Text island spotting in large speech databases

Benjamin Lecouteux, Georges Linarès, Frédéric Beaugendre, Pascal Nocéra

Fast-match to transcript island

- The principle of the proposed method is close to approaches used in the field of information retrieval.
- In our case, the hypothesis is a query which may be answered by one of the transcript island.
- The lexicon is represented by a lexical space Ls where each dimension is associated to a word. The coefficients of these vectors represent the frequencies of words in the document.
- As the current hypothesis is developed, a set of word clusters Ci is built and updated.
- These clusters result from the intersection of hc and the transcript island li.
- For each new word added to the hypothesis hc, transcript islands are considered as candidates for guiding the search.

This competition is arbitrated by a matching score Wi.

$$W_{i}(h_{c}) = \frac{|C_{i}(t)|}{|h_{c}(t)|} * \sum_{i=0}^{n} Idf(w_{i})$$

where $|C_i(t)|$ and $|h_c(t)|$ are the cardinality of respectively the cluster C_i and the current hypothesis h_c . Idf(w) represents the classical measure of the relative word frequency:

$$idf(w) = \frac{1}{frequency_w}$$

Experimental context:

- First experiments assessed on 3 hours of radio
 ESTER
 (with exact transcript and a 10% WER transcripts)
- (With exact transcript and a 20% West transcripts)
- Second experiments assessed on 11 hours of RTBF on wich time stamps where manually added.
- All words available in database are added to the language model
- Language model : about 67000 words trained on « lemonde »
- Speech recognition system : SPEERAL, an asynchronous decoder based on the A* algorithm.

Results:

Radio sta-	Precision	Recall	F-measure	Seg.
tion				number
INTER	90.9%	98.89%	94.8%	478
INFO	93.7%	92.9%	91.5%	468
RFI	98.9%	97.8%	98.4%	812
Mean	95.3%	97.3%	95.5%	1758

	Radio sta- tion	Precision	Recall	F-measure	Seg. number
	FrInter	90.7%	96.9%	93.7%	478
	FrInfo	93.4%	89.7%	91.5%	468
ĺ	RFI	98.8%	97.8%	98.4%	812
	Mean	94.3%	94.8%	94.5%	1758

	~		
System	Baseline	DDA+IT	DDA+PT
INTER	22.6 %	17.9%	17.1%
INFO	23.4 %	21.7%	18.3%
RFI	27.2 %	23.0%	20.3 %
Mean	24.4 %	20.9 %	18.6 %

	Precision	Recall	F-	Seg.
			measure	number
RTBF	99.28 %	97.13 %	98.41 %	501
shows				

Conclusions:

- On ESTER tests approximative transcripts bring a WER gain of about 14% relative, while exact ones allows a WER gain close to 24% relative.
- Spotting performance is good; more than 95.3% of segments have been found, with a precision of about 96.7%.
- On RTBF tests, spotting performance is good; more than 95.3% of segments have been found, with a precision of about 96.7%.