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Asymptotic behavior for the Vlasov-Poisson equations with
strong external curved magnetic field. Part I : well prepared
initial conditions

Mihai BOSTAN *

(February 4, 2019)

Abstract

The subject matter of this paper concerns the magnetic confinement. We focus on the
asymptotic behavior of the three dimensional Vlasov-Poisson system with strong external
magnetic field. We investigate second order approximations, when taking into account
the curvature of the magnetic lines. The study relies on multi-scale analysis and allows us
to determine a regular reformulation for the Vlasov-Poisson equations with well prepared
initial conditions, when the magnetic field becomes large.

Keywords: Vlasov-Poisson system, averaging, homogenization.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

We denote by f = f(t, z,v) the density of a population of charged particles of mass m, charge
q, depending on time ¢, position z and velocity v. We consider the Vlasov-Poisson equations,
with a strong external non vanishing magnetic field

B(z)

B®(z) = B°(z)e(x), B (x) = p le(x)| =1, z€R3

where € > 0 is a small parameter. In the three dimensional setting the Vlasov equation writes
@f+m-vﬁﬂ+%{ﬂf@mm+uAB%@yv”f:m(u@meR+xRBXWR(n

The electric field E[f¢(t)] = —V,®[f¢(¢)] derives from the potential

Bl ) = gL [ [ L

B 47['60 R3JR3 |:r—a:’|

dv'da’ (2)
which satisfies the Poisson equation

CALB[fE(1)] = % [ F(tw ) do, (o) € Ry x R3
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whose fundamental solution is z — ﬁlZl’ z € R3\ {0}. Here ¢, represents the electric permit-
tivity. For any particle density f = f(z,v), the notation E[f] stands for the Poisson electric

field
Ef dv’ds’ 3
[ x 47’[’60 /]Rs /]Rs — ‘ var ( )

and p[f], j[f] are the charge and current densities respectlvely

—Q/f ) dv, j[f —q/f v)v dv.

The above system is supplemented by the initial condition

f50,2,v) = fin(z,v), (z,0) € R® xR (4)

We are interested in the asymptotic behavior of the problem (1), (3), (4) when € goes to
0, see [11, 12, 13, 14, 21, 22, 9, 10, 15, 16, 18, 3, 4, 5, 6] for previous results. In [8], a
regular (when € \, 0) reformulation of the Vlasov-Poisson system was emphasized, in the two
dimensional setting, with straight magnetic field lines. It is shown that the solutions of the
Vlasov-Poisson reformulation (whose numerical approximation is not anymore penalized by
the smallness of the parameter ) coincide, up to a second order term, with the solutions of
the Vlasov-Poisson system with strong external magnetic field. In this study we go further
into this direction, by considering the three dimensional setting, with curved magnetic field
lines and well prepared initial conditions. The derivation of the regular formulation follows
by averaging techniques, by taking advantage of the invariants of the cyclotronic motion.
We establish the well posedness of it. For any £ € N, the notation C’f stands for k times
continuously differentiable functions, whose all partial derivatives, up to order k, are bounded.

Theorem 1.1

Consider a non negative, smooth, compactly supported initial particle density fin € CHR3 x
R?) and a smooth magnetic field B = B € CZ(R3) such that inf,cps |B*(z)| = B§ > 0 (that
is B§ = %, inf,cgs [B(x)| = Bg > 0), div,B® = 0. For any T > 0, there is ep > 0 such that
for 0 < e < er there exists a unique particle density fs € C1([0,T] x R3 x R?), whose Poisson
electric field belongs to C*([0,T] x R3)

Bli)e) = 7= [ [ Fea I G (a) € Ry x BY

4meg |z — |3
satisfying
Nf- + (0-e)e- Vafs+ %(E[mef;] -e)e- Vife — [0 A Oge(D Ae)- Vil (5)
P Vawi\ 0N (eND ~
+ el 1)) Vsl + T ((@ueene) T2E) PAAD g,
- - e\ & _ (7. B
0 ol ee)e Vo + (Tplf) 2E ) I v o
and ) )
f-(0,2,9) = fin(z,?), (2,9) € R3 xR?
where .
e-rotge _
m-=1+(0-¢) T p = Uap + UGp + Vo
. Ef Ne mloAe|? VoB*Ne _ m(v - e)?
olfd = N, gp, = MAL TeBNe g = MO pone



and for any vector field £ -V, the notation c[{] - V5 stands for the vector field
cl] Vas =€ -Vy+ (0§ ®e—e® 0,e6)0 - V.

Moreover, if for some integer k > 2 we have fin € CER3 x R?),B° € CF1(R3), then
f- € C*([0,T] x R? x R3) and E[f.] € C*([0,T] x R?).

We prove that the solution of the previous model approximates the solution of the Vlasov-
Poisson system (1), (3) up to a second order term with respect to .

Theorem 1.2

Let B € C}(R3) be a smooth magnetic field, such that inf,cgs |B(x)] = By > 0,div,B =
0. We consider a family of non negative, smooth, uniformly compactly supported particle
densities (e )o<e<1 C C3(R3 x R3)

J Rz, Ry >0 : supp g- C {(Z,0) : |Z| < Rz and |0| < Ry}, Osu1<) |9e o3 (r3 xr3) < +o00.
<e<l1

We assume that (§:)o<e<1 are well prepared i.e.,

vAe) Vg c0lGe] - Vz.5(ge — (g
sup € ) U§EHL2(R3><R3) < 400, sup llcolgel - Va,5(ge <g€>)”L2(R3><R3) < 400
0<e<1 € 0<e<1 €

where co[f]- Vs = (0-e)e-Vo+ L(E[f]-e)e- Vi —[0ADze(vAe)]-Vi. We denote by (f)e>0
the solutions of the Vlasov-Poisson equations with external magnetic field (1), (3) on [0,T],
corresponding to the initial conditions

vAe(x) o EE[QE] Ae(x)
we(x) B(x)

£(0,2,v) = (e + €d?) <9C+5 >, (z,v) € R3 x R?

where

colge] - Vs e = (colde] * Vs Ge) +b- Vs g2 =0, (32) =0
and T < infoeocy T(f5(0)) see Theorem 2.1. For e small enough, we consider the solution f.
on [0,T] of the problem (5) corresponding to the initial condition f-(0) = (j§z),0 < e < er
cf. Theorem 1.1 (see also Proposition (5.8)). Therefore there exists a constant Cp > 0 such
that for any 0 < e < ep

1/2

~ 2
sup //[fs(t,:r,v)—(fe+€f§)(t,x+ste,v—€W>]dvdx < Cré?
R3JR3 We

te[0,T]

where

colfel - Vo fo = (eolfe) - Voo o) +b- Vag f1 =0, (f2) =0.

The notation (-) stands for the average along the characteristic flow of the vector field
we(x) (0 Ae(z)) - Vi, see Proposition 3.1.

Our paper is organized as follows. In Section 2 we discuss the well posedness of the Vlasov-
Poisson problem with external magnetic field. We indicate uniform estimates with respect to
the magnetic field. The average operators, together with their main properties are introduced
in Section 3. The regular reformulation of the Vlasov-Poisson problem is derived in Sections 4,
5. The error estimate, when the initial conditions are well prepared, relies on the construction
of a corrector term. The well posedness of the limit model is discussed in Section 6.



2 Classical solutions for the Vlasov-Poisson problem with ex-
ternal magnetic field

The Vlasov-Poisson equations are now well understood. We refer to [1] for weak solutions,
and to [23, 17, 19] for strong solutions. For studying the Vlasov-Poisson equations with
external magnetic field we can adapt the arguments in [17, 20], see also Theorem 2.1 [§]
for two dimensional results. Motivated by the asymptotic behavior when the magnetic field
becomes strong, we are looking for classical solutions, satisfying uniform bounds with respect
to the magnetic field. At least locally in time such solutions exist, see Appendix A for the
main lines of the proof.

Theorem 2.1
Consider a non negative, smooth, compactly supported initial particle density fi, € CL(R3 x
R3) such that

supp fin C {(z,v) € R®* xR? : |z| < R, |v| < R™}
and a smooth magnetic field B € CHR3). Let T < T(fin) := QR‘“(127r)1/3T|’ILJE‘?nHl/“’HfmIIQ/J'
There is a unique particle density f € CL([0,T] x R® x R3), whose Poisson electric field is
smooth E[f] € C*(0,T] x R?), satisfying

8tf+v~vxf+%(E[f(t)]+v/\B)-vazo, (t,z,v) € [0,T] x R® x R3 (6)

xr —
(t, dv'da’, (t T) x R?
= [ [ et T avant .)€ 0.7 7)

f(0,2,v) = fin(z,v), (x,v)€ R3 x R3. (8)

Moreover, if for some integer k > 2 we have fi, € CE(R3 x R?),B € CF(R?), then f €
C*([0,T] x R? x R3) and E[f] € C*([0,T] x R3).

Elf()l(z) =

Remark 2.1
1. The solution constructed in Theorem 2.1 preserves the particle number and the total energy

d/ f(t,z,v) dvde =0, t€[0,T]
R3JR3

L vt L [ [ BIOAOI) )

2. We have the following balance for the total momentum

/RS f (t,z,v)mv dvd:t:—q/R3 RSf(t,x,v)v/\Bdvdavz/p[f(t)]E[f(t)] dz

RS

=0 [ Beumn sy B (O] LS (0)] da

2
= o [ L iy v (B0 @ B 0] - PO 1) o o

When the magnetic field is uniform, we obtain the conservation of the parallel momentum

4 / ft,z,v)m(v-e) dvde =0
t Jr3)R3

and
d/ flt,z,v)m(v Ae) dvde = e (/ ft,z,v)m(v Ae) dvdx>
dt R3JR3 m R3JR3

4



Sy}

saying that the orthogonal momentum rotates at the cyclotronic frequency w. = L~

/ f(t,z,v)m(v A e) dvdr = cos(wet) / fin(z,v)m(v A e) dvdx
R3J/R3 R3JR3

+ sin(wet) / fin(z,v)m(v Ae) Aedvdx, te|0,T].
R3JR3

3 Average operators and main properties

We intend to investigate the asymptotic behavior of the particle densities (f¢).>0 satisfying
(1), (3), (4) when € > 0 becomes small. We assume that the initial particle density and the
B

external magnetic field B® = Ze are smooth

fin >0, fin € CHR3xR3), B=Bec C}HR?)

and let us consider T' < T'(fin). Under the above assumptions, we know by Theorem 2.1
that there exists e > 0 such that for every 0 < ¢ < er, there is a unique strong solution
e e CL[0,T) x R3 x R3), E* := E[f¢] € C1([0,T] x R3) for the Vlasov-Poisson problem with
external magnetic field B = ge. As noticed in the proof of Theorem 2.1, we have uniform
estimates with respect to € for the L norm of the electric field £° and the size of the support
of the particle density f¢. Let us denote by (X<, V¢)(¢;to, x,v) the characteristics associated
to (1)

dXxe dve
dt :Va(ta t(],.l‘, U)7

dt :% [Ea(taXa(ta t(],x,’U)) + Va(t;t()vx?v) A Ba(XE(tﬂ t(],.l‘,’U))]
(9)

X(t;tg, z,v) =x, V(t;to, z,v) = 0.

The strong external magnetic field induces a large cyclotronic frequency wé = ¢B®/m =
we/e,we = qB/m, and thus a fast dynamics. We are looking for quantities which are left
invariant with respect to this fast motion. By direct computations we obtain
d VE(t) A e(XE(1)) E(t, X°(¢))
— | X5t = (V@) -e(X°(t XE(t _—
5 | X ey | = Ve e(X7 ) + e g
VE(t) N Ope(XE(t))VE(L) VE(t) Ne(XE(t))

ey Ve OO T e

A e(XE(1))

saying that the variations of x—l—s”aﬁ(;)), along the characteristic flow (9), over one cyclotronic

period, is very small. Notice that the electro-magnetic force writes

we() (v _ €W> Ae(z)

qd We _ 9 e
EE (t,x) + ?v Ne(z) = E(E (t,z) - e(x)) e(x) + -

and therefore we introduce the relative velocity with respect to the electric cross field drift

E¢(t,z) A e(x).

v =v — 10
v=v—c¢ B (10)
Accordingly, at any time ¢ € R, we consider the new particle density
5 E[fe(t A
fe(t,x,0) = f° <t,m,f) +e Eilt giz)) e(m)) , (x,0) € R3 x R3. (11)

It is easily seen that the particle densities f¢, f¢ have the same charge density
p[fs(t)] =q R3 fs(t7 ai}) do = Q/R3 fs(ta '7”) dv = p[fe(t)L te R-‘r

5



implying that the Poisson electric fields corresponding to f€, fE coincide
E[f*(t)] = E[f*(®)], t€[0,T].

Therefore we can use the same notation E°(t) for denoting them. We assume that the
magnetic field satisfies

By := inf |B(x)| > 0 or equivalently wp := inf |w.(x)| >0 (12)
zER3 z€ER3

and therefore (10), (11) are well defined. Notice that the particle densities (f¢).~¢ are smooth,
fe e CL([0,T] x R3 x R3) and uniformly compactly supported with respect to ¢ (use the
uniform bound for the electric fields (E¢). and the hypothesis (12)). Appealing to the chain
rule leads to the following problem in the phase space (z, ?)

e .. Ene e O E° Ne Esne\ (. E°Ae e
oL f —i—(v—l—a 5 )-me 5[3—1—335(3) (v—i—a B )]-va

+ [%6/\6+%(E66> 6:| ’Vﬁf5:07 (taxaﬁ) S [07T] XRgXRg (13)

fg((),x,@) = fin (xﬂj +€E[fin]él('l;\ e(x)) ) (l',f)) S R? x R3.

We are looking for a representation formula for the time derivative of the electric field E€, in
terms of the particle density f¢. Thanks to the continuity equation

Opplf°] + divaj[f] =0

we write
OB = o [ Dol 0l — o) a
t N 471'6() R3 tP ‘IL’"?’
_ 1 s .rre / ! /
- /R:;dwx][f |(z x>\x’\3 dz
= —Ldiv / o @ jIfE®))(x — 2') da’
4wy Jrsl2? J
1 x—a S - E5(t,2") Ne(x))
= —7d x - € t / € t / ? d l'
dive [ 25 (O + ) g ) a
We introduce as well the new Larmor center & = x + sﬁﬁce(gcx)) , which is a second order

approximation of the Larmor center x +5Uui\ce((f)) . The idea will be to decompose the transport

field in the Vlasov equation in such a way that & remains invariant with respect to the fast
dynamics. We will distinguish between the orthogonal and parallel directions, taking as
reference direction the magnetic line passing through the new Larmor center Z, that is e(Z)
(which is left invariant with respect to the fast dynamics)

5= [0 (- e(@)e(@)] + (- e(2))e().

Finally the Vlasov equation (13) writes
_ _ _ _ e s
Of + () Vaa e [f (0)]- Vs [+ Vs [T =0, (t,2,0) € [0, T]xR*xR? (14)

where the autonomous vector field % -V is given by

b® s - - - c ~ we(w)
= Veo =[0—(0-e(Z)) e(@) +eAL(z,0)] - Vo + 6

(8 A e(@)) - Vs



and for any particle density f ; a° [f ] Vaes, [f |- Va5 stand for the vector fields
- E - E ~ B -
E[f) Vai = ( e A;> Vet |- (@“) <v + H@“) (15)

+ divgg/]R :”_“;,3 ® (j[ﬂ +6p[f]E[f]]9/\e> (') d:c//\e(g;)] Vs

sl —x

9 m

— LB el etw) w1 [ L oye (=200 Phelr) o ]

+ (3 e(7)) e(Z) - V. (16)

CIFl- Vas = (5- (@) e(@) - Vs + [wcma AT e<x>} v,

The vector field A% (x,0) -V, will be determined by imposing that the Larmor center  is left
invariant by the fast dynamics

b° -V <x+gvAe(x)> =0.

we(z)

After some computations, the above condition writes

[13 +c0, (“ A 6)] AS(2,5) = —0, (77 & e) B (5 e(@) e(@)] — B =)\ G e

c We

and therefore A (z,7) is well defined for a.a. (z,7) € R? x R3. Notice that for & small enough,
<1

that is
vAe
wc Loo

the vector field AS is well defined on R? x R3. In particular AS is well defined if

10) o o
o (10l W¥eelie)

wo W(Q]

3

Remark 3.1
The vector field in the Viasov equation (14) is divergence free

divg s <c~€[f] + €a€[ﬂ + b;) = ediv, (W) — edivy |9, <We> @] —0.

We intend to study the asymptotic behavior of (14), when e goes to 0 by averaging with
respect to the flow of the fast dynamics generated by the advection field Yled) Vi cf.

€
[3, 4, 5, 6, 7]. In order to do that, we concentrate on the main properties of this flow. As in

the two dimensional framework, we establish the periodicity of the fast dynamics.

Proposition 3.1 B
Let B € C}(R?) verifying (12) and e € CZ(R?). We denote by (X°(s;x,0), Ve(s;2,0)) the
characteristic flow of the autonomous vector field b°(x,0) - V5

dcf = ¢[l3 — e(X(s;2,0)) @ e(X(s;2,0))|VE (552, 0) + 2 A5 (X% (532, 0), VE (552, D))




ddi = we(X°(s;2,8)) V¥(s52,0) A e(X° (52, D))

XE(0;2,0) =z, VE(0;2,0) =0

<3

and by (X(s;x,0),V(s;xz,0)) the characteristic flow of the autonomous vector field b(x, ) -
Ves =we(z) (0ANe(z))- Vs

dx _ dv

-0 5 we(X(s;z,0)) \?(s;x,@) Ne(X(s;x,0)), X(0;z,0) ==, \~7(0;a:,13) = 7.
s

1. For any (z,7) € R? x R® and ¢ > 0 such that

wo w%

the characteristic s — (X2, V°)(s;x,9) is periodic, with smallest period S (x,) > 0.

2. For any (v,7) € R3 x R® and ¢ > 0 such that

|7 <||8ze||L°° + ||V:BW;||L°°) < 1
wo wp 2
we have ol
|XE(s;2,0) — X(s;2,0)| = |X°(s;2,0) — x| < EM, seR
wo
2 2 2 2 2
T <5, 0) < T, e < S(,) = s <
|well oo wo [lwellzee |we ()] 0
- 5 4r|v
15%(2, ) — (2, )| < eVl
Wo
- - 0 o \V4 0o 2
|VE(s;2,0) — V(s;2,0)| < e|o]? (5” cellL +47TH J'MSHL ) , SE {0, W]
wo wo wo
and

45 (@,5)| < 4o <”‘%6Hm i vawcHLw>

wo w(Q]

al‘ o) rWe o) 2 1 82 o)
| A (2,0) — Ag(z,0)| < el !7 <H el + Iv w2||L ) + L10zellz= Ie!L ]
wo w; 2w

where

o Ae(x)

we(z)

v Ae(x)

we(T)

Ap(z,0) = =0, ( > [0— (0-e(x)) e(x)] — Oge A (DN e(x)).

In particular, when Vzw. = 0, we have S¢(z,0) = S(z,0) = 27 /|w,|.

3. For any continuous function u € C(R® x R3) we define the averages along the flows of
b- vw,@ y b® - v:c,ﬁ

() (z,7) = S(;@) /0 e wW(X(s; 2, 0), V(s;2,7)) ds, (z,5) € R3 x R3

(W)e (z,0) = Ss(l) /OSE(J»‘,@) w(XF(s;,0), Ve (s; 2,0)) ds, (z,0) € R® x R3.

T,V

8



For any R, Ry € Ry we have
| {w) HLOO(B(RI)xB(Ra)) < HUHLOO(B(RI)XB(R;,))

| (o oo (B(Ro)xB(Rs)) < Ul oo (B(R2)xB(Ry)), Rz = Ra +2eRs/wo
where B(R) stands for the closed ball of radius R in R3.

. u 18 mpscnite continuous, en Jjor an xT,v c X ana € > Suc a
4. If w is Lipschit ti th y (x,D R3 x R3 and 0 such that

eld] [0zellpo ||v$“"||L°° < 1 we have
wo 0 2

w)_(x,0) — (u) (x,v . v
| {w). ( )6 (u) (z,0)] < Lip(u )I gl 2+ 5|0, 6||Loo|v|+4ﬁ||vx%“m| |
4|v
+ sup |u(z, ?)|||Vewe|lpe —5 | ‘
o |=]9] wO

5. For any function u € CL(R3 x R3) we have the inequality
27
= (u) |2 rexra) < *Ilb Vas ull 2o xr3)-

6. For any function u € C1(R3 x R3?), we have (u) € C1(R3 x R?) and
<ci Vs u) = Vs (u), <divx71~,(uci)> =divy5((u)c’), 1<i<6

where '
Ve =05+ (0,e®e—e®0y,e)0- Vi, 1€{1,2,3}
Vs =[0—(0-€)e]- Vs & Vesg=e Vs & Vi =(0Ae)- Vs

The vector fields {¢' - V.5 ,i # 4} are divergence free, and divmyc4 =2.

Proof.
1. We use the notation X¢(s;z,0) = X=(s;2,0) + eV (s;2,0) A e(XE(s;2,0)) Jwe(XE (s 2, D).
It is easily seen that [V(s)| = | |, s € R and therefore we have

e| Ve (s; 2, )| <H8x€HLOO + vangLm> <1, seR

saying that Aigxs(s;x,ﬁ),vg(s; x,0)) is well defined for any s € R. By the definition of AZ
we know that X°(s) remains constant with respect to s € R

~ v A
Xe(s;x,0) = m+€v76(x), seR
we()
implying that the parallel velocity is left invariant
4 (WS) e(jCE(s))) =0, secR
ds

and that the orthogonal velocity rotates around e(Z)

V(s 2,0) = R (- /Oswc(xe(a; 2,)) do, e(:z)> 5, scR.



Here the notation R (6, e) stands for the rotation of angle 6 around the axis e
R(6,e)¢ = cosO(I3 —e®@e)é —sinf(ENe)+ (E-e)e, &R

As w, has constant sign, there is a unique S¢(z,?) > 0 such that
5 (2,0) 5% (x,0)
sgn wc/ we(X(o;2,0)) do = / |we(XE (052, 0))| do = 27
0 0

and therefore V¢(S¢(z,0); z, ) = 0. We claim that X¢(S%(x,?); z,0) = z. It is enough to use
the invariance of the Larmor center

sy SEINEEY _ onct
and to observe that
e
< Wl 5 e
<efilon (£)] _peecsmy sl

< efol (1l o IVl ) ey -,
0 0

Our conclusion follows by (17).
2. By the definition of the vector field A% (z,0) - V, we deduce
| A5 (, 0)]

o, <T)/\e> |5 9. (17/\6)
We L We oo

0] + [|Oze|| L €
o wo
0, oo V oo 9, >~ -
< 2’1~)|2 (H IGHL ” waHL ) —I—E”lN)‘ <H erL + || ;mWCHL ) |A;(IIZ,1~))|

A (2, 5)]| < \

2 2

0. o v o A (2,0
o (12l I¥eeln) | 1te )

implying that

wo wg

st < apf? (12l [Vatelle=)

Notice that

v A oA ~12
[13+eam (” e(‘”))] A (2,7) — Ag(z,0)| < 2|0, (” e(x)> Pl
we () we(x) ) || wo
~ 3 ~ ~
5 |0 _ | e(@) —e(x) v Ae(x)
+ EH&I@HLOOW—(Q) + |9 — - Ore(x) e
a{t oo xWe o] 8£E oo 8;3 2 oo
§6<3H elize | oIV w2||L ) [0z€llL |U|3+§H €2HL 73
wo wp wo 2 wp
and therefore
oA e(x)

|AS (2,0) — Az(x,0)| < '[Ig + €0, < (@) ﬂ AL (x,0) — Az(x,0)

+5‘1~)’ (HaerLoo + ”vch||L°°> ]Ai(x,f))]

2

0 \Y 2 go2
< 7€|1~]’3 <H iBeHLOO + H $WS‘L°°> + 5” xe!Loo |’L~)|3
wo wh 2wy

10



The invariances of Z and |v| yield
vAe(x) 6\75(3) A e(XE(s))
we() we(X=(s))

9205
SE—M, seR.
wo

X (s) — x| = |e

It is easily seen that 27/ ||we||fee < S¢(z,0) < 27/wp. Notice that we have
25\11]

2¢e|v .
o)) = ol 20 < e (@) < o))+ [ Vel

Integrating with respect to o € [0, S%(z,?)], we obtain

1 1 23|
2 - < ellpoe 21
m Se(z,v) S(x,v)‘ elVawelz w
and
_ N . . 1 1 4|v|
€ _ — Q¢ — < 0o ——%—.
|S¢(x,v) — S(z,0)| = S (x,0)S(z, D) S5 (2. ) S(:L‘,f})‘ || VawellL wg

It remains to compare the velocities \75(3; x,0), \~7(3; x,v). We will use the inequality

IR(0,¢) — RO, &) < 0 — 0| +5lc — |, 0,0/ €R, |e| = |¢/] = 1.
For any s € [0, 27 /wo] we write
(V= V) (s:, 8)] = ‘R( /ch(xs( )) da,e(gs)> F-R <— /OswC(DC(U)) da,e(a:)) 5
< | [ lenlo o) - el o 4 51e(@) - el I
< (E1vaselon Z2 4 sjoneloe 1)

0, o0 \Y o
_ <5|| sl 4 IVl )
wo wo

3. It is a direct consequence of the invariances X(s;z,?) =z, |V(s;x,0)| = |9]

(s 2B f?a(s;x,f)) A e(Xe(s;z,0)) . oNe(x) o s o ) = 15
x (87 ) )+E wc(xa(s; ﬂj7/l7)) +E wc(x) ’ ‘V ( ? ? )‘ ‘ "

4. Tt is a direct consequence of the previous statements. We have

S (z,0) 5 B
(). 8) = ) 0.0 < s [ (). P7(0) — (X(s) D)
P 0(s). D)) d 1 T s (s

L e, vetas s gl [ s, Vo) '

N
S¢(x,0)  S(z,0)

Our conclusion follows by noticing that
1 SS(.T,@) B B
] /0 |u(X(s), V" (s)) — u(X(s), V(s))| ds < Lip(u)

Se(x, D)
0< o o (19°(5) = X(s)| + [V*(s) = V(s)1)
5|]

b Vowe| oo
< ELip(u)wi0 [2 + 5||0pe]| oo | 8] + 4 ”wZHL
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and

1 1

Sé(x,0) S(z,0)

1
S(z, )

S€(z,0) B
/ u(X(s), D(s))] ds
S(z,0)

S¢(z,0) _
/0 [u(X(s),V(s))| ds +

\V4 0o
< 4el| sup |u(z, )|%.

|9'|=|2] “o

5. For any (z,7) € R? x R?

S(z,0) B
(u) (z,0) — u(x,0) = ! / [u(X(s;x,0),V(s;x,0)) — u(x,v)] ds

5(
S(z,0) / ”“’/ X(o;2,7),V(0o;2,9)) dods

S(x,0) 3 ]
- 5’(;3,1”))/0 /0 (b-Vu)(X(o;2,0),V(o;2,0)) dods

27 0 _ 5
-1 /l o (b-Vu)(X(o;z,0),V(o;x,0)) dodf
implying that
1 27 i—g _
[ 2,9) ~ (e, D) < o [ [ (b Va)(X(os,5), Viors 0, )] dods.
™ Jo 0

Taking into account that (z,0) — (X(G;x,ﬁ),?(d;w,ﬁ)) is measure preserving, it is easily
seen that

12 ora . o
I ) = ul| 2 < 27T/ / " 1(b- V) (X3, ), Do ) g2 dodd = 2Z|Jb - V| 2.
0 0 wo

6. For any (z,7) € R3 x R® we have

s
1 2

T or

27
() (2,5) = o- /0 ul, R(~0, e())5) 9
u(z,cos0(v — (v - e(x))e(x) +sinb(0 Ae(x)) + (0 - e(x))e(z)) db

and therefore (u) € C*(R® x R3), provided that e € C'(R3). By direct computations we
check that all the vector fields (c' - V.5 )1<i<¢ are in involution with respect to (7 A €) - V5.
Thanks to the commutation between the flows of ¢ - Ve and (0Ae)- Vi, we deduce easily
that the average operator along the flow of (o A e) - Vi commutes with the flow of ¢* - V. 5 ,
and thus with ¢ - Vi, for 1 <4 < 6. It remains to observe that the average along the flow
of (0 Ae)-Vy coincides with the average along the flow of w.(v A e) - V5. The divergences of
the vector fields (ci - Va5 )i<i<e are constant along the flow of b- V, 5 , implying that

dive 5((u) ) = ¢ - Vap (u) + (u) divg 5¢'
< vu>+<u lexvC>
<d1v c>,1§z§6.
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Remark 3.2
For further developments, notice that for any vector field £(x) - V,, the vector field

cll] Vas=£&() Ve + 0N (0ze€ Ne) Vi =E(x) Vo + (0§ @ e —e® 0,e£)0 - Vi
is in involution with respect to (0 Ae)- V.

Notice that the periods S, S¢ are left invariant along the flows of b-V, 5, b°-V, 5 respectively,
as well as the averages (u), (u).. If u is a C' function, we have

1 S (z,0) d B
(b-Vypuy(x,v)= S(l“af))/o £U(DC(S),V($)) ds =0, (z,0) € R®*xR?
and similarly (b°- Va5 u), = 0.

We introduce the application 7¢ : R? x R? — R3 x R3, given by

oA e(x)
we()
It is easily seen that for any application ¢(z,?) in the kernel of b- V5 ie., ¢(z,0) =

Y(z, |0 Ae(x)],v-e(x)), the composition ¢ o T¢ belongs to the kernel of b° - V5 . Indeed we
have

T°(z,0) = <£L’+€ ,17>, (z,7) € R? x R,

(o T%)(x,0) = (Z,0) = (&, [0 Ae(T)],0 - e(T))
saying that ¢ o T¢ is left invariant along the flow of b - V5 . Another useful formula is

- oA e(x)
—, T=x+¢€
we(Z) we(z)

Oy 5TV = Abo T, N(x,0) =

(18)

and can be obtained by direct computation. Notice that for any @ € R3, ¢ > 0 such that (17)
holds true, the application z — = + s%g)) is a C'! diffeomorphism of R3. Indeed, the above

application is injective on R3, because

v A A
T+ 87v e(xl) =9+ 67’0 6(.7}2)
we(z1) we(x2)

implies

wc(x2) Wc(wl 2

|1 — a2 =€

and therefore x1 = x9, thanks to (17). Observe that the Jacobian matrix I3 + €0, (iﬁff) is
oNe(z) - t
o.(x) is an open non empty
set in R3. It is easily seen that this image is also a closed set in R3. As R? is connected, we

deduce that {x + sz\j((;)), r € R?} =R3 and that 2 — 2 + Ei/)\ce(gf)) is a C! diffeomorphism of
R3.

We establish now the following relation between the averages along the flows of b - V3,
b*-Ves .

invertible, for any € R? and therefore the image of x — = + ¢

Proposition 3.2
Consider (z,7) € R3 x R3 and € > 0 satisfying (17).
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1. For any s € R we have
(X2, V) (532, 8)) = (X, V)(A% (s, 0); T, 0))

and 5 (a5) )
A (S (z,0);2,0) = /0 A (X5, V%) (o;2,0)) do = S(T°(x,0))

where the function A® is defined by

AS(s;2,0) = /0 M (X5, V%) (05 2, 0)) do.

2. Let u € C°(R® x R?) be a function such that supp u C {(x,9) : || < R} for some

R > 0. For any € > 0 satisfying eR (Haﬂ”f}!Lm + HVI‘:}Z”LOO) < 1 we have
0

(Nuo Ty, = (A\)_(u) o T%.

3. Assume that Viyw. = 0. Let u € C°(R3 x R3) be a function such that supp u C
{(z,0) : |o]| < R} for some R > 0. For any ¢ > 0 satisfying ER% < 1 we have
(uoT®), = (u)oT*.

Proof.

1. As A:(z,0) is well defined for any (z,7) € R? x R and e > 0 satisfying (17), and since

|VE(s;2,0)| = ||, we deduce that (X% (s;x, 0), VE(s;2,7)) exists for any s € R. Let us consider
R

A (s2,8) = [2 XX, VF) (0 2,0)) dos € R amd A7(si 2, 8) = T=(XE (552, 8), V(s 2, ).
Observe, thanks to (18), that

C}z: = 0T (X (s;x,0), \~75(s; x,0))b% (X (s; x,0), \~7€(5; x,0))
X (5.2, 8), V(5.2 8)D(TE (X (5.2, ), V¥ (5.2, )
= S (s, Db (552, 0)).

Notice also that

0 T) A (s, 0T, 1)) = (55, DB, VYA (552, 0 T (2, ).

Since v (s;2,7) and (X, V)(A%(s;z,9); T(z, 7)) coincide at s = 0
7 (052,9) = T%(2,7) = (X, V)(0; T°(x,9))
we deduce that
Te(X5(s;2,9), VE(s;2,0)) = 77 (852, 0) = (X, V)(A*(s;2,9); T°(2,9)), s€R.  (19)
Taking s = S¢(z, ) in (19) we obtain
T (x, ) = T°(X°(S%(,0); 2, 0), VE(S° (2, 0); 2, ) = (X, V)(A®(S(x,0); 2, 0); T (¢, D))
saying that A®(S¢(z,0);z,0) is a positive period of (X, V(- T (x, 0)) and therefore

AS(SE(z, B);2,7) > S(T=(s,7)). (20)
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As X > 7\\w:|)|opo’ we have A®(s;x,0) > 87||w:\1\0mo
+oo. Therefore s € Ry — A(s;x,0) € Ry is a strictly increasing bijection, and there is a
unique 5 > 0 such that A®(5;x,0) = S(T°(x,0)) > 0. Taking s =35 in (19) leads to

T (X5 (5; 2, 0), VE (352, 0)) = (X, V)(S(T%(2,0)); T¢(x,0)) = T¢(z, D).

,s € Ry, implying that lims_, o A%(s;2,0) =

As (x,7),¢ satisfy (17), we deduce that (X2, V4)(5;2,0) = (x, D), saying that 5 is a positive
period of (X%, V®)(-;z,0). Therefore we have 5§ > S¢(x, ), implying that

S(T¢(z,0)) = A°(5;2,0) > A°(S°(x,0); 2, 0). (21)
Combining (20), (21) we obtain
S¢(x,0) B
| e )i, ) do = A5(S (w0 1) = ST (2, )
0
2. Consider first (x,7) € R? x R3 such that |#| > R. Obviously we have |V(s; z, 0)| = 0| > R

and (u) (z,0) = S(; ) fos(m’ﬁ) w(X(s;2,0),V(s;x,)) ds = 0. Similarly we have |V*(s;z,7)| =
|o| > R and

Se(z,0) B B B
(NuoTe), = Se(iﬁ)/ A°((X5, V) (s;2,0))u(X(s; 2, 0), Vo (s;2,0)) ds = 0
) 0

where X¢ = X¢ + SVZA(GD(CZC;). Therefore our conclusion holds true in this case. Consider now
|o] < R. Thanks to the first statement, we can write

1 5@ ) ) )
Wuet (e = 5% (w, ) /o (X5, V) (832, 0) )u(X= (852, D), V(83 2, 0)) ds
5 (,7) )
B Se(if))/o %Aa(S;‘E’@)“((xav)(As(S;fv,f});Ts(m,ﬁ))) ds
1 ~

B S(T (2,3)) o DY (g T ) d

1 S€(z,0) c € \E D o lu (0. T
e [ R T ) do ) ()
x,0)

= (A () o T7) (a,

3. If [5] > R then as before we have (uoT*)_(,7)
A= 1,A%(s;2,0) = s, T((X5, V) (s52,0)) = (X,
(uoT®), (z,0) =

7) =0 = (u) (T%(x,9)). If 3| < R, then
V)(s; T (,0)), 5(2,0) = S(T*(x,7)) and
(u) (T%(z, v)). o

Remark 3.3
The conclusions of the second and third statement in Proposition 3.2 remain valid for |0| <

ReR (el o I¥allie ) <1 i € COR x R).
0

wo

When establishing the convergence toward the limit model, we need to introduce a corrector
term. More exactly, we need to invert the operator (0 A e(x)) - Vi on the set of zero average
functions. We will use the following result.

Proposition 3.3
Let z € C°(R3 x R3) be a continuous function, of zero average

1

21
_ 2W/ 2 (2, R(=0, e(2))5) I = 0, (2,) € R? x R,
0

(2) (2, 0)
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1. There is a unique continuous function u of zero average whose derivative along the flow
of (0 Ne(x)) Vi is z

(0 Ae(x)) - Vou = 2(x,0), (z,9) € R® x R3.
If z is bounded, so is u, and
ullcoB(ry)xB(Ry)) < TlI2llco(B(R)xB(RS))s for any R, R > 0.
If supp z C B(R,) x B(Ry), then supp u C B(R;) x B(Ry).
2. If z is of class C', then so is u and we have for any Ry, Ry > 0
IVasullcoB(ra)xB(Ra)) < TV3IVs2llcoB(R)x B(RS)

IVaullcoBir)xBR) < C (IVazllcoB(ra)xB(Rs)) + RillVazllcos(ra)xB(Rs)))

for some constant C' depending on ||0gzel| -

Proof.
1. It is easily seen that

21
w(z, 7) = 2‘;/0 (0 — 27)2(2, R(=0, e(2))5) 46, (x,7) € R® x R,

2. We appeal to the vector fields (¢’ - Va5 )i<i<e which are in involution with (0 A e) - Vg,
see the last statement in Proposition 3.1, Remark 3.2. We have

(0 Ae(x))-Vi(c - Vesu)=c - Ves 2z

<ci Vi z> =c. Vai (2) =0, <ci Vi u> =c. Ve (u) =0.

By the previous statement we deduce that
I’ - Vi ullcomsxrsy < 7lle’ - Vo 2llcomsxrsy, 1<i<6

and our conclusion follows immediately. ]

4 The limit model and convergence result

We concentrate now on the formal derivation of the limit model in (14), as € goes to 0. We
expect that the solution of (14) writes

fe=fooT  +eXfloTe +&2f20T" + ... (22)

where b -V, 3 fa =0, < f€1> = 0. The idea is to split the contributions at any order into

average and fluctuation. As fg € kerb- V5, we know that fg oT* € kerb® -V, 5 and thus
<f5 o T5> = f. o T=. By Proposition 3.2 we also have <)\€f1 o T€> (A%), <f51> oTc =0

and therefore
(F) = Lot + 0@, - (F) =exflor+0().

Accordingly, at the leading order, the particle density F has no fluctuation (provided that the
initial condition will be well prepared) and the averages at the orders 1,e combine together
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in fs oT*®. For any smooth compactly supported particle density f = f (z,v) we introduce
the notations, motivated by (15), (16)

alf)- Voo = (E[f] he _Am,@)) R (Em Ae> .

B B

. i z—a ; / /
" IreB [dIVx/R o ©I1@) do Ae@)} v,

sl —x

colf] Vas =((0-€)e-Vy+ %(E[f] ce)e-Vy—[0ANdze(vNe)]- Vi (23)

lf]- Vo = lim PTEW o T = M@ 0)(@lflo T%)

im ; Vs - (24)

The last notation is justified by the expansion
E[foT - Ves (foT%) = X(2,8)(colf] - Vai f) o T +e(cr[f] - Vasi f) 0 T° + O(%) (25)

for any smooth particle density f, which will be used in the sequel. The expression for the
vector field ¢1[f] - V, 3 follows by straightforward computations, see Proposition 5.6, using
the definition

E1f) Vs = (0 @) e(&) - Va+ L(BL] - e(a) el@) - Vo~ welwp 0 LD g,

Taking the average of (14) along the flow (X¢,V*) yields
o () + (O] Vau () +e(alFF W] Vo ) =0 (26)

3
Motivated by (22), we have

€

) <f> = (,f.) o T° + O(£?).
For the contribution of the term ea®[f] - V, 5 f* observe that
@[f] - Vai f* = alf] Voz [+ Oe) (27)
alfe 0 T%] - Vaz (f- 0 T%) + O(e)
)\E(a[fa] : vx,f) ]Ea) o TE + O(E)'

It remains to analyze the contribution of ¢*[f¢] -V, ; f°. Since <f81> = 0, we have p[f!] =
0, E[f}] = 0, B[\ f} o T¢] = O(¢) and therefore
) Vool = Elfe o T2+ eX [ o T7] - Vi (fe o T+ X f2 0 T%) + O(?) (28)
= E[fe 0T Vi (e o T%) +ec[fe 0 T7] - Vg (A fL 0 T7) + O(e?)
= N (colfe] - Vi fo) o T+ eX*(ea[fe] - Vo fo) o T°
+eX(colfe] - Vas f1) o T + O(E?).

Thanks to the second statement in Proposition 3.2, we have

e <a€[ - Vs f> —¢ <)\5(a[ Fl Vs o) o T + 0(52)>5 (29)

=& (\). (alfi] - Vs J.) o T° + O(e)
e (alfe)- Vg fo) o T° + O(?)
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and
(C1FT- Vo ) = (N(eolfe)- Vi )0 T7) +e(N(erlf] - Vao ) o T%)  (30)
e (N (lft] - Vas 1) o T%) +0()
= (), (ol fe) - Vg o) o T° 2 (0, (lfi] - Vi fo) o T°
e (). (ol - Voo 2 o T°
= (colfe] - Vas Jo)o T e {1lfd] - Vg o) o T°
+e{colfe] - Vs 1) 0 T2+ O(e?)

where in the last equality we have used the relation (A\°)_ = 1+ O(e?). By combining (26),
(29), (30) and keeping all the terms up to the second order, we find the following model for
the particle density f:

atfa + <CO[]EE] : vx,f} fa> +e€ <(a[fa] +c [fa]) : Vx,f; fa> +e <CO[]EE] : va:,f) ];51> =0, b'vfa =0.
3 (31)
We need another equation for the fluctuation f!. Replacing in (14) the expressions in (27),
(28) yields
Orfe 0 T° + X (0 fl o T°) + X (colfe] - Vs f2) o T + eX((alfe] + 1l fe)) - Vo fo) o T°
FeX(alf]- Vas 0T + Vs (foo T 4 X Lo 4 220T%) = O(E),
(32)

Taking the difference between (32) and (31) (after composition with 7°¢) leads to
X (OufE 0 T%) + N (] Voo ) o T° = (ol ] - Vi fo ) o T°
+ X (alfe] + 1l ) - Voo ) o TF — e ((alfe] + erlfe]) - Vg o) 0 T°
X (ol fe] Vi 1) o T° = & (colfe] - Vs J1) o TF
F 6 Vs (N[ oT +ef20T°) = O(?)
because f. o T¢ € ker bF - Ve . As X* =1+ O(e), the previous equation also writes

O ft o T+ X (colfi] - Vi Jo = (ol ] Vs fo)) 0 75+ (0 = 1) (@l ] Vs fo) o T°
+ (@) +alfe) Voo £ = (@l +alfe)) - Vou f2)) o T° (33)

+ = (colfe) - Voo 2 = (eol o) Voo f2) ) 0 17
v A 6(;7?) - Vawe(7)

we(T)

+0°- Vs [faloTa—s f;oTa—l—sfgoTﬂ = O(£?).

Notice that by (18) we have

b Vs (fLoT) = b 10T (Vyp f2) 0T = N(b- Vo f2) o T°

18



and
T
v [( P0l) Vo) ]

v Ne(x

e e e |

The equality (33) suggests that the fluctuation fal satisfies the problem

eb® - Vg <f3 0T —

olfe) - Vs fo = (eol o] Vs fo) +b- Vg fL =0, (1) =0. (34)

Moreover, considering the contributions of order £ in (33) leads to the definition of the
corrector f2

vAe(x) Vywe(z)

O o) Nl Ve o)+ @l alf) Vas o (39)
= ((alf] + erlf]) - Vs Jo )+ colf] - Vo 2 = (ol ]+ Vs 1)
o (2 oA e(x) _ Vawe(T) _
o (B0 S R) o

We have obtained the limit model (31), (34), to be supplemented by an initial condition.
The well posedness of this model will be established in Section 6. We will discuss the ex-
istence/uniqueness of smooth solutions on any time interval [0,77], if € is small enough cf.
Theorem 1.1. Notice that (31), (34) is a regular reformulation of the Vlasov-Poisson system
with strong external magnetic field. Indeed, replacing ¢ by 0 in (31) leads to the zero order
model

O fo + <(’5 ce) e Vafo+ %(E[fo] ce)e-Vifo— [0 (Oee(dne)]- Vafo> =0, b-Vfo=0.
We are ready now to establish rigorously the second order approximation ff=fooT" +
eNfloTe + O(e?).

Proof. (of Theorem 1.2)
Clearly we have

Sup {{lp19elllz @) + llplgelllzoe sy} < +o0.
3

By Proposition 3.3 we obtain supp () C {(#,7) € R® x R : || < Rz, |9] < Rs} and it is
easily seen that

Flg:]||poe RS
supp f(0) C {(az,v) €ER3xR?: |v| < RS :=R; +6‘[g§wL, |z| < R, := R; +5w”} .
0 0

Therefore the particle densities (f°(0))o<e<1 are uniformly compactly supported and sup || f*(0)| 2 (s xrs) <
e>0

+o00. Notice that ir;fOT(fE(O)) > 0, see Theorem 2.1, and thus we can pick a time 0 < T <
&€

infOT (f¢(0)). By Theorem 2.1 we know that (f¢). are uniformly compactly supported in

e>

[0, 7] x R? x R3 and

sup  [I1f°()llcsrexre) + 10655 () lc2maxray + | ELfE(8)]losws)] < +oc.
>0,t€[0,T)
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We deduce that (f¢). are uniformly compactly supported in [0,7] x R? x R3 and

sup | F5(0)llcomsxws) + 10 Dl oaqosis) | < +oo.
e>0,t€[0,7T

Similarly, the particle densities ({(g.)). are uniformly compactly supported in R3 xR3, su% [ {9e) [lc3msxr3) <

e>
+o00, and therefore we know by Theorem 1.1 that the particle densities (f:). are uniformly
compactly supported in [0,7] x R? x R? and

sup [er(t)Hc3(R3xR3) + Hatfs(t)HC2(R3xR3) + HE[Jza(t”HC?’(R?’)} < +o0.
e>0,t€[0,T)

Clearly we have co[fg] - Vai e, <co[f€] Vi fe> € C%(R3 x R?) and by Proposition 3.3

applied to
CO[fa] . ij f; B <CO[f5] . Vx,@ f6> + (ﬁ/\e) . vﬁfl =0 <f:1> =0

We We

we deduce that f1(t) € C2(R? x R3?). We also have 8;(co[f:] - Vs f2), O <co FARZ2Y f€> €
CH(R3 x R3) and by appealing one more time to Proposition 3.3 (noticing that <0t f€1> =
Oy <f€1> = 0), we obtain 8 f(t) € C}(R? x R?) and
sup (|2 O)llo e + 102 (O)llcr@owpsy | < +oo.
e>0,t€[0,T

Finally we define the corrector ff by solving (35). More exactly we define fg = Tce(%) .

V”“’c f1 + ue, where (u.) =0 and

ouft = o) T () Vg £+ (el + alfD) - o

- <(a[fa] + Cl[fa]) : vx,f) f£> + cO[fa] : vocﬁ} ]Egl - <CO fs v:cv f5> +b- voc,f) ue = 0.

Thanks to Proposition 3.3, see also the expression of the field ¢;] fs] Vs cf. Proposition
5.6, it is easily seen that

sup [[|ue(t) o1 3 xre) + 10¢ue(t) || coraxrs)] < +00
e>0,t€[0,7T]

which implies

sup  [I1F2(t)llor o xms) + 196F2 (8) oo xrs)] < oo, (36)
€>0,t€[0,T]

Multiplying (34) by A%, one gets after composition with 7
)‘E(CO[JZE] Vi fe) 0T =X <60[f6] Vi f€> oT" + b Vap (fal oT*)=0. (37)
Similarly, multiplying (35) by £A® yields, after composition with 7

oA e(Z) ) Viwe(7) < [fs] Vs f€> oT¢ (38)

we(T) we(T)

+eX ((alfe] +alf)) Voo ) o T = eX* ((alf] + alfl]) - Vag fo) o T°
X (colfe] - Vo f1) 0 T2 = X (colfe] - Vi J2) o T°
—|—€b€ . vm,{; (f52 oTs) — bt - V:p,f; |:<?~}/\€( ) VmWC( )f5> :| —0.

D(eXfloTe) —eXe

we() we(z)

20



A straightforward computation shows that the functions

0. = b -V [(A C14 20E) Vol )> (f! ng)}

we(T) we(T)
+ <)\5 EPESTULTICHN VM(”T)) <00[fa] Vi f}> oT*
we(T) (@)
satisfy
0 (t
2
e>0,t€[0,T] €

Combining (37), (38) we obtain

OUNTL o T+ &2 0 T%) + X (@olfe] - Vg o) o T° = (ol /i) - Vg Jo) 0 T° (40)
(@l + eall) - Vas o) o 7% —e ((alf + el]) - Vas Jo) o T°
+e(eolfe) - Vg ) o T = (alfel - Vus f2) o T°

£

+ % Voo (XfloTe+ 2 f20T7)
=20, f2 0 T° + 0. + 6.
where
b 1= e(1= ) [((@lfe] + erlfe]) - Vo fo) o T° = {(alfe] + 1l ) Vo fo) o T°]
(1= A) [(eolfe] - Vs 2 0 T° = {eolfi] - Vi J2) 0 T
Clearly, the functions (0. ). satisfy

o-(t
- 10 ( )IIc;(RSxRS) < 400, (41)
e>0,t€[0,T1] €

Adding to (40) the equation (31) satisfied by f- (after composition with 7¢), together with
the constraint & -V, 5 (fo 0 T¢) = 0, we deduce

h(f.oT* + sx‘f; o T +£2f2 0 T%) + Xo(colfl] - Vs o) 0 T + (1] - Vi J2) o TF
+e(colfe] - Vg f2) o T° +elalfe] Vo fo) o T°

+b—£ Vas (fgoT€+5)\5f51 oT€+e2fgoT€)

= 528,5]“5 oT% + 6. +96.. (42)

We compare (42) to the model of the particle density f.
£

Ouf + &) Vi f*+ea®[[] Vs [*+ b; Vi [ =0, (43)

We are looking for an estimate of the L? norm of

= [ = feoT* —eXfloT® —f20T".
Taking the difference between (43) and (42) yields

be
9

atrs+< 1] + a7 + )'Vm T T = 2O [P oT -5~ (44)
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where the transport terms 77,7, write
T (t,2,0) = E[fO)] - Vai (fe o T+ X f2 o T° + 2 f2 0 T%) = X (colfe(t)] - Vs fo) 0 T
— e (e1lfl] Voo fo + olf] - Vs f1) 0 T2

T, (t.2,0) = a*[f*(1)] - Voo (fo o T° + X fl o T° + 220 T°) — (alfe] - Vi fo) o T°.

By Remark 3.1 we know that the vector field (CE [fe] 4 eat[f¢] + %) Vg5 is divergence free
and therefore, multiplying (44) by r¢ and integrating by parts yield

/ / 2 dodz +/ TE(t x,0)rf(t,x,v) dodz + 6/ T (t,x,0)rc(t, z,0) dodz
2dt R3JR3 R3JR R3JR3
(45)
- —/ / (52@1? 0T + 5. + 55) ré(t, z,7) dida.
R3JR3

We denote by C any constant depending on m, €q, ¢, T, w¢, € and the uniform bounds satisfied
by the initial particle densities (§z)s, but not on €. The bounds (36), (39), (41) and the
uniform compactness of the supports of f-, fa , fe imply immediately that

/ / (52@]?52 oT* + 6. + &) re(t) dodx
R3JR3

< CaZHra(t)HLz(Rsst), te€[0,7], 0 <e <er.

(46)
We claim that the following inequalities hold true
175 ()] L2 (r3 xR3y < C(e® + 7 ()l L23xrs)); t€[0,T], 0<e<er (47)
and
175 (Ol L2®sxrsy < Cle + 1r°(D) || L2rsxrs)), ¢ €[0,T], 0 <e <er. (48)

Let us analyze first (48). By Proposition 3.1, we know that |AS(z,7) — Ag(x,9)| < Ce|v)?,
and thanks to the uniform bounds of (fs)a, (f)es (fH)e, (F2)e (together with the uniform
compactness of their supports), we deduce that

la®[F]- V(fe o T° + X fl o T° + 2 f2 0 T%) — (alfe] - V f2) o T%| 1
< Ce+ |lalfe] - V(fe o T%) = (alfe] - Vo) o T°| 2
< Ce + [|(9Ta[f] — alf] o T%) - (Vf2) 0 T%| 2
< Ce+ ||(alf] — alfz 0 T7)) - (V f2) o T%| 2.
By elliptic regularity results, the quantity

I(alfe] = alfe o T9)) - (V fo) 0 T% 12

is bounded by the L? norms of charge and current densities

pL7°] = plfe o TN 2 + N5 (F7] = 5[fe o Tl 12

and thus by the L? norms of the particle densities ||f¢ — f. 0 T¢|| 2 < ||7¢|| 2 + Ce, saying
that (48) holds true. We concentrate now on (47). It is easily seen that

I(ELf] = [ feo T+ eXfloTe]) - V(feo T + e floT +2f20T%)| 2 (49)
<OIff = feoT® —eXfloT?|
< C(||r°|l gz + €%).
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As the particle density fel has zero average, we deduce that p[ fal] = 0 and therefore
1B 2 o T¥|| 2 = e BN 2 o T° = fll|2 < Cel| XL o T° = |2 < CE>.
The above estimate allows us to write
(e 0T+ e floT ] = [fo o T7)) - V(fe o T + X[l o T° + 2 f2 0 T7)|| 12 < C%.
(50)
We are done if we establish the estimate
IE[fe 0 T V(fe 0 T + X1 0 T%) = X(eol fe] - Vo) o T° (51)
—e(alf] Vet elf] V) o T2 < O
since, in that case (47) will be a consequence of (49), (50), (51). It is easily seen that
e [fe 0 T%) - V(X f2 0 T%) —e(eolfe] - VJ2) 0 T¥|| 2 < Ce.
It remains to prove that
I [fe 0 T9) - V(fe 0 T%) = M(eolfe] - Vo) o T° —e(ea[fe] - Vo) o T¥| 12 < CE% (52)

This comes by the definition of the vector fields co, 1, ¢ and the regularity of the particle
densities (f:)e, see (23), (24), (16), (25). Indeed, for any smooth, compactly supported
particle density f we have
Ef T V(foT?) = M(eolf]- V) o T° —e(er[f] - V) o T*
. (Ff(s, x,0) — F(0, ,0)
€

- aeFf(O,xﬁ)) (Vf)oT*
te(elf] —alfloT?) - (Vf)oT*

where Fj(e,z,0) = AT ([f o T%] — Ne(x,0)co[f] o T¢. Clearly, when f € C2(R? x R3), the
function F 7 is twice differentiable with respect to e. Moreover, as

sup Hfs(t)HCQ(R3><R3) < 400
t€[0,T1],0<e<er

and {f.(t) : t € [0,T],0 < e < e} are uniformly compactly supported, we have
I [fz 0 T%) - V(fe 0 T%) = M (colfe] - Vo) 0 T° = e(er[fe] - V f2) o T .2
F; —Fz (0 -
( 7.(e) — Fr(0) —35Ff6(0)) (V) ot

<e¢

3

L2
t|@lfl - alflor) - (vR)o |

< Ce e (@lfd - alfd o T) - (Vo) o T°

L2

By the expression of ¢;[ fa], see Proposition 5.6, it will be clear that

H(Cl[fs] —c1[fe] oT%) - (Vf.) o T?

<Ce
L2
and (52) follows. Coming back to (45), we obtain thanks to (46), (47), (48)

1= @)z < [Ir(0)]]12 + Cte2exp(Ct), 0<t<T, 0<e<er.
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The well preparation of the initial particle densities (f¢(0)). guarantees that sup % <

e>0
+o00. Indeed, for justifying this, it is enough to check

s%wmm—ﬁ@oz—wymﬂwH<+m. (53)
e>

As the family of electric fields (E[g])e is bounded in L*°([0,T] x R3), we have

up 1O = ol + ol O)] = pladllie _

e>0 e

implying that
E[f5(0)] — E|ge]|| e
oy IO = gl _
e>0 €

By direct estimates we obtain

~50 . oTf —egloTe
p OG0T il o -
e>0

By the fifth statement in Proposition 3.1 we have

.o T — f. 0)oT*® Ge — (q vAe) Vig
o VT = RO 0 Tl _ (= @ iy G0 0) - Siihss
e>0 £ e>0 € e>0 €
(55)
and
~1 T5_~10 T= ~1_~10
Sup ||ga o fa( )O ”L2 < Csup ||ga fa( )HL2 (56)
e>0 3 e>0 £
< @Csup llcolge] - Ve — col(ge)] - V (Ge) 22
wo >0 €
4 AR G- — (g
_ —WCsup llcolge] - V(ge — (Ge)ll L2 < +00
wWo >0 IS

Notice that in the last equality we have used p[g:] = p[(ge)], implying that E[g.] = E[(g:)]
and therefore co[ge] = co[(ge)]. Combining (54), (55), (56) yields (53) and therefore

€
t
wp Il

5 < Ho00.
t€[0,T],0<e<er €

We deduce that

Fe(t) — fo(t)o T —efi(t)oT*
ap WO F@oT —cRO T
t€[0,T],0<e<er €

and in particular R B
E[f¢(t)] — E[f-(t
wp  LELFOL- B
t€[0,T],0<e<er €
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Finally one gets for any t € [0,7],0 < & < ep

~ 2
ctmer (Frein [oas 2@ BRG]
Ag@g[f(t,x,v> (ot fa)(t, et e )]dd

()
—{ [ [ [F e - et

~ ~ ~ 2
(t,x+€ (17+5E[f(t)])/\e> neyi+ el “”‘E[ff(t”“‘fﬂ didz

We

1/2

< [1F5(8) = (Fo(t) + eF2(1)) 0 T e rs) + { /R /RS[@ +efe) (t"’” * 3(:?)

~ 2 re fe _ 2 2
‘{ﬁ+€ﬁ)<ux+£iie+ZJEUFggyﬂAa6+eEU£%£MMj] didz
< Ce® + Ce|| B[f*(t)] = BLf-()]]l 2es) < C€®
]

5 Equivalent formulation of the limit model

In the previous section we proved a second order error estimate for the solution of the Vlasov-
Poisson system with strong external magnetic fields (corresponding to smooth, well prepared
initial conditions), with respect to the solution of

Oufe+ (colfe) - Vo fo) +2 ((alfd + alfd) - Vas fo) +2 (ol o] - Vo f1) =0, b- V=0
(57)

colfe] - Vs fo = (olfdl - Ve fo) +b- Vas fL =0, (f1) =0, (58)

In order to establish the existence/uniqueness of smooth solution for the above system, we
are looking for an equivalent formulation. More exactly, we will compute the averages of the
vector fields a[f:] - Vas ,colfe] - Vs » e1lfe] - Vi cf. [7]. Let us consider the vector field
b(z,?) - Va5 = (0 Ae(z)) - Vi. By Proposition 3.1 (see proof of statement 6), Remark 3.2,
we know that the vector fields (¢ - V.5 )1<i<e are in involution with respect to b- V.5 and
that the average operators along the characteristic flows of b -V, 5 b Ve coincide. We
introduce also the vector field

(v-e) vAe

- Bue(5 N e) - Vo + 1 Vs 3¢l >0
e ze@Ne)- Vet ooy - Vo, [0l

v(x,0) - Vpp =

which will be used, together with the invariants of b- V, 5, for computing the average vector
fields. A straightforward computation leads to the following result.

Lemma 5.1 R
Assume that e € C?(R3). Let us denote by Y = (X,V) the characteristic flow of the vector
fieldb- V5 = (0 ANe(zx)) -V

Y(0;y) = (x,R(—6,e(x))0) = (x,co80(0 — (0 - e)e) +sinh(v ANe)+ (0-e)e)
for any 0 € R,y = (x,7) € R3 x R3. The vector field v(x,?) - V.5 verifies
Y (0;y)v(Y (6;y) = v(y), 0€R, y=(2,0), [5Ae(x)]>0.
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The average of a vector field is defined as follows.

Proposition 5.1
Assume that e € C1(R3). Let x - Vi3 be a continuous vector field on R3 x R3. There is a
continuous vector field in involution with respect to b- Vg5 , denoted (X) - Vas (the average
of x - Vi with respect to b- V5 ), such that

<X : vx,ff) u> = <X> : Vﬂc,ﬁ u

for any function u € CL(R? x R3) Nker(b- Va5 ) = CHR3 x R®) Nker(b- V5 ) and

x-v) =) v
Proof.
Let us introduce the group (¢(0))ger cf. [7]
P(0)x = Y (=0; Y (0;-))x(Y(0;-)), 0 €R

and consider the vector field )
1 T
= — 0)x dé.
W =5 [ el

It is easily seen that if x is continuous, so is (x), and that (x) is left invariant by the
group (¢(0))ser, saying that (x) is in involution with respect to b- V5 . For any function
u€ CHR3 x R3) Nker(b- V.5 ) we have uo Y (0;-) = u and thus

p(0)x - Vu = 0Y (=0; Y (0;)x(Y(0;-)) - "0V (0;-)(Vu)(Y (6;-)) = (x - Vu)(Y (6;-)).

We deduce that

1 2

1 2w
() - Vu PO Vuds = o [ (0 Tu)(¥(6::)) 4 = (x- V).
T Jo

Similarly, thanks to Lemma 5.1, we have for any (z,?) such that [0 A e(x)] > 0
p(0)x v =0Y(=0;Y(6;)x(Y (6;-)) - Y (0;-)v(Y (6;-)) = (x - v)(Y(6;-))

implying that
1 2w

1 27
W=y [ @(9)X~Vd9=27r/0 (e V)Y (85)) 46 = (x ), |5 A ela)] > 0,

Remark 5.1
Recall that the vector fields

¢ Vs =0 + (One®@e—e®0,e)0-Vs, ic€{1,2,3}

C4'Vx’f) = (f}—(f}-e) €)-Vf,, 05-vz7{, =e-Vy, CG'Vm’f; :5-Vm~, = (’[)A@)'V{,
are in involution with respect to b- V5 . For any continuous vector field x(z,0) - Vi3 we
have

6

x(z,0) = Zai(m,ﬁ)ci(x,ﬁ), (z,0) € (]R?’ X R?’) \&, €={(x,0) : b(z,0) =0}
i=1
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where 5 5 ~
X — (Ozexz ®e—e® xexx)v'(@_@'e) )

|0 A el?
Xo — (Orexs ® € — e @ Dyexy)D
|0 A el?

(041,@2,043) = Xz, 04 =

(0 Ne).

as = [xo — (OzeXa @ € — e ® Opexa)?] - e, ap =
It is easily seen that for any vector field d-V .5 in involution with respect to b-V, 5 and any

function a, we have p(0)(ad) = a(Y(0;-))p(0)d = a(Y (0;-))d, implying that (ad) = (a)d
and thus for any (x,7) € (R® x R3) \ € (see Remark 3.2 for the definition of c[(xz)]* Vas )

6
(X) (2,0) - Vaos = Z () (z,9)c(2,0) - Vi

=
— )] Vs + (00— (- o) (3 - (5 ) v
(- €) + Qe D) - Vi + (0 = (0 e)ohers) - (0 A0) - Vs
= ] Vg +0s: (0= (0-0) ) x) T
- (5 (506) ) g Vot ) Vs
+((xs — (0 €)0exa) - (2 A ) MA‘ V.
In particular for any (x,7) € (R3 x R3) \ & we have
(060} Vo =l Vg + s (0= (0-6) ) (= (-0 ) v
- @exa (510 (1) s
= () Va5 @ (A ) T+ O (0= (0-0) ) T 9y

~(Oexs (520D (5 ne) v

|0 A ef?
and
(0.0) T = (s (0= (0-0) ) 0 Vit e 9
+ (- (9 10)) - Vs

The notation ((Xz,0))- Vg5 stands for the average of the vector field x5 -V and the notation
<X$> : vﬂ? stands fOT’ <Xﬂ€1> 81‘1 + <X$2> am2 + <X$3> 81‘3-

We need to eliminate f! in (57), by solving (58). We will use the following result.

Proposition 5.2

Assume that e € C*(R3®). Let x - Vigs be a C! vector field on R? x R3. There is a
continuous vector field & - V5 in involution with respect to b - Vs such that for any
function u € C%(R® x R3) Nker(b- V5 )

<X . Vm; 'LL1> = 5 . va:,f) (%
where x - Vg u—(x-Vasu) +b-Vyzu' =0, <u1> =0.
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Proof.
We introduce the C! vector field

1
o

2
¢ / (6 — 2m)p(6) (x — (X)) A6,
0

Notice that for any § € R we have Vu = V(u(Y (0;-))) = 'Y (0;-)(Vu)(Y (6;-)), implying
that

e(0)(x — (X)) - Vu =Y (=0; Y (6; ) (x — () (Y (6;-) - "0Y (0;-)(Vu) (Y (6;-))
=((x = () - Vu)oY(6;)
=~ Vau')oY(0;).

Therefore one gets

1 [ d
C-Vu:—%/o (0~ 27) (' o ¥(0, )} 0

1 2w

=~ L0 —2mpul o V(B ) + —

1 1
. — b
5 o ), u oY (6;-)do U

As the vector field (x) -V, is in involution with respect to b- Vs and u! has zero average,
we have

({x)- V') = (x) - V{u) =0
implying that

(x-Vu') =((x = () - Vul) = = {(x = (X)) - V(¢ V). (59)
A straightforward computation shows that %@(9){ = ¢(0)(x — (x)) and as before we have
(0= () - V') (Y (6;) = (0) (x — () - V(u! oY (8;)) = %@(9)4 V(u' oY (6;1)).

After integration by parts one gets

2
(e Tul) = (= () vty = - [ o0Vl ooy a0 (60)
27
=5 [ e VI Vat) 0¥ (6:-)) do
1 27

=5 ) (0)C - V{[(x —(x)) - Vu] o Y(6;-)} db
=(C-V((x = () - Vu)).

Combining (59), (60) yields

([¢:x = () - Vu

N

(- Vut) = 2 {I6x — ()] - V) =

and our conclusion follows by taking £ = % ([¢,x — OOD- O

We indicate now some formulae which will be used in the sequel (see Appendix B for the
computation details). For any & € R3, the notation M [¢] stands for the matrix of the linear
application v € R? — £ Av € R3.
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Proposition 5.3
We have the equalities

1.

10.

11.

12.

~/\ 2
= ’U 26 (Ig—€®€).
oA el? 0 A el?
5® G Ae)) =2 26’ Mlel, (5 Ope(i Ae)) = 2 26‘ rotge -

(Az)

B |7 A el? (rotxe-ee wac/\e)

2

We w?

_|onel? Vawene

2

2
We

(0—(v-e)e)a(0—(D-e)e)@(D—(0-e)e))=0

(0geAy, - (00— (V-€)e)) =

(0zeAy - (DNe)) =

<ax€ 0y <f} . e($)) e (0—(v-e) 6)> I e|2(rotxe - e)vch €

we(z)

(0N Oze(D Ne))

(T-e)|v Ael?
2w,

(T-e)|o Ael?

2w,

| A el?

divge (rotze - e)

OzeMe]0ze : Me]

2
We

2

divge e

trace(0yeM|e]Oze) = —(rotgze - e)divze

trace(M[e]OzeM[e]0zeM[e]) = (rotze - e)divge.

We compute now the average of the vector fields a[f] - Vs , co[f] - Vs s c1[f] - Ve -
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Proposition 5.4 }
For any particle density f € CL(R3 x R3), the average of the vector field

a[f] ‘vxv - (U/\D[f] Ax)vx_aw({)/\D[f])rDvﬁ
b [divx / Lﬂjp ® j[f](z') da’ /\e(:p)] Vs

dreoB P
writes
(alf1) - Vai = clonplf] + 6] - Ve = (- €) [0:Gr0lf) e €] e Vs
[0l s (s —ew )] T 4 o aplf) : lel] T2
(2%) dive (rotee - €) (5 A (€ A §)) - Vg + (6250)2 [0peMle] : Mle] '0,e] (3 Ae) - Vs
where i
inolfl = AN e, —'526’2%‘:%“

and the notation c[{] - V5 stands for the vector field

cl€] Vs =& Vot (0:6£ ® e —e® 0pel)v - V.

Remark 5.2
We recognize here the electric cross field drift
e ElflAe _ E[jABE
vaplfl =cevnp[fl =€ B = |Be|2
and the magnetic gradient drift
S b = |v/\e| wac/\ei_m\ﬁ/\ePVng/\Bei_ . VyB* AB®
GD = &VGD — 2 w2 - 2¢B¢ (Be)Q =K q(Ba)Q

where pf = m|v A e|?/(2B%) is the magnetic moment. We recall also the expression of the
magnetic curvature drift
&L 0)2 = 0)2 0..¢B¢ A B
(0-e) Doce ne = _m(V-e)” Oze
We qu-: (Bs)Q

6%1) = E@CD = —¢

Proof. (of Proposition 5.4)
We compute all the averages on (R3 x R3)\ £ and extend them by continuity on R3 x R3.
By Remark 5.1 we have

(alf)) Ve =c[{al1)] - Va

+ <(a1~,[f] — (V- e)0pe ag[f]) - (0 — (0 -€) e)> % Vs

+ <a1~,[ﬂ ce+ Oge ag[f] - 17> e- Vs

+{(@lf) = - owe aclf) - (510)) 25
By the sixth statement in Proposition 5.3 we obtain

(a:1f1) = 5nplf] = (Az) = Brnlf] + TG
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We write as[f] = al[f] + al![f], where

LIfl = =0.(oap[f])0, all[f] = ! iv 795—:)3’ ifl(«) da’ e(x
al[f] = —0u(onnlf)5, all[f] a (/R @il d )A (a).

 4megB sl —

It is easily seen that the second part aél [ f] gives no contribution
(aB171- 0= @3- e) e)) = (al[f] - €) = (al'[f]- (3 A €) ) =0,
For al[f] we obtain cf. Proposition 5.3

(alf)- (5= (- €)€)) = =0u(Tnnlf)) : (5= (3-€) €) )

A el? >
= e ) (1 - e o)

(atlf] ) = ~(@ - )ou(onpli]) e @ e
and

x x Jonel?

(allf)- @A e)) = ~0u@nnlf)) : (T Ae) @)

0:(0nnlf]) : Mle].

It remains to compute the contributions of a,[f]. Thanks to Proposition 5.3 statement 8, we
obtain

- <(@ &) Ope aglf] - (7 — (3 -e) e)> = (5-¢) (Ope Ay - (T — (- ¢€) ¢))

~ 2 |5 2
. A
_ Wdivxe (rotye - ¢)
C

(Ore arlf) - 5) = (Oue aalf] - (5 (B ¢) ) = -

(T-e)|v Ael?

20, divze (rotze - e)

and

—(5-e) <a$e aslf] - (5 A e)> = (7€) (Dpe Ay - (0 A€))

= (@-e)onel oA 6|28ﬂ;e]\4[e] : Mle] "Oze.

2w,

s3]

Combining the previous results, we deduce

(alf1) Voo = clonnlf) +T6p] - Voo = (- €) [0a(nnlf) e @e] e Vs

—[0urplfl) : (I — e e) “_(;e)e

o)

vAe
2

Vi + [02(0nnlF]) : Me]]
(5-€)?

2w,

Vs

divze (rotze-e) (DA (eND)) Vs +

2w, [OzeM(e] : Me] *0,e] (¥ Ae) - V.
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Proposition 5.5 3
For any particle density f € CL(R3 x R3), the average of the vector field

colf] Ves = (0-e(x)) e(z) -V, + %(E[f] ce(z)) e(z) - Vi — [0 A Ope(t A e(x))] - Vi
writes
(colf1) + Vs =cl(5-€) €] - Vo + L (EIf] - e(@)) ela) - Vs

(rot,;e -e) (G Ae)- Vs

di;xe[@ AeAD)] - Va+ (3 -e)

where c[¢] - Va5 =& -Vy+ (06l ®@e—e® 0ze )0 V.

Proof.
Thanks to Remark 5.1 we have

(0-€e)e-Vy)=(0-e)cle] - Vgs =c[(D-€)e]-Vas.
As the field %(E[f] -e(r)) e(r) - Vj is in involution with respect to b -V, ; , we obtain

(LB e(@)) e@) - Vo) = L(BL] - e(a)) e(a) - V.

For the last contribution in cy[f] - V45 one gets

v—(v-e)e
|0 A el?
vAe

[oAe]?

([6 A Be (5A€)] - Vs) =[5 Adge (GAE)]- (7 — (- ¢) e))

T Vo

+{([oNOze (DAE€)]-€) e-Vi+ {([0ADze (DAE)]-(DAE))

Thanks to the seventh and second statements in Proposition 5.3 we have
([oNOze(DNE)]-(0—(V-€)e))=(V-e){[eNdze (DNE)]-(D—(D-¢€)e))
=(0-e){[e\Dye (VNe)]-D)
= —(0-e)M|e]0eMle] : (0 ® D)

v-e)|vAel?
— _%trace(M[e]axeM[e])

2

~ 2

=(0-e) [0/ el trace((I3 — e ® €)0ze)

~ . ~ 2

_Beelinel e

2
Similarly one gets
~ 2
(5 A e (T e)]- ) = ([e A dye (e A D) - T) = MleloweMle] : (50 5) = — 0 gy e

and
([oAOze (DNE)-(DNe))=(D-e)(leNDze (DAE)]-(DAE))
= (0-e)Mle]oge: (0 Ne)® (D Ae))
(T-e)|o Ael?

= —f(rotme -e)

implying that
(colf1) - Vo =cl(5-€) €] - Vag + = (E[f] - e(a)) e(x) - Vs

divge .

5 [v/\(e/\f))].V@—F(ﬂ.e)(mtxe.e)

2

(17/\6) - V.
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The computation of the vector field ¢; - V, 5, together with its average is much more elabo-
rated. The details can be found in Appendix B.

Proposition 5.6 }
For any particle density f € CL(R3 x R3), the vector field

lf] - Yoy = lim OTCL 0T = X (@, 0)(eolf] 0 T9)

'Vx,f)
N0 €
writes
Cl[f] Vfb,f) :({] 6) |:6/\8:E<e>€_ax€v/\e+<Vch'v/\26> €:| Vx
We We wg
- [<wac 1}/\26) DA Oge(DNe) — 0N [Ope(DA Dye U/\e)]] Vs
+ [ ! /\((v/\e)@(@/\e):vxéévm)e] Vs + L <E [v/\e Va;f] -e)e-V@
2w, m We
-4 [<8wEmv/\e'€> €+<E[f]'6xev/\e> e+(E[f]'€)3xev/\e] Vs
m We We We
q 5 vAe
+%(E[f]e) (wac-wg > e Vi

and its average s

<01 [f]> “Vaus =clocp| - Vaes —

GRS (2 [f]-e)] (rotsc - c) -

We B 5
= oA o2
n [Mw(mw,e)dmﬁ q <E [U/\e | } )} .
2w, m
(’5'6)2 ‘U/\e’ 9 m . ) )
+ - trace(dyeM[e]0yeMle]) — o, (Ope:0ze — |Ogee|?) — T divee | (5A€)-Vs
( e) Vawe . ~
+— 9 (Ozee Ne) - 2 (0N (enD))- V5
N
+ (U2we) [!316612 — Ogee - Vzwe + div,(9yee — div,e e)} (o Ae)- Vg
where Ucp = —%@cee Ae.
Remark 5.3

When the particle density satisfies f € CH(R? x R3) Nker(b- V.5 ), then
/ (17Ae)-fodf):/ divy(foNe)do — [ fdive(d Ae) dd
R3 R3 R3

= div, fonedo+ fo - rotge do
R3 R3
—_—

=0

= / (0-e)f do (e - rotge).
]R3
We deduce that




and in that case

<01 [ f]> Vs [ =clicp] Ves |+ (’;we) (rotge - e)divge (5 A (e A D)) - Vi f

(E[f] -e) (e-rotge) . _
B 5 (0—(0v-€e)e) Vif+ % (E [(e - Tot €)
= Vel (5. (e AG)) - Vof.

c

_l’_

(Ozee Ne) -

We claim that the following simplifications between terms in <a[f]> Ve and <cl [f]> Vi
occur

—0,(Onp[f]) 1 (Is —e®e) - (E[fée)(e rotse) = Snnlf] V:jzuc

—0z(0ap[f]) : e ® e = Vap|f] - Oree.

The last identity follows by taking the directional derivative e-V, in the equality Oap[f]-e = 0.
For the other one it is enough to check that

—div,oap|f] — (E[‘g'e)

vz c ~ P
t + Oap[f] - Ouee.

(e - rotge) = fDAD[ﬂ g

Combining the conclusions of Propositions 5.4, 5.6 we obtain for any f € C}R? x R3) N
ker(b- V5 )

((al1) + (1)) Ve F = clinlfl)- Vi f 4+ D e ene). TR g f
—i—(ﬁ‘e)(ﬁAD[f]-&vee)e-vf,f—i- <T1/\D[~] ij%) 6(2.6)6 Vif
+ % (E [(e - T0t €) @w' ¢) f] ce) e-Vif (61)

where Op[f] = Oap[f] + Uap + Vep.

Notice that the above (reduced) vector field differs from the vector field (<a[f~}> + <01 [f]>) .
Ve by a term ab - Ve » with b- V25 a = 0. Since, by construction, the vector field
<<a[f]> + <cl[f]>> - V5 is in involution with respect to b- V.5 , so is the above re-
duced vector field. Observe also that this reduction does not change the divergence, because
div, 5(ab) = 0. )

In order to obtain our limit model, we need to eliminate f! from (57), thanks to (58).
Appealing to Proposition 5.2 we prove (see Appendix B for details)

Proposition 5.7 . .
Assume that e € C*(R3),w, € C1(R?). Let f € C2(R® x R®*)Nker(b- V.5 ) and f* verifying

olf) Vas = (lf) - Vo F) +b- Vez fr=0, (/) =0.
Then we have <co[f] -V f1> =0.

Thanks to Propositions 5.4, 5.5, 5.6, 5.7 we obtain the following equivalent formulation for
(57), (58).
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Proposition 5.8
Assume that e € C*(R?),w, € C'(R?) such that inf eps |we(x)| = wo > 0,divy(wee) = 0 and
let us consider f- € C%([0,T] x R? x R3). Then f. solves

oufe + (aolfe) - Vo fo) +2 (@l + eilfel) - Vs fo) + (ol fi] - Vo £2) = 0

b Vs fo=0, colfi] Vas fo = {col o] Vs fo) +0-Vus f1 =0, (f1) =0  (62)

iff f- solves

oufe + (colfe)) - Voo fo+2 ((alfe]) + (@1l ) - Vo fo =0, b-Vag =0 (63)

= [(@-e)a S bAe g '(17/\6)@(17—(17-6)6)4-(17—(17-6)6)@(17/\6)]
S |0 A el = 4we|v A e
(DAe)ND o
W‘vaa'
Proof.

We only need to solve (62) with respect to fal We already know, see the proof of Proposition
5.2, that there is a vector field ([f:]- V. such that for any u € C%(R3 x R®) Nker(b- V.5 ),
the function u! € C1(R3 x R3) solving

colfe] Vi u— (o] Voo u) +b- Vogul =0, (ul) =0
writes u' = ([f.] - Vo5 u. For any (z,0) € R3 x R3, |9 A e(x)| > 0 we have

o o G0 0) (e D)he G
Clfe] Vas =clG] - Vaz + |0 A e]?

(Cﬁ - (6 i QN))a:ve CJ:) ) (6 A 6)

|0 A e]?

(0—(v-e)e) Vs

+ (Gs-e+ 0, -0)e-Vi+

For u = x;,i € {1,2,3}, we obtain u' = 0 and thus ¢, = 0. If u = [9]?/2, we deduce that
u' =0 and (3 - 9 = 0. When considering u = @ - e, we obtain (see the proof of Proposition

5.7)

—weu' = —(0-e)0gee- (0 Ae) + Oge

implying that

(5= (@w-ce) Dpee - (B A e) — Dye (77/\6)®(6_(@'6)6)4:57)_(7)'6)6)@(77/\6).

Finally we deduce
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6 Well posedness and main properties of the limit model

We concentrate on the existence/uniqueness and other properties of the model

Oufe+ (ol fe))- Vg fore ((alfe)) + (alfe))) Vo o =0, (t.,8) € [0,T] xR < E® (64)
together with the initial condition
fo(0,2,9) = fin(2,0), (z,0) € R® x R (65)

The initial density is assumed smooth, compactly supported, and B is a smooth external
magnetic field satisfying

B = Bec C}(R?), By = inf, |B(z)| >0, div,B=0. (66)
S

mliNe(z)|? _ glone(@)|?
2B¢(z) —  2wi(x)

vector fields <co[f]> Vi, (<a[f]> + <61 [f]>) Vi -

Proposition 6.1

We notice that the magnetic moment p®(z,0) = is left invariant by the

Let B be a magnetic field satisfying (66), u® = eu, p(x,0) = mggzg)l? = q‘gﬁfg;ﬁ For any

particle density f € CH(R? x R3) we have

(eolfl) - Voo =0, ((alf)) +(arlf])) - Vg n=0.

Proof.
It is easily seen that
(0-€)t0pet  p(x,0) Vywe

v.L=- - , Vit =
q wc(x) q We q

and therefore

q We q We
~ 2
+ 89 e 5) - (5 ) 42D gy,
N
_ L _div,B =
( e)qulv

As the magnetic moment belongs to the kernel of b- V5 , we have by (61)

((al1) + (/1)) - Vet = cliplfi]- Vi

wC wc 2
s Vewe\ v—(0-e)e
+ (U/\D[f] " > - (2 o

It is easily seen that

(¥ e) <(axeem)‘vch> DA (e D) ‘%M:_(ﬁ-ef ((axeeAe)-W>u

We




and

(paot - Y22 ) T2 g (i) T2 )

We 2

It remains to compute the derivative along c[0p[f]] - Va5

i) Vs = - E[fgg/\ ¢ /;Vx(:)cc/\ e (77:)2@66% e]
v-e)tozev w, ~ o—(D-ee
: {( Lca” +ZV§CC] + 5 A (Daeiplf] Ae) - Eu)
-9 (peplf]-5) - 2 (sl - %MA@)
We q We We
+ (“w' °) (92e o0lf)-5)
= _HM (@\D[,ﬂ . (0 6)2(%566/\6)
q We c
and therefore (<a[f]> + <cl[f]>> Va5 pu=0. O

Remark 6.1
The previous computations show that the invariance of the magnetic moment holds true when
replacing E[f], E[(0 - e)(e - rotze) f /we| by any continuous vector fields.

Recall that
fo=feoT +eXfloT+O(E®) = feoT +efl o T°+ O(e?), b-Vas fo =0, <f3> =0
As the function fal has zero average, it is easily seen that

/ P, T (x, 7)) didz — / FA (4 7,9) dids + O(c) = O(e)
R3JR3

R3JR3

and therefore we deduce that

/u@ [ Fett.a.) dida - /R [ fe.2.9)
- /R R3f€(t,9~c,17) det (13 — eM[3]d (j) (x(fc))>‘ dodz + O(e?)

— /RS RSfE(t, 7,7) [1 — etrace (M[ﬁ]a <e) (az)ﬂ dodz 4 O(e?)
— /RS Rgfa(t,:v,f;) {1 + €0 - TOt, ( ﬂ dodz + O(e
= /]R3 st(t,x,@) {1—1—6’5- [r(zz:e v ]} dodz + O(e?)

= / fo(t, z,0)m®(z,0) dodz + O(£? )
R3JR3

ox
det <8x>‘ dods + O(e?)

where m®(z, 0) = 1+¢(0-¢)(e-1otze) /we(x). We have used the constraint b-V 5 f- = 0, which
implies [ps fo0 do = Jxs f-(0 - e) dv e. As the total particle number ngfR?,f (t,x,v) dodz
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is conserved, up to a second order, the total particle number ngngfs(t, x,0)me(x,v) dodx
should be preserved as well. Indeed, multiplying (64) by m® and integrating by parts yield

jt/Rg Rfs(t%ﬁ)ma(:c,ﬁ) dodz
_ /R L Fettsw 0)dives [m ((eolfel) + e (al i) + < (ealfi]))] dod
_ /RS | Jetz 0)divas (ol f)) dida
e [ it [0 02 (alhl) + (alhl) + (el | acas

C

+el /R L et B)dive [(ﬁ o) Ot ((alfel) + (el f5]>)] divdz.

We
Our conclusion follows thanks to the result below, whose proof is left to the reader.

Proposition 6.2 3
For any particle density f € CL(R3 x R3), the vector fields

(all) Vas s |02 (el + (alfl) + (alf)] -V

We

are divergence free. The above result holds true when replacing E[f],E[(7 - €)(e - rotze) f /we]
by any E, E € C1(R?) such that rot, E = 0.

The well posedness of (64), (65) follows by standard arguments, similar to that in the proof
of Theorem 2.1. The details of the proof of Theorem 1.1 are left to the reader.

Remark 6.2 .
For any T > 0 there is ey > 0 such that the solutions (fz): of (64), (65) are uniformly
compactly supported and uniformly bounded with respect to € €]0,er]

sup  {|[fe(®)llor@axre) + 1B ()]l crme } < +o0.
0<e<er,t€[0,T)

Remark 6.3 3
The model (64), (65) propagates the constraint b- V5 fo = 0. This is a consequence of the

fact that the vector fields <co[fa]> <cl [f5]> , < [f€]> are in involution with respect to b-V, 5 .

If f. solves (64), (65) with the initial condition fm, then fO(t,x,V) = fa(t z,R(0,e(z))V)
solves (64), (65) with the initial condition f2(x,V) = fm(:v R(O,e(x ))V) In_particular, if

the initial particle density satzsﬁes the constraint b- V5 fin = 0, then fm = fln,H € R and
by the uniqueness, we obtain fa f.,0 € R, saying that b - Vs f-=0.

A Well posedness of the Vlasov-Poisson problem with exter-
nal magnetic field

Proof. (of Theorem 2.1)
We are not indicating all the details, but only the a priori estimates, for smooth solutions of
(6), (7), (8). Let f be a smooth solution corresponding to the non negative, initial particle
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density fi, € CH(R3 x R3). We are looking for estimating E[f], 9, E[f] in C([0,T] x R3),
where 0 < T < T'(fin). For any R > 0 we have

B O)@)] < 47r/ 1{“@"’<R}p|[f(t)](f|2) da’ + % 1{$$’|>R}W da’

< Rl O] ze(an) + o I Ol ey
Using the total charge conservation, after minimization with respect to R, that is by taking

= (lpLfinl o1 s /47l LS (8)] | oo ) /2, we obtain

1/3
Ol ELFON 1o=w) < 31 O] 122 (‘q|HmeL1R3xR3)> . (67)

By the characteristic equations of (6)

CL Vi), T = LBIE)X(6) + Vi) ABX(), (s.1,w,0) € 0,7 x B x B

with the conditions X (s = t;t,x,v) =z, V(s = t;t,2,v) = v, we have for any 0 < s <t <T
t

X(sit.n,0)~al < [ [V(oitaao)] do (69)
S

and
%%!V(S;t,w,v)\z = LE[f(9)|(X(sit.2,v)) - V(sit,z,v) (69)

implying that d
q
[V (sit,2,0)[ = Jof | < m/ IELf ()]l oo (r3) do-

Assuming that supp fin C {(z,v) € R* x R® : |z| < R and |v| < RI"} it is easily seen
that for any (x,v) € R? x R? such that |v| > R,(t) := R + ‘mil f(f I E[f(8)]]| oo (r3) ds we have

|V (0;t, z,v)| > |v] — |q| / IE[f( HLOO(RS) ds > Rm
and therefore
flt,x,v) = fin(X(0;¢,2,v),V(0;t,z,v)) = 0.

Consider now (x,v) € R? x R3 such that

@] > Ro(t) = R + LRy / q'/ VELf(0)] | e sy dor ds.

If |v| > R,(t) we already know that f(¢,z,v) = 0. If |v| < R,(t), we have by (68), (69)

¢
| X (0;t, z,v)| > |x| —/ |V (s;t,z,v)| ds

q
zm—/ [\ r+"/||E ||LmRs>da] s

> |z| — tRy( / la] / IELf ()] oo s5) do ds > R
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implying that f(¢t,z,v) = fin(X(0;t,z,v),V(0;t,2,v)) = 0. Therefore f is compactly sup-
ported

supp f(t) C {(z,v) € R®* x R® : |z| < R,(t) and |v] < R,(t)}, t€[0,T].

Notice that the above computations are not depending on the magnetic field B since the
magnetic force does not change the kinetic energy cf. (69). The charge density is bounded
by

pLF (@) = lal fgs fin(X (058, 2,0), V(0;t,2,0)) dv < |g|| finllze gmRI(E).  (70)
Combining (67), (70) yields

2/3

1/3
q 47
eoll E[f ()]l oo 3y < 3 <L7_‘r|’finHL1(R3><R3)> (M HfinHLoo(RSxR?»)) R2(t)

2
1/3 2/3 in |q!
= 1al(12m) 3| finll s sy | Finl 2 ey (R / IELF(5)]]] oo ) ds)

leading to the bound

m2ep 1

E oo (R3
T YN T A XN

3 0§t§T<T(fin).

Observe that the above bound depends on m, €g, ¢, T" and the initial particle density fi,, but
not on the magnetic field. Accordingly, we obtain a bound for the size of the support of f
depending on m, €g, q, T, but not on the magnetic field

sup [Ry(t) + Ry(t)] < 400, 0<T < T(fin).
0<t<T

For the L bound of 8,F we appeal to [2] where it was shown that there is a constant C
(depending only on m, €p) such that

10 ELf (O] < C [(L+ llplf @)]l|zoe) (1 + Wt [IVaplf (D)) zoe) + loLf ©)]l11] -

The notation In™ stands for the positive part of In. We already have a priori bounds for the
L norm of p[f(t)] (use the estimate for the size of the support of f) and for the L! norm of
plf(t)] (use the conservation of the total charge), and therefore we have

18 E[f(D)]llee < C1(1+ ™ [[Vap[f ()]llze), ¢ € [0,T] (71)

for some constant C depending on m, €y, ¢, T. Using the characteristics of the Vlasov equa-
tion, we write

Voplf ()] = gV / Fin(X(0:4,2,), V(0: 1, 2, 0)) dv (72)
R3
= (J/RS Lijo<ro(t)} [0 X (058, 2,0)(Vx fin) (X (05, 2,0), V(0; ¢, 2,v)) dv
+ Q/3 Lijoi<ro@)} 02V (058, 2,0) (Vv fin) (X (058, 2, v), V(0; £, 2, v)) do.
R

It is easily seen that there is a constant Ca(m,q, T, ||B|/j1.) such that for any (z,v) €
R? x R3, |v| < R,(t), we have

t
02X (05, 2, v)| + 0V (052, 2, v)| < Caexp (/ 10=ELf ()]l L= dS) , te[0,T].
0
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Combining to (72) we obtain

92 f Ol < Caesp [ 10BN a5, e 0.7)
for some constant C3(m, ¢, T, ||Blly1.0) > 1, implying that

W IV f O <ot [ 0BGl ds, € 0.7]
Coming back to (71), we deduce that

s Bl @l < €4 (14 [ 10BN~ a5, tel0.7)

and the a priori estimate for the L> norm of 0, E[f] follows by Gronwall lemma.

B Proofs of Propositions 5.3, 5.6, 5.7

Proof. (of Proposition 5.3)
The above formulae come by direct computations. Let us indicate some details.
1. Clearly we have (¢) = (¢ - €) e and for any ¢ € R?

saying that (M[0]) = (0 - e)M]e].
2. It is easily seen that

) 3 1 S(z,0) _ 5 _ ~
(0 ®7) = S(x.7) /0 V(s;x,0) @ V(s;x,0) ds
1 S (z,0)
= 5@ / {cos(swe(x))[0 — (U - €) €] +sin(swe(x))0 Ae+ (0-e) e}
’ 0
® {cos(swe(x))[0 — (V- €) €] + sin(swe(x))0 Ae+ (0-e) e} ds
= %(57(6-6) e)®(0—(v-e) e)+5(17/\6)@(17/\6)+(17-e)26®6
AT
= w/;e‘(fg—eéée)—i—(f)-e)ze@e.
3. It is a direct consequence of the second statement.
4. We write
AL
(50 (5 Ae)) = — (5@ Mle]s) = (50 5) Me] = L A;' Mle]
and therefore
- - - 15 A e|? [T A el?
(0-0ge(VNe)) =0 (D (DAe)) = 5 Oze : Mle] = 5 rotge - e.
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5. For any vector ¢ € R? we have

~—{uiga, (£) 6= -1 0) = ~haigo. (£) s we - (0-0) o)
~ -2 Pariga, (£): (h-eoa = 25a, (£ g - rigg e
= A o, (£) e o (£) - mce o0

|0 Ael? [rotze  Vpwe A e A\ M[rotyele
— e— ——
2 We w? We

oA e|? [rotze  Viwe Aet (rotze Ae) A e]

2 | we w? We
|o Ael? [rTotze-e Vawe N e
= e— )
2 We w?

6. Thanks to the statements 4. and 5. we obtain

(A) = — <8x <U 4 e(x)> (5 (5-e) e)> 4 <(f} ne) A Bpell e($)>

wc(iﬂ) Wc('x)
| Ael? [rotge-e Vawe N e n | A e]? rotge - e
_ _ e
2 We w? 2 We
DAel? Vawe A e
_|vAel
2 w2

7. For any three vectors &,7m,x € R3, the notations ¢ ® n ® x stands for the components
&NiXk, i, J,k € {1,2,3}. We have for any s € R

V(s;x,0) — (V(s;2,0) - e(X(s;2,0)))e(X(s; 2, 0)) = cos(swe) (I3 — e(x) @ e(x))d
+ sin(swe(x))0 A e(x).

The conclusion follows observing that

2 2 1 2
/ cos HdG—/ COSQQSinﬁdG—l/ cos@sin29d9—/ sin®6 do = 0.
7T 0 27T 0 27'(' 0
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8. Most of the averages in the next computations will vanish, thanks to 7. We have

0reAz - (0— (0-e) e) = —M[0]0y (i) (0 —(0-e)e)- "Ope(v— (0-¢€)e)
vAe

+ (0 Ae)Adge ~9pe(v— (0 €) e)

[

=0, (j) (G- (5-€)e) [(5—(5-¢)e) A 'Dpe(t — (5-e) e)]

[

+(5Ae)mxe“ce- t,e(i — (- ¢) €)
+ (0 e)0y <jc> (D—(0-e)e)-[en "Ope(t— (- e) e)].

By the previous statement we know that

<a$ <6> (5—(5-€)e) [(5—(0-€)e) A tpe(t — (- e) e)]> =0

We

and ~
vAe

<(1~)/\e)/\8$e - 'Oe(t — (- €) e)> =0.

C

For the last term we have

( e)<ax <5) (5—(5-€)e)-[en tDpe(i— (7-e) e)}>
= (5-e) <az <e> (5 — (5-€) e) - Mle] '0pe(i — (v - e) e)>
— (- 0eMdor (£ ) s (0= (3 ) )8 (- (5-0) )
— (§-e)0,eM[e]D, <5) : |17/;e|2(13_6®6)
- (3 e)“;‘QagceM[e]am (j) : Iy
— (3¢ 6226‘2@@1\4[@]8906 Ty
B A

= (3-¢)

o divge (rotze - e)

since trace(0zeM [e]0ze) = —divgze (rotgze - €) cf. 11. We proved that

(T-e)|o Ael?

2w,

(0zeAy - (0—(0-e)e)) =

divgze (rotze - e).
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Similarly, we write

e

OzeAy - (DN e) = —MI[D]0, <) (0—(D-€)e)- "Dze(t Ne)

(&
U A

—|—[(z~1/\e)/\8xev ¢
W

} - t0e(t Ae)

=9, (;) (5—(5-€)e)-[(5—(7-€)e) A 'Dpe(d Ae)]
4 [(@ Ae) A a,ce@uie} t,e(5 A e)
+ (0 €)d, <5> (5— (5-¢)e)-[eA e Ae)l.
The averages of the first and second term vanish, cf. 7. and for the third term we obtain
(5-e) <ax (;) (65— (3-¢€) e) - M[e] *dze(® A e)>

= —(i-e) <8xeM[e](‘)x <j) (5 (0-¢)e) (0 A e)>

= (3 e)dpeMle]d, (j) (GNe)® (T — (5-€) e))

— 5072y e, (5) . Me]

19 A e|?

=(0-e) OreMle|0ze : Me]

c

and thus
1D A e?

(0geAy - (DAe))=(0-e) OzeMle]Oze : Mle].

c

9. We can write thanks to 3.

<axe 0 (f’ﬁce) e (5—(5-e) e)> _ <6xeM[17]8x <5> e (6—(5-e) e)>

— _9,eM [am (5) e] (- (7-€)e) ® D)
_ _‘@Q‘B'an M {ax (;) e] (b—exe)
Sonely o (£)

|7 A e]? ozee e® Vywe
= rot e - — 5 e
2 We wg

|7 A el? (rotxe/\e e® Vawe >
rot,e - 5 e
We w

oA el Vawe -
:—|U 2€| (rotze - e) e €

c
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10. For any vector £ € R3 we have by 4.

(5 A Dae(i Ae)) - € = (M[5)0e(t Ae) - €)
— (Be(D A e) - MIED) = — (M€]se(5 A ) - 5)

= —M[€]de: (0@ (0 Ae)) = —M[€E]de : M[e]wge'z
_ oA e‘Qtrace(M[e]M[i]Gxe) _ /;e|2trace([£ ®e— (£ -e)l3)0ze)
_ |27 /;e|2trace(€ 2 t(‘)xee . (£ . e)axe) _ _ |'l7 /;€|2 (é“ . e)divwe-

Therefore we deduce that

|oAel? .

(DN Oge(DNe)) = div e e.

11. The matrix d,eM|e] d,e is anti-symmetric and thus

trace(0yeM [e]0,e) = trace(OyeM [e](Oze — 'Ore))

= trace(0zeM [e] M [rote]) = trace(Oze(rotze ® e — rotge - e I3))

= trace((0ye rotye) ® e — (rotge - e)0ye)

= —divge (rotze - e).

12. By the statement 11. we have
trace(M[e]OyeM[e]0 eM[e]) = trace(M [e] M[e]OyeM[e]O e)

= trace((e ® e — I3)0yeM|e]Dye)
= —trace(0yeM|e]0ze) = divye (rotze - e).

Proof. (of Proposition 5.6) 3
Observe that the vector field ¢*[f] - V.5 writes

Elf] - Vas = (0-e(2)) e(@) - Vo + — (E[f]-e(fﬂ)) e(z) - Vi

v/\/ae A (z)) dr - V3

where (1) = x + TEZ\:((;? T =x+ ETCB(%) = Z(1), and therefore

n{% EIf] - Vais = (0-e(x)) e(z) - Vo + ;{L(E[f] ce(x)) e(x) - Vi — (0 A Ope(t Ae(x))) -V
= CO[.ﬂ : vx,f) .
By direct computations one gets

OT*c*[f o T¢] = &[f 0 T7]

= (5 - e(x))M[5]0, <5> e(z) - Vg + [; A (5 A Bpe(D A e))] Y,
— - clpMlii0s () eta) T = D oe(i neta)) - v,



i e T —colfloTs _ g | (BIf 0T - e(a)) e(x) — (Ef] o T* - e(d)) e@)
e\0 e m eN0 - s
b Oee(#(1)) A elx) — Due(®) B A e(F)
_ (U/\/O ;1{% - dT) Vs
= % <E [U:j\ce fo} .e(:z)> e(x) - Vi — % <axE[f] v;\ce .e(x)) o(2) . Vs
_ % (E[f] - Oge @u/)\ce> e(z) - Vi — %(E[f] e(z)) Bee @/\Ce e
L @ 0] 0] ~ - vDAe
+ 2w () [OA((0Ae)® (0AE€): Vo @ Va)el- Vi + 0 A Ore(x) (U/\ﬁme We > v
and
T NalfloT o one
il\l_% 0 : 0 . Vxﬂj = wac . Tg CO[f] . Vwﬂ; .

Therefore the coordinates of the vector field ¢1[f] - V3 are given by

crzlf] = (0-€)o A D, <Ui> e— (@w.ce) Oze (ONe)+ (V-e) <V1«wc : 6{:;) e
clg[f] S (E [v/\e fo] -e> e— L <8IE[f] vhe e> e
m We We
_ % (E[f] Oy UA(:(Z) e— %(E[f] e) Oze UACB + E(E[f] -e) (wac vﬁ;) e
+0A [Oxe(az) (v A Oge 6:}\06 ] — <wac 1]/\2€> O A Oze (DNe)
+ 2%1(33)1) AN((DNhe)@ (DAe): Vy,®Vy)e
The average of ¢1[f] - V5 follows thanks to Remark 5.1
<61 [,ﬂ> Vs =c¢ [<Clx[f]>] “Vais
#((elf] = (- e cnlf) - (- (-0) ) T 9
+ <ch~,[f] ce+ 0ge clx[f] . 17> e Vs
+{(exlfl = (- ore cadlfl) - @ 1 €)) 70 Vs
The average of ¢1,[f] is the magnetic curvature drift
<clr[f]> = (v- e)ge A Oy <€c) e = (6(;)66)26 A Ozee = Vap.
We analyze one by one the other averages. We have
<ch;[f] (0—(v-e) e)> = —W(ro‘cxe -e)divye — (E[]; )b /;6|2 (e - rotze).
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Indeed, the last two terms in ¢13[f] give no contribution thanks to the seventh statement in
Proposition 5.3

Ne):Vya®Vz)el- (00— (v-e)e))
Ne)@(0ANe):V,®@V,)e) e

and

<(vwwc-f’wA26> (57 Dye (B Ae)) - (5= (5-e) e)>

C

:—(6-e)<<vch-ﬁ;\2€>@/\ﬁxe (ﬁ/\e)>-e

c

:_@.e)<<vch.f’$2‘9> (17—(17-6)6)/\8x6(17/\e)>-e:O.

c

Observe also that the average of the term o A [Oxe (f} A Oze %)] -(0— (v-e) e) can be
computed as follows, cf. statement 12. in Proposition 5.3

= (v-¢)? o

M]e]0reMe]0re one '17>

_ (@ .

= o MlelO,eM[e]0eMle] : (0 ®
7-e)?0 Ael?

= —()21]6/\trace(M[e]@xeM[e]ﬁxeM[e])
(0-e)?|oAel?

= —2—%(1‘013906 - e)dive.

S

By the first and seventh statements in Proposition 5.3 we find as before

<011~,[f] -e> = %E -6(:\66 'fo- ce+ <17A [Gxe (6/\3336 {]uﬁ\ce)]> e

T

[ A <] 0-e)|tAel?
i v ¢ . me -e + w(rotze . e)divxe
m L wc i 2w6
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and

<01am (0 /\e)> - _Z(E[w]c e)axe (one)®(vAe))
+ ij(x) ([oA((DNhe)@ (DAe): V@ Vy)el- (DAe))

T>

~ <<vz%_q~;ﬁ2€> (5 A due (5 A €)) - (17/\e)>

C

Ts

+ <{m [axe (aAagceﬁf)]}-(me>>

Ty
_ (Blfl-e)pAef [oAel* , 2
= B 5 divze 1o, (Oze : Ope — |Opeel?)
(T-e)?|o A el?

2w,

T = —<(Me)~3x€ (“axeﬁcﬁce»
__(5_€)<(Me).ax€ (m@xeﬂe»

We

trace(0zeM [e]OzeM[e]).

Indeed, we have

_ (@W' ) Melo,e MIcldpeMe] : (5@ 5)

Cc

U-e)|vAel?
= wtraee(M[e} OzeM [e]0 e M [e])

2w,
- W(mtme -e)divge
T = _2ic ((5-€)5— 32¢] - (G Ae) @ (3 Ae) : Vi ® Va)e)
- _2306 (5 €)% — [3%] - (T A €)@ (T Ae): Vo ® Va)e)
- wQAje' (GAe)® B AE): Va®Va)e
= ‘62/;f‘26' [‘@ /;6‘2(13 —e®e):Vy® Vm] e
_ |54$|4e. [Ave — (e®e: Vo ® Vy)e]
_ 77425‘4(336@ : By — |Oyee]?).

c

= —|z7/\e|2<<wac~UL:\2e> e 0ze (17/\6)> =
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and

Ty <[@ L) — [5]2€] - Bre (maxe 5Ae>>

C

:_(@.e)<6~8$e (maw f)wAce)>
:_(@-e)2<ﬁ'3we <e/\3xe 17:)\ce>>

- (0-e)? e e
= dpeMle]Oze : (D@ (D Ae))
_(@-ePlnef trace(dyeM[e]dzeM]e]).

2w,

The contributions of the coordinates c1,[f] are given by (cf. the ninth and fourth statements
in Proposition 5.3)

<6xe c1alf] -@> - <8me c1alf] - (5 — (3 ¢) e)>

—(5-¢) <8me o, (ﬁufc‘f) e (5 — () e)>
(0-e)

We

vAe

(Oue Dpe(B Ae)-3) + (7 e) <<Vzwc : wQ) dpe e (5 — (- e) e)>

~- T 2 . ~¢ T 2
:_(v e)|v A e (rotxe-e)(vch e)+(v e)|v A e

trace(M|e]0ze Oy €)

2 we 2we
+ W(&cee Ne)- Vj‘;c
= W(@xee Ne)- Vjcg’c
and
(@) (Be crlf)- (D he)) = (T ¢)? <axe {@ £ O, <w> ] oA e)>
+ (17;)2 (Oe Dye (T A e)- (T Ae)) — (3-¢)? <<VWc : ”(ﬁ;) Dyee - (5 A e)> _

By straightforward computations, we obtain (using also div,(w.e) = 0)

—(0-e)? <8xe [@ A Oy (;) e] (@A e)> = (¥ -¢)? <8xeM [ax (:’) e} - (0 /\e)>

= (0-e)’0zeM [ax (5) e} (D Ae) D)

c

I
=
&
[N}
=)
>
o
[}
&
9
=
D,
=
—
&
N
| o
SN—
S

Il
=)
4
SN—
o |
(o3
>
o)
)
N
o
(S))
)
7N\
o
~_
o
®
o
|
/N
&
7N
&
'
o
o
"
&
| I

-€)?|0 A el? |0gee|? — (divge)?

2 We

—~
[SH]
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2 e)?|v A e|?

N

(T (etne (5 Ae) - (34 €)) =

0re0ze : (I3 —eQ® 6)

We 2w,
=205 A 2
= Wtrace(&ge@me)
We
=205 A |2
= W[din (Ozee) — e - Vydivge]
We
U A Vwe - -
— (- e)? <(vch ”w;’) Opee - (0 A e)> = — (- €)20,ce ® w;" (T Ae)® (T Ae))
7y . 2|5 /\ 2 2We
= _(@-¢) 2|v el Oree ® w; (I3 —e®
=205 A o2
_ _(v-e)*unel Byec - Vpwe
2 w?
8 n o~ (0 e)?|0 Ael? |0zee|? — (divye)?
(8- €) (Oue cralf] - (31 €)) = =
(0-e)?|o A e* divy(dzee) — e Vydivee  (T-€)2[0 A 6\23 Vawe
2 We 2 =€ w?
=205 A o2
_ (UG)QW {]8:06@]2 — Ogee - VaWe + div,(0zee — divge e) | .
We c

Finally we deduce that
2

(0-¢)

<C1 [f]> -Vas =cloep] - Vas
(E[f] e) (e- I"Otx )

(T-e)|D Ael?

(rotze - e)divye (0 — (0-€)e) - Vy

(0—(v-€e)e)-Vy+ 20 (rotze - e)divye e - Vi
( [UC:\CB } e) e- Vi + (T)ée) (Ozee Ne) - ngjc (0N (eND))- V5
(0-¢)? oAne?, . (E[f] - e) divee
+ o, ~————trace(0,eM[e]0,eM]|e]) — 1o, (Oze : Dpe — |Ozee)?) — e
(OAe) Vi
+ ({]2;::)2 [85,;662 — Ogee - Vm:ic + div,(0yee — divge e)] (vAe)- Vi
— cfion] - Vas — (E[f] - e) (e rotze) (G- (5-¢)e)- Vs
vAe
e (E[50 v )

(rotge - e)dlvgc Vaewe| . - i
+[ 5 (- )—1— 5 (866/\6) 2 (0N (e AND))- V5
|lonel o o (E[f]-e)divge )

1o (Oz€ : Ore — |Ozee|”) + iz 5 (0Ne)- V5

~ X 2

+ (v2 ¢) [6x662 — Oyee - Vate + divg (Ozee — divge €) + trace(dzeM [e]0yeM|e])
We c
(17 VAN 6) b
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Proof. (of Proposition 5.7) ~
By Proposition 5.2, applied to the vector field clf] . Vs , there is a vector field £ - V, 5 in

We

involution with respect to b- V. such that for any function u € C%(R3 x R3) Nker(b- V5 )
<CO[ ] : vm,f) u1> =& vm,@ u
We

colf] Vs u— <CO[ ] Vi u> +b-Vesut =0, (u')=0.

We

where

For any (z,7) € R? x R3, [0 Ae(z)| > 0 we have
- (0—(v-e)e)—(e-0)0pe &y -0

g(l‘,ﬁ) : V:p,f) = C[fz] ' Vm,f) +

|0 A e|?
+(§a'e—|—8xe§z-f))e-vq;+(gﬁ_(e.i)ja/?ee%).(ﬁ/\e) (0Ne)- Vs
= e Vas + e &) 0D oy
S0 (T@_A(;f) 2 (0—(v-e)e) Vi+(&5-€)e- Vs

(&1 —(e-0)0ge §m> (D Ae)

|0 A el?

+ (17/\6)-Vf,.

For u = z;,i € {1,2,3} we obtain

webe = (ol Vs n) s colfle = {colfla) + (b Vs Jn =0, {n) =0.

2

ObVIOUSly we ha,Ve <Co[f]x> = Co[f]x e (f} . e)e’ lmplylng ,,7 — 0 and thus gx — 0 FOI“ u = ‘172‘

we obtain

wel - U = <60[f] Vi u1>, colfls -7 — <Co[f]@ : 17> +b-Vepu' =0, (u')=0.

But <co[f]1~, . 17> = %(E[f] -€)(0-€) = co[f]s - 0 and therefore u' = 0,&5 -0 = 0. We also take
u = (0 -e), implying that

welp - e = <Co[f] Vi u1>

colf] - Vas (0-€) — <co[f] Vo (0 e)> +b-Vesu' =0, (u')=0.

A straightforward computation leads to

—we(T A e) - Viul = colf] - Vas (0-€) — <c0m Vs (0 e)>

D Ael?
:(17~e)3xee-z7—[17/\8xe(17/\6)]-e—dlvxe| /; |
= —(0-e)0zee-[(DNe)-Vi(0Ae)
+oze:[(DNe)@(DANe)—((DNe)®(DAe))]
Observe that
. - |7 A el?
(0Ne)® (DANe)— 5 (Is —e®e)
:(ﬁ/\e).vﬁ(ﬁ/\e)éé(@—(@-e)e)l—(@—(ﬁ-e)e)@(@/\e)

o1



(tne)@(v—(v-e)e)+(v—(V-e)e)@(DAe)) =0

and therefore we obtain

(0Ne)®@(v—(v-e)e)+ (00— (D-e) e)®(1~)/\e).

—weul = —(7-e)pee - (DA e) + Dpe: 1

We claim that <co[f] Vs u1> = 0 and therefore & - e. For this we write the vector field

colf] - Vzi as follows

colfl - Vas =(0-¢€)
(E[f]-e)e-Vi—[0A0ze(DAe)]- V5.

@)

le] - Vzis — (0-e)(Oree ®e —e® Opee) - Vy

As the vector fields (0-e)cle]- V4 5 ,

we have

(E[f]-e) e- V3 are in involution with respect to b- V.5 ,

)= (0-e)cle] - Vai <u1> =0
<1(E[f] e)e- V{;U1> = g(E[f] ce)e-Vy <u1> =0.
We are done if we prove that

(0-e)((Oree ® e — e @ Dyee)t - Vf,u1> =0, ([0A(Oze(tNe))- Vﬁu1> =0.

It is easily seen that
—wee - Vyul = —d,ee - (0Ae)

—wcaxee . V{;Ul = (aze + taxe) . (5166 A e) © (U _ (U 4e> 6) + (U A e) © 8$€€

and therefore
<(8xee ®e—e® dyee)t- V{;U1> =(v-e) <azee . Vf,u1> — <(8xee -v)e- V5u1>
= — L ((Beee - B)dsee - (5 A e))

C

= —iazee ® Ogee : (DR (D Ae))
19 A e|?
=—— Ogee @ Ozee : Mle] = 0.

We

Similarly we write, by using the notation o(x,0) = 0 A dze (0 A e)

—we(D A Oge (DA€))-Vou! = —(0-e)dgee- (0 Ae) — (T-e)dzee- (0 Ae)
(a/\e)@(f)—(ﬁ-e)e)+(f)/\e)®(a—(a-e)e).

+ (0pe + t0ge) : 1

Thanks to the seventh statement in Proposition 5.3 we have
((0-e)0zee-(DNe))y=([(0—(V-€)e)\Dye(vAe)]-e[dree-(DAe)])=D0.
Notice also that

((0-e)0zee- (o Ne))y = (0-e)0zee- ((UADge (VAE)) Ne)
= (0-e)?0gee- (Ope (DAE€)) =0

s3]
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and

7-e)|v A el?
=—(0-e){(0Nne)®@ (D Ae)) 'oeMle] = —w(_ﬂg —e®e) loeMle]

_ N 1y enrge +

For these computations we obtain

v-e)|vAel?
(Ore+ '0uc): (0 A e)® (5~ (T-€) )+ (FAE) ® (0 — (o) )} = — L NNl

2
(Oze + '0pe) : [(Ope + t0re)M[e] — e ® (Ozee Ae)] = 0.
Finally, as &, = 0,&; - v = 0,&; - e = 0, we have
vAe - -

£V = §ﬁ-m (DAe) Vg [0-e(x)) >0
and } . .

<c0[f] v f1> = wWef Vs f=0, |5Ae(@)] > 0.
Actually, by continuity, the above equality holds true for any (z,7) € R? x R3, O
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