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,

NECESSARY AND SUFFICIENT CONDITIONS FOR THE

IDENTIFIABILITY OF OBSERVATION-DRIVEN MODELS

RANDAL DOUC, FRANÇOIS ROUEFF, AND TEPMONY SIM

Abstract. In this contribution we are interested in proving that a given
observation-driven model is identifiable. In the case of a GARCH(p, q) model,
a simple sufficient condition has been established in [1] for showing the consis-
tency of the quasi-maximum likelihood estimator. It turns out that this condi-
tion applies for a much larger class of observation-driven models, that we call
the class of linearly observation-driven models. This class includes standard
integer valued observation-driven time series, such as the log-linear Poisson
GARCH or the NBIN-GARCH models.

1. Introduction

Observation-driven models were introduced in [6] and have received considerable
attention since. They are commonly used for modeling various non-linear times
series in applications ranging from economics (see [18]), environmental study (see
[2]), epidemiology and public health study (see [24, 7, 9]), finance (see [16, 19, 10,
13]) and population dynamics (see [14]).

As often for non-linear time series the question of identifiability of the
observation-driven models is a delicate one and is often appearing as an assump-
tion used for proving the consistency (say) of the maximum likelihood estimator.
A noticeable exception is the GARCH(p, q) model, for which an explicit sufficient
condition appears in [1], their condition (2.27). We will in fact prove that this con-
dition is necessary and sufficient for the identifiability and extends to a much larger
class of observation-driven models than the GARCH(p, q) model. See Theorem 8
below and the comments following this result.

Let us now formally introduce the class of observation-driven models. Through-
out the paper we use the notation uℓ:m := (uℓ, . . . , um) for ℓ ≤ m, with the conven-
tion that uℓ:m is the empty sequence if ℓ > m, so that, for instance (x0:(−1), y) = y.
The observation-driven time series model can formally be defined as follows.

Definition 1 (Observation-driven model (ODM)). Let (X,X ) and (Y,Y) be
two measurable spaces, called the latent space and the observation space,
and let (Θ,∆) be a compact metric space, called the parameter space. Let
{

(x1:p, y1:q) 7→ ψθ
y1:q

(x1:p) : θ ∈ Θ
}

be a family of measurable functions from (Xp ×

Yq,X⊗p ⊗ Y⊗q) to (X,X ), called the link functions and let
{

Gθ : θ ∈ Θ
}

be a
family of probability kernels on X × Y, called the observation kernels. A time se-
ries {Yk : k ≥ −q + 1} valued in Y is said to be distributed according to an
observation-driven model of order (p, q) (hereafter, ODM(p, q)) with link function
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ψθ and observation kernel Gθ if there exists a process {Xk : k ≥ −p+1} on (X,X )
such that for all k ∈ Z+ = {0, 1, 2, . . .},

Yk | Fk ∼ Gθ(Xk; ·),

Xk+1 = ψθ
Yk−q+1:k

(X(k−p+1):k),
(1.1)

where Fk = σ
(

X(−p+1):k, Y(−q+1):(k−1)

)

.

Unless differently stated, we always denote the link function by ψθ and the
observation kernel by Gθ. Moreover we always assume that the model is dominated
by a σ-finite measure ν on (Y,Y), that is, for all θ ∈ Θ, there exists a measurable
function gθ : X × Y → R+ written as (x, y) 7→ gθ(x; y) such that for all x ∈ X,
gθ(x; ·) is the density of Gθ(x; ·) with respect to ν. In addition, we always assume
that for all (x, y) ∈ X× Y and all θ ∈ Θ,

(1.2) gθ(x; y) > 0 ,

and also, to avoid a trivial degenerate case, that ν is non-degenerate, that is, its
support contains at least two points.

One of the most popular examples in this class of models is the general
GARCH(p, q) model introduced by [3], where X = R+, Y = R, Gθ(x; ·) is (usu-
ally but not necessarily) the centered Gaussian distribution of variance x and the
link function ψθ given by

ψθ
y1:q

(x1:p) = ω +

p
∑

i=1

aixi +

q
∑

i=1

biy
2
i ,

with θ = (ω, a1:p, b1:q) with ω > 0 and a1:p, b1:q ≥ 0. This model was extensively
studied, see, for example, [5, 11, 12, 17, 13] and the references therein. Many other
examples have been derived from this class, see [4]. The fact that the function ψθ is
linear with respect to the xi’s and Υ(yi)’s for some mapping Υ (here Υ(y) = y2), as
well as the fact that Gθ(x; ·) is a distribution parameterized that does not depend on
θ and for which x governs a scale parameter are features that are often shared among
these conditionally heteroscedastic models. If Gθ(x; ·) is a discrete distribution, this
latter property is not satisfied, which seriously complicates the theoretical analysis
of such models, as explained in [23]. Let us recall an example of such a model,
namely, the log-linear Poisson GARCH(p, q), see [10].

Example 1. The Log-linear Poisson GARCH(p, q) Model is a LODM(p, q) param-
eterized by θ = (ω, a1:p, b1:q) ∈ Θ ⊂ Rp+q+1 with observations space Y = Z+ and
hidden variables space X = R, link function given by

ψθ
y(x) = ω +

p
∑

i=1

ai xi +

q
∑

i=1

bi log(1 + yi) ,

and G(x, ·) is the Poisson distribution with mean ex, that is, ν is the counting
measure on Z+ and gθ(x; y) = ex y−ex/(y!).

Many other examples of count time series have been proposed. It is for instance
possible to let the parameter θ contain a sub-parameter ϕ involved in the conditional
distribution Gθ(x; ·). It is the case in our next example introduced in [25].
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Example 2. The NBIN-GARCH(p, q) model is a LODM(p, q) parameterized by

θ = (ω, a1:p, b1:q, r) ∈ Θ ⊂ R∗
+ × R

p+q
+ × R∗

+ with observations space Y = Z+ and
hidden variables space X = R+, link function given by

ψθ
y(x) = ω +

p
∑

i=1

ai xi +

q
∑

i=1

bi yi ,

and G(x, ·) is the the negative binomial distribution with shape parameter r > 0
and mean r x, that is, ν is the counting measure on Z+ and

(1.3) gθ(x; y) =
Γ(r + y)

y ! Γ(r)

(

1

1 + x

)r (
x

1 + x

)y

.

The rest of the paper is organized as follows. Section 2 contains additional nota-
tion and definitions that will be used throughout the paper. Our main results can
be found in Section 3, some proofs of which are postponed to Section 4.

2. Preliminaries

2.1. Admissible mappings and linearly observation driven models. We
introduce the following definition in order to simplify the form of link function.

Definition 2 (Admissible mapping). Consider an ODM(p, q) with link function
ψθ. Let Υ be a measurable function from (Y,Y) to a measurable space (U,U). If

there exists ψ̃θ : Xp × Uq → X measurable, called the reduced link function such
that, for all (x, y1:q) ∈ Xp × Yq,

(2.1) ψθ
y1:q

(x) = ψ̃θ
u1:q

(x) with uk = Υ(yk) for 1 ≤ k ≤ q ,

then we call Υ an admissible mapping and it follows that, setting Uk = Υ(Yk) for

all k > −q, {Uk : k > −q} is an ODM(p, q) with link function ψ̃θ and observation

kernel G̃(x, ·) = G(x,Υ−1(·)) on the observation space (U,U). Moreover, for all
k ≥ 0, the conditional distribution of (Yk, Xk+1) given Fk only depends on

(2.2) Zk =
(

X(k−p+1):k, U(k−q+1):(k−1)

)

∈ Z ,

where we defined

(2.3) Z = Xp ×Uq−1 endowed with the σ-field Z = X⊗p ⊗ U⊗(q−1).

A subclass of ODM of order (p, q) consists in those having an admissible mapping

Υ whose corresponding reduced mapping ψ̃θ
u(x) is linear in (u, x), that is, for all

x = x1:p ∈ Xp, u = u1:q ∈ Uq,

(2.4) ψ̃θ
u(x) = ω +

p
∑

i=1

ai xi +

q
∑

i=1

bi ui ,

In particular the parameters (ω, a1:p, b1:q) must constitute a part of the parameter
θ (possibly whole of it). We will denote this part by ϑ and the remaining part (if
any) of θ by ϕ. We call such a model a linearly observation-driven model of order
(p, q). The formal definition is as follows.

Definition 3 (Linearly observation-driven model (LODM)). Consider an ODM of
order (p, q). It is called a linearly observation-driven model of order (p, q) (hereafter,
LODM(p, q)) if

(i) All θ ∈ Θ can be written as θ = (ϑ, ϕ) with ϑ ∈ R
1+p+q.



4 RANDAL DOUC, FRANÇOIS ROUEFF, AND TEPMONY SIM

(ii) The latent space X is a closed subset of R, and, for all x = x1:p ∈ Xp,
y = y1:q ∈ Yq , and θ = (ϑ, ϕ) ∈ Θ with ϑ = (ω, a1:p, b1:q),

(2.5) ψθ
y(x) = ω +

p
∑

i=1

ai xi +

q
∑

i=1

biΥ(yi) ,

where Υ : Y → R is measurable with ν ◦Υ−1 being non-degenerate.

Remark 1. The standard GARCH(p, q) model is a special case of LODM(p, q),
in which case X = R+, Y = R, Υ(y) = y2, and Gθ(x, ·) is a centered distribution
with variance x, most commonly the normal distribution. Similarly the log-linear
Poisson Garch model of Example 1 is an LODM(p, q) by taking Υ(y) = ln(1 + y).
Obviously, the NBIN-GARCH model of Example 2 is also an LODM(p, q). Among
these three special cases, only the NBIN-GARCH model has an observation kernel
Gθ depending on a subpart of the parameter θ through r, which appears in the
right-hand side of (1.3). Hence this r corresponds to the ϕ appearing in the general
setting of Definition 3.

2.2. Iterations of the link function. We now introduce iterated versions of the
link function ψθ. Let Υ be an admissible mapping as given by Definition 2, wuith
corresponding reduced link function ψ̃θ, and let Z be defined by (2.3). In this
context, throughout the paper, for all j ∈ {1, . . . , p + q − 1}, we denote by Πj (z)
the j-th entry of z ∈ Z.

We define for any y0:k ∈ Yk+1 the mapping ψθ〈y0:k〉 : Z → X through a set of
recursive equations of order (p, q). Namely, for all n ∈ N, y0:k ∈ Yk+1 and z ∈ Z,

ψθ〈y0:k〉(z) := xk+1 ,(2.6)

where x(−p+1):(k+1) is defined by


















uj = Πp+q+j (z) , −q < j ≤ −1 ,

uj = Υ(yj) , 0 ≤ j ≤ k ,

xj = Πp+j (z) , −p < j ≤ 0 ,

xj = ψ̃θ
u(j−q):(j−1)

(

x(j−p):(j−1)

)

, 1 ≤ j ≤ k + 1 ,

(2.7)

In this set of equation the last line is applied recursively so that in fact, for all
j ≥ 0, xj+1 only depends on z and y0:j.

3. Main results

To study the identifiability of such models we only consider the case where all
processes in the model are ergodic. Namely, we use the following assumption.

(A-1) For all θ ∈ Θ, there exists a unique stationary solution satisfying (1.1).

This ergodic property is the cornerstone for making statistical inference theory
work and we provide simple general conditions in [8] for p = q = 1 and in [20, 21,
Chapter 5] for the case of general order (p, q).

We now introduce the notation that will allow us to refer to the stationary
distribution of the model throughout the paper.

Definition 4 (Stationary distributions Pθ and P̃θ). Suppose that (A-1) holds. We

define the distributions Pθ and P̃θ as follows.

a) Pθ denotes the distribution on ((X × Y)Z, (X × Y)⊗Z) of the stationary
solution of (1.1) extended on k ∈ Z, with Fk = σ(X−∞:k, Y−∞:(k−1));
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b) P̃θ denotes the projection of Pθ on the component YZ.

We also use the symbols Eθ and Ẽθ to denote the expectations corresponding to Pθ

and P̃θ, respectively. We further denote by πθ
X
and πθ

Y
the marginal distributions of

X0 and Y0 under Pθ, on (X,X ) and (Y,Y), respectively. Moreover, for all θ, θ′ ∈ Θ,

we write θ ∼ θ′ if and only if P̃θ = P̃θ′

. This defines an equivalence relation on
the parameter set Θ and the corresponding equivalence class of θ is denoted by
[θ] := {θ′ ∈ Θ : θ ∼ θ′}.

In this context, identifiable parameters are defined as all the parameters θ⋆ for
which [θ⋆] is reduced to the singleton {θ⋆}. Without identifiability, the consistency
of any estimator of θ⋆ is not possible. Nevertheless a weaker notion of consistency,
the equivalence-class consistency introduced by [15] can still be established and the
constitency in the usual sense is then equivalent to θ⋆ being identifiable.

As a byproduct of the proof of (A-1), one usually obtains a function VX : X → R+

of interest, common to all θ ∈ Θ, such that, for all θ ∈ Θ, πθ
X
(VX) < ∞, see [20,

Chapter 5]. In turns out that, since πθ
Y
= πθ

X
Gθ, such a condition allows one to

check moment conditions on πθ
Y
such as Conditions (3.8) and (3.11) below.

To investigate the identifiability of the model, we first introduce an assumption
which says how much can be identified from a single observation of the conditional
distribution Gθ(x, ·).

(A-2) We can write θ⋆ = (ϑ⋆, ϕ⋆) and, for all θ = (ϑ, ϕ) in Θ and x, x′ ∈ X,

Gθ(x; ·) = Gθ⋆(x′; ·) if and only if ϕ = ϕ⋆ and x = x′ .

The “if” in Assumption (A-2) simply means that Gθ does not depend on the com-
ponent ϑ of the parameter, so could be written as Gϕ. The “only if” part then says
that, adopting temporarily this notation, (ϕ, x) 7→ Gϕ(x, ·) is one-to-one. In many
examples Gθ does not depend on θ at all, in which case the component ϕ can be
discarded. It is the case for the Log-linear Poisson GARCH model of Example 1
but not for the NBIN-GARCH model of Example 2, where ϕ = r.

Our approach to establish identifiability is given by the following general result.

Proposition 5. Let p and q be two positive integers. Consider an ODM(p, q) with
admissible mapping Υ and let θ⋆ ∈ Θ. Assume that (A-1) and (A-2) hold. Suppose
moreover that, for all θ ∈ Θ, there exists a measurable function ψθ〈·〉 : YZ− → X
such that

(3.1) X1 = ψθ〈Y−∞:0〉 P
θ-a.s.

Then the equivalent class [θ⋆] of Definition 4 coincides with the set 〈θ⋆〉 defined as
the set of all θ = (ϑ, ϕ⋆) ∈ Θ satisfying the two following equations

ψθ〈Y−∞:0〉 = ψθ⋆〈Y−∞:0〉 P̃
θ⋆-a.s. ,(3.2)

ψθ〈Y−∞:0〉 = ψθ
Y(−q+1):0

(

(

ψθ〈Y−∞:j〉
)

−p≤j≤−1

)

P̃
θ⋆-a.s.(3.3)

The proof is postponed to Section 4.1 for convenience. For the moment, let us
provide important insights for ψθ〈Y−∞:0〉 appearing in Proposition 5. These in-

sights are threefold. First we show in Lemma 6 that (3.1) can be verified using P̃θ

only. Second, in Lemma 7, that (3.1) is implied by some Lipschitz condition on the
iterates of the link function ψθ and a moment condition on πY. Finally, we exam-
ine the special case of LODM(p, q) for which the link function is linear, leading to
Theorem 8 below, that will conclude this section.
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Lemma 6. Consider an ODM(p, q) for some p, q ≥ 1 and assume that (A-1) holds
true. Let θ ∈ Θ and consider a measurable function ψθ〈·〉 : YZ− → X. Then (3.1)
is satisfied if and only if the two following equations hold.

ψθ〈Y−∞:0〉 = ψθ
Y−q+1:0

(

(

ψθ〈Y−∞:j〉
)

−p≤j≤−1

)

P̃
θ-a.s.(3.4)

P̃
θ [Y1 ∈ · |Y−∞:0] = Gθ

(

ψθ〈Y−∞:0〉, ·
)

P̃
θ-a.s.(3.5)

Proof. Suppose that (3.1) holds true. Since Pθ is shift invariant, it can be extended
to all time instants k ∈ Z,

Xk = ψθ〈Y−∞:(k−1)〉 P
θ-a.s.

But then (3.4) and (3.5) follows from the model equations (1.1).
Suppose now that (3.4) and (3.5) hold true. Since Pθ is shift invariant, they are

extended to all time instants k ∈ Z in the form

ψθ〈Y−∞:k−1〉 = ψθ
Y(k−q):(k−1)

(

(

ψθ〈Y−∞:j〉
)

k−p−1≤j≤k−2

)

P̃
θ-a.s.

P̃
θ
[

Yk ∈ · |Y−∞:(k−1)

]

= Gθ
(

ψθ〈Y−∞:(k−1)〉, ·
)

P̃
θ-a.s.

Defining X ′
k = ψθ〈Y−∞:(k−1)〉 for all k ∈ Z, we see that {(X ′

k, Yk) : k ∈ Z} is

a stationary sequence satisfying the model equations (1.1). By uniqueness of Pθ

assumed in (A-1), we get that {(X ′
k, Yk) : k ∈ Z} has distribution Pθ and so (3.1)

holds since it is true with X ′
1 replacing X1, by the mere definition of X ′

1. �

Whenever we need some metric on the space Z, we assume the following.

(A-3) The σ-fields X and U are Borel ones, respectively associated to (X, δX) and
(U, δU), both assumed to be complete and separable metric spaces.

Recall that, for any finite Y-valued sequence y, the mapping ψθ〈y〉 is defined by (2.6)
following the recursion in (2.7). Define, for all n ∈ Z∗

+, the Lipschitz constant for

ψθ〈y〉, uniform over y ∈ Yn,

(3.6) Lipθn = sup

{

δX(ψ
θ〈y〉(z), ψθ〈y〉(z′))

δZ(z, z′)
: (z, z′, y) ∈ Z2 × Yn

}

,

where we set, for all v ∈ Z2,

(3.7) δZ(v) =

(

max
1≤k≤p

δX ◦Π⊗2
k (v)

)

∨

(

max
p<k<p+q

δU ◦Π⊗2
k (v)

)

.

Consider the following assumption on the link function.

(A-4) For all θ ∈ Θ, we have Lipθ
1 <∞ and Lipθn → 0 as n→ ∞.

We have the following result, whose proof is postponed to Section 4.2 for conve-
nience.

Lemma 7. Let p and q be two positive integers. Consider an ODM(p, q) with
admissible mapping Υ. Assume that (A-1), (A-3) and (A-4) hold, and take θ, θ⋆ ∈ Θ.

Suppose that there exists x
(i)
1 ∈ X and y

(i)
1 ∈ Y such that the constant vectors

x(i) = (x
(i)
1 , . . . , x

(i)
1 ) ∈ Xp and u(i) = (Υ(y

(i)
1 ), . . . ,Υ(y

(i)
1 )) ∈ Υ(Y)q−1 satisfy

(3.8)

∫

φ(i) dπθ
Y and

∫

φ(i) dπθ⋆
Y

are finite ,

where, for all y ∈ Y,

φ(i)(y) = ln+
(

δX

(

x
(i)
1 , ψθ〈y〉((x(i), u(i)))

)

∨ δU(Υ(y
(i)
1 ),Υ(y))

)
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with the convention (x(i), u(i)) = x(i) and δU(Υ(y
(i)
1 ),Υ(y)) = 0 if q = 1. Then

(3.9) ψθ〈Y−∞:0〉 = lim
n→∞

ψθ〈Y−n:0〉((x
(i), u(i)))

is well defined P̃θ⋆-a.s. and P̃θ-a.s. and satisfies (3.1). If moreover, x 7→ ψθ
y(x) is

continuous for all y ∈ Yq, then (3.3) holds.

We now examine the application of Proposition 5 for an LODM(p, q), as given by

Definition 3. In this case, the recursion (2.7) is defined with ψ̃θ given by (2.4). Start
this recursion with two different z and z′ and a common sequence y0:k ∈ Y, giving
raise to sequences u(−q+1):k+1 and x(−p+1):k+1 on the one hand, and u′(−q+1):k+1

and x′(−p+1):k+1 on the other hand. The second line of (2.7) implies that u′j = uj
for all j ≥ 0. Thus, using the fourth line and (2.4), we get that, for all j ≥ q,

xj − x′j =

p
∑

i=1

ai(xj−i − x′j−i)

Since ψθ〈y〉(z) = xk+1 and ψθ〈y〉(z′) = x′k+1 by (2.6), we thus obtain that, for all

z, z′ ∈ Z and y ∈ Yn+1,
∣

∣ψθ〈y〉(z)− ψθ〈y〉(z′)
∣

∣ does not depend on y and tends to
zero if and only if a1:p ∈ Sp, where

Sp =

{

c1:r ∈ R
p : ∀z ∈ C, |z| ≤ 1 implies 1−

p
∑

k=1

ckz
k 6= 0

}

.(3.10)

We summarize this in the following remark for later reference.

Remark 2. For an LODM(p, q), X is a closed subset of R and and U = R, with
δU(u, u

′) = |u − u′|. Condition (A-3) follows. Moreover, the link function ψy(x) is
of the form (2.5), which yields that (A-4) is equivalent to the following condition,
often referred to in the standard GARCH case as the invertibility condition, see
[22] for a more general discussion on this topic.

(L-1) For all θ = (ϑ, ϕ) ∈ Θ with ϑ = (ω, a1:p, b1:q), we have a1:p ∈ Sp.

Remarkably, all LODMs share the same identifiability condition, which can be
expressed as follows, using a⋆1:p and b⋆1:q to denote the true linear coefficients of the
link function (2.5).

(L-2) The polynomials Pp(·; a
⋆
1:p) and Qq(·; b

⋆
1:q) have no common complex roots,

where we defined

Pp(z; a1:p) = zp −

p
∑

k=1

akz
p−k and Qq(z; b1:q) =

q−1
∑

k=0

bk+1 z
q−1−k .

We have the following result, whose proof can be found in Section 4.5.

Theorem 8. Consider an LODM(p, q) for some p, q ≥ 1 and let θ⋆ ∈ Θ. Suppose
that (A-1) holds with an invariant probability measure satisfying, for all θ ∈ Θ,

(3.11)

∫

ln+(|Υ(y)|) πθ
Y(dy) <∞ .

Suppose moreover that (A-2) and (L-1) hold. Then the following assertions hold for
any θ⋆ = (ω⋆, a⋆1:p, b

⋆
1:q, ϕ

⋆) ∈ Θ.

(i) If (L-2) holds, then the equivalent class [θ⋆] of Definition 4 is reduced to the
singleton {θ⋆}.
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(ii) If (L-2) does not hold and there exists a neighborhood of (ω⋆, a⋆1:p, b
⋆
2:q) in-

cluded in {(ω, a1:p, b2:q) : θ = (ω, a1:p, b1:q, ϕ) ∈ Θ}, then [θ⋆] at least con-
tains a positive length curve going through θ⋆.

Remark 3. If p = q = 1, condition (L-2) is reduced to b⋆1 6= 0. Let us see what
b⋆1 = 0 would imply about the identifiability of the model in this simple case. Taking
ψθ as in (2.5) with p = q = 1, if b⋆1 = 0, then {Xk : k ∈ Z+} is a deterministic
sequence which, under the stationary distribution, has to be constantly equal to
x⋆ = ω⋆

1−a⋆
1
. But since the distribution of {Yn : n ∈ Z} is then uniquely defined by

this constant, if one can find a parameter θ with corresponding coefficients ω, a1, b1
such that b1 = 0, (ω, a1) 6= (ω⋆, a⋆1) yielding the same constant ω/(1 − a1) =
ω⋆/(1 − a⋆1), and such that Gθ = Gθ⋆ (because Gθ typically does not depend on
(ω, a1)), we see that the model is not identifiable.

Remark 4. Condition (L-2) holds for “many” parameters a⋆1:p, b
⋆
1:q, e.g. for

Lebesgue almost all ones in Rp+q.

Remark 5. The identifiability condition (L-2) is a well known sufficient condition
in the standard GARCH(p, q) models, see [11, (A4)] or [1, Condition (2.27)]. Our
result shows that it is much more general and does not apply only in the case where
Gθ(x, ·) is a distribution parameterized by a scale parameter x. We moreover show
that it is also a necessary condition.

4. Postponed Proofs

4.1. Proof of Proposition 5. First observe that (3.1) implies for all θ ∈ Θ,

(4.1) P̃
θ [Y1 ∈ · |Y−∞:0] = Gθ

(

ψθ〈Y−∞:0〉; ·
)

P̃
θ-a.s.

Let us now show that any θ = (ϑ, ϕ) ∈ [θ⋆] belongs to 〈θ⋆〉, that is, ϕ = ϕ⋆ and (3.2)

and (3.3) hold true. Since P̃θ = P̃θ⋆ , (4.1), which also holds with θ replaced by θ⋆,
yields

Gθ
(

ψθ〈Y−∞:0〉; ·
)

= Gθ⋆
(

ψθ⋆〈Y−∞:0〉; ·
)

P̃
θ⋆-a.s.

By (A-2), we obtain that θ = (ϑ, ϕ⋆) and (3.2) holds. By Lemma 6, (3.1) im-

plies (3.4), and using P̃θ = P̃θ⋆ , we obtain (3.3). Thus θ ∈ 〈θ⋆〉.
It remains to show that 〈θ⋆〉 ⊆ [θ⋆]. Let θ ∈ 〈θ⋆〉, that is, let θ = (ϑ, ϕ⋆) ∈ Θ such

that (3.2) and (3.3) hold true. Since (3.1) holds with θ replaced by θ⋆, (3.2) gives
that X1 = ψθ〈Y−∞:0〉 P

θ⋆ -a.s. Since P
θ⋆ is shift invariant, we get, for all k ∈ Z,

Xk+1 = ψθ〈Y−∞:k〉 Pθ⋆ -a.s. With (3.3), we obtain X1 = ψθ
Y(−q+1):0

(

X(−p+1):0

)

Pθ⋆-a.s. Since Pθ⋆ is shift invariant, we thus have, for all k ∈ Z,

(4.2) Xk+1 = ψθ
Y(k+1−q):k

(

X(k+1−p):k

)

P
θ⋆-a.s.

On the other hand, by definition of Pθ⋆ and using (A-2) with θ = (ϑ, ϕ⋆), we have
that

P
θ⋆ [Y1 ∈ · |Y−∞:0, X−∞:1] = Gθ⋆(X1; ·) = Gθ(X1; ·) P

θ⋆-a.s.

And using again that Pθ⋆ is shift-invariant, for all k ∈ Z,

P
θ⋆ [Yk ∈ · |Y−∞:k−1, X−∞:k] = Gθ(Xk; ·) P

θ⋆-a.s.

This, with (4.2), shows that Pθ⋆ is a shift-invariant solution of (1.1). By (A-1), we
conclude that Pθ⋆ = P

θ, and thus θ ∈ [θ⋆].
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4.2. Proof of Lemma 7. We start by introducing some useful notation related
to the iterated link function described in Section 2.2. For all y ∈ Y, we define
Ψθ

y : Z → Z by

Ψθ
y : z = z1:(p+q−1) 7→

(

z2:p, ψ̃
θ
u1:p

(z1:p), z(p+2):(p+q−1), up

)

,(4.3)

where u1:(p−1) = z(p+1):(p+q−1) and up = Υ(y), and ψ̃θ is the reduced link function
appearing in (2.1). The defintion (4.3) is only valid for q > 1. If q = 1, then Z = Xp

and the definition of Ψθ boils down to

Ψθ
y : z = z1:p 7→

(

z2:p, ψ̃
θ
u1:p

(z1:p)
)

.(4.4)

We further denote the successive composition of Ψθ
y0
, Ψθ

y1
, ..., and Ψθ

yk
by

(4.5) Ψθ〈y0:k〉 = Ψθ
yk

◦Ψθ
yk−1

◦ · · · ◦Ψθ
y0
.

Note that ψθ〈y0:k〉 introduced Section 2.2 satisfies

(4.6) ψθ〈y0:k〉 = Πp ◦Ψ
θ〈y0:k〉 : Z → X .

Conversely, we have, for all k ≥ 0 and y0:k ∈ Yk+1,

(4.7) Ψθ〈y0:k〉(z) =
(

(

ψθ〈y0:j〉(z)
)

k−p<j≤k
, u(k−q+2):k

)

,

where we set uj = Πp+q+j (z) for −q < j ≤ −1 and uj = Υ(yj) for 0 ≤ j ≤ k and
use the convention ψθ〈y0:j〉(z) = Πp−j (z) for −p < j ≤ 0.

We can now derive the following result.

Lemma 9. (A-4) implies that for all θ ∈ Θ, there exists C > 0 and ρ ∈ (0, 1) such

that Lipθn ≤ C ρn for all n ∈ Z∗
+.

Proof. By (3.6), (3.7) and (4.7), we have, for all n ∈ Z∗
+, using the convention

Lipθm = 1 for m ≤ 0,

(4.8) sup
y∈Yn,v∈Z2

δZ ◦Ψθ〈y〉⊗2(v)

δZ(v)
≤ 1{n<q} ∨

(

max
0≤j<p

Lipθ
n−j

)

.

Hence (A-4) implies that there exists m ≥ 1 and L ∈ (0, 1) such that, for all
y ∈ Ym+1, Ψθ〈y〉 is L-Lipschitz. Now observe that, by (4.6), for all n = km + r
with k ≥ 0 and 0 ≤ r < m, for all y = y−n:0 ∈ Yn+1, we can write Ψθ〈y〉 as

Ψθ〈y1−m:0〉 ◦Ψ
θ〈y1−2m:(−m)〉 ◦ · · · ◦Ψ

θ〈y(1−km):−(k−1)m〉 ◦Ψθ〈y−n:(−km)〉 ,

and in this composition, the k first functions are L Lipschitz and the last one is

L′ = 1 ∨max
{

Lipθj : 0 < j ≤ m
}

-Lipschitz. Hence, for all z, z′ ∈ Z,

δX(ψ
θ〈y〉(z), ψθ〈y〉(z′)) ≤ δZ(Ψ

θ〈y〉(z),Ψθ〈y〉(z′)) ≤ L′ Lk
δZ(z, z

′) .

Hence the result by setting ρ = L1/m ∈ (0, 1). �

We can now prove Lemma 7. Denote, for all n ∈ Z+, X
(n) = ψθ〈Y−n:0〉(z

(i)).
Then, by (4.5) we have, for all n ∈ Z∗

+,

X(n) = ψθ〈Y−n+1:0〉 ◦Ψ
θ
Y−n

(z(i)) ,

and, by (3.6), we get

δX

(

X(n), X(n−1)
)

≤ Lipθn δZ

(

z(i),Ψθ
Y−n

(z(i))
)

.
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Using (3.7) with z(i) = (x(i), u(i)) and x
(i)
1 = · · · = x

(i)
p and u

(i)
1 = · · · = u

(i)
q−1 =

Υ(y
(i)
1 ) and setting y(i) = (y

(i)
1 , . . . , y

(i)
1 ) ∈ Yq−1 we get that

δZ

(

z(i),Ψθ
Y−n

(z(i))
)

= δX

(

x
(i)
1 , ψ

θ
(y(i),Y−n)

(x(i))
)

∨

δU(Υ(y
(i)
1 ),Υ(Y−n))

Hence, for all α > 0, Condition (3.8) implies, for all θ, θ⋆ ∈ Θ, as n→ ∞,

δZ

(

z(i),Ψθ
Y−n

(z(i))
)

= O(eαn) P̃
θ⋆ , P̃θ-a.s.

We conclude with Lemma 9 that (A-4) implies that {X(n) : n ∈ N} is a Cauchy

sequence, hence converges in X and ψθ〈Y−∞:0〉 is well defined in (3.9) P̃θ⋆ , P̃θ-a.s.
Moreover, since, as a solution to (1.1) we also have, under Pθ, for all n ∈ Z+,
X1 = ψθ〈Y−n:0〉(Z−n), (3.6) also implies

δX(X1, X
(n)) ≤ Lipθn+1 δZ

(

Z−n, z
(i)
)

P
θ-a.s.

Note that δZ(Z−n, z
(i)) is bounded in probability under Pθ, hence X(n) converges

to X1 in probability if (A-4) holds. We thus obtain (3.1).
Finally, we check that (3.3) holds when ψθ

y is continuous for all y ∈ Yq. Since (3.9)

holds P̃θ⋆-a.s. and P̃θ⋆ is shift invariant, we have, for all k ∈ Z,

ψθ〈Y−∞:k〉 = lim
n→∞

ψθ〈Y−n:k〉(z
(i)) P̃

θ⋆-a.s. .

Observe that, for all n ≥ p ∨ q, we have, for all y(−n):0 ∈ Yn+1,

ψθ〈y(−n):0〉(z
(i)) = ψθ

y(−q+1):0

(

(

ψθ〈y(−n):(−j)〉(z
(i))
)

−p≤j≤−1

)

.

By continuity of ψθ
y and using the previous display, we can take the limit as n→ ∞

under P̃θ⋆ and obtain (3.3).

4.3. Some additional notation. We introduce some algebra notation that will
be used hereafter. The transpose of a matrix M is denoted by MT , the identity
matrix of order n by In (or simply I), the max norm of z ∈ Rp+q−1 by

|z|∞ = max {Πk (z) : 1 ≤ k ≤ p+ q − 1} .

We further write εj for the j-th canonical vector in Rp+q−1, 1 ≤ j < p + q, so
that Πj (z) = εTj z. For given coefficients ω, a1, ..., ap, b1, ..., bq, we define the

(p+ q − 1)-square matrix

A =









































0 1 0 0 · · · 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0 0 · · · 0 0
ap ap−1 ap−2 ap−3 · · · a1 bq bq−1 · · · b3 b2
0 0 0 0 · · · 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0 0 · · · 0 0









































,
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and the (p+ q − 1)-dimensional vectors b and ω by

b = b1εp + εp+q−1,

ω = ωεp.

In the case q = 1, we adopt the following convention: A reduces to its top-left
p-square bloc and b reduces to b1εp. In particular, in the case p = q = 1, A, b and
ω reduce to A = a1, b = b1 and ω = ω, respectively.

We further denote by A⋆, b⋆ and ω⋆ the corresponding values of A, b and
ω at (ω, a1:p, b1:q) = (ω⋆, a⋆1:p, b

⋆
1:q), respectively. Recall the notation convention

θ = (ϑ, ϕ) with ϑ = (ω, a1:p, b1:q) in Definition 3. We use the corresponding one for
θ⋆: θ⋆ = (ϑ⋆, ϕ⋆) with ϑ⋆ = (ω⋆, a⋆1:p, b

⋆
1:q).

4.4. Useful lemmas. Throughout this section, we use the notation introduced in
Section 4.3, in particular for matrix and vectors A, b, εk... This section contains
two lemmas used in the proof of Theorem 8.

Lemma 10. Let a⋆1:p and b⋆1:q be in Rp and Rq. Suppose that a⋆1:p ∈ Sp, where Sp

is defined in (3.10). Then the following assertions hold.

(i) Condition (L-2) implies that, for all a1:p ∈ Sp and b2:q ∈ R
q−1,

(4.9) ε
T
p (A

k −Ak
⋆)b⋆ = 0 for all k ∈ Z

∗
+ =⇒ A = A⋆,

where εp, A, A⋆ and b⋆ are defined as in Section 4.3.
(ii) If, on the contrary, (L-2) does not hold, then there exists c⋆1:p+q−1 ∈

Rp+q−1 \ {0} such that for all a1:p ∈ Sp ∩
(

a⋆1:p + Span(c⋆1:p)
)

and b2:q ∈
b⋆2:q + Span(c⋆(p+1):(p+q−1)) we have

ε
T
p (A

k −Ak
⋆)b⋆ = 0 for all k ∈ Z

∗
+

Proof. Let y = {yn : n ∈ Z} be a real valued sequence and consider the recursive
equation

(4.10) xt =

p
∑

k=1

akxt−k +

q
∑

k=1

bkyt+1−k , t ∈ Z .

If a1:p ∈ Sp and y is ℓ1 (absolutely summable), then there is a unique ℓ1 solution
x = {xn : n ∈ Z}, given by

x̂(λ)

(

1−

p
∑

k=1

ake
−iλk

)

=

(

q−1
∑

k=0

bk+1e
−iλk

)

ŷ(λ) ,

where x̂(λ) =
∑

k∈Z
xke

−iλk is the Fourier series of x and ŷ is that of y. In particular,
if y is the impulse sequence (that is ŷ(λ) ≡ 1), x has a Fourier series given by (using
the same notation as in (L-2))

(4.11) x̂(λ) =

∑q−1
k=0 bk+1e

−iλk

1−
∑p

k=1 ake
−iλk

= eiλ(p−q−1) Qp(e
iλ; b1:q)

Pp(eiλ; a1:p)
,

Now, writing zt = (x(t−p+1):t, y(t−q+2):p), Equation (4.10) is equivalent to

zt = Azt−1 + ytb; , t ∈ Z .

For all a1:p ∈ Sp, we have |λ|max(A) < 1, and taking y to be the impulse sequence,
we have that the unique ℓ1 solution x must be the causal sequence defined by

xt = ε
T
p A

tb, t ∈ Z+ .
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Hence the left-hand side of (4.9) means that the two equations defined as in (4.10)
with coefficients (a⋆1:p, b

⋆
1:q) and (a1:p, b

⋆
1, b2:q) have the same ℓ1 solution when y is

impulse sequence, hence by (4.11), it is equivalent to the polynomial equation

Q⋆ × P = P ⋆ ×Q ,

where we introduced the polynomials P ⋆(z) = Pp(z; a
⋆
1, . . . , a

⋆
p), Q⋆(z) =

Qq(z; b
⋆
1, . . . , b

⋆
q), P (z) = Pp(z; a1, . . . , ap) and Q(z) = Qq(z; b

⋆
1, b2, . . . , bq).

We deduce from this analysis and using these definitions that, to prove
Lemma 10 (i), we only need to show that, whenever a⋆1:p, a1:p ∈ Sp, if Condi-
tion (L-2) holds, then

Q⋆P = P ⋆Q implies Q = Q⋆ and P = P ⋆ .

This is indeed true, since, under (L-2), by the Gauss Theorem, if Q⋆P = P ⋆Q
implies that P ⋆ divides P and, since they have the same degree p and are unitary,
we get P = P ⋆, from which it follows that Q = Q⋆.

Next, we prove Lemma 10 (ii). Using the analysis above, we suppose that P ⋆ and
Q⋆ have at least one common root and show that we can find two real polynomials
C and D, with C non-zero (and D = 0 only in the special case q = 1), with degrees
at most p− 1 and q − 2 such that, for all d ∈ R,

(4.12) Q⋆(P ⋆ + d C) = P ⋆(Q⋆ + d D) .

The constraints on the degrees of C and D guaranty that P ⋆ + d C and Q⋆ +
d D can be expressed as P and Q above for some a1:p ∈ a⋆1:p + Span(c⋆1:p) and
b2:q ∈ b⋆2:q + Span(c⋆(p+1):(p+q−1)), where c

⋆
1:p and c⋆(p+1):(p+q−1) are coefficients in

the polynomials C and D. Let U denote the greater common divisor of P ⋆ and Q⋆,
which has degree at least one by assumption. Now define C and D by Q⋆ = D×U
and P ⋆ = C × U . Then the degrees of C and D are at most p − 1 and q − 2, as
requested, and (4.12) can be readily checked. �

Lemma 11. Define εp and A as in Section 4.3 and suppose that a1:p ∈ Sp, where
Sp is defined in (3.10). Then

∑

k≥0 ε
T
p A

kεp 6= 0.

Proof. We have, for all k ≥ 0, εTp A
kεp = ε̃

T
p Ã

kε̃p, where ε̃p denotes the last

canonical vector of Rp and Ã is the companion matrix defined as the p×p upper left

bloc ofA. Since a1:p ∈ Sp, we have
∑

k≥0 Ã
k =

(

Ip − Ã
)−1

. To obtain the result we

observe that ε̃Tp

(

Ip − Ã
)−1

ε̃p = 0 implies that there exists c1, . . . , cp−1 ∈ R such

that ε̃p =
(

Ip − Ã
)

[

c1 . . . cp−1 0
]T

. Using the companion matrix form of Ã,

and looking successively at the p− 1, p− 2, ... entries in the previous equation, we
easily get iteratively that cp−1 = 0,.., c1 = 0, and thus obtain a contradiction. �

We can now prove the main theorem.

4.5. Proof of Theorem 8. By Remark 2, (A-4) holds as a consequence of (L-1).
We apply Proposition 5. To this end we must first show that (3.1) holds. For this

we apply Lemma 7. Take an arbitrary x
(i)
1 ∈ X, and if q > 1, y(i) ∈ Yq−1. Then,

since ψθ
y(x) is of the form (2.5), there exists constants C1, C2 > 0 only depending

on θ, x
(i)
1 and y(i) such that, for all y ∈ Y,

δX

(

x
(i)
1 , ψ

θ
(y(i),y)(x

(i))
)

≤ C1 + C2 |Υ(y)| .
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Thus (3.11) implies that (3.8) holds and we can apply Lemma 7 to get (3.1)
and (3.9). Using the notation of Section 4.3, we have for all k ≥ 0,

Zk = ω +AZk−1 + bUk−1

where Zk is defined in (2.2). Then, noting that Xk = εTp Zk, (3.9) becomes

(4.13) ψθ〈Y−∞:0〉 =

∞
∑

k=0

ε
T
p A

k(ω +Υ(Y−k)b) P̃
θ⋆ , P̃θ-a.s.

Now we can prove Assertion (i) of Theorem 8. Suppose that (L-2) holds and take
θ ∈ [θ⋆]. By Proposition 5, this implies θ ∈ 〈θ⋆〉 and thus θ = (ϑ, ϕ⋆) and satisfies

(3.2). It remains to show that ϑ = ϑ⋆. Since (4.13) holds both P̃θ⋆-a.s. and P̃θ-a.s.,
and the same equation holds with θ, A, ω and b replaced by θ⋆, A⋆, ω⋆ and b⋆,
(3.2) implies

(4.14)

∞
∑

k=0

ε
T
p A

k(ω +Υ(Y−k)b) =

∞
∑

k=0

ε
T
p A

k
⋆(ω⋆ +Υ(Y−k)b⋆) P̃

θ⋆-a.s.

This implies that P̃θ⋆-a.s.,

(b⋆1 − b1)Υ(Y0) = ω − ω⋆ +

∞
∑

k=1

ε
T
p A

k(ω +Υ(Y−k)b)−

∞
∑

k=1

ε
T
p A

k
⋆(ω⋆ +Υ(Y−k)b⋆)

If b1 6= b⋆1, this implies that Υ(Y0) is a deterministic function of Y−∞:1. Under P
θ⋆ ,

by (3.1), the distribution of Y0 given Y−∞:1 is G
θ⋆(X1, ·). By (1.2) Gθ⋆(X1, ·) has the

same support as ν. Hence the distribution of Y0 given Y−∞:1 has the same support
as ν ◦Υ−1 which is not degenerate by Definition 3-(ii), and we get a contradiction.
So we must have b1 = b⋆1, that is, b = b⋆. Iterating, and using this line of reasoning,
we get that, for all k ≥ 1,

ε
T
p A

kb⋆ = ε
T
p A

k
⋆b⋆ .

Applying Lemma 10, we have that this implies A = A⋆, that is, a1:p = a⋆1:p and
b2:q = b⋆2:q. Going back to (4.14), we also get that

∞
∑

k=0

ε
T
p A

k
⋆εp(ω − ω⋆) = 0 ,

and we conclude with Lemma 11 that ω = ω⋆. Collecting the obtained identities,
we arrive at ϑ = ϑ⋆ and this concludes the proof of Theorem 8 (i).

Next, we prove Theorem 8 (ii). Hence we suppose that (L-2) does not hold,
and, since we want to show that [θ⋆] contains a particular set, we use that [θ⋆] =
〈θ⋆〉 as given by Proposition 5. Hence, we only need to exhibit θ = (ϑ, ϕ⋆) such
that (3.2) and (3.3) hold. By Lemma 7, (3.3) holds for all θ ∈ Θ and we only

need to impose (3.2) on ϑ. Using (4.13), which holds P̃θ, P̃θ⋆-a.s. for all θ, including
θ = θ⋆, it is thus sufficient to have

for all k ≥ 0, εTp A
kb = ε

T
p A

k
⋆b⋆ and

∞
∑

k=0

ε
T
p A

k
ω =

∞
∑

k=0

ε
T
p A

k
⋆ω⋆ .

The first relation with k = 0 corresponds to b1 = b⋆1, which we assume in the
following, so that b = b⋆. By Lemma 10, we can find a line of Rp+q−1, going
through (a⋆1:p, b

⋆
2:q) such that these relations hold for all k ≥ 0, for all (a1:p, b2:q) on
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this line. Now, by definition of ω⋆ and ω, and using Lemma 11 with a1:p ∈ Sp, the
last relation in the displayed sufficient condition can be written as

ω =

∑∞
k=0 ε

T
p A

k
⋆εp

∑∞
k=0 ε

T
p A

kεp
ω⋆ ,

where the ratio tends to 1 as (a1:p, b2:q) approaches (a
⋆
1:p, b

⋆
2:q). Hence we get that

[θ⋆] contains the part of the curve obtained by taking (a1:p, b2:q) on the previously
exhibited line and sufficiently close to (a⋆1:p, b

⋆
2:q) to have a1:p ∈ Sp, and setting ω

as above.

References
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