∧D [ f ] -A x ) • ∇ x -∂ x (ṽ ∧D [ f ])ṽ • ∇ ṽ + 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ j[ f ](x ) dx ∧ e(x) • ∇ ṽ writes a[ f ] • ∇ x,ṽ = c[ṽ ∧D [ f ] + ṽGD ] • ∇ x,ṽ -(ṽ • e) ∂ x (ṽ ∧D [ f ]) : e ⊗ e e • ∇ ṽ -∂ x (ṽ ∧D [ f ]) : (I 3 -e ⊗ e) ṽ -(ṽ • e) e 2 • ∇ ṽ + ∂ x (ṽ ∧D [ f ]) : M [e] ṽ ∧ e 2 • ∇ ṽ - (ṽ • e) 2ω c div x e (rot x e • e) (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ + (ṽ • e) 2 2ω c ∂ x eM [e] : M [e] t ∂ x e (ṽ ∧ e) • ∇ ṽ where ṽ∧D [ f ] = E[ f ] ∧ e B , ṽGD = - |ṽ ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c
and the notation c[ξ] • ∇ x,ṽ stands for the vector field

c[ξ] • ∇ x,ṽ = ξ • ∇ x + (∂ x eξ ⊗ e -e ⊗ ∂ x eξ)ṽ • ∇ ṽ.

Remark 5.2

We recognize here the electric cross field drift

ṽε ∧D [ f ] = εṽ ∧D [ f ] = ε E[ f ] ∧ e B = E[ f ] ∧ B ε |B ε | 2
and the magnetic gradient drift

ṽε GD = εṽ GD = -ε |ṽ ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c = - m|ṽ ∧ e| 2 2qB ε ∇ x B ε ∧ B ε (B ε ) 2 = -µ ε ∇ x B ε ∧ B ε q(B ε ) 2
where µ ε = m|ṽ ∧ e| 2 /(2B ε ) is the magnetic moment. We recall also the expression of the magnetic curvature drift

ṽε CD = εṽ CD = -ε (ṽ • e) 2 ω c ∂ x ee ∧ e = - m(ṽ • e) 2 qB ε ∂ x eB ε ∧ B ε (B ε ) 2 .

Proof. (of Proposition 5.4)

We compute all the averages on (R 3 × R 3 ) \ E and extend them by continuity on R 3 × R 3 . By Remark 5.1 we have

a[ f ] • ∇ x,ṽ = c a x [ f ] • ∇ x + (a ṽ[ f ] -(ṽ • e)∂ x e a x [ f ]) • (ṽ -(ṽ • e) e) ṽ -(ṽ • e) e |ṽ ∧ e| 2 • ∇ ṽ + a ṽ[ f ] • e + ∂ x e a x [ f ] • ṽ e • ∇ ṽ + (a ṽ[ f ] -(ṽ • e)∂ x e a x [ f ]) • (ṽ ∧ e) ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ.
By the sixth statement in Proposition 5.3 we obtain

a x [ f ] = ṽ∧D [ f ] -A x = ṽ∧D [ f ] + ṽGD . We write a ṽ[ f ] = a I ṽ[ f ] + a II ṽ [ f ],
where

a I ṽ[ f ] = -∂ x (ṽ ∧D [ f ])ṽ, a II ṽ [ f ] = 1 4π 0 B div x R 3 x -x |x -x | 3 ⊗ j[ f ](x ) dx ∧ e(x).
It is easily seen that the second part a II ṽ [ f ] gives no contribution

a II ṽ [ f ] • (ṽ -(ṽ • e) e) = a II ṽ [ f ] • e = a II ṽ [ f ] • (ṽ ∧ e) = 0.
For a I ṽ[ f ] we obtain cf. Proposition 5.3

a I ṽ[ f ] • (ṽ -(ṽ • e) e) = -∂ x (ṽ ∧D [ f ]) : (ṽ -(ṽ • e) e) ⊗ ṽ = - |ṽ ∧ e| 2 2 ∂ x (ṽ ∧D [ f ]) : (I 3 -e ⊗ e) a I ṽ[ f ] • e = -(ṽ • e)∂ x (ṽ ∧D [ f ]) : e ⊗ e and 
a I ṽ[ f ] • (ṽ ∧ e) = -∂ x (ṽ ∧D [ f ]) : (ṽ ∧ e) ⊗ ṽ = |ṽ ∧ e| 2 2 ∂ x (ṽ ∧D [ f ]) : M [e].
It remains to compute the contributions of a x [ f ]. Thanks to Proposition 5.3 statement 8, we obtain

-(ṽ • e)∂ x e a x [ f ] • (ṽ -(ṽ • e) e) = (ṽ • e) ∂ x e A x • (ṽ -(ṽ • e) e) = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c div x e (rot x e • e) ∂ x e a x [ f ] • ṽ = ∂ x e a x [ f ] • (ṽ -(ṽ • e) e) = - (ṽ • e)|ṽ ∧ e| 2 2ω c div x e (rot x e • e)
and

-(ṽ • e) ∂ x e a x [ f ] • (ṽ ∧ e) = (ṽ • e) ∂ x e A x • (ṽ ∧ e) = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c ∂ x eM [e] : M [e] t ∂ x e.
Combining the previous results, we deduce

a[ f ] • ∇ x,ṽ = c[ṽ ∧D [ f ] + ṽGD ] • ∇ x,ṽ -(ṽ • e) ∂ x (ṽ ∧D [ f ]) : e ⊗ e e • ∇ ṽ -∂ x (ṽ ∧D [ f ]) : (I 3 -e ⊗ e) ṽ -(ṽ • e) e 2 • ∇ ṽ + ∂ x (ṽ ∧D [ f ]) : M [e] ṽ ∧ e 2 • ∇ ṽ - (ṽ • e) 2ω c div x e (rot x e • e) (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ + (ṽ • e) 2 2ω c ∂ x eM [e] : M [e] t ∂ x e (ṽ ∧ e) • ∇ ṽ.
Proposition 5.5

For any particle density f ∈ C 1 c (R 3 × R 3 ), the average of the vector field

c 0 [ f ] • ∇ x,ṽ = (ṽ • e(x)) e(x) • ∇ x + q m (E[ f ] • e(x)) e(x) • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e(x))] • ∇ ṽ writes c 0 [ f ] • ∇ x,ṽ = c[(ṽ • e) e] • ∇ x,ṽ + q m (E[ f ] • e(x)) e(x) • ∇ ṽ + div x e 2 [ṽ ∧ (e ∧ ṽ)] • ∇ ṽ + (ṽ • e) (rot x e • e) 2 (ṽ ∧ e) • ∇ ṽ where c[ξ] • ∇ x,ṽ = ξ • ∇ x + (∂ x e ξ ⊗ e -e ⊗ ∂ x e ξ)ṽ • ∇ ṽ.
Proof.

Thanks to Remark 5.1 we have

(ṽ • e) e • ∇ x = (ṽ • e)c[e] • ∇ x,ṽ = c[(ṽ • e) e] • ∇ x,ṽ . As the field q m (E[ f ] • e(x)) e(x) • ∇ ṽ is in involution with respect to b • ∇ x,ṽ , we obtain q m (E[ f ] • e(x)) e(x) • ∇ ṽ = q m (E[ f ] • e(x)) e(x) • ∇ ṽ.
For the last contribution in c 0

[ f ] • ∇ x,ṽ one gets [ṽ ∧ ∂ x e (ṽ ∧ e)] • ∇ ṽ = [ṽ ∧ ∂ x e (ṽ ∧ e)] • (ṽ -(ṽ • e) e) ṽ -(ṽ • e) e |ṽ ∧ e| 2 • ∇ ṽ + [ṽ ∧ ∂ x e (ṽ ∧ e)] • e e • ∇ ṽ + [ṽ ∧ ∂ x e (ṽ ∧ e)] • (ṽ ∧ e) ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ.
Thanks to the seventh and second statements in Proposition 5.3 we have [ṽ ∧ ∂ x e (ṽ ∧ e)] • (ṽ -(ṽ • e) e) = (ṽ • e) [e ∧ ∂ x e (ṽ ∧ e)] • (ṽ -(ṽ • e) e)

= (ṽ • e) [e ∧ ∂ x e (ṽ ∧ e)] • ṽ = -(ṽ • e)M [e]∂ x eM [e] : ṽ ⊗ ṽ = - (ṽ • e)|ṽ ∧ e| 2 2 trace(M [e]∂ x eM [e]) = (ṽ • e) |ṽ ∧ e| 2 2 trace((I 3 -e ⊗ e)∂ x e) = (ṽ • e)|ṽ ∧ e| 2 2 div x e.
Similarly one gets

[ṽ ∧ ∂ x e (ṽ ∧ e)] • e = [e ∧ ∂ x e (e ∧ ṽ)] • ṽ = M [e]∂ x eM [e] : ṽ ⊗ ṽ = - |ṽ ∧ e| 2 2 div x e and [ṽ ∧ ∂ x e (ṽ ∧ e)] • (ṽ ∧ e) = (ṽ • e) [e ∧ ∂ x e (ṽ ∧ e)] • (ṽ ∧ e) = (ṽ • e)M [e]∂ x e : (ṽ ∧ e) ⊗ (ṽ ∧ e) = - (ṽ • e)|ṽ ∧ e| 2 2 (rot x e • e)
implying that

c 0 [ f ] • ∇ x,ṽ = c[(ṽ • e) e] • ∇ x,ṽ + q m (E[ f ] • e(x)) e(x) • ∇ ṽ + div x e 2 [ṽ ∧ (e ∧ ṽ)] • ∇ ṽ + (ṽ • e) (rot x e • e) 2 (ṽ ∧ e) • ∇ ṽ.
The computation of the vector field c 1 • ∇ x,ṽ , together with its average is much more elaborated. The details can be found in Appendix B.

Proposition 5.6

For any particle density f ∈ C 1 c (R 3 × R 3 ), the vector field

c 1 [ f ] • ∇ x,ṽ = lim ε 0 ∂T ε c ε [ f • T ε ] -λ ε (x, ṽ)(c 0 [ f ] • T ε ) ε • ∇ x,ṽ writes c 1 [ f ] • ∇ x,ṽ = (ṽ • e) ṽ ∧ ∂ x e ω c e -∂ x e ṽ ∧ e ω c + ∇ x ω c • ṽ ∧ e ω 2 c e • ∇ x -∇ x ω c • ṽ ∧ e ω 2 c ṽ ∧ ∂ x e(ṽ ∧ e) -ṽ ∧ [∂ x e(ṽ ∧ ∂ x e ṽ ∧ e ω c )] • ∇ ṽ + ṽ 2ω c ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x )e • ∇ ṽ + q m E ṽ ∧ e ω c • ∇ x f • e e • ∇ ṽ - q m ∂ x E[ f ] ṽ ∧ e ω c • e e + E[ f ] • ∂ x e ṽ ∧ e ω c e + (E[ f ] • e)∂ x e ṽ ∧ e ω c • ∇ ṽ + q m (E[ f ] • e) ∇ x ω c • ṽ ∧ e ω 2 c e • ∇ ṽ
and its average is

c 1 [ f ] • ∇ x,ṽ = c[ṽ CD ] • ∇ x,ṽ - (ṽ • e) 2 ω c div x e + (E[ f ] • e) B (rot x e • e) 2 (ṽ -(ṽ • e) e) • ∇ ṽ + (ṽ • e)|ṽ ∧ e| 2 2ω c (rot x e • e)div x e + q m E ṽ ∧ e ω c • ∇ x f • e e • ∇ ṽ + (ṽ•e) 2 2ω c trace(∂ x eM [e]∂ x eM [e]) - |ṽ∧e| 2 4ω c (∂ x e : ∂ x e -|∂ x ee| 2 ) - (E[ f ]•e) 2B div x e (ṽ∧e)•∇ ṽ + (ṽ • e) 2 (∂ x ee ∧ e) • ∇ x ω c ω 2 c (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ + (ṽ • e) 2 2ω c |∂ x ee| 2 -∂ x ee • ∇ x ω c ω c + div x (∂ x ee -div x e e) (ṽ ∧ e) • ∇ ṽ where ṽCD = -(ṽ•e(x)) 2 ωc(x) ∂ x ee ∧ e. Remark 5.3 When the particle density satisfies f ∈ C 1 c (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ), then R 3 (ṽ ∧ e) • ∇ x f dṽ = R 3 div x ( f ṽ ∧ e) dṽ - R 3 f div x (ṽ ∧ e) dṽ = div x R 3 f ṽ ∧ e dṽ =0 + R 3 f ṽ • rot x e dṽ = R 3 
(ṽ • e) f dṽ (e • rot x e).

We deduce that

E ṽ ∧ e ω c • ∇ x f = E (e • rot x e) (ṽ • e) ω c
f and in that case

c 1 [ f ] • ∇ x,ṽ f = c[ṽ CD ] • ∇ x,ṽ f + (ṽ • e) 2ω c (rot x e • e)div x e (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ f - (E[ f ] • e) B (e • rot x e) 2 (ṽ -(ṽ • e) e) • ∇ ṽ f + q m E (e • rot x e) (ṽ • e) ω c f • e e • ∇ ṽ f + (ṽ • e) 2 (∂ x ee ∧ e) • ∇ x ω c ω 2 c (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ f .
We claim that the following simplifications between terms in a

[ f ] • ∇ x,ṽ and c 1 [ f ] • ∇ x,ṽ occur -∂ x (ṽ ∧D [ f ]) : (I 3 -e ⊗ e) - (E[ f ] • e) B (e • rot x e) = ṽ∧D [ f ] • ∇ x ω c ω c -∂ x (ṽ ∧D [ f ]) : e ⊗ e = ṽ∧D [ f ] • ∂ x ee.
The last identity follows by taking the directional derivative e•∇ x in the equality ṽ∧D [ f ]•e = 0.

For the other one it is enough to check that

-div x ṽ∧D [ f ] - (E[ f ] • e) B (e • rot x e) = ṽ∧D [ f ] • ∇ x ω c ω c + ṽ∧D [ f ] • ∂ x ee.
Combining the conclusions of Propositions 5.4, 5.6 we obtain for any

f ∈ C 1 c (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) a[ f ] + c 1 [ f ] • ∇ x,ṽ f = c[ṽ D [ f ]] • ∇ x,ṽ f + (ṽ • e) ω c (∂ x e e ∧ e) • ∇ω c ω c ṽ ∧ (e ∧ ṽ) 2 • ∇ ṽ f + (ṽ • e)(ṽ ∧D [ f ] • ∂ x ee) e • ∇ ṽ f + ṽ∧D [ f ] • ∇ x ω c ω c ṽ -(ṽ • e) e 2 • ∇ ṽ f + q m E (e • rot x e) (ṽ • e) ω c f • e e • ∇ ṽ f ( 67 
)
where ṽD [ f ] = ṽ∧D [ f ] + ṽGD + ṽCD .

Notice that the above (reduced) vector field differs from the vector field a

[ f ] + c 1 [ f ] • ∇
x,ṽ by a term αb • ∇ x,ṽ , with b • ∇ x,ṽ α = 0. Since, by construction, the vector field

a[ f ] + c 1 [ f ] • ∇ x,ṽ is in involution with respect to b • ∇ x,ṽ
, so is the above reduced vector field. Observe also that this reduction does not change the divergence, because div x,ṽ (αb) = 0.

In order to obtain our limit model, we need to eliminate f 1 ε from (63), thanks to (64). Appealing to Proposition 5.2 we prove (see Appendix B for details)

Proposition 5.7 Assume that e ∈ C 2 (R 3 ), ω c ∈ C 1 (R 3 ). Let f ∈ C 2 c (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ) and f 1 verifying c 0 [ f ] • ∇ x,ṽ f -c 0 [ f ] • ∇ x,ṽ f + b • ∇ x,ṽ f 1 = 0, f 1 = 0. Then we have c 0 [ f ] • ∇ x,ṽ f 1 = 0.
Thanks to Propositions 5.4, 5.5, 5.6, 5.7 we obtain the following equivalent formulation for (63), (64).

Proposition 5.8

Assume that e ∈ C 2 (R 3 ),

ω c ∈ C 1 (R 3 ) such that inf x∈R 3 |ω c (x)| = ω 0 > 0, div x (ω c e) = 0 and let us consider fε ∈ C 2 ([0, T ] × R 3 × R 3 ). Then fε solves ∂ t fε + c 0 [ fε ] • ∇ x,ṽ fε + ε (a[ fε ] + c 1 [ fε ]) • ∇ x,ṽ fε + ε c 0 [ fε ] • ∇ x,ṽ f 1 ε = 0 b • ∇ x,ṽ fε = 0, c 0 [ fε ] • ∇ x,ṽ fε -c 0 [ fε ] • ∇ x,ṽ fε + b • ∇ x,ṽ f 1 ε = 0, f 1 ε = 0 (68)
iff fε solves

∂ t fε + c 0 [ fε ] • ∇ x,ṽ fε + ε a[ fε ] + c 1 [ fε ] • ∇ x,ṽ fε = 0, b • ∇ x,ṽ fε = 0 (69) f 1 ε = (ṽ • e) ω c ∂ x ee • ṽ ∧ e |ṽ ∧ e| -∂ x e :
(ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ -(ṽ • e) e) ⊗ (ṽ ∧ e) 4ω c |ṽ ∧ e| (ṽ ∧ e) ∧ ṽ |ṽ ∧ e|

• ∇ ṽ fε .

Proof.

We only need to solve (68) with respect to f 1 ε . We already know, see the proof of Proposition 5.2, that there is a vector field

ζ[ fε ] • ∇ x,ṽ such that for any u ∈ C 2 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ ), the function u 1 ∈ C 1 (R 3 × R 3 ) solving c 0 [ fε ] • ∇ x,ṽ u -c 0 [ fε ] • ∇ x,ṽ u + b • ∇ x,ṽ u 1 = 0, u 1 = 0 writes u 1 = ζ[ fε ] • ∇ x,ṽ u. For any (x, ṽ) ∈ R 3 × R 3 , |ṽ ∧ e(x)| > 0 we have ζ[ fε ] • ∇ x,ṽ = c[ζ x ] • ∇ x,ṽ + ζ ṽ • (ṽ -(ṽ • e) e) -(e • ṽ)∂ x e ζ x • ṽ |ṽ ∧ e| 2 (ṽ -(ṽ • e) e) • ∇ ṽ + (ζ ṽ • e + ∂ x e ζ x • ṽ) e • ∇ ṽ + (ζ ṽ -(e • ṽ)∂ x e ζ x ) • (ṽ ∧ e) |ṽ ∧ e| 2 (ṽ ∧ e) • ∇ ṽ.
For u = x i , i ∈ {1, 2, 3}, we obtain u 1 = 0 and thus ζ x = 0. If u = |ṽ| 2 /2, we deduce that u 1 = 0 and ζ ṽ • ṽ = 0. When considering u = ṽ • e, we obtain (see the proof of Proposition 5.7)

-ω c u 1 = -(ṽ • e)∂ x ee • (ṽ ∧ e) + ∂ x e : (ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ -(ṽ • e) e) ⊗ (ṽ ∧ e) 4 
implying that

ζ ṽ • e = (ṽ • e) ω c ∂ x ee • (ṽ ∧ e) -∂ x e :
(ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ -(ṽ • e) e) ⊗ (ṽ ∧ e) 4ω c .

Finally we deduce

f 1 ε = (ζ ṽ • e) |ṽ ∧ e| 2 ((ṽ ∧ e) ∧ ṽ) • ∇ ṽ fε .
6 Well posedness and main properties of the limit model

We concentrate on the existence/uniqueness and other properties of the model

∂ t fε + c 0 [ fε ] •∇ x,ṽ fε +ε a[ fε ] + c 1 [ fε ] •∇ x,ṽ fε = 0, (t, x, ṽ) ∈ [0, T ]×R 3 ×R 3 (70)
together with the initial condition fε (0, x, ṽ) = fin (x, ṽ), (x, ṽ

) ∈ R 3 × R 3 . (71) 
The initial density is assumed smooth, compactly supported, and B is a smooth external magnetic field satisfying

B = Be ∈ C 1 b (R 3 ), B 0 = inf x∈R 3 |B(x)| > 0, div x B = 0. ( 72 
)
We notice that the magnetic moment

µ ε (x, ṽ) = m|ṽ∧e(x)| 2 2B ε (x) = q|ṽ∧e(x)| 2 2ω ε c (x) is left invariant by the vector fields c 0 [ f ] • ∇ x,ṽ , a[ f ] + c 1 [ f ] • ∇ x,ṽ . Proposition 6.1 Let B be a magnetic field satisfying (72), µ ε = εµ, µ(x, ṽ) = m|ṽ∧e(x)| 2 2B(x) = q|ṽ∧e(x)| 2 2ωc(x) . For any particle density f ∈ C 1 c (R 3 × R 3 ) we have c 0 [ f ] ∇ x,ṽ µ = 0, a[ f ] + c 1 [ f ] • ∇ x,ṽ µ = 0.

Proof.

It is easily seen that

∇ x µ q = - (ṽ • e) t ∂ x eṽ ω c (x) - µ(x, ṽ) q ∇ x ω c ω c , ∇ ṽ µ q = ṽ -(ṽ • e) e ω c
and therefore

c 0 [ f ] • ∇ x,ṽ µ q = - (ṽ • e) 2 ω c (∂ x ee • ṽ) -(ṽ • e) µ(x, ṽ) q e • ∇ x ω c ω c + (ṽ • e) 2 ω c (∂ x ee • ṽ) -(ṽ • e) µ(x, ṽ) q div x e = -(ṽ • e) µ qB div x B = 0.
As the magnetic moment belongs to the kernel of b • ∇ x,ṽ , we have by ( 67)

a[ f ] + c 1 [ f ] • ∇ x,ṽ µ = c[ṽ D [ f ]] • ∇ x,ṽ µ + (ṽ • e) ω c (∂ x ee ∧ e) • ∇ x ω c ω c ṽ ∧ (e ∧ ṽ) 2 • ∇ ṽµ + ṽ∧D [ f ] • ∇ x ω c ω c ṽ -(ṽ • e)e 2 • ∇ ṽµ.
It is easily seen that

(ṽ • e) ω c (∂ x ee ∧ e) • ∇ x ω c ω c ṽ ∧ (e ∧ ṽ) 2 • ∇ ṽµ = - (ṽ • e) 2 ω c (∂ x ee ∧ e) • ∇ x ω c ω c µ and ṽ∧D [ f ] • ∇ x ω c ω c ṽ -(ṽ • e)e 2 • ∇ ṽµ = ṽ∧D [ f ] • ∇ x ω c ω c µ.
It remains to compute the derivative along c[ṽ

D [ f ]] • ∇ x,ṽ c[ṽ D [ f ]] • ∇ x,ṽ µ q = - E[ f ] ∧ e B - µ q ∇ x ω c ∧ e ω c - (ṽ • e) 2 ω c ∂ x ee ∧ e • (ṽ • e) t ∂ x eṽ ω c + µ q ∇ x ω c ω c + ṽ ∧ ∂ x eṽ D [ f ] ∧ e • ṽ -(ṽ • e)e ω c = - (ṽ • e) ω c ∂ x e ṽD [ f ] • ṽ - µ q ∇ x ω c ω c • ṽ∧D [ f ] - (ṽ • e) 2 ω c ∂ x ee ∧ e + (ṽ • e) ω c ∂ x e ṽD [ f ] • ṽ = - µ q ∇ x ω c ω c • ṽ∧D [ f ] - (ṽ • e) 2 ω c ∂ x ee ∧ e and therefore a[ f ] + c 1 [ f ] • ∇ x,ṽ µ = 0. Remark 6.1
The previous computations show that the invariance of the magnetic moment holds true when replacing E[ f ], E[(ṽ • e)(e • rot x e) f /ω c ] by any continuous vector fields.

Recall that

f ε = fε • T ε + ελ ε f 1 ε • T ε + O(ε 2 ) = fε • T ε + ε f 1 ε • T ε + O(ε 2 ), b • ∇ x,ṽ fε = 0, f 1 ε = 0.
As the function f 1 ε has zero average, it is easily seen that

R 3 R 3 f 1 ε (t, T ε (x, ṽ)) dṽdx = R 3 R 3 f 1 ε (t, x, ṽ) dṽdx + O(ε) = O(ε)
and therefore we deduce that

R 3 R 3 f ε (t, x, ṽ) dṽdx = R 3 R 3 fε (t, x, ṽ) det ∂x ∂ x dṽdx + O(ε 2 ) = R 3 R 3 fε (t, x, ṽ) det I 3 -εM [ṽ]∂ e ω c (x(x)) dṽdx + O(ε 2 ) = R 3 R 3 fε (t, x, ṽ) 1 -εtrace M [ṽ]∂ e ω c (x) dṽdx + O(ε 2 ) = R 3 R 3 fε (t, x, ṽ) 1 + εṽ • rot x e ω c dṽdx + O(ε 2 ) = R 3 R 3 fε (t, x, ṽ) 1 + εṽ • rot x e ω c - ∇ x ω c ω 2 c ∧ e dṽdx + O(ε 2 ) = R 3 R 3 fε (t, x, ṽ)m ε (x, ṽ) dṽdx + O(ε 2 )
where ι ε (x, ṽ) = 1+ε(ṽ •e)(e•rot x e)/ω c (x). We have used the constraint b•∇ x,ṽ fε = 0, which implies R 3 fε ṽ dṽ = R 3 fε (ṽ • e) dṽ e. As the total particle number

R 3 R 3 f ε (t, x, ṽ) dṽdx
is conserved, up to a second order, the total particle number R 3 R 3 fε (t, x, ṽ)ι ε (x, ṽ) dṽdx should be preserved as well. Indeed, multiplying (70) by ι ε and integrating by parts yield

d dt R 3 R 3 fε (t, x, ṽ)m ε (x, ṽ) dṽdx = R 3 R 3 fε (t, x, ṽ)div x,ṽ ι ε c 0 [ fε ] + ε a[ fε ] + ε c 1 [ fε ] dṽdx = R 3 R 3 fε (t, x, ṽ)div x,ṽ c 0 [ fε ] dṽdx + ε R 3 R 3 fε (t, x, ṽ)div x,ṽ (ṽ • e) e • rot x e ω c c 0 [ fε ] + a[ fε ] + c 1 [ fε ] dṽdx + ε 2 R 3 R 3 fε (t, x, ṽ)div x,ṽ (ṽ • e) e • rot x e ω c a[ fε ] + c 1 [ fε ] dṽdx.
Our conclusion follows thanks to the result below, whose proof is left to the reader. Proposition 6.2 For any particle density f ∈ C 1 c (R 3 × R 3 ), the vector fields

c 0 [ f ] • ∇ x,ṽ , (ṽ • e) (e • rot x e) ω c c 0 [ f ] + a[ f ] + c 1 [ f ] • ∇ x,ṽ
are divergence free. The above result holds true when replacing

E[ f ], E[(ṽ • e)(e • rot x e) f /ω c ] by any E, Ẽ ∈ C 1 (R 3 ) such that rot x E = 0.
The well posedness of (70), (71) follows by standard arguments, similar to that in the proof of Theorem 2.1. Use also Proposition 6.2 and the invariance of the magnetic moment cf. Proposition 6.1. The details of the proof of Theorem 1.1 are left to the reader.

Remark 6.2

For any T > 0 there is ε T > 0 such that the solutions ( fε ) ε of (70), (71) are uniformly compactly supported and uniformly bounded with respect to ε ∈]0, ε T ] If fε solves (70), (71) with the initial condition fin , then f θ ε (t, x, Ṽ ) = fε (t, x, R(θ, e(x)) Ṽ ) solves (70), (71) with the initial condition f θ in (x, Ṽ ) = fin (x, R(θ, e(x)) Ṽ ). In particular, if the initial particle density satisfies the constraint b • ∇ x,ṽ fin = 0, then f θ in = fin , θ ∈ R and by the uniqueness, we obtain f θ ε = fε , θ ∈ R, saying that b • ∇ x,ṽ fε = 0.

sup 0<ε≤ε T ,t∈[0,T ] { fε (t) C 1 (R 3 ×R 3 ) + E[ fε (t)] C 1 (R 3 ) } < +∞.
We compare now our model in Theorem 1.1 to the models obtained by the physicists working on magnetized plasmas. As the magnetic moment is left invariant by the transport operator in [START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF] and fε solves the constraint (ṽ ∧ e) • ∇ ṽ fε = 0, it is convenient to introduce hε given by fε (t, x, ṽ) = hε ( t, x, v = ṽ • e(x), µ = m|ṽ ∧ e(x)| 2 /(2B(x)) ), (t, x, ṽ)

∈ [0, T ] × R 3 × R 3 .
As usual, the model [START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF] simplifies when written with respect to the new unknown hε . The derivatives of fε write in terms of the derivatives of hε as follows 

∂ t fε = ∂ t hε , ∇ x fε = ∇ x hε + ∂ v hε t ∂ x eṽ + ∂ µ hε ∇ x µ, ∇ ṽ fε = ∂ v hε e(x) + ∂ µ hε ∇ ṽµ
(∂ x ee ∧ e) • ∇ x ω ε c ω ε c ṽ ∧ (e ∧ ṽ) 2 • (∇ ṽ fε -∂ µ hε ∇ ṽµ) = div x e + (ṽ • e) ω ε c (∂ x ee ∧ e) • ∇ x ω ε c ω ε c |ṽ ∧ e| 2 2 ∂ v hε .
For the other terms in [START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF], it is easily seen that

q m E[ι ε fε ] • e + (ṽ • e)(ṽ ε ∧D [ fε ] • ∂ x ee) e • (∇ ṽ fε -∂ µ hε ∇ ṽµ) = q m E[ι ε fε ] • e + (ṽ • e)(ṽ ε ∧D [ fε ] • ∂ x ee) ∂ v hε and ṽε ∧D [ fε ] • ∇ x ω ε c ω ε c ṽ -(ṽ • e)e 2 • (∇ ṽ fε -∂ µ hε ∇ ṽµ) = 0.
Thanks to the invariance of µ along the transport operator in [START_REF] Bostan | The Vlasov-Poisson system for the finite Larmor radius regime[END_REF], we deduce

∂ t hε + (v e + ṽε D ) • ∇ x hε + e • q m E[ι ε fε ] - µ m ∇B + v ω ε c (e ∧ ∂ x ee) • q m E[ fε ] - µ m ∇B ∂ v hε = 0 where ṽε D = E[ fε ] ∧ e B ε -ε µ q ∇ x B ε ∧ e B ε - mv 2
qB ε ∂ x ee ∧ e. The above formulation is very close with respect to the models derived formally in the framework of strongly magnetized plasmas [START_REF] Hazeltine | Recursive derivation of drift-kinetic equation[END_REF][START_REF] Hazeltine | Plasma confinement[END_REF][START_REF] Goldston | Introduction to plasma physics[END_REF][START_REF] Cary | Hamiltonian theory of guiding-center motion[END_REF].

Notice that solving for hε , or equivalently fε , is not enough for determining f ε up to second order terms. Indeed, by Theorem 1.2, a second order approximation for the particle densities (f ε ) ε>0 is obtained provided that we take into account the fluctuations ( f 1 ε ) ε>0 as well. The fluctuation f 1 ε writes explicitly in terms of fε cf. Proposition 5.8. When the magnetic lines have no curvature, this fluctuation vanishes.

A Well posedness of the Vlasov-Poisson problem with external magnetic field

Proof. (of Theorem 2.1)

We are not indicating all the details, but only the a priori estimates, for smooth solutions of ( 14), ( 15), [START_REF] Cary | Non canonical Hamiltonian mechanics and its application to magnetic field line flow[END_REF]. Let f be a smooth solution corresponding to the non negative, initial particle density f in ∈ C 1 c (R 3 ×R 3 ). We are looking for estimating

E[f ], ∂ x E[f ] in C([0, T ]×R 3
), where 0 < T < T (f in ). For any R > 0 we have

| 0 E[f (t)](x)| ≤ 1 4π R 3 1 {|x-x |<R} ρ[f (t)](x ) |x -x | 2 dx + 1 4π R 3 1 {|x-x |≥R} ρ[f (t)](x ) |x -x | 2 dx ≤ R ρ[f (t)] L ∞ (R 3 ) + 1 4πR 2 ρ[f (t)] L 1 (R 3 ) .
Using the total charge conservation, after minimization with respect to R, that is by taking

R = ( ρ[f in ] L 1 (R 3 ) /4π ρ[f (t)] L ∞ (R 3 ) ) 1/3 , we obtain 0 E[f (t)] L ∞ (R 3 ) ≤ 3 ρ[f (t)] 2/3 L ∞ (R 3 ) |q| 4π f in L 1 (R 3 ×R 3 ) 1/3 . ( 73 
)
By the characteristic equations of ( 14)

dX ds = V (s), dV ds = q m (E[f (s)](X(s)) + V (s) ∧ B(X(s))) , (s, t, x, v) ∈ [0, T ] 2 × R 3 × R 3
with the conditions X(s = t; t, x, v) = x, V (s = t; t, x, v) = v, we have for any 0

≤ s ≤ t ≤ T |X(s; t, x, v) -x| ≤ t s |V (σ; t, x, v)| dσ (74) and 1 2 d ds |V (s; t, x, v)| 2 = q m E[f (s)](X(s; t, x, v)) • V (s; t, x, v) (75) 
implying that

| |V (s; t, x, v)| -|v| | ≤ |q| m t s E[f (σ)] L ∞ (R 3 ) dσ. Assuming that supp f in ⊂ {(x, v) ∈ R 3 × R 3 : |x| ≤ R in x and |v| ≤ R in v } it is easily seen that for any (x, v) ∈ R 3 × R 3 such that |v| > R v (t) := R in v + |q| m t 0 E[f (s)] L ∞ (R 3 ) ds we have |V (0; t, x, v)| ≥ |v| - |q| m t 0 E[f (s)] L ∞ (R 3 ) ds > R in v
and therefore f (t, x, v) = f in (X(0; t, x, v), V (0; t, x, v)) = 0.

Consider now (x, v) ∈ R 3 × R 3 such that |x| > R x (t) := R in x + tR v (t) + t 0 |q| m t s E[f (σ)] L ∞ (R 3 ) dσ ds.
If |v| > R v (t) we already know that f (t, x, v) = 0. If |v| ≤ R v (t), we have by ( 74), ( 75)

|X(0; t, x, v)| ≥ |x| - t 0 |V (s; t, x, v)| ds ≥ |x| - t 0 |v| + |q| m t s E[f (σ)] L ∞ (R 3 ) dσ ds ≥ |x| -tR v (t) - t 0 |q| m t s E[f (σ)] L ∞ (R 3 ) dσ ds > R in x implying that f (t, x, v) = f in (X(0; t, x, v), V (0; t, x, v)) = 0. Therefore f is compactly sup- ported supp f (t) ⊂ {(x, v) ∈ R 3 × R 3 : |x| ≤ R x (t) and |v| ≤ R v (t)}, t ∈ [0, T ].
Notice that the above computations are not depending on the magnetic field B since the magnetic force does not change the kinetic energy cf. (75). The charge density is bounded by

|ρ[f (t)](x)| = |q| R 3 f in (X(0; t, x, v), V (0; t, x, v)) dv ≤ |q| f in L ∞ 4 3 πR 3 v (t). (76) 
Combining ( 73), (76) yields

0 E[f (t)] L ∞ (R 3 ) ≤ 3 |q| 4π f in L 1 (R 3 ×R 3 ) 1/3 |q| 4π 3 f in L ∞ (R 3 ×R 3 ) 2/3 R 2 v (t) = |q|(12π) 1/3 f in 1/3 L 1 (R 3 ×R 3 ) f in 2/3 L ∞ (R 3 ×R 3 ) R in v + |q| m t 0 E[f (s)] L ∞ (R 3 ) ds 2 leading to the bound E[f (t)] L ∞ (R 3 ) ≤ m 2 0 |q| 3 (12π) 1/3 f in 1/3 L 1 f in 2/3 L ∞ 1 (T (f in ) -t) 2 , 0 ≤ t ≤ T < T (f in ).
Observe that the above bound depends on m, 0 , q, T and the initial particle density f in , but not on the magnetic field. Accordingly, we obtain a bound for the size of the support of f depending on m, 0 , q, T , but not on the magnetic field

sup 0≤t≤T [R x (t) + R v (t)] < +∞, 0 < T < T (f in ).
For the L ∞ bound of ∂ x E we appeal to [START_REF] Batt | Global symmetric solutions of the initial value problem in stellar dynamics[END_REF] where it was shown that there is a constant C (depending only on m, 0 ) such that

∂ x E[f (t)] L ∞ ≤ C (1 + ρ[f (t)] L ∞ )(1 + ln + ∇ x ρ[f (t)] L ∞ ) + ρ[f (t)] L 1 .
The notation ln + stands for the positive part of ln. We already have a priori bounds for the L ∞ norm of ρ[f (t)] (use the estimate for the size of the support of f ) and for the L 1 norm of ρ[f (t)] (use the conservation of the total charge), and therefore we have

∂ x E[f (t)] L ∞ ≤ C 1 (1 + ln + ∇ x ρ[f (t)] L ∞ ), t ∈ [0, T ] (77) 
for some constant C 1 depending on m, 0 , q, T . Using the characteristics of the Vlasov equation, we write

∇ x ρ[f (t)] = q∇ x R 3 f in (X(0; t, x, v), V (0; t, x, v)) dv (78) = q R 3 1 {|v|≤Rv(t)} t ∂ x X(0; t, x, v)(∇ X f in )(X(0; t, x, v), V (0; t, x, v)) dv + q R 3 1 {|v|≤Rv(t)} t ∂ x V (0; t, x, v)(∇ V f in )(X(0; t, x, v), V (0; t, x, v)) dv.
It is easily seen that there is a constant C 2 (m, q, T, B W 1,∞ ) such that for any (

x, v) ∈ R 3 × R 3 , |v| ≤ R v (t), we have |∂ x X(0; t, x, v)| + |∂ x V (0; t, x, v)| ≤ C 2 exp t 0 ∂ x E[f (s)] L ∞ ds , t ∈ [0, T ].
Combining to (78) we obtain

∇ x ρ[f (t)] L ∞ ≤ C 3 exp t 0 ∂ x E[f (s)] L ∞ ds , t ∈ [0, T ] for some constant C 3 (m, q, T, B W 1,∞ ) ≥ 1, implying that ln + ∇ x ρ[f (t)] L ∞ ≤ ln C 3 + t 0 ∂ x E[f (s)] L ∞ ds, t ∈ [0, T ].
Coming back to (77), we deduce that

∂ x E[f (t)] L ∞ ≤ C 4 1 + t 0 ∂ x E[f (s)] L ∞ ds , t ∈ [0, T ]
and the a priori estimate for the L ∞ norm of ∂ x E[f ] follows by Gronwall lemma.

Observe that the bound for the L ∞ norm of ∂ x E[f ] depends on B W 1,∞ . In particular, when solving the Vlasov-Poisson problem with external magnetic field B ε = B ε e, the bound for the L ∞ norm of ∂ x E[f ε ] is not uniform with respect to ε > 0.

B Proofs of Propositions 5.3, 5.6, 5.7

Proof. (of Proposition 5.3) The above formulae come by direct computations. Let us indicate some details. 1. Clearly we have ṽ = (ṽ • e) e and for any ξ

∈ R 3 M [ṽ]ξ = -M [ξ]ṽ = -(ṽ • e)M [ξ]e = (ṽ • e)M [e]ξ saying that M [ṽ] = (ṽ • e)M [e]. 2. It is easily seen that ṽ ⊗ ṽ = 1 S(x, ṽ) S(x,ṽ) 0 Ṽ(s; x, ṽ) ⊗ Ṽ(s; x, ṽ) ds = 1 S(x, ṽ) S(x,ṽ) 0 {cos(sω c (x))[ṽ -(ṽ • e) e] + sin(sω c (x))ṽ ∧ e + (ṽ • e) e} ⊗ {cos(sω c (x))[ṽ -(ṽ • e) e] + sin(sω c (x))ṽ ∧ e + (ṽ • e) e} ds = 1 2 (ṽ -(ṽ • e) e) ⊗ (ṽ -(ṽ • e) e) + 1 2 (ṽ ∧ e) ⊗ (ṽ ∧ e) + (ṽ • e) 2 e ⊗ e = |ṽ ∧ e| 2 2 (I 3 -e ⊗ e) + (ṽ • e) 2 e ⊗ e.
3. It is a direct consequence of the second statement. 4. We write ṽ ⊗ (ṽ ∧ e) = -ṽ ⊗ M [e]ṽ = ṽ ⊗ ṽ M

[e] = |ṽ ∧ e| 2 2 M [e]
and therefore ṽ • ∂ x e(ṽ ∧ e) = ∂ x e : ṽ ⊗ (ṽ ∧ e) = |ṽ ∧ e| 2 2 ∂ x e : M [e] = |ṽ ∧ e| 2 2 rot x e • e.

For any vector

ξ ∈ R 3 we have M [ṽ]∂ x e ω c (ṽ -(ṽ • e) e) • ξ = ∂ x e ω c (ṽ -(ṽ • e) e) • M [ξ]ṽ = -M [ξ]∂ x e ω c (ṽ -(ṽ • e) e) • ṽ = -M [ξ]∂ x e ω c : ṽ ⊗ (ṽ -(ṽ • e) e) = - |ṽ ∧ e| 2 2 M [ξ]∂ x e ω c : (I 3 -e ⊗ e) = |ṽ ∧ e| 2 2 ∂ x e ω c : [M [ξ] -(M [ξ]e) ⊗ e] = |ṽ ∧ e| 2 2 rot x e ω c • ξ + ∂ x e ω c : M [e](ξ ⊗ e) = |ṽ ∧ e| 2 2 rot x e ω c • ξ -M [e]∂ x e ω c : ξ ⊗ e = |ṽ ∧ e| 2 2 rot x e ω c • ξ -M [e]∂ x e ω c e • ξ implying that M [ṽ]∂ x e ω c (ṽ -(ṽ • e) e) = |ṽ ∧ e| 2 2 rot x e ω c -e ∧ ∂ x e ω c e = |ṽ ∧ e| 2 2 rot x e ω c - e ∧ ∂ x e e ω c = |ṽ ∧ e| 2 2 rot x e ω c - ∇ x ω c ω 2 c ∧ e - e ∧ M [rot x e]e ω c = |ṽ ∧ e| 2 2 rot x e ω c - ∇ x ω c ω 2 c ∧ e + (rot x e ∧ e) ∧ e ω c = |ṽ ∧ e| 2 2 rot x e • e ω c e - ∇ x ω c ∧ e ω 2 c .
6. Thanks to the statements 4. and 5. we obtain

A x = -∂ x ṽ ∧ e(x) ω c (x) (ṽ -(ṽ • e) e) + (ṽ ∧ e) ∧ ∂ x e ṽ ∧ e(x) ω c (x) = - |ṽ ∧ e| 2 2 rot x e • e ω c e - ∇ x ω c ∧ e ω 2 c + |ṽ ∧ e| 2 2 rot x e • e ω c e = |ṽ ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c .
7. For any three vectors ξ, η, χ ∈ R 3 , the notations ξ ⊗ η ⊗ χ stands for the components ξ i η j χ k , i, j, k ∈ {1, 2, 3}. We have for any s ∈ R Ṽ(s; x, ṽ) -( Ṽ(s; x, ṽ) • e(X(s; x, ṽ)))e(X(s; x, ṽ)) = cos(sω c )(I 3 -e(x) ⊗ e(x))ṽ + sin(sω c (x))ṽ ∧ e(x).

The conclusion follows observing that 8. Most of the averages in the next computations will vanish, thanks to 7. We have

∂ x eA x • (ṽ -(ṽ • e) e) = -M [ṽ]∂ x e ω c (ṽ -(ṽ • e) e) • t ∂ x e(ṽ -(ṽ • e) e) + (ṽ ∧ e) ∧ ∂ x e ṽ ∧ e ω c • t ∂ x e(ṽ -(ṽ • e) e) = ∂ x e ω c (ṽ -(ṽ • e) e) • [(ṽ -(ṽ • e) e) ∧ t ∂ x e(ṽ -(ṽ • e) e)] + (ṽ ∧ e) ∧ ∂ x e ṽ ∧ e ω c • t ∂ x e(ṽ -(ṽ • e) e) + (ṽ • e)∂ x e ω c (ṽ -(ṽ • e) e) • [e ∧ t ∂ x e(ṽ -(ṽ • e) e)].
By the previous statement we know that 

∂ x e ω c ( 
∂ x eA x • (ṽ -(ṽ • e) e) = (ṽ • e)|ṽ ∧ e| 2 2ω c div x e (rot x e • e).
Similarly, we write

∂ x eA x • (ṽ ∧ e) = -M [ṽ]∂ x e ω c (ṽ -(ṽ • e) e) • t ∂ x e(ṽ ∧ e) + (ṽ ∧ e) ∧ ∂ x e ṽ ∧ e ω c • t ∂ x e(ṽ ∧ e) = ∂ x e ω c (ṽ -(ṽ • e) e) • [(ṽ -(ṽ • e) e) ∧ t ∂ x e(ṽ ∧ e)] + (ṽ ∧ e) ∧ ∂ x e ṽ ∧ e ω c • t ∂ x e(ṽ ∧ e) + (ṽ • e)∂ x e ω c (ṽ -(ṽ • e) e) • [e ∧ t ∂ x e(ṽ ∧ e)].
The averages of the first and second term vanish, cf. 7. and for the third term we obtain

(ṽ • e) ∂ x e ω c (ṽ -(ṽ • e) e) • M [e] t ∂ x e(ṽ ∧ e) = -(ṽ • e) ∂ x eM [e]∂ x e ω c (ṽ -(ṽ • e) e) • (ṽ ∧ e) = -(ṽ • e)∂ x eM [e]∂ x e ω c : (ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) = (ṽ • e) |ṽ ∧ e| 2 2 ∂ x eM [e]∂ x e ω c : M [e] = (ṽ • e) |ṽ ∧ e| 2 2ω c ∂ x eM [e]∂ x e : M [e]
and thus

∂ x eA x • (ṽ ∧ e) = (ṽ • e) |ṽ ∧ e| 2 2ω c ∂ x eM [e]∂ x e : M [e].
9. We can write thanks to 3.

∂ x e ∂ x ṽ ∧ e ω c e • (ṽ -(ṽ • e) e) = ∂ x eM [ṽ]∂ x e ω c e • (ṽ -(ṽ • e) e) = -∂ x eM ∂ x e ω c e ṽ • (ṽ -(ṽ • e) e) = -∂ x eM ∂ x e ω c e : (ṽ -(ṽ • e) e) ⊗ ṽ = - |ṽ ∧ e| 2 2 ∂ x eM ∂ x e ω c e : (I 3 -e ⊗ e) = |ṽ ∧ e| 2 2 ∂ x e : M ∂ x e ω c e = |ṽ ∧ e| 2 2 rot x e • ∂ x e ω c e = |ṽ ∧ e| 2 2 rot x e • ∂ x e e ω c - e ⊗ ∇ x ω c ω 2 c e = |ṽ ∧ e| 2 2 rot x e • rot x e ∧ e ω c - e ⊗ ∇ x ω c ω 2 c e = - |ṽ ∧ e| 2 2 (rot x e • e) ∇ x ω c • e ω 2 c
. 10. For any vector ξ ∈ R 3 we have by 4.

ṽ ∧ ∂ x e(ṽ ∧ e) • ξ = M [ṽ]∂ x e(ṽ ∧ e) • ξ = ∂ x e(ṽ ∧ e) • M [ξ]ṽ = -M [ξ]∂ x e(ṽ ∧ e) • ṽ = -M [ξ]∂ x e : ṽ ⊗ (ṽ ∧ e) = -M [ξ]∂ x e : M [e] |ṽ ∧ e| 2 2 = |ṽ ∧ e| 2 2 trace(M [e]M [ξ]∂ x e) = |ṽ ∧ e| 2 2 trace([ξ ⊗ e -(ξ • e)I 3 ]∂ x e) = |ṽ ∧ e| 2 2 trace(ξ ⊗ t ∂ x ee -(ξ • e)∂ x e) = - |ṽ ∧ e| 2 2 (ξ • e)div x e.
Therefore we deduce that ṽ ∧ ∂ x e(ṽ ∧ e) = -|ṽ ∧ e| 2 2 div x e e. Proof. (of Proposition 5.6) Observe that the vector field c

ε [ f ] • ∇ x,ṽ writes c ε [ f ] • ∇ x,ṽ = (ṽ • e(x)) e(x) • ∇ x + q m (E[ f ] • e(x)) e(x) • ∇ ṽ -ṽ ∧ 1 0 ∂ x e(x(τ ))(ṽ ∧ (x)) dτ • ∇ ṽ
where x(τ ) = x + τ ε ṽ∧e(x) ωc(x) , x = x + ε ṽ∧e(x) ωc(x) = x(1), and therefore

lim ε 0 c ε [ f ] • ∇ x,ṽ = (ṽ • e(x)) e(x) • ∇ x + q m (E[ f ] • e(x)) e(x) • ∇ ṽ -(ṽ ∧ ∂ x e(ṽ ∧ e(x))) • ∇ ṽ = c 0 [ f ] • ∇ x,ṽ .
By direct computations one gets

lim ε 0 ∂T ε c ε [ f • T ε ] -c ε [ f • T ε ] ε = lim ε 0 ∂ ṽ ∧ e ω c , 0 c ε [ f • T ε ] = (ṽ • e(x))M [ṽ]∂ x e ω c e(x) • ∇ x + e ω c ∧ (ṽ ∧ ∂ x e(ṽ ∧ e)) • ∇ x = (ṽ • e(x))M [ṽ]∂ x e ω c e(x) • ∇ x - (ṽ • e(x)) ω c (x) ∂ x e(ṽ ∧ e(x)) • ∇ x lim ε 0 c ε [ f • T ε ] -c 0 [ f ] • T ε ε = q m lim ε 0 (E[ f • T ε ] • e(x)) e(x) -(E[ f ] • T ε • e(x)) e(x) ε • ∇ ṽ -ṽ ∧ 1 0 lim ε 0 ∂ x e(x(τ )) ṽ ∧ e(x) -∂ x e(x) ṽ ∧ e(x) ε dτ • ∇ ṽ = q m E ṽ ∧ e ω c • ∇ x f • e(x) e(x) • ∇ ṽ - q m ∂ x E[ f ] ṽ ∧ e ω c • e(x) e(x) • ∇ ṽ - q m E[ f ] • ∂ x e ṽ ∧ e ω c e(x) • ∇ ṽ - q m (E[ f ] • e(x)) ∂ x e ṽ ∧ e ω c • ∇ ṽ + 1 2ω c (x) [ṽ ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x )e] • ∇ ṽ + ṽ ∧ ∂ x e(x) ṽ ∧ ∂ x e ṽ ∧ e ω c • ∇ ṽ and lim ε 0 c 0 [ f ] • T ε -λ ε c 0 [ f ] • T ε ε • ∇ x,ṽ = ∇ x ω c • ṽ ∧ e ω 2 c c 0 [ f ] • ∇ x,ṽ .
Therefore the coordinates of the vector field c 1 [ f ] • ∇ x,ṽ are given by (ṽ ∧ e) • ∇ ṽ.

c 1x [ f ] = (ṽ • e)ṽ ∧ ∂ x e ω c e - (ṽ • e) ω c ∂ x e (ṽ ∧ e) + (ṽ • e) ∇ x ω c • ṽ ∧ e ω 2 c e c 1ṽ [ f ] = q m E ṽ ∧ e ω c • ∇ x f • e e - q m ∂ x E[ f ] ṽ ∧ e ω c • e e - q m E[ f ] • ∂ x e ṽ ∧ e ω c e - q m (E[ f ] • e) ∂ x e ṽ ∧ e ω c + q m (E[ f ] • e) ∇ x ω c • ṽ ∧ e ω 2 
Proof. (of Proposition 5.7) By Proposition 5.2, applied to the vector field c 0 [ f ] ωc • ∇ x,ṽ , there is a vector field ξ • ∇ x,ṽ in involution with respect to b • ∇ x,ṽ such that for any function u ∈ C 2 (R 3 × R 3 ) ∩ ker(b • ∇ x,ṽ )

c 0 [ f ] ω c • ∇ x,ṽ u 1 = ξ • ∇ x,ṽ u where c 0 [ f ] ω c • ∇ x,ṽ u - c 0 [ f ] ω c • ∇ x,ṽ u + b • ∇ x,ṽ u 1 = 0, u 1 = 0.
We claim that c 0 [ f ] • ∇ x,ṽ u 1 = 0 and therefore ξ ṽ • e. For this we write the vector field c 0 [ f ] • ∇ x,ṽ as follows c 0 [ f ] • ∇ x,ṽ = (ṽ • e)c[e] • ∇ x,ṽ -(ṽ • e)(∂ x ee ⊗ e -e ⊗ ∂ x ee)ṽ • ∇ ṽ + q m (E[ f ] • e) e • ∇ ṽ -[ṽ ∧ ∂ x e(ṽ ∧ e)] • ∇ ṽ.

As the vector fields (ṽ • e)c[e] • ∇ x,ṽ , q m (E[ f ] • e) e • ∇ ṽ are in involution with respect to b • ∇ x,ṽ , we have (ṽ • e)c[e] • ∇ x,ṽ u 1 = (ṽ • e)c[e] • ∇ x,ṽ u 1 = 0

q m (E[ f ] • e) e • ∇ ṽu 1 = q m (E[ f ] • e) e • ∇ ṽ u 1 = 0.
We are done if we prove that (ṽ • e) (∂ x ee ⊗ e -e ⊗ ∂ x ee)ṽ • ∇ ṽu 1 = 0, [ṽ ∧ (∂ x e(ṽ ∧ e))] • ∇ ṽu 1 = 0. Similarly we write, by using the notation σ(x, ṽ) = ṽ ∧ ∂ x e (ṽ ∧ e)

-ω c (ṽ ∧ ∂ x e (ṽ ∧ e)) • ∇ Finally, as ξ x = 0, ξ ṽ • ṽ = 0, ξ ṽ • e = 0, we have ξ • ∇ x,ṽ = ξ ṽ • ṽ ∧ e |ṽ ∧ e| 2 (ṽ ∧ e) • ∇ ṽ, |ṽ • e(x)| > 0 and c 0 [ f ] • ∇ x,ṽ f 1 = ω c ξ • ∇ x,ṽ f = 0, |ṽ ∧ e(x)| > 0.

Actually, by continuity, the above equality holds true for any (x, ṽ) ∈ R 3 × R 3 .

2 2 div x e e 11 .

 11 trace(∂ x eM [e]∂ x e) = -(rot x e • e)div x e 12. trace(M [e]∂ x eM [e]∂ x eM [e]) = (rot x e • e)div x e.

Remark 6. 3

 3 The model (70), (71) propagates the constraint b • ∇ x,ṽ fε = 0. This is a consequence of the fact that the vector fields c 0 [ fε ] , c 1 [ fε ] , a[ fε ] are in involution with respect to b • ∇ x,ṽ .

  ṽ • e)e + ṽε D [ fε ] ] • (∇ x,ṽ fε -∂ µ hε ∇ x,ṽ µ) = [(ṽ • e)e + ṽε D [ fε ] ] • (∇ x hε + ∂ v hε t ∂ x eṽ) + ∂ x e[(ṽ • e)e + ṽε D [ fε ] ] ⊗ e -e ⊗ ∂ x e[(ṽ • e)e + ṽε D [ fε ] ] ṽ • ∂ v hε e(x) = [(ṽ • e)e + ṽε D [ fε ] ] • ∇ x hε and div x e + (ṽ • e) ω ε c

sin 3 θ

 3 dθ = 0.

3 =

 3 ṽ -(ṽ • e) e) • [(ṽ -(ṽ • e) e) ∧ t ∂ x e(ṽ -(ṽ • e) e)] = 0 and (ṽ ∧ e) ∧ ∂ x e ṽ ∧ e ω c• t ∂ x e(ṽ -(ṽ • e) e) = 0.For the last term we have(ṽ • e) ∂ x e ω c (ṽ -(ṽ • e) e) • [e ∧ t ∂ x e(ṽ -(ṽ • e) e)] = (ṽ • e) ∂ x e ω c (ṽ -(ṽ • e) e) • M [e] t ∂x e(ṽ -(ṽ • e) e) = -(ṽ • e)∂ x eM [e]∂ x e ω c : (ṽ -(ṽ • e) e) ⊗ (ṽ -(ṽ • e) e) = -(ṽ • e)∂ x eM [e]∂ x e ω c : |ṽ ∧ e| 2 2 (I 3 -e ⊗ e) = -(ṽ • e) |ṽ ∧ e| 2 2 ∂ x eM [e]∂ x e ω c : I -(ṽ • e) |ṽ ∧ e| 2 2ω c ∂ x eM [e]∂ x e : I 3 = (ṽ • e) |ṽ ∧ e| 2 2ω c div x e (rot x e • e) since trace(∂ x eM [e]∂ x e) = -div x e (rot x e • e) cf. 11. We proved that

11 .

 11 The matrix ∂ x eM [e] t ∂ x e is anti-symmetric and thus trace(∂ x eM [e]∂ x e) = trace(∂ x eM [e](∂ x e -t ∂ x e)) = trace(∂ x eM [e]M [rot x e]) = trace(∂ x e(rot x e ⊗ e -rot x e • e I 3 )) = trace((∂ x e rot x e) ⊗ e -(rot x e • e)∂ x e) = -div x e (rot x e • e).12. By the statement 11. we have trace(M [e]∂ x eM [e]∂ x eM [e]) = trace(M [e]M [e]∂ x eM [e]∂ x e) = trace((e ⊗ e -I 3 )∂ x eM [e]∂ x e) = -trace(∂ x eM [e]∂ x e) = div x e (rot x e • e).

1 c 1 ∇ x ω c • ṽ ∧ e ω 2 c∧ e ω 2 cṽ 2 c 2 - ∇ x ω c • ṽ ∧ e ω 2 c 3 += |ṽ ∧ e| 2 2ω c e • |ṽ ∧ e| 2 2 (I 3 -∧ e ω 2 c∂ 2 ∇ x ω c • ṽ ∧ e ω 2 c∂ 2 |∂ x ee| 2 - 2 c∂ω c ω 2 c: 2 ∂ x ee ⊗ ∇ x ω c ω 2 c: (I 3 - 2 ∂ x ee • ∇ x ω c ω 2 c- 2 |∂ x ee| 2 - 2 ∂ x ee • ∇ x ω c ω 2 c

 11222223232222222223222222 c e + ṽ ∧ ∂ x e(x) ṽ ∧ ∂ x e ṽ ∧ e ω c -∇ x ω c • ṽ ∧ e ω 2 c ṽ ∧ ∂ x e (ṽ ∧ e) + 1 2ω c (x) ṽ ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x )e.The average of c 1 [ f ] • ∇ x,ṽ follows thanks to Remark 5.[ f ] • ∇ x,ṽ = c c 1x [ f ] • ∇ x,ṽ + (c 1ṽ [ f ] -(ṽ • e)∂ x e c 1x [ f ]) • (ṽ -(ṽ • e) e) ṽ -(ṽ • e) e |ṽ ∧ e|2 • ∇ ṽ+ c 1ṽ [ f ] • e + ∂ x e c 1x [ f ] • ṽ e • ∇ ṽ + (c 1ṽ [ f ] -(ṽ • e)∂ x e c 1x [ f ]) • (ṽ ∧ e) ṽ ∧ e |ṽ ∧ e| 2 • ∇ ṽ. The average of c 1x [ f ] is the magnetic curvature drift c 1x [ f ] = (ṽ • e) 2 e ∧ ∂ x e ω c e = (ṽ • e) 2 ω c e ∧ ∂ x ee = ṽCD .We analyze one by one the other averages. We havec 1ṽ [ f ] • (ṽ -(ṽ • e) e) = -(ṽ • e) 2 |ṽ ∧ e| 2 2ω c (rot x e • e)div x e -(E[ f ] • e) B |ṽ ∧ e| 2 2 (e • rot x e).Indeed, the last two terms in c 1ṽ [ f ] give no contribution thanks to the seventh statement in Proposition 5.3[ṽ ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) :∇ x ⊗ ∇ x ) e] • (ṽ -(ṽ • e) e)= -(ṽ • e) ṽ ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) :∇ x ⊗ ∇ x ) e • e = -(ṽ • e) (ṽ -(ṽ • e) e) ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x ) e • e = 0and (ṽ ∧ ∂ x e (ṽ ∧ e)) • (ṽ -(ṽ • e) e)= -(ṽ • e)∇ x ω c • ṽ ∧ ∂ x e (ṽ ∧ e) • e = -(ṽ • e) ∇ x ω c • ṽ ∧ e ω (ṽ -(ṽ • e) e) ∧ ∂ x e (ṽ ∧ e) • e = 0.Observe also that the average of the term ṽ ∧ ∂ x e ṽ ∧ ∂ x e ṽ∧e ωc • (ṽ -(ṽ • e) e) can be computed as follows, cf. statement 12. in Proposition 5.3ṽ ∧ ∂ x e ṽ ∧ ∂ x e ṽ ∧ e ω c • (ṽ -(ṽ • e) e) = (ṽ • e) e ∧ ∂ x e ṽ ∧ ∂ x e ṽ ∧ e ω c • (ṽ -(ṽ • e) e) = (ṽ • e) 2 e ∧ ∂ x e e ∧ ∂ x e ṽ ∧ e ω c • (ṽ -(ṽ • e) e) = (ṽ • e) 2 M [e]∂ x eM [e]∂ x e ṽ ∧ e ω c • ṽ = -(ṽ • e) 2 ω c M [e]∂ x eM [e]∂ x eM [e] : ṽ ⊗ ṽ = -(ṽ • e) 2 |ṽ ∧ e| 2 2ω c trace(M [e]∂ x eM [e]∂ x eM [e]) = -(ṽ • e) 2 |ṽ ∧ e| 2 2ω c (rot x e • e)div x e.By the first and seventh statements in Proposition 5.3 we find as beforec 1ṽ [ f ] • e = q m E ṽ ∧ e ω c • ∇ x f • e + ṽ ∧ ∂ x e ṽ ∧ ∂ x e ṽ f • e + (ṽ • e)|ṽ ∧ e| 2 2ω c (rot x e • e)div x e and c 1ṽ [ f ] • (ṽ ∧ e) = -q m (E[ f ] • e) ω c∂ x e : (ṽ ∧ e) ⊗ (ṽ ∧ e)+ 1 2ω c (x) [ṽ ∧ ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x )e] • (ṽ ∧ e) T (ṽ ∧ ∂ x e (ṽ ∧ e)) • (ṽ ∧ e) T ṽ ∧ ∂ x e ṽ ∧ ∂ x e ṽ ∧ e ω c • (ṽ ∧ e) e : ∂ x e -|∂ x ee| 2 ) + (ṽ • e) 2 |ṽ ∧ e| 2 2ω c trace(∂ x eM [e]∂ x eM [e]).Indeed, we haveT 1 = -(ṽ ∧ e) • ∂ x e ṽ ∧ ∂ x e ṽ ∧ e ω c = -(ṽ • e) (ṽ ∧ e) • ∂ x e e ∧ ∂ x e ṽ ∧ e ω c = (ṽ • e) ω c M [e]∂ x eM [e]∂ x eM [e] : ṽ ⊗ ṽ = (ṽ • e)|ṽ ∧ e| 2 2ω c trace(M [e]∂ x eM [e]∂ x eM [e]) = (ṽ • e)|ṽ ∧ e| 2 2ω c (rot x e • e)div x e T 2 = -1 2ω c [(ṽ • e)ṽ -|ṽ| 2 e] • ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x )e = -1 2ω c [(ṽ • e) 2 e-|ṽ| 2 e] • ((ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x )e = |ṽ ∧ e| 2 2ω c e • ( (ṽ ∧ e) ⊗ (ṽ ∧ e) : ∇ x ⊗ ∇ x ) e e ⊗ e) : ∇ x ⊗ ∇ x e = |ṽ ∧ e| 4 4ω c e • [∆ x e -(e ⊗ e : ∇ x ⊗ ∇ x )e] = -|ṽ ∧ e| 4 4ω c (∂ x e : ∂ x e -|∂ x ee| 2 ).-T 3 = ∇ x ω c • ṽ ∧ e ω 2 c ((ṽ • e)ṽ -|ṽ| 2 e) • ∂ x e(ṽ ∧ e) = -|ṽ ∧ e| 2 ∇ x ω c • ṽ ∧ e ω 2 c e • ∂ x e (ṽ ∧ e) = 0andT 4 = -[(ṽ • e)ṽ -|ṽ| 2 e] • ∂ x e ṽ ∧ ∂ x e ṽ ∧ e ω c = -(ṽ • e) ṽ • ∂ x e ṽ ∧ ∂ x e ṽ ∧ e ω c = -(ṽ • e) 2 ṽ • ∂ x e e ∧ ∂ x e ṽ ∧ e ω c = -(ṽ • e) 2 ω c ∂ x eM [e]∂ x e : ṽ ⊗ (ṽ ∧ e) = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c trace(∂ x eM [e]∂ x eM [e]).The contributions of the coordinates c 1x [ f ] are given by (cf. the ninth and fourth statements in Proposition 5.3)∂ x e c 1x [ f ] • ṽ = ∂ x e c 1x [ f ] • (ṽ -(ṽ • e) e) = (ṽ • e) ∂ x e ∂ x ṽ ∧ e ω c e • (ṽ -(ṽ•) e) -(ṽ • e) ω c ∂ x e ∂ x e(ṽ ∧ e) • ṽ + (ṽ • e) ∇ x ω c • ṽ x e e • (ṽ -(ṽ • e) e) = -(ṽ • e)|ṽ ∧ e| 2 2 (rot x e • e) (∇ x ω c • e) ω 2 c + (ṽ • e)|ṽ ∧ e| 2 2ω c trace(M [e]∂ x e ∂ x e) + (ṽ • e)|ṽ ∧ e| 2 2 (∂ x ee ∧ e) • ∇ x ω c ω 2 c = (ṽ • e)|ṽ ∧ e| 2 2 (∂ x ee ∧ e) • ∇ x ω c ω 2 c and -(ṽ • e) ∂ x e c 1x [ f ] • (ṽ ∧ e) = -(ṽ • e) 2 ∂ x e ṽ ∧ ∂ x e ω c e • (ṽ ∧ e)+ (ṽ • e) 2 ω c ∂ x e ∂ x e (ṽ ∧ e) • (ṽ ∧ e) -(ṽ • e) x ee • (ṽ ∧ e) .By straightforward computations, we obtain (using also div x (ω c e) = 0)-(ṽ • e) 2 ∂ x e ṽ ∧ ∂ x e ω c e • (ṽ ∧ e) = (ṽ • e) 2 ∂ x eM ∂ x e ω c e ṽ • (ṽ ∧ e) = (ṽ • e) 2 ∂ x eM ∂ x e ω c e : (ṽ ∧ e) ⊗ ṽ = -(ṽ • e) 2 |ṽ ∧ e| 2 2 ∂ x eM ∂ x e ω c e : M [e] = (ṽ • e) 2 |ṽ ∧ e| 2 2 ∂ x e : M [e]M ∂ x e ω c e = (ṽ • e) 2 |ṽ ∧ e| 2 2 ∂ x e : ∂ x e ω c e ⊗ e -∂ x e ω c e • e I 3 = (ṽ • e) 2 |ṽ ∧ e| 2 (div x e) 2 ω c (ṽ • e) 2 ω c ∂ x e∂ x e (ṽ ∧ e) • (ṽ ∧ e) = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c ∂ x e∂ x e : (I 3 -e ⊗ e) = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c trace(∂ x e∂ x e) = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c [div x (∂ x ee) -e • ∇ x div x e]-(ṽ • e) 2 ∇ x ω c • ṽ ∧ e ω x ee • (ṽ ∧ e) = -(ṽ • e) 2 ∂ x ee ⊗ ∇ x (ṽ ∧ e) ⊗ (ṽ ∧ e)= -(ṽ • e) 2 |ṽ ∧ e| 2 e ⊗ e)= -(ṽ • e) 2 |ṽ ∧ e| 2 (ṽ • e) ∂ x e c 1x [ f ] • (ṽ ∧ e) = (ṽ • e) 2 |ṽ ∧ e| 2 (div x e)2 ω c + (ṽ • e) 2 |ṽ ∧ e| 2 2 div x (∂ x ee) -e • ∇ x div x e ω c -(ṽ • e) 2 |ṽ ∧ e| 2 = (ṽ • e) 2 |ṽ ∧ e| 2 2ω c |∂ x ee| 2 -∂ x ee • ∇ x ω c ω c + div x (∂ x ee -div x e e) .

Finally we deduce that c 1 x ω c ω 2 cx ω c ω 2 c

 122 [ f ] • ∇ x,ṽ = c[ṽ CD ] • ∇ x,ṽ -(ṽ • e) 22ω c (rot x e • e)div x e (ṽ -(ṽ • e) e) • ∇ ṽ-(E[ f ] • e) B (e • rot x e) 2 (ṽ -(ṽ • e) e) • ∇ ṽ + (ṽ • e)|ṽ ∧ e| 2 2ω c (rot x e • e)div x e e • ∇ ṽ + q m E ṽ ∧ e ω c • ∇ x f • e e • ∇ ṽ + (ṽ • e) 2 (∂ x ee ∧ e) • ∇ (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ + (ṽ • e) 2 2ω c trace(∂ x eM [e]∂ x eM [e]) -|ṽ ∧ e| 2 4ω c (∂ x e : ∂ x e -|∂ x ee| 2 ) -(E[ f ] • e) B div x e 2 (ṽ ∧ e) • ∇ ṽ + (ṽ • e) 2 2ω c |∂ x ee| 2 -∂ x ee • ∇ x ω c ω c + div x (∂ x ee -div x e e) (ṽ ∧ e) • ∇ ṽ = c[ṽ CD ] • ∇ x,ṽ -(E[ f ] • e) B (e • rot x e) 2 (ṽ -(ṽ • e) e) • ∇ ṽ + q m E ṽ ∧ e ω c • ∇ x f • e e • ∇ ṽ + (rot x e • e)div x e 2ω c (ṽ • e) + (ṽ • e) 2 (∂ x ee ∧ e) • ∇ (ṽ ∧ (e ∧ ṽ)) • ∇ ṽ -|ṽ ∧ e| 2 4ω c (∂ x e : ∂ x e -|∂ x ee| 2 ) + (E[ f ] • e) B div x e 2 (ṽ ∧ e) • ∇ ṽ + (ṽ • e)2 2ω c |∂ x ee| 2 -∂ x ee • ∇ x ω c ω c + div x (∂ x ee -div x e e) + trace(∂ x eM [e]∂ x eM [e])

  It is easily seen that-ω c e • ∇ ṽu 1 = -∂ x ee • (ṽ ∧ e) -ω c ∂ x ee • ∇ ṽu 1 = (∂ x e + t ∂ x e) : (∂ x ee ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ ∧ e) ⊗ ∂ x ee 4 and therefore (∂ x ee ⊗ e -e ⊗ ∂ x ee)ṽ • ∇ ṽu 1 = (ṽ • e) ∂ x ee • ∇ ṽu 1 -(∂ x ee • ṽ) e • ∇ ṽu 1 = -1 ω c (∂ x ee • ṽ)∂ x ee • (ṽ ∧ e) = -1 ω c ∂ x ee ⊗ ∂ x ee : ṽ ⊗ (ṽ ∧ e)= -|ṽ ∧ e| 2 2ω c ∂ x ee ⊗ ∂ x ee : M [e] = 0.

ṽu 1 = 4 .

 14 -(σ • e)∂ x ee • (ṽ ∧ e) -(ṽ • e)∂ x ee • (σ ∧ e) + (∂ x e + t ∂ x e) :(σ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ ∧ e) ⊗ (σ-(σ • e) e)Thanks to the seventh statement in Proposition 5.3 we have(σ • e)∂ x ee • (ṽ ∧ e) = [(ṽ -(ṽ • e) e) ∧ ∂ x e(ṽ ∧ e)] • e [∂ x ee • (ṽ ∧ e)] = 0.Notice also that(ṽ • e)∂ x ee • (σ ∧ e) = (ṽ • e)∂ x ee • (ṽ ∧ ∂ x e (ṽ ∧ e)) ∧ e = (ṽ • e) 2 ∂ x ee • ∂ x e (ṽ ∧ e) = 0 (σ ∧ e) ⊗ (ṽ -(ṽ • e) e) = (ṽ • e) ∂ x e (ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e)= (ṽ • e)∂ x e (ṽ ∧ e) ⊗ ṽ = -(ṽ • e)|ṽ ∧ e| 2 2 ∂ x eM [e]and (ṽ ∧ e) ⊗ (I 3 -e ⊗ e)σ = (ṽ ∧ e) ⊗ σ -(σ • e)(ṽ ∧ e) ⊗ e = (ṽ • e) (ṽ ∧ e) ⊗ (e ∧ ∂ x e(ṽ ∧ e)) -[(ṽ -(ṽ • e) e) ∧ ∂ x e(ṽ ∧ e)] • e (ṽ ∧ e) ⊗ e= -(ṽ • e) (ṽ ∧ e) ⊗ (ṽ ∧ e) t ∂ x eM [e] = -(ṽ • e)|ṽ ∧ e| 2 2 (I 3 -e ⊗ e) t ∂ x eM [e] = -(ṽ • e)|ṽ ∧ e| 2 2 t ∂ x eM [e] + (ṽ • e)|ṽ ∧ e| 2 2 e ⊗ (∂ x ee ∧ e).For these computations we obtain (∂ x e + t ∂ x e) : (σ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ ∧ e) ⊗ (σ -(σ • e) e) = -(ṽ • e)|ṽ ∧ e| 2 2 (∂ x e + t ∂ x e) : [(∂ x e + t ∂ x e)M [e] -e ⊗ (∂ x ee ∧ e)] = 0.
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For any (x, ṽ) ∈ R 3 × R 3 , |ṽ ∧ e(x)| > 0 we have ξ(x, ṽ) • ∇ x,ṽ = c[ξ x ] • ∇ x,ṽ + ξ ṽ • (ṽ -(ṽ • e) e) -(e • ṽ)∂ x e ξ x • ṽ |ṽ ∧ e| 2 (ṽ -(ṽ • e) e) • ∇ ṽ

For u = x i , i ∈ {1, 2, 3} we obtain

Obviously we have c 0

we obtain

• ṽ and therefore u 1 = 0, ξ ṽ • ṽ = 0. We also take u = (ṽ • e), implying that

A straightforward computation leads to

Observe that (ṽ ∧ e) ⊗ (ṽ ∧ e) -|ṽ ∧ e| 2 2 (I 3 -e ⊗ e)

= (ṽ ∧ e) • ∇ ṽ (ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ -(ṽ • e) e) ⊗ (ṽ ∧ e) 4

(ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ -(ṽ • e) e) ⊗ (ṽ ∧ e) = 0 and therefore we obtain -ω c u 1 = -(ṽ • e)∂ x ee • (ṽ ∧ e) + ∂ x e : (ṽ ∧ e) ⊗ (ṽ -(ṽ • e) e) + (ṽ -(ṽ • e) e) ⊗ (ṽ ∧ e) 4 .