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Asymptotic behavior for the Vlasov-Poisson equations with
strong external curved magnetic field. Part I : well prepared
initial conditions

Mihai BOSTAN *

(December 15, 2020)

Abstract

The subject matter of this paper concerns the magnetic confinement. We focus on the
asymptotic behavior of the three dimensional Vlasov-Poisson system with strong external
magnetic field. We investigate second order approximations, when taking into account
the curvature of the magnetic lines. The study relies on multi-scale analysis and allows us
to determine a regular reformulation for the Vlasov-Poisson equations with well prepared
initial conditions, when the magnetic field becomes large.

Keywords: Vlasov-Poisson system, averaging, homogenization.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

We denote by f = f(t, z,v) the density of a population of charged particles of mass m, charge
q, depending on time ¢, position z and velocity v. We consider the Vlasov-Poisson equations,
with a strong external non vanishing magnetic field

B(z)

B®(z) = B°(z)e(x), B (x) = p le(x)| =1, z€R3

where € > 0 is a small parameter. In the three dimensional setting the Vlasov equation writes
@f+m-vﬁﬂ+%{ﬂf@mm+uAB%@yv”f:m(u@meR+xRBXWR(n

The electric field E[f¢(t)] = —V,®[f¢(¢)] derives from the potential

Bl ) = gL [ [ L

B 47['60 R3JR3 |:r—a:’|

dv'da’ (2)
which satisfies the Poisson equation

CALB[fE(1)] = % [ F(tw ) do, (o) € Ry X R3
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whose fundamental solution is z — z € R3\ {0}. Here ¢ represents the electric permit-

47r| K
tivity. For any particle density f = f(z,v), the notation E[f] stands for the Poisson electric

field
Ef dv’ds’ 3
[ x 47’[’60 /Ra/Rs "3 v ( )

and p[f], j[f] are the charge and current densities respectlvely

il =a [ feodv i =a [ oo
R3 R3
The above system is supplemented by the initial condition

F2(0,2,0) = fin(z,0), (2,v) € R® x R (4)

We are interested in the asymptotic behavior of the problem (1), (3), (4) when € goes to 0.
This study is motivated by the analysis of tokamak plasmas. The main application concerns
the energy production through thermonuclear fusion, which can be achieved by plasma con-
finement at high temperatures and pressures. We concentrate on magnetic confinement. The
strength of the magnetic field allows to hold the plasma without physical contact with the
material surface. Under the action of magnetic fields, the charged particles rotate around
the magnetic lines. The radius of this circular motion, which is called the Larmor radius, is
proportional to the inverse of the strength of the magnetic field. Therefore strong magnetic
fields guarantee good confinement properties. But strong magnetic fields introduce also high
cyclotronic frequencies, corresponding to small periods of rotation of the particles around the
magnetic lines, leading to instabilities, when simulating numerically such regimes. We are
face to a multi-scale problem and a theoretical study is required for handle the Vlasov-Poisson
system perturbed by a strong external magnetic field.

The theoretical study of kinetic equations with strong magnetic field led naturally to
the guiding-center theory, which consists in the asymptotic behavior of the charged particle
dynamics under slowly varying magnetic fields, on the typical gyroradius length. For such
magnetic fields, the dynamics inherits the features of the motion under uniform magnetic
fields : some motion invariants become adiabatic invariants [35, 27|, the drifts across the
field lines, due to the magnetic gradient and magnetic curvature are small [1, 40, 41]. Many
works concentrated on the development of a Hamiltonian theory for the guiding-center motion
[34, 27]. In [36, 37, 16, 15, 26] the authors used the Lie transform perturbation theory for
non canonical Hamiltonian mechanics. For the variational derivation of non linear gyrokinetic
Vlasov-Maxwell equations based on Lagrangian and Hamiltonian perturbation methods, we
refer to [14].

Very recently, rigorous results for gyrokinetics based on variational averaging have been
established in [44]. In particular, the author investigates the error estimates for the gyroki-
netic approximations of the Vlasov equation. For the mathematical analysis of the gyrokinetic
approximation of the Vlasov-Poisson equations, we refer to [13, 30, 47, 48, 39].

The notion of two-scale convergence, introduced in [2, 42], is another tool allowing the
treatment of the Vlasov equation with strong external magnetic field. Mathematical results
were obtained in [23, 24, 25]. The setting of uniform magnetic fields is particularly well
adapted for using the two-scale convergence, the fast variable being related to the fast periodic
cyclotronic motion.

In this study we follow the averaging techniques [5]. The main idea consists in separating
the slow and fast time scales of the problems, and eliminating the fast oscillations by averaging
over the characteristic time of the fast motion. The motion equations of a charged particle
under the action of a given electro-magnetic field (E = E(t,x), B¢ = B®(x)e(z)) are

S = Ve, S = LB X)) + R (X )V A (X7 () (5)




where wé (z) = 2-®) ig the cyclotronic frequency. When the magnetic field is strong BE(z) =

=42
@, a high frequency appears wi(x) = %(;) = WCT(I), justifying the evolution with respect

to two time variables, ¢t and s = t/e. We are searching for
Xe(t) = X(t,t/e) + X (t,t/e) + ..., VE(t) =V (t,t)e) +eVi(t,t)e) + ... . (6)

Combining (5), (6) yields at the dominant order

DsX =0, 05V = we(X)V(t,s)Ae(X) (7)

and at the next one
X + 0, X' =V(t,s) (8)
OV +0sV! = %E(t,X)+(vch(X) XYV Ae(X) +we(X)VEAe(X) +we(X)V Ade(X) XL
(9)

The position remains constant along the fast dynamics X = X (¢). It is easily seen that the
fast dynamics possesses other invariants : R(t) = |V Ae(X)], Z(t) =V - e(X). We separate
the two time scales, that is, we identify a slow dynamics given by (X, R, Z), looking for the
slow time variations of these quantities. Thanks to (7), we know that the orthogonal velocity
rotates in the plan orthogonal to the magnetic lines. Averaging with respect to s the equation
(8) leads to

dX  we(X (1))
dt 2rm
The equation (8) also writes

o, (X it V(t’jj&?g (t))> —0. (10)

/wC(B() V(t,s) ds = Z(t)e(X(t)).
0

Up to a second order term, during a cyclotronic period, the charged particle describes a circle
of center X! + (V A e(X))/we(X), radius eR(t)/|we(X)[, in the plan orthogonal to e(X (t))

XE(0) = X(0) + X (1 t/e) = X(0) e (14 LD LARON)  FEUG SR

The slow time variations of the parallel velocity Z come by averaging the parallel component
in (9). Thanks to the invariance (10), one gets

27

we _4 e
—277/0 VAOze(VAe) ds-e = mE(t,X(t)) (X()+

dz ¢

R*(t)
o = B X(6)e(X (1)

We

div,e

see [8] for more details. Taking the scalar product by V in (9) and observing, by integration
by parts, that the average of (w.(X)V! A e(X) — dsV1) -V vanishes, we obtain

1d q
s (B 4+ 2% = Lt x (1) - e(X(1)) 2(0)
and therefore dR Z(HR(1)
e _Tdivze(X(t)).
mlvAe(@)

Introducing the magnetic moment p(z,v) = —5 By~ thanks to div,(Be) = 0, we obtain
the well known system of characteristics in the phase space given by position, parallel velocity
and magnetic moment [33, 29, 15]

dx dZ  qBE(t, X () — pV.B(X (1))
S = 2mex (), o =

— Ce(X (1)), % = 0.



The previous system corresponds to a transport equation in the phase space (z, z, 1), whose
solution describes the behavior of (f¢).~0 when € N\, 0. In other words, averaging applies
as well at the transport operator level. Using an Ansatz for the particle densities (f€)c0,
we identify the model satisfied by the dominant particle density in that Ansatz and analyze
the error estimate with respect to the particle densities (f%).~9. These arguments are well
understood now and led to many formal asymptotic models, associated to different regimes.
The convergence and the error estimates were studied as well, see [8] for a first order error
analysis in the setting of the Vlasov equation with three dimensional general strong magnetic
field. The same work presents also a formal derivation, based on averaging, of a second order
approximation, which emphasizes the well known drifts across the magnetic field lines. For
the first order approximation and error analysis of the two dimensional Vlasov-Poisson system
with strong magnetic field, we refer to [7, 10]. Very recently, a second order approximation
was studied in [21] for the three dimensional non linear (and also linear) Vlasov equation,
with general strong magnetic field. The authors consider a self-consistent electric field given
by the convolution of the charge density by a smooth given vector field in W3, The analysis
is performed in the setting of well prepared initial conditions.

The present work concentrates on the non linear Vlasov-Poisson system with strong mag-
netic field. We justify rigorously the second order approximation for three dimensional general
strong magnetic fields, when considering well prepared initial conditions. To the best of our
knowledge, a rigorous proof for second order estimates has not been reported yet, in the
setting of the Vlasov-Poisson system, with general three dimensional magnetic field. Our
approach relies on averaging, and combines standard results on first order and second order
elliptic operators.

To any transport operator, whose characteristic flow preserves the Lebesgue measure, it
is possible to associate an average operator, along this characteristic flow, thanks to von
Neumann’s ergodic mean theorem [45]. It happens that the above mentionned average op-
erator coincides with the orthogonal projection over the subspace of functions which are left
invariant along the characteristic flow. For the main properties of the average operators we
refer to [6]. The average operators are very useful tools when analyzing the Vlasov-Poisson
system with strong external magnetic field in different regimes, like the guiding center ap-
proximation, or the finite Larmor radius regime [8, 9, 11]. Moreover it is possible to handle
the multi-scale analysis of general linear first order PDEs and to perform a complete error
analysis [12]. The averaging techniques also play a central role when constructing uniformly
accurate methods for oscillatory evolution problems [17, 18, 19, 20, 31]. Theoretical and
numerical results for the Vlasov-Maxwell system with strong magnetic field were obtained in
[22].

The derivation of the second order approximation follows by averaging techniques, by
taking advantage of the invariants of the cyclotronic motion. The computations simplify when
a complete family of functional independent invariants is available for the fast dynamics. The
expression of the average operator simplifies as well, when the characteristic flow is periodic.
This is not the case in the general three dimensional framework, but after performing a
suitable change of coordinates, the fast dynamics can be reduced to a periodic motion, with
a complete family of functional independent invariants, as emphasized in the present work.
We investigate the properties of the second order approximation for (1), (3), see Section 6.
Following the same lines as in the proof of Theorem 2.1, we establish the well posedness of
the second order approximation for (1), (3). For any k € N, the notation C} stands for k
times continuously differentiable functions, whose all partial derivatives, up to order k, are
bounded. For any smooth vector field £ : R3 — R3, the notation 9,¢ stands for the Jacobian

—we _ 4

matrix field. The notation w = * m—i represents the cyclotronic frequency.



Theorem 1.1

Consider a non negative, smooth, compactly supported initial particle density fin € CHR3 x
R?) and a smooth magnetic field B¢ = % € CZ(R®) such that inf,cps |B*(x)| = B > 0 (that
is By = B0 inf,ps [B(z)| = By > 0), div,B* = 0. For any T > 0, there is er > 0 such that
for 0 < & < er there exists a unique particle density f. € C1([0,T] x R? x R?), whose Poisson
electric field belongs to C*([0,T] x R3)

~ - P e A
BIA(0)(e) = /]R L )T 4, (k) € Ry xRS

|z — |
satisfying
- - - - DA (e ND -
O+ el el Vg ot LB 0o Vofe 4 divee D g f )
o ; v-e Vewi\ 9A (e A0 P
+C[ UD[fs] ] ’ Vm,ifa+ ( c ) ((8;,;66/\6)' e ) ( ) Vi fe
we we 2
- S 5 e 151 Vawi\v—(0-e)e 5
0 ol ueere o+ (Tplf) 2E ) I v o
and ) 3
f-(0,2,70) = fin(z,0), (x,7) € R xR?
where .
e-rotze _ - - -
L‘)E :1+(17€) T, 'UD :’UiD‘i_UED‘i_'DéD
- E ; ~ 2 Ilga ~ )2
5 o] = (felne mlo ANe|l” VyB*Ne _, m(v - e) Boce A e

—p o ep= o g o Yen = g
and for any vector field £ -V, the notation c[{] - V45 stands for the vector field

C[é] ' V:E,f) = § . vm + (8;565 Xe—e® 8$€§)17 . V{).

If the initial particle density fin satisfies (0 Ae) - Vifin = 0 then, at any time t € [0,T7], the
particle density f.(t) satisfies (0/\e)-Vife(t) = 0. Moreover, if for some integer k > 2 we have
fin € CH(R3xR3), B € C*1(R3), then f. € C*([0, T]xR3xR?) and E[f.] € C*([0, T] xR?).

Notice that the advection along the parallel velocity and parallel electric field enter the model
(11) as O(1) terms. The advections along the electric cross field drift, magnetic gradient drift
and magnetic curvature drift appear as O(e) terms, as usual. All the other contributions,
except for the last one in (11) are due to the curvature of the magnetic lines. Clearly, non
neglecting the curvature of the magnetic lines leads to many corrections with respect to the
model with straight magnetic lines.

When the initial conditions are well prepared, we prove that the solutions of the previous
model allow us to approximate the solutions of the Vlasov-Poisson system (1), (3) up to a
second order term with respect to e. We point out that performing the error analysis in
the general three dimensional framework is far from obvious, most of the time the authors
considering the two dimensional setting, with uniform magnetic field. The present method
provides a complete rigorous error analysis for any three dimensional magnetic field shape.
By well prepared initial conditions we understand

Definition 1.1
A family (g=)o<e<1 C CHR3 x R3) is said well prepared if

vAe) Vg c0lGe| - Va5(ge — (g
sup 1( ) vg€HL2(R3x]R{3) < too, sup llcolgel - Va,5(ge <96>)HL2(R3x]R{3) <

0<e<1 g2 0<e<1 €

+00

5



where co[f] - Vaes = (0-e)e- Vo + L(E[f]-e)e- Vi —[0A0ze(0Ae)]- Vi and the notation (-)
stands for the average along the characteristic flow of the vector field w.(x) (0 A e(x)) - Vg,
see Proposition 3.1.

Theorem 1.2

Let B € C}(R3) be a smooth magnetic field, such that inf,cgs |B(x)] = By > 0,div,B =
0. We consider a family of non negative, smooth, uniformly compactly supported particle
densities (§c)o<e<1 C C3(R3 x R3)

J Rz, Ry >0 : supp g- C {(Z,0) : |Z| < Rz and |0| < Ry}, Osu1<)1 |9e o3 (r3 xr3) < +o00.
<e<

We assume that (Ge)o<e<1 are well prepared. We denote by (f%)->0 the solutions of the
Viasov-Poisson equations with external magnetic field (1), (3) on [0,T], corresponding to the

initial conditions

vAe(x) E[ge] N e(x)

REARSSYAPT Sl 2 Rk A
we() B(z)

where b(z,0) - Vg5 = we(z)(0 Ae(z)) - Vs

f20,z,v) = (ge +5§;) <x +e > , (x,v) € R3 x R3 (12)

cole] - Vi G — (colde] - Vs §e) + 0 Vaz Gt =0, (g2) =0 (13)

and T < infoeocy T(f5(0)) see Theorem 2.1. For e small enough, we consider the solution f.
on [0,T] of the problem (11) corresponding to the initial condition f-(0) = (G.),0 < ¢ < er
cf. Theorem 1.1 (see also Proposition (5.8)). Therefore there exists a constant Cp > 0 such
that for any 0 < e < ep

1/2

. 2
sup //[fa(t,x,v)—(fe—i—afel) (t,x—i—av/\e,v—aE[a(;)]/\e>]dvdx < Cpe?
R3JR3 c

t€[0,T w,

where 3 } } } 5 }

olfe) Vs fo = (eol o) Vs fo) 4+ Vag fL =0, (1) =0.
As in Definition 1.1, co[f] - Vas = (0 - €)e - V, + %(E[f] ~e)e- Vi —[0N0ze(0Ae)]- Vi
and the notation () stands for the average along the characteristic flow of the vector field
b(x,0) - Vas =we(x) (0N e(x))- Vi, see Proposition 3.1.

The fact that the fluctuation f'sl, entering the second order approximation for f¢, follows by
inverting the operator —b-V, 3 on the zero average function ¢ [fg] Vi fo— <co [fe] Vi fa>
comes easily, once we substract from (22) its average, see Section 4, (40). Accordingly, we
consider the solutions (f¢).~o of the Vlasov-Poisson equations with external magnetic field
(1), (3) corresponding to the initial conditions (12), where the fluctuations (g.)e~o solve (13).

Notice also that determining explicitly the limit model, by computing the average of all
vector fields it is far to be an easy task. It requires several auxiliary results, see Lemma
5.1, Propositions 5.1, 5.2 which are not obvious, and many technical computations. But the
convergence result and error estimate are completely independent on that. When establishing
the second order estimate, we only appeal to the approximation model written in the average
form, without any explicit computation of the vector field averages entering this formulation.
Therefore, in order to understand the asymptotic analysis, at the first reading, the readers
can skip all details related to the explicit computation of these vector field averages.



Our paper is organized as follows. In Section 2 we discuss the well posedness of the
Vlasov-Poisson problem with external magnetic field. We indicate uniform estimates with
respect to the magnetic field. The average operators, together with their main properties are
introduced in Section 3. The second order approximation of the Vlasov-Poisson problem is
derived in Sections 4, 5. The error estimate relies on the construction of a corrector term.
The well posedness of the limit model is discussed in Section 6.

2 Classical solutions for the Vlasov-Poisson problem with ex-
ternal magnetic field

The Vlasov-Poisson equations are now well understood. We refer to [3] for weak solutions, and
to [49, 38, 43] for strong solutions. For studying the Vlasov-Poisson equations with external
magnetic field we can adapt the arguments in [38, 46]. Motivated by the asymptotic behavior
when the magnetic field becomes strong, we are looking for classical solutions, satisfying
uniform bounds with respect to the magnetic field. At least locally in time such solutions
exist, see Appendix A for the main lines of the proof.

Theorem 2.1
Consider a non negative, smooth, compactly supported initial particle density fi, € CL(R3 x
R3) such that

supp fin C {(z,v) € R* xR? : |z| < R® |v| < R}
and a smooth magnetic field B € CHR3). Let T < T(fi) := 2Rm(127r)1/37ﬁ;10nHI/SHmeQ/S'
There is a unique particle density f € CL([0,T] x R3 x R?), whose Poisson electric field is
smooth E|[f] € C1([0,T] x R3), satisfying

@f+thf+£%EU@ﬂ+vAByV%f:Q (t,z,v) € [0,T] xR x R®  (14)

fL' ,V T U/ ', T 3
4meg /]R3 R3f t )|$ | dv'da’ (tv ) € [OaT] x R (15)
f(o,{L‘,U) = fin(x7'l)), (x,U) S R?’ X R?’. (16)

The bound for the L> norm of the Poisson electric field E[f] and the size of the support
of the particle density f are not depending on the magnetic field. Moreover, if for some
integer k > 2 we have fi, € CE(R3 x R3),B € CF(R3), then f € C*([0,T] x R? x R3) and
E[f] € C*([0,T] x R?).

Remark 2.1
1. The solution constructed in Theorem 2.1 preserves the particle number and the total energy

Elf()](z) =

d
/ f(t,z,v) dvde =0, t€[0,T]
R3/R3

i{/R5 R3m|2v2f(t,a:,v) dvdzx + 87360 /W/de[f(t)]’(;)_p[m{(t)](:c’) dx’dx} = 0.

2. We have the following balance for the total momentum

T /R3 f (t,z,v)mv dvdxq/RS RSf(t,az,v)v/\Bdvda: :/p[f(t)]E[f(t)] dx

RS

~ ¢ /R Lo pisc) v BLF(0)] ELF (1) do
2
= o [ L iy v (B0 @ B 0] - PO 1) o o



When the magnetic field is uniform, we obtain the conservation of the parallel momentum

d
— / ft,z,v)m(v-e) dvde =0
dt R3JR3

and
d qB
— flt,z,v)m(v Ae) dvde = — f(t,z,v)m(vAe)dvdr ) Ae
dt¢ R3JR3 m R3JR3

saying that the orthogonal momentum rotates at the cyclotronic frequency w. = HB

/ f(t,z,v)m(v Ae) dvdex = cos(w,t) / fin(z,v)m(v A e) dvdx
R3JR3 R3JR3

+ sin(wet) / fin(z,v)m(v Ae) Aedudx, te0,T].
R3JR3

3 Average operators and main properties

We intend to investigate the asymptotic behavior of the particle densities (f¢).>o satisfying
(1), (3), (4) when £ > 0 becomes small. We assume that the initial particle density and the
B

external magnetic field B® = Ze are smooth

fin >0, fin€ CHR®xR?), B=Bee R

and let us consider T' < T'(fin). Under the above assumptions, we know by Theorem 2.1
that there exists e > 0 such that for every 0 < ¢ < er, there is a unique strong solution
e e CL[0,T) x R3 x R3), E* := E[f¢] € C1([0,T] x R3) for the Vlasov-Poisson problem with
external magnetic field B® = ge. As noticed in the proof of Theorem 2.1, we have uniform
estimates with respect to € for the L norm of the electric field £° and the size of the support
of the particle density f€. Let us denote by (X<, V)(¢; o, x,v) the characteristics associated
to (1)

i :% [E°(t, X°(t;to, x,v)) + VE(t; to, x,v) A BE(XE(t; to, z,v))]
(17)
X(to;to, x,v) =z, V(to;to,z,v) = v.
The strong external magnetic field induces a large cyclotronic frequency wé = ¢B®/m =

we/e,we = qB/m, and thus a fast dynamics. We are looking for quantities which are left
invariant with respect to this fast motion. By direct computations we obtain

AT VI AXW)] o e EUGX()
G| Oy | = (V0 K1) X7 (0) + e g AeXE )
VA A G (KO e VE) A (X (D)
e LX) e (Vatwe X)) VA0 — Sty
vAe(z)

saying that the variations of z+4& RN along the characteristic flow (17), over one cyclotronic
period, is very small. Notice that the electro-magnetic force writes

%Es(t,x) + %v Ae(z) = %(Eg(t, z) - e(z)) e(z) + ‘*’C&(f”) (v - EW> Ae(z)

and therefore we introduce the relative velocity with respect to the electric cross field drift

Ef(t,x) A e(x).

) (18)

V=0—¢



Accordingly, at any time t € R, we consider the new particle density

fe(t,x,0) = f¢ <t,:13,f) + sE[fs(tgg))A e@)) , (z,7) € R® x R3, (19)

It is easily seen that the particle densities f¢, fE have the same charge density
pFEOI=a [ Fmdi=g [ () do=pl ) teR,

implying that the Poisson electric fields corresponding to f€, fE coincide
E[f*(t)] = E[f*(®)], t€[0,T].

Therefore we can use the same notation E°(t) for denoting them. We assume that the
magnetic field satisfies

By := inf |B(x)| > 0 or equivalently wp := inf |w.(x)| >0 (20)
z€R3 z€R3

and therefore (18), (19) are well defined. Notice that the particle densities ( f%).>( are smooth,

fs € CH[0,T] x R? x R?) and uniformly compactly supported with respect to ¢ (use the

uniform bound for the electric fields (E¢). and the hypothesis (20)). Appealing to the chain

rule leads to the following problem in the phase space (z,0)

e - EfNe e OiE° Ne Ef Ne - EfNe e
O f +<v+€ 5 >-me €|:B+8z< B )<v+.€ 5 >]‘va

+ [%6Ae+%(E5-e) e| - Vaff =0, (t,2,5) € [0,T] xR x R (21)

f500,2,0) = fin <x,f} + EE[fin]gEl;\ e(x)> , (z,0) € R3 x R,

We are looking for a representation formula for the time derivative of the electric field £, in
terms of the particle density f¢. Thanks to the continuity equation

uplf7] + divaj[f7] = 0

we write

/

O = o | Ol — ) o 0

4req

= [ il - o) a
© drme Jps Val |z’|3

- pdive [ e il - o)

N 47‘(’60 Ve R:&’l"’g J

1. x—a S = E5(t, ") Ne(a)
I d " £ t / 3 t / ) d /.
vy [ 0w (i) + enlF o)) LA o

We introduce as well the new Larmor center 2 = x + SQZ\C e((f)), which is a second order

approximation of the Larmor center +€Uﬁce((f)) . The idea will be to decompose the transport

field in the Vlasov equation in such a way that & remains invariant with respect to the fast
dynamics. We will distinguish between the orthogonal and parallel directions, taking as




reference direction the magnetic line passing through the new Larmor center Z, that is e(Z)
(which is left invariant with respect to the fast dynamics)

0=1[0—(0-e(Z))e()] + (v - e(Z))e(Z).

Finally the Vlasov equation (21) writes
_ _ _ _ I _
OfE+E[fF ()] Vs fE+ea[f(t)] Vs f€+;-vm~, fe=0, (t,z,0) € [0,T]xR3>xR? (22)

where the autonomous vector field % Vg5 is given by

be s - - . e/ ~ we(T)
. Veis =[0—(0-e(2)) e(T) +eAs(x,0)] - Vi + E

(0 Ae(d)) Vi

and for any particle density f, a¢[f] - Vei,C [f] - V5 stand for the vector fields

*[f] Vo = (E[‘ﬂ he —Ai) Vit | =0, (E[@Ae> (@HE[@M) (23)

B
g [ Ak AP (m T el 2N ) (') da’ A e<x>] s

4dreg B sl —x B
T = (0-e@) (@) ¥+ [wnlw)o n =D L (B e(a)) et - 95
=1 fl-e(x)) e(z) — wed 1 elx sﬁ/\e(x) onelz) s| -V
= [RE o oyt [Lone (s GR) HET 0
+ (- e(2)) e(Z) - V. (24)

The vector field A% (x,0) -V, will be determined by imposing that the Larmor center  is left
invariant by the fast dynamics

bV ( ; Jﬁﬁ?) 0.

After some computations, the above condition writes

e, (P00 | s = 0, (20 - (- el e@)] - DA @ neta)

Cc wC

and therefore A (z,7) is well defined for a.a. (z,7) € R? x R3. Notice that for & small enough,
<1

that is
vAe
Wc Loo

the vector field AS is well defined on R? x R3. In particular AS is well defined if

a (e o) v oo
|7 (H el + |Vawell L ) <1.

3

wo wg

Remark 3.1
The vector field in the Viasov equation (22) is divergence free

divy s <ca[f] + ea®[f] + b;) = ediv, (E[];]?/\ e) — edivg

10
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We intend to study the asymptotic behavior of (22), when e goes to 0 by averaging with
respect to the flow of the fast dynamics generated by the advection field @ - Vg5 cf.
[6, 8, 10, 11, 12]. In order to do that, we concentrate on the main properties of this flow. As
in the two dimensional framework, we establish the periodicity of the fast dynamics.

Proposition 3.1 .
Let B € C}(R?) verifying (20) and e € CZ(R?). We denote by (X°(s;x,0), Ve(s;2,0)) the
characteristic flow of the autonomous vector field b°(x,0) - V5

d(f — [T — e(X%(5: 2, 8)) @ (= (53 2, D) V¥ (51, 0) + 245 (Y= (s 3, ), V2 (51 2, )
U 0 (532,8) (2,80 1 (5 2,)

XE(0;2,0) =z, VE(0;2,0) =0
(using the notation Xe(s;2,0) = X2(s;2,0) 4+ Ve (s;, ) A e(X(s;2,0)) Jwe (X (53 ,17)))cmd
by (X(s;x,0),V(s;x,0)) the characteristic flow of the autonomous vector field b(x,v) -
we(x) (DA e(x)) - Vi

(B, -

dx dv . -
T 0, T we(X(s;2,0)) V(s;2,0) N e(X(s;2,0)), X(0;z,0) =z, V(0;z,0) =0.
1. For any (v,7) € R? x R® and ¢ > 0 such that
az o xWel| Loe
wo wq

the characteristic s — (X, \~7E)(s; x,0) is periodic, with smallest period S¢(x,v) > 0.

2. For any (v,7) € R® x R® and ¢ > 0 such that

8 €|| oo Vaw oo 1
wo wp 2
we have 5
| X% (s;2,0) — X(s;2,0)| = |X°(s;2,0) — x| <e— v ‘ seR
wo
P (i) < 2T S )= < 2T
[lwell Lo wo ' [lwel[ Lo jwe(@)| ™ wo
. 47|
|S%(z,0) — S(x,0)| < ¢]|Vwe| Lo —5— 5
0
~ ~ a oo oo 2
|VE(s;2,0) — V(s;2,7)| < e|o]? (5” celle —|—47THVIMSHL ) , S€E [0, W]
wo UJO wo
and

wo wg

A (2, )] < 402 <

\V4 2 2
x b TWe o0 ]. p o
| A (2, 0) — Ag(x,0)] < e|of? [7 (”8 clle + [Vawell ) + ”3€||L]

1Owell> IIwacllLoo>

wo w? 2w}
where
v Ae(x)

we(x)

oA e(x)

) [0— (0-e(x)) e(x)] — Oye o) A (DA e(x)).

In particular, when Vzw. = 0, we have S¢(x,0) = S(z,0) = 27 /|we|.

Ay(z,8) = —0, (

11



3. For any continuous function u € C(R? x R3) we define the averages along the flows of
b- va:,f) y b - v:c,f)

L 1 S(z,0) . o ~ ~ 5 3
(u) (z,0) = 5. ) /0 w(X(s;2,0),V(s;z,0)) ds, (x,0) € R xR

B = — 1 ey (s;2,0), Vi (s;2,0)) ds, (z,0 3 3
. @0 = gy [ (s 0, P (s 0) ds, (00) RO xR,

T,V
For any R, Ry € Ry we have
| {w) |l (B(R)x B(Rs)) < UllLoo(B(R.)xB(RS))

| (W) oo (B(Ra)x B(Rs)) < Ul oo (B(R2)xB(Rs)), Rz = Ra +2eRs/wo
where B(R) stands for the closed ball of radius R in R3.

4. If w is Lipschitz continuous, then for any (x,7) € R3 x R® and ¢ > 0 such that
~ Oz ) Vzwe|| oo
e|o| (” (il(lL + 1 ‘:(%HL ) < % we have

u)_ (zr,v) —(u) (z,v . v B v
[ (2,8) = @) @O pa o 1o 4 510l oo 5] 4 4] T st oo 12
IS5 wo wo

- 4|0
+ sup |u($7v/)|\|vchHLoo|—2|.
|o'|=|9 “0
5. For any function u € CL(R3 x R3) we have the inequality
27
lu — (u) | L2r3xrsy < oTOHb Vi ull L2 (r3xR3)-

6. For any function u € C1(R? x R3), we have (u) € C1(R3 x R?) and
<ci Vi u) = ¢ Vaeg (u), <divx75(uci)> =divy5((u) ), 1<i<6

where '
¢ Vas =05+ (0y,e®@e—e®0y,e)0- Vi, 1€{1,2,3}
04'Vw,6: [0—(0-€e)e]- Vg, C5~Vm~,:e-vf,, 66-Vm~, =(vAe)- V.
The vector fields {c' - V5 ,i # 4} are divergence free, and div,zct = 2.

Proof.
1. We use the notation Xe(s;2,0) = XE(s52,0) + eVE(s;2,0) A e(XE (s, D)) Jwe(XE (552, D).
It is easily seen that |V°(s)| = |0, s € R and therefore we have

|0zel oo 4 | Vaewel| Lo

3 <1, seR

o(¥° (s, )

saying that AZ(X®(s;x,v),Ve(s;x,0)) is well defined for any s € R. By the definition of AZ

we know that X°(s) remains constant with respect to s € R

< v Ne(x)

Xe(s;2,0) =x+e—>, SER
( ) ()

12



implying that the parallel velocity is left invariant

% ((5) - e(@*(s))) =0, s <R

and that the orthogonal velocity rotates around e(Z)

Ve(s;z,0) =R (—/ we(X (052, 0)) da,e(:ﬁ)) v, seR.
0
Here the notation R (0, e) stands for the rotation of angle § around the axis e
R(6,e)é = cosO(I3 —e@e)E —sinf(EAe)+ (E-e)e, &R

As w. has constant sign, there is a unique S¢(x,?) > 0 such that
S¢(z,0) S€(z,0)
sgn wc/ we(X(o;2,0)) do = / |we(XE (o5 2,0))| do = 27
0 0

and therefore V¥ (S¢(x,%); z,7) = 0. We claim that X¢(S¢(z,0); z,¥) = z. It is enough to use
the invariance of the Larmor center

e+ TEINAED 5 nk
and to observe that

<<l | oy ~

< el |0, (;) o 105(S°) — 2

< 8”l~)| (HaﬂCGHL‘X’ + HVIWSHL‘X’> |92 (5°) —JZ‘.

wo wp

Our conclusion follows by (25).
2. By the definition of the vector field AZ(z,?) - V,, we deduce
| A% (2, )]

o, <v/\e> o, (v/\e>
We L We oo

T Rl xWcl||Lo>° ~ 830 i vaz c||L®® ~
< 2’1~)|2 <||a e”L + Hv w ||L ) +€’v‘ <H eHL + || w HL ) ‘A;((B,U)’

) o2
|0 + [|0zell e —— + &
) wo

A (e, 5)]| < \

2 2

0, oo v i~ A (2,0
< o (12l IVl , 10

implying that

2

10) oo v o
5o 0)| < o (12l [Tl

Notice that

oA e(x) - ~ A e(x) |52
I3 + ¢, A (2,8) — Ag(z,0)| < 2|0, el oo 0
1o, (224 | k) - (o) (25| etowelun
o3 _ |e(®) —e(x) oA e(x)
+5H8IGH%OQW—8 + (9] — — Oge(x) o)
2
e (suellin Vet Douelsz o | € 10ne
wo wp wo 2 wp

13



and therefore

45(00)  Aute ) < [ 12 <0 (28 g - vt

~ Ozel| L~ Vaw co -
efof (1oelem | IVl o )

Wo
d Y > g]o?
< 7€|1~]’3 <H iBeHLOO + H $w§‘L°°> + 5” xe!Loo |’D|3
wo wh 2wy

The invariances of Z and |7| yield

X5 (s) — x| = |e

o) welX(9)) sek

GAe(z)  VE(s) Ae(XE(s)) ‘ <2l

wo

It is easily seen that 27/ ||lwe| pe < S€(z,0) < 27/wp. Notice that we have

2e|v 2e|v
)]~ Vel 20 < oo (O (0))] < ()| + [Vl 1.
Averaging with respect to o € [0, 5%(x,?)], we obtain
20| 2 2¢e|v]
— 00 < oo .
|we(w)] — [[VawellL wo  S¥(x,0) = |we ()] + ([ Vawe|lL w0
Thanks to the formula |w.(x)| = S(Qx”f)), we deduce
1 1 2[4
P _ < ||V ywel oo 2
T Sé(x,0)  S(z,0) ellVawelle wo
and
i i U S| 1 A3
‘Sa({L‘,’U) - S(l’,U)‘ = Sa(x,’l})S([L',U) Sf(x,f)) o S(.CU,@)‘ < gvawleLoo wg :

It remains to compare the velocities {75(3; x,0), \~7(3; x,v). We will use the inequality
IR(0,e) — RO, )| <|0—0|+5le—¢€|, 0,0 eR, |e|]=|¢| =1.
For any s € [0, 27 /wp] we write
(Ve = V) (s;2,0)] = ‘R( / we(X° (o)) da,e(:%)> ?—R </ we(X(0)) da,e(:v)) 0]
0
< | [ o))~ wrlx(o))] do 4 51el@) — el I

2¢|7|

e -
< (vawcum 1 5Bsel| ’0') 4
15) oo oo
o (5” el +47T||vchuL )
wo

w
3. Tt is a direct consequence of the invariances X(s;z,0) = x, W(s; x,0)| = |9]
o Ve(s;,0) A e(XE(s;2,0)) o Ae(z) N
xg . ) b ) b — r\? . —
(s52,0) +¢ oo (5: 2, 7)) T +e wo(@) V=(s;2,0)| = [0]
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4. It is a direct consequence of the previous statements. We have

Se(x,) o ’\~7€ " \~7 d
~)/O (25 (s), V2 () — u(X(s), V(s))] ds

1 1
Sé(x,0)  S(z,0)

S¢(z,0) B
+ /S |u(X(s),V(s))| ds

(2,0)

T s) W) ds
[ . v s+ o

Our conclusion follows by noticing that

1 S¢(z,0) ~ )
- e e . < .
Se(z, ) /0 |u(X(s), V¥ (s)) — u(X(s),V(s))| ds < Lip(u)
sup (DCE(S) — X(s)| + |V<(s) — \7(5)|)
0<s<27 /wo
< ctip)[2 [2-+ Souelela] + 4V
wo wo
and
1 1

S (z,0) B
- / [u(X(s), V(s))] ds

S(z,0)

T (s). D)) !
/0 () V(o)) ds + 57

Sé(z,0)  S(x,0)

\% o0
< 4e|v| sup \u(x,@')]%
w

|0 |=13] 0
5. For any (z,7) € R3 x R?
1

S(z,0) B
(u) (z,0) — u(x,0) = S0 7) / [u(X(s;2,0), V(s;x,0)) — u(x,v)] ds

x 0
1 S(x,f)) S d ) ~ i
“sem ) [ a0, Ve dods

1

S(z,0) s N
= S(a:,f))/o /0 (b-Vu)(X(o;2,0),V(0;2,0)) dods

1 (2 [T .
= — /l ! (b-Vu)(X(o;2,0),V(o;x,0)) dodf
2 0 0

implying that

1 2 Z—’r N
[ (2,0) (. D) < o [ [ (b V) Xloi0,8), Vo3, 9)] dod
T Jo 0
27
= [ 10 V) (X(os0,0) Viosa,0)] do
0
Taking into account that (z,7) — (X(U;x,f)),f?(a;x,f))) is measure preserving, it is easily

seen that
27

wo ~ 2
[ {u) —ullp2 < /0 1I(b- V) (X(o; -, ), V(o)) 2 do = C‘TOHb'VUHL?-

6. For any (z,7) € R3 x R? we have

27
(u) (z,0) = 217T/0 u(z, R(—0,e(x))v) df
27
= % ; u(z,cos0(0 — (v - e(x))e(x) +sinb(v Ae(x)) + (0 - e(x))e(z)) db
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and therefore (u) € CH(R? x R3), provided that e € C'(R3). By direct computations we
check that all the vector fields (¢’ - Va5 )i<i<e are in involution with respect to (0 Ae) - Vy,
see Remark 3.2 for a more general result. Thanks to the commutation between the flows
of ¢ - V.5 and (9 Ae)- Vg, we deduce easily that the average operator along the flow of
(0 Ae) - Vi commutes with the flow of ¢ - V5 , and thus with ¢ - V.5, for 1 <i < 6. It
remains to observe that the average along the flow of (0 A e) - Vj coincides with the average
along the flow of w.(¥ A e) - Vi The divergences of the vector fields (¢! - Ve )i<i<e are
constant along the flow of b- V5 , implying that

dive 5((u) ') = ¢ - Vuz (u) + (u) divy 5¢'
< xvu>—|—<ud1vxvc>
<d1vgw uc >, 1<i<6.

Remark 3.2
For further developments, notice that for any vector field £(x) - V,, the vector field

cl] Vs =E() Ve + 0N (0ge€ Ne) Vi =E(x) Vg + (0§ @ e —e® 0,e8)0 - Vj

is in involution with respect to (U A e) - V. For justifying that, it is convenient to use, for
any a € R3, the notation M[a), standing for the matriz of the linear application v € R3 —
aNveER3. We appeal to the formulae

MlalMbl=b®a— (a-b)l3, MlaAbl=b®a—a®b, a,beR>
The commutator between (0 Ae) - Vi and c[€] - Vg5 writes

(D Ae)-Va(€(x),d A (OreE Ne)) — [€-Vy+ A (Ozeé Ae) - Vi) (0, Ae)
= (0, —M[0ze& Ne](v Ae) — M[v]0ze& — Me]M[0ze€ A e]D).

We are done provided that
M[0,e& N e]Me] + M[0ye&] — Me]M[0.e& A e] = 0.
Indeed, we have

Me]M[0.e€ N el — M[Oyeé Ne]M[e] = (e Ne) R e — e ® (Dyel A e)
= Mle A (0€§ N e)] = M[0ye]

Notice that the periods S, S¢ are left invariant along the flows of b-V, 5, 0°-V, 5 respectively,
as well as the averages (u), (u).. If u is a C' function, we have

1 S(x,0) d 5
- Vs ) (2.0 = 575 /0 Lu(X(s), V(s)) ds =0, (a,7) € B x B
and similarly (b°- V.5 u)_ = 0.

We introduce the application 7¢ : R? x R? — R3 x R3, given by

v Ae(x)

we(x) 7

T¢(z,7) = <x+£ 73> , (z,7) € R* x R®.
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It is easily seen that for any application ¢(z,?) in the kernel of b -V, ie., ¢(z,0) =
Y(z, |0 Ne(x)],v-e(x)), the composition ¢ o T¢ belongs to the kernel of b° - V, 5 . Indeed we
have

(o T%)(x,0) = (T, 0) = (&, [0 Ae(Z)],0 - e(T))
saying that ¢ o T¢ is left invariant along the flow of b° - V5 . Another useful formula is
oA e(x)

we(z)

Oz 5TD" = XNboT°, N(x,0) = , T=x+¢ (26)

and can be obtained by direct computation. Notice that for any & € R3¢ > 0 such that (25)

holds true, the application z — x + 8?::6((;3) is a C! diffeomorphism of R3. Indeed, the above

application is injective on R3, because

o Ae(xy) 0 A e(x2)

r1+€ =x9 +¢
we(z1) we(2)

implies

|x1 —xo| =€

we(we)  we(zy wo wd

and therefore x1 = o, thanks to (25). Observe that the Jacobian matrix I5 + €9, (f’Ae("E)) is

we(z)
invertible, for any = € R? and therefore the image of x — z + Ev/\e(%) is an open non empty

set in R3. Tt is easily seen that this image is also a closed set in R3. As R3 is connected, we
deduce that {z + awe((;)), r € R?} =R3 and that 2 — = + 5%((;)) is a C! diffeomorphism of
R3.

We establish now the following relation between the averages along the flows of b - V, 3,
b° - Ve -

Proposition 3.2
Consider (z,7) € R3 x R3 and € > 0 satisfying (25).

1. For any s € R we have
T=((X%, V) (532, 9)) = (X, V)(A* (532, 9); T (2, 7))
and 5 (0,0) )
A (S (z,0);2,0) = /0 A (X5, V%) (o;2,0)) do = S(T°(x,0))

where the function A® is defined by

A (s;2,0) = /0 N (X, V) (o5 2, 0)) do.

2. Let u € C°(R? x R3) be a function such that suppu C {(x,?) : |0] < R} for some

R > 0. For any € > 0 satisfying eR (Ha”f)!wo + HV“ZZ||L°°> < 1 we have
0

(A uoTe) = (A°) (u)oT".
3. Assume that Vyw. = 0. Let u € C°(R3 x R3) be a function such that supp u C
{(z,0) : |o| < R} for some R > 0. For any ¢ > 0 satisfying 5RH8’“6HL°° < 1 we have
(o), = (u) o T*.
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Proof.

1. As A:(z, D) is well defined for any (z,7) € R? x R? and e > 0 satisfying (25), and since
|Ve(s;2,0)| = ||, we deduce that (X2 (s;x,7), VE(s;2, 7)) exists for any s € R. Let us consider
A(s;2,0) = [§ A((X5,V¥)(032,9)) do,s € R and +°(s;2,0) = T(X(s; 2, ), V(s;2,9)).
Observe, thanks to (26), that

(Zf T (X (s; 3, ), V2 (51, 0))b° (X (s: 7, B), V2 (51 2, 5)
= N(XF (852, 0), VE(s;.,0))b(T (X (5, D), VE (83, D))
dAs,
=3 (s;2,0)b(7*(s;2,0)).
Notice also that
%(X, V)(AS(s;2,0); T (2, 7)) = d(f(s;x?@)b((xv V)(AS (552, D); T (2, D))

Since ¢ (s; z,7) and (X, V)(A®(s;x,); T¢(x, 7)) coincide at s =0
Y (0;2,3) = T°(x,0) = (X, V)(0; T°(x, 7))
we deduce that
T2 (X5 (852, 0), VE(s52,0)) = 7% (s52,0) = (X, V)(A°(s;2,0); T(2,0)), seR.  (27)

Recall that X¢(s;z,7) = &, s € R and fOSE(m’{)) |we(XE (052, 0))| do = 27, Therefore we obtain

(5% (x,0);2,0) = e —wc(xs(a;x,f;)) o= ! e we(Xe (o, v o
= | T Gy
21 “(z,0
= o) @)

2. Consider first (x, ) € R? x R3 such that |#| > R. Obviously we have |V(s; z, 0)| = 0| > R
and (u) (z,0) = S(; ) OS(x,v) w(X(s;2,0),V(s;x,0)) ds = 0. Similarly we have |V*(s;z,7)| =
|o| > R and

1 S (z,0) N - _
uoTE) — EO(XE.VEV(s: 2. D (s 2. 0). VE(s: 7. —
WueT, = g [ A T s )l 5,00, P (s s =0

where X = X¢ + svi/c\(e:g; ). Therefore our conclusion holds true in this case. Consider now
|o] < R. Thanks to the first statement, we can write
o T, (1) = g [ A V), o, 0), V(s ,7) s
¢ Se(x,0) Jo
1 S:@d) q i . o
= SW/O &A (s;2,0)u((X, V)(A®(s;2,0); T (x,0))) ds
1 S(T# (x,0)) -
= 56(5575)/0 u((X,V)(o;T%(x,v))) do
_ 1/56(%@ X((0F, V) (02, 5)) dor {u) (T (x,3))
Se(x,0) Jo ’ Y ’
= ((X%)c (u) o T%) (2, 0).

3. It comes from the points 1. and 2. with A®* = 1. O
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Remark 3.3
The conclusions of the second and third statement in Proposition 3.2 remain valid for |v| <

R <R <||3T€||L°° + ||VTWFHL°°) <1 ifu c CO(R3 X R?’).
wo

wo

When establishing the convergence toward the limit model, we need to introduce a corrector
term. More exactly, we need to invert the operator (0 A e(x)) - Vi on the set of zero average
functions. We will use the following result.

Proposition 3.3
Let z € CO°(R3 x R3) be a continuous function, of zero average

1

21
(2) (2, 7) = 2W/O 2 (2, R(—0, e(x))) d0 = 0, (z,7) € R® x R®.

1. There is a unique continuous function u of zero average whose derivative along the flow
of (D Ne(x)) Vi is z
(o Ae(x)) - Vou = 2(x,0), (z,9) € R® x R3.
If z is bounded, so is u, and

[ullco(B(r) xB(R)) < Tl2llcoB(R.)x B(RY))» for any Re, Ry > 0.
If supp z C B(R;) x B(R3), then supp u C B(R;) x B(Ry).
2. If z is of class C', then so is u and we have for any Ry, R > 0
IVsullcop(ra)x B(Ry)) < TV3IIVe2llco(B(R)x B(RS)
IVaullcos(raxBRs) < C (IVazlloomr)xB(Rs)) + Roll Vazllcosr,)xB(Rs)))
for some constant C depending on |0y €| oo -

Proof.
1. It is easily seen that

2T
u(z, ) = 217T/0 (0 — 2m)2(2, R(—0, e(2))5) 46, (z,) € R® x RS,

2. We appeal to the vector fields (¢’ - Va5 )i<i<e which are in involution with (0 Ae) - Vg,
see the last statement in Proposition 3.1, Remark 3.2. We have

(D Ae(x)) Vi(c" Vesu)=c Vg2
<Ci Vi z> =c . Ve (2) =0, <ci Vi u> = Ve (u) =0.
As before, we have

. 1 [27 ‘

(¢"Vas u)(z,0) = / (0—27) (" Vs 2)(2, R(—0,e(x))D) A, (x,7) € R®*xR3, 1 <4 <6.
T Jo

Since |0 A e(x)] is left invariant by the flow of (0 A e(x)) - Vi, we also have for any (x, ) such

that 9 Ae(x) #0

¢t 5 u)(x,v 2 ¢ Vas 2 - .
(¢ Vg u)(2, ):1/0 (0 — 2m) (rv/\) (z,R(—0,e(x))v) db, i € {4,6}.

|0 A e(z)] 27 el
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We deduce that for any (z,0) € B(R,) x B(Rj) such that v A e(x) # 0

(€ Vo u) (@, )
5 A (o)

< 7| Vazlloos(r,)xB(Rs), T € {4,6}-
We also have for any (z,0) € B(R,) x B(Ry)

[(e-Vau)(@,0)] = |(c° Va u)(@,0)] < 7l|e®-Vaz 2lloosra)xBiRs) < T VazllooB(r,) < B(Rs)-
We obtain, for any (z,v) € B(R,) x B(R;) such that 0 A e(z) # 0

: U 5.
|V5U(ZE,1~))‘2 _ |( ’v f\ve( ))(|2 )| + |(C5 . v:c,f} u)(x,z?)|2 + |(

< 37%|| V5 Z”co B(Rz)xB(Rz)"

As u is C! (because z is assumed C), we deduce

IVstllcoB(ryx B(Rs) < TV3IVazllcoB(r.) x B(Rs)-

The estimate for [|Vyullcop(r,)xB(Rs)) follows immediately, using the fields ¢ - V5 i €
{1,2,3}
e Vas ulloo(ra)xB(ra)) < Tlie' - Vi 2llooB(ray«Bro)) 1 € {1,2,3}

and the previous estimate for ||Vaullcop(r,)xB(Rs))- O

4 The limit model and convergence result

We concentrate now on the formal derivation of the limit model in (22), as £ goes to 0. We
expect that the solution of (22) writes

fo=fooT 4 eXfloT  +2f20T° +... (28)

where b -V, 5 f-=0, < f81> = 0. The idea is to split the contributions at any order into

average and fluctuation. As fs € kerb-V; 5, we know that fg oT* € kerd® -V, 5 and thus
<]‘~’€ o T‘5> = f. o T¢. By Proposition 3.2 we also have </\€f€1 o T€> = (\%), <f€1> oT* =0
€

and there%ore
<f€> =f.oT° +0O(?), fF— <f€> =X floTe + O(e?).

Accordingly, at the leading order, the particle density F has no fluctuation (provided that the
initial condition will be well prepared) and the averages at the orders 1,e combine together
in fa oT*. For any smooth compactly supported particle density f = f (z,?) we introduce
the notations, motivated by (23), (24)

a[f] : V:E,f) = (E[fg/\e — A:p(l‘,ﬂ)) -V — 0y (El[f;/\@> v-Vj

! i z—a T (! / -
* g [ [ @) 4 )]
co[f] - Vas = (0-€)e- Vo + %(E[f] ce) e Vg —[0Adpe(BAe)] - Va (29)

20



5 8T56~OT€*)\6 Xy floTe
alfl Vap = lim = foT] 8(5’“’ DeolfleT?) g (30)

The last notation is justified by the expansion
E[foT) - Ves (foT?) = X(2,8)(colf] - Vai [) o T +e(cr[f] - Vas f) o T+ O(%) (31)

for any smooth particle density f , which will be used in the sequel. The expression for the
vector field ¢1[f] - V3 follows by straightforward computations, see Proposition 5.6, using
the definition

U Ve = (5-e(®)) o) Vot (B ela)) ele) - Vs — () n DD g

Taking the average of (22) along the flow (X¢, Ve ) yields
() + (O] Vau (1)) +e(alFF W] Vo ) =0 (32)

3

Motivated by (28), we have
0 () = (Ouf) o T" + O,
For the contribution of the term ea®[f¢] - V.5 f¢ observe that
a*[f*] Vai [7 = alf] Vags [7+ O(e) (33)
alfe o T%)- Vi (fo 0 T%) + O(e)
N(alfe] - Vi fo) o T 4+ O(e).

It remains to analyze the contribution of ¢*[f¢] -V, ; f°. Since <f€1> = 0, we have p[f!] =
0, E[f}] = 0, B[\ f} o T¢] = O(¢) and therefore
CIF) - Vaafe = Elfe o T 4 X Lo T Yoy (oo T5 + X 10T + O (34)
= E[fe 0T Vi (f o T%) + e [fe 0 T7] - Vg (A f2 0 T7) + O(e?)
= N (colfe] - Vi fo) o T° + eX*(ea[fe] - Vo fo) o T°
+eX(colfe] - Vi f2) o T + O(7).

Thanks to the second statement in Proposition 3.2, we have

e (@) Vs f7) =& (X(alfi) - Vus fo) o T+ O(e)). (35)

=), (alfe]- Vas f2) o T + O(Y)
—¢ <a[f€] SV f€> oT® + (’)(62)

and
(C1F1 Voo F) = (F(@lf] - Vag o) o T%) +e(X(@lf] - Vag ) oT%)  (36)
e (N (lf] - Vas 1) o %) +0()
= (), (ol fe) - Vg fo) o T° 2 (0, (lfi] - Vi fo) o T°
+20). (ol o]+ Vi f1) 0 T2+ O()
= (colfe] Vas o) o T+ (ilfe] - Vig fo) o T°
+e{colfe) - Vs 1) 0 T2+ O(e?)
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where in the last equality we have used the relation (X\°). = 1+ O(£?). By combining (32),
(35), (36) and keeping all the terms up to the second order, we find the following model for
the particle density f.

Ocf+ (eolfe) - Vo o) +e ((alfdl + el fe)) - Vao fo) +e (eolfel - Vo f2) =0, b-Vf = 0.
. (37)
We need another equation for the fluctuation f1. Replacing in (22) the expressions in (33),
(34) yields
atfe oT* + EAE(atfgl © Ta) + )\e(CO[fE] : vx,f) fs) oT* + 5)‘6((@[]?5] + Cl[fs]) : v:(:,f) fe) oT*

£

_ _ b _ _ ~
+eX(colfe] - Veu f2) o T + z Vao (feo T +eX flo T+ f2 0 T%) = O(?).
(38)

Taking the difference between (38) and (37) (after composition with 7°) leads to
5)‘6(8tf51 o Ts) + )‘E(CO[fs] : vx,f; fe) o TE - <CO[JE€] : vx,f) fs> o TE
PNl + el Vas ) 0T — < {(alfll + alf]) - Vap J2) o T
+ 5/\8(00[]2:5] : vx,ﬁ fgl) oT® —¢ <00[f5] : v:cﬁ} JE51> oT*
+0°-Vas N floT +ef20T%) = O(?)
because fa oT® ekerb® - Vz5. As A\* =1+ O(e), the previous equation also writes
58tf51 oT* + A° (CO[]EE] Vi fa - <CO[fa] Vi f£>) oT* + (A —1) <00[fa] Vi ]Ea> oT*
+ ¢ ((alfd + elfe) - Voo fo = ((alfe] + a1l fi]) - Vou f2) ) o T° (39)

+e (Co[fe] Vs f2 - <Co[fe] Vg f1>> oT*
0 A 6(;3”) wa(c() T) 5

+0°- Vs [fsloTE— flo T€+£f€20T€} = 0(e?).

Notice that by (26) we have

b Vs (floT®) =0 taT(Vas f1) o TS = N(b- Vs f1) o TF

)

f
wac(:c) JZ51> o T‘E]

and

- (e oA e(T) ‘ Vawe(Z)
o Vs (Bo =R
)

zst-VM |:<']g£2_1)/\6(

(2)  we(z)
-l (-5 )

The equality (39) suggests that the fluctuation fal satisfies the problem

Colfe) Vs fo = (eol o] Vs fo) +b- Vg fL =0, (1) =0. (40)
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Moreover, considering the contributions of order e in (39) leads to the definition of the
corrector f2

vAe(z) Vywe(x)

O ) Nl Vas fo) @l alf) Vas fo @1)
- <(a[fs] + Cl[fs]) : vx,f) f€> + CO[ NE] ) Va:,fz fal - <CO[f€] : Vx,f) f51>
o (2 _vAe(@) Viwe(z) 4 _
w0V (2500 R R) 0

We have obtained the limit model (37), (40), to be supplemented by an initial condition.
The well posedness of this model will be established in Section 6. We will discuss the ex-
istence/uniqueness of smooth solutions on any time interval [0,7], if £ is small enough cf.
Theorem 1.1. Notice that (37), (40) is a regular reformulation of the Vlasov-Poisson system
with strong external magnetic field. Indeed, replacing ¢ by 0 in (37) leads to the zero order
model

Ocfo + <(’5 ce) e Vafo+ %(E[fo] ce)e-Vifo— [0 (Oee(dAe)]- Vaf0> =0, b-Vfo=0.
We are ready now to establish rigorously the second order approximation f‘e = fs oT® +
eXfloTe + O(e?).

Proof. (of Theorem 1.2)
Clearly we have

sup {{lplgellloge) + llplgelllzoe sy} < +o0.
3

By Proposition 3.3 we obtain supp () C {(#,7) € R? x R? : || < R, |9] < Rs} and it is
easily seen that

FElg:]||poe RS
supp f(0) C {(x,v) ER3xR?: |v| < RS :=R; —1—5‘[95}’&, |z| < R := R; +5w”}.
0 0

Therefore the particle densities (f¢(0))o<c<1 are uniformly compactly supported and we have
sup || f(0)[lc2r3xrs)y < +oo. Notice that infOT(fs(O)) > 0, see Theorem 2.1, and thus we
e>0 e>

can pick a time 0 < T' < infOT(fE(O)). By Theorem 2.1 we know that (f¢). are uniformly
e>
compactly supported in [0,7] x R? x R? and

P 15O lle2(mexre) + 106 (O)llor e xrs) + 1B (0]l c2@e)] < o0, &> 0.
tel(o,

We deduce that (f). are uniformly compactly supported in [0, 7] x R3 x R3 and

sup_[LF5 (1) 2oy + 107 (O)lor gy | < +00, 2> 0.
t€[0,T]

The particle densities ((ge)). are uniformly compactly supported in R? xR?, we have sup || (ge) lcs rsxra)y <
e>0

+00, and therefore we know by Theorem 1.1 that the particle densities ( fa)g are uniformly
compactly supported in [0,7] x R? x R? and

sup [“fa(t)"03(R3><R3)+||atf8(t)||02(]R3><R3)+”E[fa(t)]HC’?’(]R?’) < +oo.
e>0,t€[0,7T
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Clearly we have co[fg] -V fg, <c0[f‘g] Vi f5> € C%(R3 x R3) and by Proposition 3.3
applied to

CO[fs] Vg fs B <CO[fe] Vg fs

We We

>+(Me)-vﬁf;:0, <fg>:o

we deduce that f1(t) € C2(R? x R3?). We also have 8;(co[f:] - Vs f2), O <co FAR2Y f€> €
Ccl (R? x R3) and by appealing one more time to Proposition 3.3 (noticing that <8t f€1> =
Oy <f€1> = 0), we obtain 8, f(t) € C}(R? x R3) and
sup [ F2(O)llo@oes) + 10 (O)llcr@owrs) | < +oo.
e>0,t€[0,T]

Finally we define the corrector ff by solving (41). More exactly we define f? = Z\f(%) .

2GS f2 + ue, where {uc) = 0 and

oAe(x) Viywe - . ~ . )
we(z)  we(x) <Co[f5] Ve f€> + (alfe] + aalfe]) - Vag fe

- <(a[f5] + Cl[fa]) : vx,f) fa> + CO[JEE] : v:c,ﬁ .]Egl - <CO[]EE] : va:,f) ‘}E€1> +0b- vx,ﬂ ue = 0.

o ft -

Thanks to Proposition 3.3, see also the expression of the field ¢;] fe] - Va5 cf. Proposition
5.6, it is easily seen that

sup  [[Jue(t)llorrsxrs) + [10kus(t)[|comsxrs)] < +o0
£>0,t€[0,T]

which implies

sup [H]?(t)”Cl(Ri”xRB) + Hatf52<t)”CO(R3><R3)] < +o0. (42)
e>0,t€[0,7T]

Multiplying (40) by A°, one gets after composition with 7
N (colfe] - Vi fo) o T = N (colfe] - Vi fo) 0T 4+ 8- Vg (f0T%) 0. (43)

Similarly, multiplying (41) by £A® yields, after composition with 7

cUNE(T) Vawe(T)

®) ) (O Ve fe)oT (44
+ X ((alfe] +elfe) - Vg fo) o T = X ((alfe] + 1l ) Vg fo) 0 T°
+ X (colft] - Voo 1) 0 T = X (col o] - Vi f2) 0 T

b Ae(x) Vawe(r) ~1> OTE:| _0

we () we(w) °°

(e floTe) — e

el g (0T -2t Vs | (
A straightforward computation shows that the functions

8. =5 - Vas K/\ BRI V”WC@> (fio Ta)}

we(7) we (%)

+ (AE —14entl e(f) . Vjﬁ(;’?)

colfs] Vg fe) o T¢
) )

we(T
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satisfy
0:(t
N O = (45)
£>0,t€[0,T] €

Combining (43), (44) we obtain

OUNFL 0T + 820 T%) + Xo(col o] Vi o) o T° = {eolfe] - Vi fo) oT°  (46)
+e((@lfe + erlf)) - Vo ) o T =2 ((alfil + alfe]) - Vig fo) o T°
te(eolf] - Vs 1) 0 T = e (ol ] Vo 1) o T°

+ Z—E v (a)ffal 0T +2f2 0 T5>

=20, f2 0 T° + 0. + 6.
where
b i=e(1= ) [((@lfe] + alfi]) - Vi fo) o 7% = ((al ] + 1)) - Vs fo) o T°]
(=) [(colft] - Ve f) o 7% = (col o) Vo f2) o T°] .

Clearly, the functions (9,). satisfy

5. (t :
sup | ()||C;(R3><R3) <o (47)
£>0,t€[0,T] €

Adding to (46) the equation (37) satisfied by f- (after composition with T¢), together with
the constraint % Vi (fe0T¢) =0, we deduce

8t(fs oT* + 5)\Efsl oT* + 52fs2 oT®) + /\E(CO[JEE] Vi JFa) oT* + E(Cl[fa] Vi JEE) oT*
+ 5<CO[JE€] Vi fal) oT* + E(G[fs] Vi fe) oT*

6 ~ ~. ~
$ 0 Vs (FoT 4 ex o1 + 220 T)
13
=e20,f2 0 T° + 0. + 0. (48)

We compare (48) to the model of the particle density f°

£

Of* + ] Vag o+ 20 ([f] - Vo o+ = Ve =0, (49)
We are looking for an estimate of the L? norm of
= ff— fooT" —5>\5f51 oTE—EZfEZOTE.

€
Taking the difference between (49) and (48) yields

£

0ir® + <c€[f8] +ea®[f] + bg) Vo 1"+ TS +eTg = =0 f20T° =6~ 0. (50)
where the transport terms 7,7, write
T2 (t,2,0) = E[fO] - Vag (fe o TT+ X f o T+ 220 T%) = X (colfe(t)] - Vi fo) 0 T
—€ <C1 2] Vi fo+ colfe) - Ve fel) oT*
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To(t,2,0) == a*[f*(t)] - Vi (foo T +eXfl o T + 20 T%) = (alfe] - Vas fo) o T°.
By Remark 3.1 we know that the vector field (cs [£5] + ea®[f] + %) Vg5 is divergence free
and therefore, multiplying (50) by ¢ and integrating by parts yield

1d
/ /(7”5)2 dodx —i—/ Ti(t,x,0)rc(t, z,0) dode +€/ T (t,z,0)r(t, z,v) dodz
2dt Jrs)gs R3JR3 R3JR3

(51)

= —/ / (628tf3 oT® + 6. + 55> re(t, z,0) dodzx.
R3JR3
We denote by C any constant depending on m, €q, ¢, T', w¢, € and the uniform bounds satisfied

by the initial particle densities (gc)c, but not on e. The bounds (42), (45), (47) and the
uniform compactness of the supports of f-, f1, f2 imply immediately that

< C€2Hra(t)HL2(Rsst), te€[0,7], 0 <e <er.

/ / (528tff oT* + 6. + &;) r€(t) dodx
R3JR3

(52)
We claim that the following inequalities hold true
175 ()l 2o sy < C(E° + ()| L2(rsxrs))s ¢ € [0,T), 0<e<er (53)
and
17z Ol L2®sxrsy < Cle + 1r°(D) || L2msxrs)), ¢ €[0,T], 0 <e <er. (54)

Let us analyze first (54). By Proposition 3.1, we know that [A5 (2, 0) — A (z, 0)| < Ce[]?, and
thanks to the uniform bounds of (f:)e, (f1)e, (f2)e (together with the uniform compactness of

their supports), we deduce that (use also the uniform compactness of the supports of (f):>0,
the boundedness of (E[f¢])e>0 in L™ cf. Theorem 2.1 and the elliptic regularity results in

order to bound (E[f¢]).>0 in L?, together with their space derivatives [28])

1a*[f7] - V(Je o T= + eX*fL o T° + 22 0 T%) — (alfe] - VJ2) o T% 2
< Cet |alf]- V(fe 0 T%) = (alfe] - V J2) 0 T7| 2
< Ce +||(9T%alf] = alf] o T%) - (Vf2) o T% 2
< Ce + |[(alf] = alfe o T¥)) - (Vf2) 0 T7 2.

By elliptic regularity results, the quantity
I(alfe] = alfe o T°]) - (Vo) 0 T%| 2
is bounded by the L? norms of charge and current densities
1pLf7] = plfe o Tl 2 + 5(F7] — [ fe 0 T¥]I 2

and thus by the L? norms of the particle densities || f¢ — f. o T¢|| ;2 < ||7¢]| 2 4+ Ce, saying that
(54) holds true. We concentrate now on (53). It is easily seen, by elliptic regularity results,
that

I(ELf] = [ feo T+ eXNfloTe]) - V(feo T + X floT +2f20T%)| 2 (55)
<O|ff = feoT —eXfloT?|| s
< C(||r g2 + €2).
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As the particle density fel has zero average, we deduce that p[ fal] = 0 and therefore
1B fL o T¥|| 2 = | BN 2 o T° = fll|2 < Cel| XL o T = |2 < CE>.
The above estimate allows us to write
(oo T2+ X floT] = [fo o T7)) - V(fe o T + X[l o T° + 2 f2 0 T7)|| 12 < C%.
(56)
We are done if we establish the estimate
IE[fe 0 T V(fe 0 T +eX°f1 0 T%) = X(eol fe] - Vo) o T° (57)
—e(alf] Vet elf] VI o T2 < O
since, in that case (53) will be a consequence of (55), (56), (57). It is easily seen that
e [fe 0 T%) - V(A f2 0 T%) —e(eolfe] - VJ2) 0 T¥| 2 < Ce.
It remains to prove that
I [fe 0 T9) - V(fe 0 T%) = M(eolfe] - Vo) o T° —e(ea[fe] - Vo) o T¥| 12 < CE* (58)

This comes by the definition of the vector fields o, c1,¢ and the regularity of the particle
densities (f:)e, see (29), (30), (24), (31). Indeed, for any smooth, compactly supported
particle density f we have
Ef T V(foT?) = M(colf]- V) o T° —e(er[f] - V) o T*
. (Ff(s, x,0) — F(0, ,0)
€

- aeFf(O,xﬁ)) (Vf)oT*
te(elf] —alfloT?) - (Vf)oT?

where Fj(e,z,0) = AT f o T%] — Ne(x,0)co[f] o T¢. Clearly, when f € C2(R? x R3), the
function F 7 is twice differentiable with respect to e. Moreover, as

sup Hfs(t)HCQ(R3><R3) < 400
t€[0,T],0<e<er

and {f.(t) : t € [0,T],0 < e < e} are uniformly compactly supported, we have
I [fz 0 T%) - V(fe 0 T%) = M(colfe] - Vo) 0 T° = e(ea[fe] - V f2) o T .2
F; —Fz (0 -
( 7(e) — Fr(0) —35Ff6(0)) (V) ot

<e¢

3

L2
t@lfl - alflor) - (Vi) |

<Ce e (@lfd - alfd o T) - (Vo) o T°

L2

By the expression of ¢;[ fa], see Proposition 5.6, it is clear that

H(Cl[fs] —c1[fe] oT%) - (Vf.)oT?

<Ce
L2
and (58) follows. Coming back to (51), we obtain thanks to (52), (53), (54)

1= @)ll2 < [Ir(0)]l12 + Cte2lexp(Ct), 0<t<T, 0<e<er.
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The well preparation of the initial particle densities (f¢(0)). guarantees that sup % <

e>0
+o00. Indeed, for justifying this, it is enough to check

s%wmm—ﬁ@oz—wymﬂwH<+m. (59)
e>

As the family of electric fields (E[g])e is bounded in L*°([0,T] x R3), we have

aup 1O = ol + ol O)] = pladllie _

e>0 e

implying that
E[f°(0)] — E|ge]|| o
oy IO = gl _
e>0 €

By direct estimates we obtain

~50 . oTf —egtoTe
p O B0 il o .
e>0

By the fifth statement in Proposition 3.1 we have

G- oT¢ — £.(0) o T® Ge — {(q vAe) Vig
o VT = RO 0 Tl = @iy G0 0) - Siilss
e>0 £ e>0 € e>0 €
(61)
and
~1 e £l 5 ~1 7l
Sup ||ga oT fa (0) ol ”L2 < Csup ||ga fe (0)HL2 (62)
e>0 3 e>0 £
< @Csup llcolge] - Ve — col(ge)] - V (Ge) 22
wWo >0 €
4 AR G- — (g
_ —WCsup llcolge] - V(ge — (Ge)ll L2 < +00
wWo >0 IS

Notice that in the last equality we have used p[g:] = p[(ge)], implying that E[g.] = E[(g:)]
and therefore co[ge] = co[(ge)]. Combining (60), (61), (62) yields (59) and therefore

€
t
wp Il

5 < Ho00.
te[0,T],0<e<er €

We deduce that

Fe(t) — fo(t) o T —efi(t)oT*
ap WO =FWoT —cRO T
t€[0,T],0<e<er €

and in particular R B
E[fe(t)] — E[f-(t
wp VPO B
t€[0,T],0<e<er €
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Finally one gets for any t € [0,7],0 <& < ep

~ 2
e i (ees o he@ | BR@ A\ ]
/R/R[f (t.2,0) — (f. + f)(t el e )]dd

_ {/ [ a0) = (Fe+efd)
R3JR3
(t,x—i— wi (f)—l-gE[fE(t)]/\e> Ae,@+e(E[fE(t)] - E[f.(t)]) Ae)] dvdz

C

1/2

< IFE(E) = (Fo(t) + =72 0) 0 T (s + { Ll 3[(,& Lo (t,x L e<$),@>

we(z)
~ ) _ 2 1/2
—(fe+efh <t,x+e”:f + ZC(EU (;)(]ZEA) Ine 54 B ;(;Cf;] )] didz
< Ce? 4 Cel| B[ (t)) — ELe(0)]l o) < O
[

5 Equivalent formulation of the limit model

In the previous section we proved a second order error estimate for the solution of the Vlasov-
Poisson system with strong external magnetic fields (corresponding to smooth, well prepared
initial conditions), with respect to the solution of

Oufe+ (colfe) - Vo fo) +2 ((alfd + alfd) - Vas fo) +2 (ol ] - Voo f1) =0, b- V=0
(63)

olfe] - Vs fo = (lfe)- Vo o) +b- Vas =0, (1) =0. (64)
In order to establish the existence/uniqueness of smooth solution for the above system, we
are looking for an equivalent formulation. More exactly, we will compute the averages of the
vector fields a[f‘g] Vs ,co[fg] Ve, 1 [fg] -V cf. [12]. Let us consider the vector field
b(z,0) - Ve = (0 Ae(x)) - V. By Proposition 3.1 (see proof of statement 6), Remark 3.2,
we know that the vector fields (¢’ - V; 5 )1<i<e are in involution with respect to b -V 5 and
that the average operators along the characteristic flows of b -V, 3 b Vg5 coincide. We
introduce also the vector field

(v-e) - vAe
0, Ne)-Vy
oAl e(UAe) Vi + AR

v(x,0) Ve = — Vi, [0Ael >0

which will be used, together with the invariants of b- V, 5, for computing the average vector
fields. A straightforward computation leads to the following result.

Lemma 5.1 R
Assume that e € C?(R3). Let us denote by Y = (X, V) the characteristic flow of the vector
fieldb- V5 = (0 Ae(x))-V;

Y(0;y) = (x,R(—0,e(x))0) = (x,co80(0 — (0 - e)e) +sinf(v Ae)+ (v-e)e)
for any 0 € R,y = (x,7) € R3 x R3. The vector field v(x,?) - Vo5 verifies
LY (6;)v(Y (6;9) = v(y), 0€R, y=(2,9), [0 Ae(x)] >0,
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The average of a vector field is defined as follows.

Proposition 5.1
Assume that e € C1(R3). Let x - Vy5 be a continuous vector field on R3 x R3. There is a
continuous vector field in involution with respect to b- Vg5 , denoted (X) - Vas (the average
of x - Vi with respect to b- V5 ), such that

<X : vx,ff) u> = <X> : Vﬂc,ﬁ u

for any function u € CL(R? x R3) Nker(b- Va5 ) = CHR3 x R3) Nker(b- V.5 ) and

vy =00 v
Proof.
Let us introduce the group (¢(0))ger cf. [12]
P(0)x = Y (=0; Y (0;-))x(Y(0;-)), 0 €R

and consider the vector field )
1 T
= — 0)x dé.
W =5 [ el

It is easily seen that if x is continuous, so is (x), and that (x) is left invariant by the
group (¢(0))ser, saying that (x) is in involution with respect to b- V5 . For any function
u€ CHR3 x R3) Nker(b- V.5 ) we have uo Y (6;-) = u and thus

p(0)x - Vu = 0Y (=0; Y (0;)x(Y(0;-)) - "0V (0;-)(Vu)(Y (6;-)) = (x - Vu)(Y (6;-)).

We deduce that

1 2

1 2w
() - Vu PO Vuds = o [ (0 Tu) (¥ (6::)) 4 = (x- V).
T Jo

Similarly, thanks to Lemma 5.1, we have for any (z,?) such that |0 A e(x)] > 0
p(0)x v =0Y(=0;Y (0;)x(Y (6;-)) - Y (6;-)v(Y (6;-)) = (x - v)(Y(6;-))

implying that
1 2w

1 27
W=y [ @(9)X~Vd9=27r/0 (e D)V (85)) 46 = (x - v), |5 A ela)] >0,

Remark 5.1
Recall that the vector fields

¢ Vs =0 + (One®@e—e®0,e)0-Vs, ic€{1,2,3}

C4'Vx’f) = (f}—(f}-e) €)-Vf,, 05-Vz7{, =e-Vj, CG'Vm’f; :5-Vm~, = (’[)A@)'V{,
are in involution with respect to bV, . For any continuous vector field x(z,0) - Vg5 we
have

6

x(z,0) = Zai(m,ﬁ)ci(x,ﬁ), (z,0) € (]R?’ X R?’) \&, €={(x,0) : b(z,0) =0}
i=1
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where 5 5 ~
X — (Ozexz ®e—e® xexx)v'(@_@'e) )

|0 A el?
Xo — (Orexs ® € — e @ Dyexy)D
|0 A el?

(041,@2,043) = Xz, 04 =

(0 Ne).

as = [xo — (OzeXa @ € — e ® Oexa)?] - e, ap =
It is easily seen that for any vector field d-V .5 in involution with respect to b-V, ;5 and any

function a, we have p(0)(ad) = (Y (0;-))e(0)d = a(Y (6;-))d, implying that (ad) = (a)d
and thus for any (x,7) € (R® x R3) \ € (see Remark 3.2 for the definition of c[(xz)]* Vas )

6
(X) (2,0) - Vaos = Z () (z,9)c(2,0) - Vi

=
— )] Vs + (00— (- o) - (0 - (5 ) vy
+ (- €) + Qe D) - Vi + (0 = (0 e)ohers) - (0 A0) - Vs
= ] Vg +0s: (0= (0-0) ) ) T
0 (- (5-0) ) T Vot () s
+((xs — (0 €)Ouexa) - (A €)) MA‘ V.
In particular for any (x,7) € (R3 x R3) \ & we have
(060} Vg = )] Vg + @aera (0= (0-6) ) (= (-0 ) v
- @exa (11 6) (1) s
= () Va5 @ (A ) - T+ O (0= (0-0) ) )9

~(Oexs (20 D ey s

|0 A ef?
and
(0.0) T = (s (0= (0-0) ) "0 Vit e 9
+ (- (3 10)) - Vs

The notation ((Xz,0))- Va5 stands for the average of the vector field x,- V4 and the notation
(Xz) - Vo stands for (Xe,) Oz, + (Xas) Oy + (Xars) Doy -

We need to eliminate f! in (63), by solving (64). We will use the following result.

Proposition 5.2

Assume that e € C*(R3). Let x - Vis be a C! wvector field on R? x R3. There is a
continuous vector field & - V5 in involution with respect to b - Vs such that for any
function u € C%(R® x R3) Nker(b- V5 )

<X . Vm; 'LL1> = 5 . va:,f) (%
where X - Vg u—(x-Vasu)+b-Vyzu =0, <u1> =0.
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Proof.
We introduce the C! vector field

1
o

2
¢ / (6 — 2m)p(B) (x — (x)) A6,
0

Notice that for any § € R we have Vu = V(u(Y (0;-))) = 'Y (0;-)(Vu)(Y (6;-)), implying
that

e(0)(x — (X)) - Vu =Y (=0; Y (6; ) (x — () (Y (6;-) - "0Y (0;-)(Vu)(Y(6;-))
=((x = () - Vu)oY(6;")
=—(b-Vau')oY(0;).

Therefore one gets

1 [ d
C-Vu:—%/o (0~ 27) (" o ¥(0, )} 0

1 2w

=~ L0 —2mpul o V(B ) + —

1 1
. — b
5 o ), u oY (6;-)do U

As the vector field (x) -V, is in involution with respect to b- Vs and u! has zero average,
we have

({x)- V') = (x) - V{u) =0
implying that

(x-Vu') =((x = () - Vul) = = {(x = (X)) - V(¢ - V). (65)
A straightforward computation shows that %@(9){ = ¢(0)(x — (x)) and as before we have
(0= () - V') (Y (6;) = (0) (x — () - V(u! oY (8;)) = %@(9)4 V(u' 0 Y (6;1)).

After integration by parts one gets

2
(e Tul) = (= () vty = - [ o0Vl ooy a0 (66)
27
=5 [ e VI Vat) 0¥ (6:-)) do
1 27

=5 ) (0)C - V{[(x —(x)) - Vu] o Y'(6;-)} db
=(C-V((x = () - Vu)) .

Combining (65), (66) yields

([¢:x = () - Vu

N

(- Vut) = 2 {I6x — ()] - V) =

and our conclusion follows by taking £ = % ([¢,x — OOD- O

We indicate now some formulae which will be used in the sequel (see Appendix B for the
computation details). For any & € R3, the notation M [¢] stands for the matrix of the linear
application v € R? — £ Av € R3.
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Proposition 5.3
We have the equalities

1.

10.

11.

12.

~/\ 2
= ’U 26 (Ig—€®€).
0 Ael? oA el?
5® G Ae) =2 26’ Mlel, (5 Ope(i Ae)) = 2 26‘ rotge -

(Az)

B |7 A el? (rotxe-ee wac/\e)

2

We w?

_|onel? Vawene

2

2
We

(0—(v-e)e)@(0—(D-e)e)@(D—(0-e)e))=0

(0geAy - (00— (V-€)e)) =

(0zeAy - (DNe)) =

<ax€ 0y <f} . e($)) e (0—(v-e) 6)> L e|2(rotxe - e)vch €

we(z)

(0N Orze(D Ne))

(T-e)|o Ael?
2w,

(T-e)|oAel?

2w,

| Ael?

divge (rotze - e)

OzeMe]0ze : Me]

2
We

2

divge e

trace(0yeM|e]Oze) = —(rotgze - e)divze

trace(M[e]OzeM[e]0zeM[e]) = (rotze - e)divge.

We compute now the average of the vector fields a[f] - Vs , co[f] - Vs s c1[f] - Ve -
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Proposition 5.4 }
For any particle density f € CL(R3 x R3), the average of the vector field

a[f] ‘vxv - (U/\D[f] Ax)vx_aw({)/\D[f])rDvﬁ
b [divx / Lﬂjp ® j[f](z') da’ /\e(:p)] Vs

4meoB R3|T —
writes
(alf1) - Vai = clonplf] + 6] - Ve = (- €) [0:Gr0lf) s e €] e T
[0l s s —ew)] T 4 o aplf) : lel] T2
(2%) divge (rotge - €) (5 A (e AT)) - Vi + (52';32 [0,eM]e] : Mle] '0,e] (5 Ae) - Vi
where .
innlfl = AN e, —'526’2%‘;%“

and the notation c[{] - V5 stands for the vector field

cl€] Vs =& Vo~ (026§ ® e —e® 0pel)v - V.

Remark 5.2
We recognize here the electric cross field drift
e ElflAe _ E[jABE
vaplfl =cevnplfl =€ B = |Be|2
and the magnetic gradient drift
S b = |v/\e| wac/\ei_m\ﬁ/\ePVng/\Bei_ . VyB® AB®
GD = &VGD — 2 w2 - 2¢B¢ (Be)Q =K q(Ba)Q

where pf = m|v A e|?/(2B%) is the magnetic moment. We recall also the expression of the
magnetic curvature drift
&L 0)2 = 0)2 0..¢B¢ A B
(0-e) Doce ne = ~m(V-e)” Oze
We qu-: (Bs)Q

6%1) = E@CD = —¢

Proof. (of Proposition 5.4)
We compute all the averages on (R3 x R3)\ £ and extend them by continuity on R3 x R3.
By Remark 5.1 we have

(alf)) Ve =c[{al])] - Va

+ <(a1~,[f] — (V- e)0pe ag[f]) - (0 — (0 -€) e)> % Vs

+ <a1~,[ﬂ ce+ dge ag[f] - 17> e- Vs

+{(@lf) ~ - owe aclf) - (510)) 2
By the sixth statement in Proposition 5.3 we obtain

(a:1f1) = 5nplf] = (Az) = Srnlf] + T
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We write as[f] = al[f] + al![f], where

LIfl = =0.(oap[f])0, all[f] = ! iv 7x_$/ ifl(«) da’ e(x
al[F] = —0u(onnlf)5, all[f] a (/R @il d )A (a).

 4megB sl —

It is easily seen that the second part aél [ f] gives no contribution
(8171 0= - e) e)) = (al[f] - €) = (al'I]]- (3 A €) ) =0,
For al[f] we obtain cf. Proposition 5.3

(alf)- (5= (- €) €)) = =0u(Tnnlf)) : (5= (5-€) €) )

A el? >
= R ) (1 - e @)

<a,gm -e> — (5 €)u(Onplf]) s e@e
and

x = Jonel?

(allf)- @A e)) = ~0u@nnlf)) : (T Ae) @)

0:(0nnlf]) : Mle].

It remains to compute the contributions of a,[f]. Thanks to Proposition 5.3 statement 8, we
obtain

- <(@ &) Ope aglf] - (7 — (3 -e) e)> = (5-¢) (Ope Ay - (T — (7€) )

~ 2 |5 2
. A
_ Wdivxe (rotye - ¢)
C

(Ore anlf) - 5) = (Oue aalf] - (5— (B ¢) ) = -

(T-e)|v Ael?

20, divze (rotze - e)

and

—(5-e) <a$e aslf] - (5 A e)> = (7€) (Due Ay - (0 Ae))

= (@-e)one” oA 6|28ﬂ;e]\4[e] : Mle] "Oze.

2w,

s3]

Combining the previous results, we deduce

(alf)) Voo = clonnlf) + 76Dl - Voo = (- €) [0a(nnlf) e @] e Vs

—[0urplfl) : (I — e e) “_(;e)e

o)

vAe
2

Vi + [02(0nnlF]) : Me]]
(5-€)?

2w,

Vs

divze (rotze-e) (DA (eAD)) Vi +

2, [OzeM(e] : Me] *0,e] (¥ Ae) - V.
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Proposition 5.5 3
For any particle density f € CL(R3 x R3), the average of the vector field

colf] Vaes = (0-e(x)) e(z) - Vo + %(E[f] ce(z)) e(z) - Vi — [0 A Ope(t A e(x))] - Vi
writes
(colf1) Vi =cl(5-€) €] - Vo + L (EIf] - e(@)) ela) - Vs

(rot,;e -e) (5 Ae)- Vs

di;xe[@ AeAD)] - Vi + (3 -e)

where c[¢] - Va5 =& -Vy+ (06l ®@e—e® 0ze )V V.

Proof.
Thanks to Remark 5.1 we have

(0-€e)e-Vy)=(0-e)cle] Vgys =c[(D-€)e]-Vas.
As the field %(E[f] -e(r)) e(r) - Vj is in involution with respect to b -V, ; , we obtain

(LB e(@)) e@) - Vo) = L(BL] - e(a)) e(a) - V.

For the last contribution in cy[f] - V45 one gets

v—(v-e)e
|0 A el?
vAe

[oAe]?

([0 A Owe (5A€)] - Vs) =[5 ADge (GAE)]- (7 — (- ¢) e))

T Vo

+{([oNOze (DAE€)]-€) e-Vi+ ([0ADze (DAE)]-(DAE))

Thanks to the seventh and second statements in Proposition 5.3 we have
([oNOze(DNE)]-(0—(V-€)e))=(V-e){[eNDze (DNE)]-(D—(D-¢€)e))
=(0-e){[e\Dye (VANe)]-D)
= —(0-e)M|e]0eMle] : (0 ® D)

v-e)|vAel?
— _%trace(M[e]axeM[e])

2

~ 2

=(0-e) [0/ el trace((I3 — e ® €)0ze)

~ . ~ 2

_ BTNl e

2
Similarly one gets
~ 2
(5 A e (TA€)]-€) = ([e A dye (e A D) - T) = MleloweMle] : (50 5) = — 2 gy e

and
([oAOze (DNE)-(DNe))=(V-e)(leNDze (DAE)]-(DAE))
= (0-e)Mle]oge: (D Ne)® (D Ae))
(T-e)|o Ael?

= —f(rotme -e)

implying that
(colf1) - Vi =cl(5-€) €] - Vi + = (E[f] - e(a)) e(x) - Vs

divge .

5 [v/\(e/\f))].V@—F(ﬂ.e)(mtxe.e)

2

(17/\6) - V.

36



The computation of the vector field ¢; - V, 5, together with its average is much more elabo-
rated. The details can be found in Appendix B.

Proposition 5.6 }
For any particle density f € CL(R3 x R3), the vector field

lf] - Yoy = lim OTCL 0T = X (@, 0)(eolf] 0 T9)

'Vx,f)
N0 €
writes
Cl[f] Vfb,f) :({] 6) |:6/\8:E<e>€_ax€v/\e+<Vch'v/\26> €:| Vx
We We wg
- [<wac 1}/\26) DA Oge(DNe) — 0N [Ope(DA Dye U/\e)]] Vs
+ [ ! /\((v/\e)@(@/\e):vx(X)Vm)e] Vs + L <E [v/\e Va;f] -e)e-V@
2w, m We
-4 [<8wEvae'€> €+<E[f]'6xev/\e> e+(E[f]'€)3xev/\e] Vs
m We We We
q 5 vAe
+%(E[f]e) (wac-wg > e- Vi

and its average s

<01 [f]> “Vaus =clocp| - Vaes —

GRS (2 [f]-e)] (rotsc - c) -

We B 5
= E A o2
n [Mw(mw,e)dmﬁ q <E [U/\e | } )} .
2w, m
(’5'6)2 ‘U/\e’ 9 m . ) )
+ o trace(dyeM[e]0yeMle]) — o, (Oge:0ze — |Ogee|?) — o5 divee | (5A€)-Vs
( e) Vawe . ~
+— 9 (Ozee Ne) - 7 (0N (eND))- V5
N
+ (U2we) [!316612 — Ogee - Vawe + div,(9yee — div,e e)} (o Ae)- Vg
where Ucp = —%@cee Ae.
Remark 5.3

When the particle density satisfies f € CH(R? x R3) Nker(b- V.5 ), then
/ (17Ae)-fodf):/ divy(foAe)do— [ fdive(dAe) dd
R3 R3 R3

= div, fonedo+ fo - rotye do
R3 R3
| Sl —

=0

= / (0-e)f do (e - rotge).
]R3
We deduce that




and in that case

<01 [ f]> Vs [ =clicp] Ves [+ (’;we) (rotge - e)divge (5 A (e A D)) - Vi f

(E[f] -e) (e-rotge) . . _
D 5 (0—(v-€e)e) Vif+ % (E [(e - Tot €)
= Vel (5. (e AG)) - Vaf.

c

_l’_

(Ozee Ne) -

We claim that the following simplifications between terms in <a[f]> Ve and <cl [f]> Vi
occur

—0,(Onp[f]) s (Is —e®e) - (E[fée)(e rotse) = Snnlf] V::c

—0z(0ap[f]) 1 e® e = Vap|f] - Oree.

The last identity follows by taking the directional derivative e-V, in the equality Oap[f]-e = 0.
For the other one it is enough to check that

—div,oap|f] — (E[‘g'e)

vz c ~ P
it + Oap[f] - Oree.

(e - rotge) = fD/\D[ﬂ g

Combining the conclusions of Propositions 5.4, 5.6 we obtain for any f € CHR? x R3) N
ker(b- V5 )

((al1) + (1)) Ve F = clinlfl)- Vi f 4+ D e ene). LR g f
—i—(ﬁ‘e)(ﬁAD[f]-&vee)e-vf,f—i- <T1/\D[~] V:ik) 6(2.6)6 Vif
+ % (E [(e - 10t €) @w' ¢) f] ce) e Vaf (67)

where Op[f] = Oap[f] + Oap + Vep.

Notice that the above (reduced) vector field differs from the vector field (<a[f~}> + <01 [f]>) .
Ve by a term ab - Ve » with b- V25 a = 0. Since, by construction, the vector field
<<a[f]> + <cl[f]>> - V5 is in involution with respect to b- V.5 , so is the above re-
duced vector field. Observe also that this reduction does not change the divergence, because
div, 5(ab) = 0. )

In order to obtain our limit model, we need to eliminate f! from (63), thanks to (64).
Appealing to Proposition 5.2 we prove (see Appendix B for details)

Proposition 5.7 . .
Assume that e € C*(R3),w, € C1(R?). Let f € C2(R® x R®*)Nker(b- V.5 ) and f* verifying

olf) Vas = (lf) - Vo F) +b- Ves fr =0, (/) =0.
Then we have <co[f] -V f1> =0.

Thanks to Propositions 5.4, 5.5, 5.6, 5.7 we obtain the following equivalent formulation for
(63), (64).
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Proposition 5.8
Assume that e € C*(R?),w, € C'(R?) such that inf eps |we(x)| = wo > 0,divy(wee) = 0 and
let us consider f- € C%([0,T] x R? x R3). Then f. solves

oufe + (aolfe) - Vo fo) +2 {(alfe + elfel) - Vs fo) + (ol fe] - Vo £2) = 0

b Vs fo=0, colfi] Vas o= {col o] Vs fo) +0- Vs f1 =0, (f1) =0 (68)

iff f- solves

oufe + (colfe)) - Voo Jo 2 ((alfe]) + (@1l ) - Vo fo =0, b-Vag =0 (69)

= [(@-e)a S BAe 5 '(17/\6)@(17—(17-6)6)4-(17—(17-6)6)@(17/\6)]
S T |0 A el = 4we|v A e
(DAe)ND o
W‘vaa'
Proof.

We only need to solve (68) with respect to fal We already know, see the proof of Proposition
5.2, that there is a vector field ([f:]- V. such that for any u € C%(R3 x R®) Nker(b- V.5 ),
the function u! € C1(R3 x R3) solving

colfe] Vi u— (o] Voo u) +b- Vogul =0, (ul) =0
writes u' = ([f.] - V5 u. For any (z,0) € R3 x R3, |9 A e(x)| > 0 we have

e o G0 0) (e D)he i
Clfe] - Vas =clG] Vaz + |0 A e]?

(Cﬁ - (6 i QN))a:ve CJ:) ) (6 A 6)

|0 A el?

(0—(v-e)e) Vs

+ (Gs-e+0,e(-0)e-Vi+

For u = x;,i € {1,2,3}, we obtain u' = 0 and thus ¢, = 0. If u = [9]?/2, we deduce that
u' =0 and (3 - 9 = 0. When considering u = @ - e, we obtain (see the proof of Proposition

5.7)

—weu' = —(0-e)0gee- (0 Ae) + Oge

implying that

(5= (@w-ce) Dpee - (B A e) — Dye (77/\6)@(’5—(7}-6)6)4—{0;6(7)—(@.6)6)@(@/\6).

Finally we deduce
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6 Well posedness and main properties of the limit model

We concentrate on the existence/uniqueness and other properties of the model

Oufe+ (ol fe))- Vg fore ((alfe)) + (alfe])) Vo o =0, (t.,8) € [0,T] xR < E® (70)
together with the initial condition
fo(0,2,0) = fin(2,0), (z,0) € R® x R, (71)

The initial density is assumed smooth, compactly supported, and B is a smooth external
magnetic field satisfying

B = Be c C}(R?), By = inf, |B(z)| >0, div,B=0. (72)
S

mliNe(z)|? _ glone(@)|?
2B¢(z) —  2wi(x)

vector fields <co[f]> Vi, (<a[f]> + <61 [f]>) Vi -

Proposition 6.1

We notice that the magnetic moment p°(z,0) = is left invariant by the

Let B be a magnetic field satisfying (72), u® = eu, p(x,0) = mggzg)l? = q\ggfg;ﬁ For any

particle density f € CH(R? x R3) we have

(eolfl) - Voo =0, ((alf)) +(a1lf])) - Vg n=0.

Proof.
It is easily seen that
(0-€)topet  p(x,0) Vawe

v.L=- - , Vit =
q Wc(x) q We q

and therefore

q We q We
~ 2
+ 89 e 5) - (5 ) 42D gy,
N
_ L _div,B =
( e)qulv

As the magnetic moment belongs to the kernel of b- V5 , we have by (67)

((al1) + (1)) - Ve = cliplfl]- Vi

wC wc 2
s Vewe\ v —(0-e)e
+ (U/\D[f] ww > Y (2 ) -V

It is easily seen that

(¥ e) <(axeem)‘vch> DA (e AD) ‘%M:_(ﬁ-ef ((&cee/\e)-vch>u

We




and

(oaot] - Y2 ) T2 g (51 T2 )

We 2

It remains to compute the derivative along c[0p[f]] - Va5

i) Vs = - E[fgg/\ ¢ /;th:cc/\ e (77:)2(9$em e]
v-e)tozev w, ~ o—(D-ee
: {( Z}Ca” +ZV§CC] + 5 A (Daeiplf] Ae) - Ej)
=~ (peplf]-0) - 2 (sl - %MA@)
We q We We
+ (“u; °) (92e o0lf)-5)
= _HM (@\D[,ﬂ - (0 6)2(%566/\6)
q We c
and therefore (<a[f]> + <cl[f]>> Va5 pu=0. O

Remark 6.1
The previous computations show that the invariance of the magnetic moment holds true when
replacing E[f], E[(0 - e)(e - rotze) f /we| by any continuous vector fields.

Recall that
fo=feoT +eXfloT +O(E®) = feoT +efl o T°+ O(?), b-Vas fo =0, <f3> =0
As the function fal has zero average, it is easily seen that

/ P, T (x, 7)) didz — / FA (4, 7,9) dids + O(c) = O(e)
R3JR3

R3JR3

and therefore we deduce that

/u@ [ Fett.a.) dida - /R [ fw.2.9)
- /R R3f€(t,9~c,17) det (13 — eM[3] (j) (x(fc))>‘ dodz + O(e?)

_ /R yREE {1 _ ctrace (M[f)]a <€) (gz)ﬂ d3d7 + O(e?)
— /RS Rgfa(t,:v,f;) {1 + €0 - TOt, ( ﬂ dodz + O(e
Vi

—/ felt,z, ) {1—1—6’5- [mt“e ]} didz + O(e2)
R3JR3 We
= / fs(t, x,0)m*(x,v) dodz + (9(5 )

R3JR3

ox
det <8x>‘ dods + O(e?)

where *(z,7) = 1+¢(0-e)(e-rotze) /we(x). We have used the constraint b-V 5 f- =0, which
implies [ps fo0 do = Jxs f-(0 - e) dv e. As the total particle number ngfR?,f (t,x,v) dodz

41



is conserved, up to a second order, the total particle number ngngfs(t,x,ﬁ)LE(x,ﬁ) dodx
should be preserved as well. Indeed, multiplying (70) by . and integrating by parts yield

% /Rg, Rfs(tv%@)mf(x,ﬁ) dodz
= Ju et i [ ((alfl) + < alfil) + < ali))] aoas
— /R et ) divas (ol £} dida
ve [ A n s @ 0% (alf) + (alf) + (alhd) ] avas

C

+ &2 /}R3 Rfs(t,x,ﬁ)divx,@ {('D : e)e . Z?:we <<a > < >>] dodz.

Our conclusion follows thanks to the result below, whose proof is left to the reader.

Proposition 6.2 .
For any particle density f € CL(R3 x R3), the vector fields

(@l Va0 (i) + (alfl) + (al1)] - 9

We

are divergence free. The above result holds true when replacing E[f], E[(© - e)(e - rotze) f /w,]
by any E,E € CY(R3) such that rot, E = 0.

The well posedness of (70), (71) follows by standard arguments, similar to that in the proof
of Theorem 2.1. Use also Proposition 6.2 and the invariance of the magnetic moment cf.
Proposition 6.1. The details of the proof of Theorem 1.1 are left to the reader.

Remark 6.2 B
For any T > 0 there is e > 0 such that the solutions (f:): of (70), (71) are uniformly
compactly supported and uniformly bounded with respect to € €]0,er]
sup  {|Ife()lcr@sxrs) + 1B (]llor@s)} < +oe.
0<e<er,t€]0,T]
Remark 6.3 )
The model (70), (71) propagates the constraint b- V5 fo = 0. This is a consequence of the

fact that the vector fields <cO[fa]> <cl [f5]> , < [f5]> are in involution with respect to b-V .5 .

If f. solves (70), (71) with the initial condition fm, then fO(t,x,V) = fa(t z,R(0,e(z))V)
solves (70), (71) with the initial condition f2(x,V) = fm(:n R(0,e(x))V). In particular, if
the initial particle density satzsﬁes the constraint b- V5 fin = 0, then f = fin,0 € R and
by the uniqueness, we obtain fg f.,0 € R, saying that b - Vi f-=0.

We compare now our model in Theorem 1.1 to the models obtained by the physicists
working on magnetized plasmas. As the magnetic moment is left invariant by the transport
operator in (11) and f solves the constraint (vNne)- Vi f- =0, it is convenient to introduce
h. given by

fo(t,z,0) = he( t,x, v =0-e(x), p=mldA e(x)?/(2B(z))), (t,z,9) € [0,T] x R® x R®.

As usual, the model (11) simplifies when written with respect to the new unknown h.. The
derivatives of fs write in terms of the derivatives of h. as follows

Orfe = Othe, Vofe = Vahe + 0y he '04€D + 0,heVap, Vife = 0y he e(x) + 0phe Vg
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Observe that
(@ e)e+0p[f) - (Vs fo = 0uheVas 1) = (8- e)e + 0 [fe] | (Vahe + Oy he Oued)
+ {&ce[(f) et T[] ] ®e — e ® dpel(@ - e)e + T5[f] }} 3+ Dy hee()
= [(-e)e + 0p[f] ] - Vahe

and

[divze + (vw'ee) (Ozee Ne) - .

C c

Vewi |0NA (e AND P =
] (2 ) : (Vf)fe - a,uhsvﬁﬂ)

(0-e) wai] |5 A el?
>

(Ozee Ne) - —— 5

c wC

= [divxe + 8UH he.

For the other terms in (11), it is easily seen that
[ LEWf) e+ (- €)(@plf] - Ouce)| - (Vo = 0h-Vop)
= [LEWf] e+ (- e)(@plF] - Duce)| Doy he
and

1 Vawi 90— (0-e)e

13
ws 2

. (vﬁfg — @JLEV@UJ) = 0.

Thanks to the invariance of p along the transport operator in (11), we deduce

GJLE + (v”e + 1~JED) . inLE

+ {e (2EWEf) - £9B) + Lenosee) - [LE(F] - L] } Dy he = 0

('C
where ~
5 [fs}/\e uwViyBEAe ||a
= —— — N e.
(%5 - 5q . p = r€€E /\ €

The above formulation is very close with respect to the models derived formally in the frame-
work of strongly magnetized plasmas [32, 33, 29, 15].

Notice that solving for he, or equivalently f;, is not enough for determining f¢ up to
second order terms. Indeed, by Theorem 1.2, a second order approximation for the particle
densities (f¢)c>0 is obtained provided that we take into account the fluctuations ( f 1eso as
well. The fluctuation f6 writes explicitly in terms of f. cf. Proposition 5.8. When the
magnetic lines have no curvature, this fluctuation vanishes.

A Well posedness of the Vlasov-Poisson problem with exter-
nal magnetic field

Proof. (of Theorem 2.1)

We are not indicating all the details, but only the a priori estimates, for smooth solutions of
(14), (15), (16). Let f be a smooth solution corresponding to the non negative, initial particle
density fin € CL(R?xR3). We are looking for estimating E[f], 9, E[f] in C([0,T] x R3), where
0<T <T(fin). For any R > 0 we have

L LI (0](a) O

o E[f(D](2)] < R}{\x—w/KR}Wd +E o o= 125

1
< Rllplf @)l rs) + 7 llpLf Ol 2 rs).-
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Using the total charge conservation, after minimization with respect to R, that is by taking
= (Iplfinll o1 g3y /47| pLf (]| oo s)) /2, we obtain

1/3
ol BLFON 1wy < 31 O] 122 g (‘q' finll Rsxm) . (73)

By the characteristic equations of (14)

dX dv
= _v —

— = V(s), = (EF)(X() + V() ABX(s)), (s.t.z,0) € [0, 7] x R x B?
(s =

with the conditions X tit,z,v) =x,V(s=t;t,x,v) = v, we have for any 0 < s <t < T

t
Xsito)—al < [ Vioito,0)]do (74)
S

and
%%!V(S;t,x,v)\Q = %E[f(s)](X(s;tvﬂfav)) Vst z,0) (75)

implying that
jal [
Vst @ o)l = ol [ < [ IELf(0)]]| oo () do
S
Assuming that supp fin C {(7,v) € R¥ x R3 : |z| < R and |v] < RI"} it is easily seen
that for any (x,v) € R3 x R? such that [v| > R,(t) := R® + ‘mﬂ fg I E[f(8)]]| oo (m3) ds we have

t
q in
[V(0;t, z,v)| > |v] — |m|/0 IELf (9]l oo (r3) ds > Ry

and therefore
ft,z,v) = fin(X(0;¢,2,v), V(0;t,2,v)) = 0.

Consider now (z,v) € R3 x R? such that
] > Rao(t) = R+ tRy / la] / VELf(0)] | e gy do ds.

If |v| > R,(t) we already know that f(¢,z,v) = 0. If |v| < R,(t), we have by (74), (75)

t
X(0:t,2,0)] > |2 —/ V(s:t,2,0)| ds

q
>l [ [\vr+' [ 1By a0 as
> | — tR(t / 'q’/ |ELf(0)]l o gs) do ds > RI?

implying that f(¢t,z,v) = fin(X(0;t,2,v),V(0;¢,2,v)) = 0. Therefore f is compactly sup-
ported

supp f(t) C {(z,v) € R® x R3 : |z| < R,(t) and |v| < R,(t)}, t € [0,T).

Notice that the above computations are not depending on the magnetic field B since the
magnetic force does not change the kinetic energy cf. (75). The charge density is bounded
by

pLf @) = lal fgs fin(X (03, 2,0), V (03¢, 2,v)) dv < |g|| finl| L 57 RI(2). (76)
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Combining (73), (76) yields

lq| /3 am 2/3 2
ll B Ollies) <3 (M nllsgonasy ) (10 Wil ) R0

t 2
in q
01020 il 2 sy (120 [ L ) )

leading to the bound
m260 1

a3 (12m) V3| fin |12 fin 72 (T (fin) = )%

Observe that the above bound depends on m, €g, ¢, T and the initial particle density fi,, but
not on the magnetic field. Accordingly, we obtain a bound for the size of the support of f
depending on m, €g, q, T, but not on the magnetic field

sup [Ry(t) + Ry(t)] < 400, 0<T < T(fin).
0<t<T

IELf (O]l oo (rs) < 0<t<T<T(fin)

For the L> bound of 0,F we appeal to [4] where it was shown that there is a constant C
(depending only on m, ¢) such that

0= BLf ()]llzee < C [(L+ llplf @)l ) (1 + 0™ [[Vaplf ()]l]ze) + lloLf (8)]1121] -

The notation In" stands for the positive part of In. We already have a priori bounds for the
L norm of p[f(t)] (use the estimate for the size of the support of f) and for the L' norm of
plf(t)] (use the conservation of the total charge), and therefore we have

10 E[f(D)]llee < C1(1+ ™ [[Vap[f (O)]llze), ¢ € [0,T] (77)

for some constant C7 depending on m, €g, ¢, T. Using the characteristics of the Vlasov equa-
tion, we write

V“Tp[f(t)] - qvx /R3 fin(X(O;t,ﬂf,U), V(O; t,x, U)) dv (78)
= q/}R3 Lopwi<r, (1)} taxX(O;t,a:,v)(VXfin)(X(o; t,z,v),V(0;t,z,v)) dv

+ CI/3 Ljoj<ro @)} 0=V (058, 2,0) (Vv fin) (X (058, 2,0), V(03 ¢, 2, v)) dv.
R

It is easily seen that there is a constant Ca(m,q, T, ||B|/j1.) such that for any (z,v) €
R? x R3, |v| < R,(t), we have

t
|0: X (05, z,0)| + |0,V (0; ¢, z,v)| < Coexp (/ |0 E[f ()] e ds) , te€[0,T].
0
Combining to (78) we obtain

IVl F O]~ < Csexp ( [ 1Bt ds), te(0.7]

for some constant Cs(m, q, T, ||B|ly1.00) > 1, implying that

t
I {|Vaplf ()]l e < InCs +/O 10=E[f (s)]ll Lo ds, t € [0,T].
Coming back to (77), we deduce that
t
10 E[f()]]|ee < Ca (1 +/O 10=E[f (s)]ll Lo d8> , 10,7

and the a priori estimate for the L> norm of 0, E[f] follows by Gronwall lemma. O
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Observe that the bound for the L* norm of d,F[f] depends on ||B||j1,. In particular,
when solving the Vlasov-Poisson problem with external magnetic field B* = ge, the bound
for the L> norm of 0, F[f¢] is not uniform with respect to € > 0.

B Proofs of Propositions 5.3, 5.6, 5.7

Proof. (of Proposition 5.3)
The above formulae come by direct computations. Let us indicate some details.
1. Clearly we have (7)) = (9 - €) e and for any ¢ € R3

saying that (M[0]) = (0 - e)M]e].
2. Tt is easily seen that

~ ~ 1 S(xz,0) _ ~ ~
(V@) = S(%f’)/o V(s;z,0) @ V(s;x,0) ds

1 S(z,0) ) ) ‘ ] )
= 5.9 /0 {cos(swe(x))[0 — (0 - €) €] +sin(swe(x))0 Ae+ (0-e) e}

® {cos(swe(x))[v — (0 - e) €] + sin(swe(x))v Ae+ (0-e) e} ds

1 1
:5(5—(5'6)6)®(1~}—(1~)'6)6)—|—5(17/\6)@(17/\6)4‘({)‘6)26@6
~/\ 2
_ 26‘ (I3 —e®e)+ (7-e)’e®@e.
3. It is a direct consequence of the second statement.
4. We write
~ 2
5@ (5 Ae)) = — (5@ Mlels) = (5@ ) Mle] = 22 e
2
and therefore
~ 2 ~ 2
U-0ge(DANe)) =0ze: (0Q(DAe)) = [/ el Ogze: Mle| = [0/ el rotze - e.
< 2 2

5. For any vector ¢ € R? we have

—— (190, (£) =00 0) = -wlgos (£) s pe - ) o)
= -22Pariga, (£): (h-eoe = 25La, (£ g - g e
R () ()




implying that

(ot ()10 09 5% o () 00 (2)]

|oAel? [ . <e> e/\@mee]

2 We We
_ oA e|? [rote ~ Vawe Ao € A M[rotze]e]
2 | we wg We
_ |o A e|? [rotge ~ Vawe Aot (rotze Ae) A e]
2 | we 2 We
|5 Ael? [rTotge-e Vawe N e
T2 < We w2 ) '

6. Thanks to the statements 4. and 5. we obtain

(Ag) = — <8x (” . e(x)> CRGRD e)> + <(17 Ae) A Bge D 6(”3)>

Wc(ﬂj) wc(a:)
|0 Ae|? [rotge-e Vawe N e | A e]? rotge - e
= - €e— 5 + e
2 We w? 2 We
oAe Vowe Ae
2 w2

7. For any three vectors &,7n,x € R3, the notations ¢ ®  ® x stands for the components
&MiXk, i, J, k € {1,2,3}. We have for any s € R

V(s;x,0) — (V(s;x,0) - e(X(s;2,0)))e(X(s;2,0)) = cos(swe) (I3 — e(x) @ e(x))d
+ sin(swe(x))0 A e(x).

The conclusion follows observing that

1 2 1 27 1 27 1 27
— Cos39d¢9:/ COS2HSin9d9:/ cos@sin20d9:/ sin® 6 do = 0.
2 27T 0 27T 0 271' 0

™ Jo

8. Most of the averages in the next computations will vanish, thanks to 7. We have

OpeAy - (0 — (0-e) e) = —M[0]0, ((jc) (0—(D-€)e)- "0.e(t0—(0-¢€)e)
+(5Ae)mxe“ce tOe(i— (5-¢) e)
=0, (;) (B—(0-e)e) [(0—(T-€)e) A Dpe(i — (B-¢) e)]

+ (0 €)d, (5) (- (5-¢)e)-[en tpe(@— (3-¢)e)].

[

By the previous statement we know that

<ax <> (G- (5-€)e) [(5—(T-¢)e) A tDpe(t — (- e) e)]> ~0

and




For the last term we have

= —(0-e)0yeM][e]0y <;C> {(0—(v-e)e)® (v—(v-€)e))

5 - )0ae M|, (e> A s

2

C

_ (5 )”26‘28 eM[e]0, (j) Iy

19 A e|?

=—(0-e) 5 OreMle]0ze : I3
-

:(6‘e)|v2/\ el divge (rotze - e)
We

since trace(0,eM [e]0e) = —divge (rotgze - €) cf. 11. We proved that

(0geA,

Similarly, we write

The averages of the first

(T-e)|tAel?
2w,

(5 (5-¢)e) =

divge (rotze - e).

4 [(me) Aazeﬁﬁj t,e(5 A e)

=0, (£) (6= (- [~ (5-0) ) A “Duelo )
+ (?7/\6)/\89566(;\66} t,e(5 A e)

T (- )0 (w) (5 (5-€) e)-[e A Due(iAe)

and second term vanish, cf. 7. and for the third term we obtain

(@ e) <ax (;) (5 — (- ¢) ) - Me] ‘Dpe(d A e)>

and thus

(0geAy - (DNe))=(0-e)———

C

—(i-e) <8xeM[e]8m (;) (- (0-¢)e) (5N e)>
— (- €)BpeM[e], ( G

15 A e|?

):((v/\e)@(ﬁ—(ﬁ-e)e))

(&
We

(B-e) BpeM|e]0y <6> . Mle]

We

2

) PNl eMlelne - Me]
We

19 A ef?

We

OzeM e]0ze : Mle].
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9. We can write thanks to 3.

<8xe o, (T;) e (5= (5-e) e)> - <8zeM[17]8m <5> e (5—(5-e) e)>

= —9,eM [ax <€) e] (- (7€) e) ® D)
We
| Ael? e
=— OzeM [0, | — | e| : (I3—e®e)
2 We
~/\ 2
_one, ;M[a,,, <€H
2 We
2
= [0/ el rotge - O (6) e
We
[T A el? (&cee e® Vpwe >
= rote - — 5 e
2 We wz
[T A el? (rotxe/\e e® Vawe )
= rot e - — 5 e
2 We wg
|9 A e|? Vawe - e

10. For any vector ¢ € R3 we have by 4.

(5 A Due(B Ae)) - € = (M[5)0e(T A e) - €)
— (D,e(5 A ) - MIEJD) = — (M€]se(5 A €) - 5)

= —M[¢]O0e: (D@ (VAe)) =—M[{]Oze : M[G]W;P
- W;Ftrace(M[e]M[f]axe) = W;'?trace([& ®e—(§-e)l3]0ze)
= W;Ptrace(ﬁ & taxee —(§-€e)0ge) = —W;P(E - e)dive.

Therefore we deduce that

~ 2
(5 A Dye(d A e)) = — DA€

divze e.

11. The matrix d,eM|e] 0, e is anti-symmetric and thus
trace(d,eM [e]0,e) = trace(OyeMe](Oze — 'Oye))
= trace(0zeM [e] M [rot e]) = trace(d e(rotze @ e — rotye - e I3))
= trace((0,e rotze) ® e — (rote - €)0ze)
= —divge (rotze - e).
12. By the statement 11. we have
trace(M [e]Oze M [e]0zeM [e]) = trace(M [e] M [e]Oze M [e]Oze)
= trace((e ® e — I3)0,eM|e]0e)
= —trace(0zeM[e]0ze) = divze (rotze - e).
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Proof. (of Proposition 5.6) )
Observe that the vector field ¢*[f] - V.5 writes

] Vs = (0-e()) () - Vo + %(E[f] ~e(x)) e(x) - Vi

1
_ A /0 Due(E()) (5 A (z)) dr - Vs

where Z(7) = x + TEZ\:(EEI)) T =x+ 86016(%) = (1), and therefore
li\I‘I(lJ ce[f] Ve = (0-e(x)) e(z) Vi + %(E[f] ce(x)) e(x) - Vi — (0N Ie(v Ne(x))) - Vi
£
=co[f] Vasi .

By direct computations one gets

ATE[f o T = F[f 0 T¥]
lim
e\ 5 eNo

o ElfoT —alfloT g (Blf 0T ela)) e(x) ~ (B[l T () e(@)
eNo 15 m e\,0 £ v
Lo 0.e(2(7)) DA e(z) — Ope(E) T A e(Z)

— (v /\/0 il\rj(l) . dT) Vs

-4 <E [”ﬁce vmf} e(w)) e(x) Vi — L <(‘9IE[f] ”;\Ce e(x)) e(x) Vs

~ L (B17) 00 T2 ) Vo - LB ele) 0.6 05

1 - - - . ~ v Ae
+ 500() DA (DAe)@(DAe): VR Vy)e]- Vi + 1A dge(x) <v/\8xe - > - Vs
and
gi{% co[f]oT* _g)\Eco[f] oT* Vs = Vate- f)w/\; Co[f] Vs -

Therefore the coordinates of the vector field ¢i[f] -V, are given by

cralf] = (5 )i A By <e> e~ Ty cwne)t(5-e) <vch-f’$26) e

We We




The average of ¢ f] -V follows thanks to Remark 5.1

<C1 [f]> -Vaes =c¢ |:<Clx[.ﬂ>] Vi

+((elf) = 0 doue end - (- (-0 ) T 9
+ <Clﬁ[,ﬂ ce+ Oge c1[f] -17> e Vs
+{(exlf] = @ due euld)) - (51 0) 5705 - Vs

The average of ¢1,[f] is the magnetic curvature drift
2

<clx[f]> — (-¢)%e A D, <;> e= (5;) e A Byee = Hep.

We analyze one by one the other averages. We have

(Elf]-e) o el
B 2

= 7-e)?0Ael?
<01@[f] (v—(v-e) e)> = —w(rotze -e)divye —

- rotge).
o, (e - rotge)

Indeed, the last two terms in c13] ﬂ give no contribution thanks to the seventh statement in
Proposition 5.3

e):Vy®@Vyz)e]-(0—(v-e)e))
e)@(vANe): V@ Vyz)e) - e
v-e)e)AN((DNe)®(DNe): V,®Vyz)e)-e=0

and

/\
7N
<

8
&
)
S
>
@
N——
—~
(o4
>
SJ
aQ
=
>
&
=
I
=
Q)
S~—
&
~_—

Observe also that the average of the term o A [8 e <v A Oge ”/\e>] (0 —(0-e) e) can be
computed as follows, cf. statement 12. in Proposition 5.3

<~ {M(maeﬁﬁe)]-(ﬁ (5- ))>
walfofe o) oo
(5o 22{ {86(6/\861)/\6)]} e)>

— (5 )2 { Mlc]aseMe]aye L0 . >
VRV

v-e)?
:—( ) M el eMelozeMle] : (D

2
— _Wtrace(M[e]axeM[e]ameM[e])
We
~ N2|5 2
_ _W(rotxe -e)divge.
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By the first and seventh statements in Proposition 5.3 we find as before

<ch~,[f]-e>:iE —6/\€-fo_ ~e+<17/\ |:ax€<1~)/\81;6 6:}\6)]>-e

m L We
T
[ A ] 0-e)|tAel?
— EE v € . V]jf e+ w(rotxe . e)divxe
m L WC i 2Wc

and

1>

{ (Vo L5E) 0 nie a0 )

_ (BlUl-olone el o 2
= B 5 div,e "y (Oge : Oze — |Ozee]”)

=205 A 2
+ Wtrace(&eM[e]@zeM[e]).

— —(5-¢) <(@ Ne)-Dze (“ axeaof e>>

C

Indeed, we have

— TM[e]@xeM[e]ameM[e] (0 ® )
v-e)|vAel?

= (;mtrace(M[e} OzeMe]0 eMe))

— W(rotme -e)divge
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1

T, =~ 5 {5 )5~ [iPe]- (FA €)@ (1) Vo 0 Va)e)
_ _201% (@)% — 5% - (G Ae)® (FAe): Va® Va)e)
_ @j?e. ((BAE)® (BAe)): Vo ®Va)e
_lone? wAe'z(Ig,—e@e):vgg@VI e
2w, 2
:W@-[Afpe—(e(@ezvx@Vz)e]
__ 1742?‘4(@56 : Dye — |Duee]?).

and

__(0-ep 5 (5

= - OzeMe]Oze : (D@ (0 Ae))
0-e)?o Ael?

— ()2L|L}C/\|trace(3IeM[e]8xeM[e]).

The contributions of the coordinates ¢, [f] are given by (cf. the ninth and fourth statements
in Proposition 5.3)

(Oue cralf] - 7) = (Que crlf] - (5 (B-€) €))

—(p-e) <(9$e 0, <ﬁ$¢e> e (b — (&) e)>

09 e oreo me) o) +(@.6)<<vch-%e> deee- (5 (3-e) e)>

We c

~ . ~/\ 2
__(@olvnel e

. v . v 2
(Vawe - €) " (0-€)oNel trace(M|e]dpe Oye)

2 w? 2w,
(T-e)|v Ael? Vawe
+ f(&cee Ae) - 2
(7-e)|o Ael? V2We
=-——"——(0zee Ne)-
2 * w?
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and

—(v-¢)

<

_l’_

Ore eralf]- (T Ae)) = —(

(- e)?

We

v -

(Ope Dye (DA e)- (D Ae)) — (T-e)? <<v$wc :

2
c

By straightforward computations, we obtain (using also div,(w.e) = 0)

—(7-e)? <8xe [@ A Oy (5
(@ - €)20,eM [ar <5

C

c

Le)?

—~
[SH]

“e)?

—~
S

-€)?|0 A el? |0gee|? — (divge)?

We

v-e)?

(

(0zedpe (DA e€)-(VAe€))

We

) e] (@A e)> = (0-e)? <6xeM [az <j

>e}:((f)/\e)®6>

e)?|lo nel?

2w,

0-e)?|oAel?

2w,

)% Ael?

2w,

)oens)

Cc

Ore0ze : (I3 —e®e)
trace(0yedye)

[div,(Dzee) — e - Vydivye]

v A zWe -
—(0-¢€)? <(Vmwc . ij26> Ogee - (DA e)> = —(0-€)*0ee @ Vw;} (vNne)® (v Ae))
0-e)?|oAel? Vawe
:_( )2| |8xee® 2 (Is—e®e
(0-e)?|o Ael? Vawe
- 2 Oace- w?
. PR (0 e)?0 Ael? |0zee|? — (divye)?
(0-e) <8ze clw[f]-(v/\e)>— 5 o
(©-€)?|o A el?divy(Oee) — e Vypdivee  (T-e)?|0 A el? Vawe
2 We a 2 Ouce - w?
S N205 A |2
= W {]8@,6@]2 — Ogee - Vawe + divy(0zee — divge e) | .
We c
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Finally we deduce that

v-e)?
: w) (rotge - e)divye (0 — (0-€) €) - Vi

_ (E[]; -e) (e r;)txe) (5—(5-€e)e) Vg + W(m%@ -e)divge e - V3
4 <E {”ﬁe .vxf} -e) e Vi + (”;)(axeme) : V(j;*f (@ A (e AD)) - Vs
+ (@ .:C)Qtrace(@xeM[e]axeM[eD - W(@ze : Ope — |Opeel?) — (E[];-e)di;/ze
(vNe)- Vi
+ (62;;)2 [81662 — Oyee - Vatde + div, (Ogee — divge e)] (DAe)- Vs
[UCD] vz’u _( [f] )(6 rOtm)('D—(’lN)'e)e)'V{)
e (B[S w) )
rotge - e)divze Vawe| - -
[(Ot 2w ) (0 - )+ 5 (866/\6) 2 ] (0N (enD))- V5
15 A ef? ‘ (E [f] ce)divge | . ~
ol (Oge : Dye — |Dyeel?) + — 5 3 ] (vAe)- Vi
+ ({]Qw o)* {6 ee|> — D ee  Vate + div,(9yee — divge e) + trace(d,.e M [e]0.eMe])
(17 A 6) - V5.

Proof. (of Proposition 5.7) i
By Proposition 5.2, applied to the vector field colf] . V5 , there is a vector field £ - V.5 in

involution with respect to b- V5 such that for any function u € C?(R3 x R®*) Nker(b-V, 5 )

<Com'vxf)ul>:§'vxﬁu

We

where _ -
CO[f].vxﬁu—<com‘Vx,f)u>+b‘v$7f)u1:07 <’LL1>:O
We

)

We
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For any (z,7) € R® x R3, |5 Ae(z)| > 0 we have

£@,0) - Vi = cléa] - Vo + 2000 0) ~ (- 0)0se &0

(0—(v-e)e) Vs

|0 A e]?
—i—(fa'e—l-axe{g;-f))e-vf)—i-(gﬁ_(eﬁ%a/iee’ém)'(v/\e) (B Ae)- Vg
B . i o 17/\(6/\17)_ ~
= c[&] Vi + (0z€ &4 - D) ‘77/\6‘2 b}

(&7 - (6 : ﬁ)axe €x> . (6 A e)

|0 A el?

_l’_

+ (ﬁAe)-V@.

For u = z;,i € {1,2,3} we obtain
webo = ((colf)- Vaa ), colfle = (colfle ) + (b Vg =0, {n) =0.

Obviously we have <co[f]x> = co[f]s = (0-€)e, implying 7 = 0 and thus &, = 0. For u = @
we obtain

Co[f] . VM ’LL1> 5 C()[f]f) -0 — <Co[f]5 . f1> + b- Vzﬂj ul = 0, <u1> =0.

S

welp -V =

-€) = co[f]s - © and therefore u' = 0, &5 -9 = 0. We also take

/\
\/

u = ( plying that
wc&v e = <00[f~] : vm,ﬁ U1>

olf] Vs (0 €) = (colf] - Vo (- €) ) + b+ Vi ul =0, (ul) =0,

A straightforward computation leads to

—we(B Ae) - Vaul = colf] - Vas (5-€) — <com Vs (0 e)>
15 A e?

= (0-e)0gee- 0 —[0AOze (DA€)]-e—divge 5

—(0-e)0gee-[(DAe)- V(0 Ae)
+oze:[(0Ne)@ (D Ae)—((DAe)®(DAe))].

Observe that

- . |7 A e?

(vhe)® (vAe)— 5 (Is—e®e)
s (DNe)®(0—(V-e)e)+ (0—(D-e)e)@(TAe)
=(0Ne)-Vy 1

(one)(v—(v-e)e)+ (v—(V-e)e)@(DAe)) =0

and therefore we obtain

(oNe)@(—(0-e)e)+(0—(D-e)e)R(DAe)
1 :

—weul = —(9-e)zee - (D Ae) + Ope:
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We claim that <co[f] Vi u1> = 0 and therefore &; - e. For this we write the vector field
co[f] Vg5 as follows

colf] - Vaes = (0-€)cle] Vs — (0-¢)(Opee @ e —e® dpee)d - Vi
%( E[f] - €) e Vs — [0 Ade(d Ae)] - V.
As the vector fields (0-¢e)cle]- Va5 , & (E] f]-€) e-Vj are in involution with respect to b- V5 ,

we have

||
8
S
~
IS
—
~
I

Vi u')
<1<E[f >

We are done if we prove that

||
\_/
Tb
<
~
N

—
~—

|
]

(7€) ((Opee ® e — e ® Dyee)t - Vyu') =0, ([0 A (dze(d Ae))]- Vau') = 0.

It is easily seen that
—wee - Vul = —0pee- (0 Ae)

(Ozee Ne) @ (00— (D-e) e)+ (DA e) ® Dgee

—weOgee - Vyul = (Oze + '0ge) : 1

and therefore

((Opee @ e — e @ Ogee) - Vyul) = (0 €) (Ozee - Viul) — ((Ozee - 1) e - Viul)
= — L (Orec-0)ayee - (51 )

We
1
= ——0zee® dgee: (DR (D Ae))
We
15 A el?

-~ Oree ® Ozee : Mle] = 0.

Similarly we write, by using the notation o(x, ) = 0 A Oze (0 A e)

—we(D A Oge (DA€))-Vou! = —(0-e)dgee- (0 Ae) — (T-e)dyee- (0 Ae)
(a/\e)®(17—(f}-e)e)+(f}/\e)®(a—(a-e)e).

+ (Oze + 0ze) : 1

Thanks to the seventh statement in Proposition 5.3 we have
((0-e)gee-(DNe))=([(V—(0-€)e)ANDdre(DAe)]-eldzee- (DAe)]) =D0.
Notice also that

((0-e)0zee- (o Ne)) = (U-e)dzee- (VA Oze (UAe))Ae)
= (0-e)?0gee- (Oge (D A€)) =0

((cne)@(0—(v-e)e)) = (0-e)(Oee (0Ne)®(0—(D-¢)e))
_(U-e)|z7/\e|2

5 OrzeM]e]

o7



and

(tNe)@(Is—e®e)o)=((0Ne)@a)—{((og-e)(VAe)Re)

=(0-e){(oNne)@(eNdze(DNe))) —([(0—(V-€e)e)NDge(UAe)]-e(DNe)Re)
v-e)|vAel?

=—(7-e){(DNe)®@ (D Ae)) 'OeM]e] ——()‘2/\‘

~ . ~ 2
B CAL AL e>|2“““’| ‘,eMle] +

(Is —e®e) ‘0,eMle]

~ . ~ 2
(ve)|21)/\e|6 ® (Ozee Ne).

For these computations we obtain

v-e)|v el
(Oue+ 100e) (0N e) D ([T —(5-€) )+ (TAE)® (0= (0-¢) e)) = — L NPl

2
(Ore + '0re) : [(Ove + 'Ope)M[e] — e @ (Opee Ae)] = 0.
Finally, as £, = 0,&; - 9 = 0,&; - e = 0, we have
vAe - -

€V = (6 Ts) @A) Tay foela)] >0
and 3 3 3

(colf)+ T 1) = wek - Vg [ =0, |5 ()] > 0.
Actually, by continuity, the above equality holds true for any (z,7) € R? x R3. O
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