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Abstract—Network Function Virtualization (NFV) and service
orchestration simplify the deployment and management of net-
work and telecommunication services. The deployment of these
services require, typically, the allocation of Virtual Network
Function - Forwarding Graph (VNF-FG), which implies not
only the fulfillment of the service’s requirements in terms of
Quality of Service (QoS), but also considering the constraints of
the underlying infrastructure. This topic has been well-studied
in existing literature, however, its complexity and uncertainty
unveil many challenges for researchers and engineers. This issue
is especially complex when it comes to placing a service on several
non-cooperative domains, where the network operators hide their
infrastructure to other competing domains. In this paper, we
address these problems by proposing a deep reinforcement learn-
ing based VNF-FG embedding approach. The results provide
insights into behaviors of non-cooperative domains. They also
show the efficiency of proposed VNF-FG deployment approach
having automatic inter-domain load balancing.

I. INTRODUCTION

Network Function Virtualization (NFV) promises to reduce
the cost of deployment while allowing the operation of large
network infrastructures. It provides the possibility to migrate
complex network functions from dedicated hardware appli-
ances to general purpose computing, storage, and networking
solutions. This transition is also expected to provide significant
benefits to the 5G mobile network architecture, by allowing
flexible and scalable provisioning of new applications and net-
work services. Moreover, since NFV allows multiple network
services to share the same physical infrastructure, it enables
new business models and/or economies of scale. In particular,
the Network—as—a—Service (NaaS) business model is expected
to play a pivotal role in 5G mobile networks, allowing Mobile
Network Operators (MNOs) to tap into new revenue streams.
In fact, virtualization will allow MNOs to abstract their
physical network infrastructure into service specific slices,
possibly operated by different mobile virtual network operators
(MVNQOs) [1] or over the top (OTT) providers.

Virtualization and adaptive network service orchestration
are two of the main technical enablers that will allow In-
frastructure Providers (InPs) to cope with the diverse range
of requirements. This will characterize future applications
and services. It is worth noticing that in this case, an InP
could either be a traditional MNO that decides to open-up its
networks to third parties or a new actor in the value chain
that focuses only on the deployment and operation of the

network infrastructure (the InP could even be a consortia of
MNOs). Although a rich body of literature exists on VNF
placement [2], virtual network embedding [3], and component
placement [4], most of these works focus on the problem
of mapping an input virtual network request onto a physical
virtualized network substrate.

Machine learning (ML) techniques have been adopted,
showing breakthroughs, in a number of application areas. One
of the advantages of ML is that it can deal with complicated
problems; thus it is intuitive to exploit ML in the network
domain where the complex problems are common [5]. ML
algorithms can be classified into three categories: supervised
learning (SL), unsupervised learning (USL), and reinforcement
learning (RL). While SL and USL focus on classification or
regression tasks, RL algorithms can help in decision making
and can learn to identify the best action policy in order to
maximize a given objective function.

Early on, RL techniques have been exploited to solve
routing optimization [6]. They are also used in QoS routing
[7]; however, table-based RL agents cannot provide efficient
solutions for unseen network states and simply do not work in
realistic environments with large actions space, which could
even be infinite. Deep Reinforcement Learning (DRL) is able
to cope with these issues, while overcoming the iterative im-
provement process of optimization and heuristics by having a
DRL agent providing a near-optimal solution in one single step
[8]. Moreover, the performance of DRL has been improved by
recent breakthroughs [9], [10]; thus paving a way for adopting
DRL in the context of networking.

In this paper, we study VNF-FG deployment over non-
cooperative multiple domains. Each domain employs a DRL
agent to learn from history of its actions and rewards. It learns
a local action policy in terms of proposed prices for using its
resource. A given client who requests VNF-FG embedding
receives these prices and decides the final mapping between
the VNFs and the substrate nodes plus links of the domains.

The rest of the paper is structured as follows. Section II
reviews VNF-FG embedding and DRL in networking. Section
III provides an overview of VNF-FG embedding problem. A
DRL-based non-cooperative approach to deploy VNF-FGs in
multi-domains is proposed in Section IV. The performance of
the proposed approach is verified by simulations, presented in
Section V. Finally, Section VI concludes our work.



II. RELATED WORKS

The need to dynamically deploy services on demand,
through VNF-FG embedding, is identified as the core tech-
nology of 5G and post-5G networks. Therefore, this issue has
been at the very centre of academic and industrial research in
recent years. In this section, we review VNF-FG embedding
works in single and multi-domains, as well as the use of DRL
in networking and especially in VNF-FG embedding.

A. VNF-FG embedding

Different existing solutions for single domain VNF-FG
embedding can be classified into two: one stage or two/multi-
stages VNF-FG embedding. In [11], [12], authors model the
problem as an ILP and propose heuristics to map the virtual
graph components on the physical resources, on the basis of
a single stage. The main goal of these works is to maxi-
mize the revenue generated for the infrastructure providers in
terms of bandwidth, computing, storage, radio and/or energy
consumption. In [11], authors propose a heuristic based on a
backtracking mechanism, while authors in [12] take advantage
of the feedback of mapping the VNF-FG to optimize the VNF-
FG design. The objective of this work is to optimize the total
bandwidth consumption.

The second class of single domain VNF-FG embedding
solves the problem in two stages. Such that, the virtual nodes
are first mapped based on certain criteria (mainly on the
available resources), then the links are mapped in a second
stage. Authors in [13] propose to rank and map the nodes
based on a Markov random walk algorithm. They take into
consideration the availability as well as the neighbors of the
underlying nodes in their solution. Authors in [14] propose to
dynamically map the virtual links into physical links based on
the network conditions of the underlying network.

Recently, a few works tackled the multi-domain VNF-FG
embedding [15], [16]. In [16], the authors adopted distributed
orchestrator based solutions where the local view of each
orchestrator is replicated in the other orchestrators to build a
global view of the network. Problems of complexity and con-
fidentiality can be raised in such architectures. [15] studied the
cooperation between domains to determine the global optimal
VNF-FG embedding. The original problem is converted into
a factor graph and each domain control a part of this graph
which relates to its networks. By adopting this approach, the
convergence speed and the quality of solution can be enhanced.

B. Deep-reinforcement learning in networking

With Reinforcement Learning (RL), an agent learns by
interacting with its environment. The agent learns to perform
the best action for each state by performing actions and
observing the rewards or penalties. Given enough observations,
an optimal policy can be learned. Thus, the training data in
reinforcement learning is a set of state-action-rewards. Some
algorithms for RL are: Q-learning, State Action Reward State
Action (SARSA), Deep Q-Network [17], etc.

Recently, some works proposed RL-based approaches for
VNF-FG embedding [18][19]. In [18], authors map the VNF-
FG in two stages: node mapping stage then link mapping stage.

They propose two approaches for link mapping: MaVEnM and
MaVEn-S, based on Multi-Commodity Flow algorithm and
the shortest-path algorithm, respectively. Regarding the node
mapping, the authors propose an MDP based approach. The
node mapping algorithm is called for each node embedding
request. Consequently, this approach is time consuming and
not adapted for real time embedding. Authors in [19] propose a
multi-agent based reinforcement learning approach for virtual
network embedding. These agents evaluate the feedback to
learn the best policy to adopt in order to optimally allocate
the required resources to the virtual nodes and links. However,
they only tackle single domain scenario.

To the best of our knowledge, we are the first to propose a
RL-based approach for multi-domain VNF-FG embedding.

III. VNF-FG EMBEDDING PROBLEM

In this paper, we consider a system with a number of VNF-
FGs. Each VNF-FG consists of VNFs connected by virtual
links. Each VNF requests a specific amount of resources,
which mainly depends on the number of supported users and
the type of services. The resources requested by VNFs could
be the amount of central processing units (CPUs), Random
Access Memory (RAM), Storage, Radio, etc. The number of
resource types is Kyng. Each type of resource is indexed by
0,1,..., Kynr—1. We denote h,, j as the amount of resource
k requested by VNF n' and h,/ = [hy o, ..., Ans Kyne—1] @S
the vector of requested resources of VNF n’. Without loss
of generality, we consider the core network where computing
tasks are major; thus the requests of VNFs are computing
resources (i.e. CPU, RAM, and storage) (Kynr = 3). Note that
it is expected that the proposed mechanism can be exploited
with more complicated VNF resources, by extending the input
of the DRL as discussed in next section. The VNFs are
connected by virtual links (VLs). Each VL is characterized by
Kyr network oriented metrics (e.g. bandwidth, latency, loss
rate, etc.). The request of metric k¥ of VL [’ is denoted as
hy g and hy = [hy o, ..., hy Ky —1] as the vector of request
resources of VL I’. We consider bandwidth, latency, and packet
loss rate as the metrics of VLs (Ky = 3).

Let us denote the set of VNFs and VLs as A// and £’, then
the number of VNFs and the number of VLs are |[N’| and
|£’|, respectively. The sets of nodes and links of the substrate
network are A and £, therefore the number of substrate nodes
and substrate links are |[N| and |L]|, respectively. A VNF is
successfully deployed when its host has enough resources, i.e.

> 68 bk < Tk, Y,k (1)

where qbzl is a binary variable which is 1 if n’ is deployed at
substrate node n and 7, ;; is the available amount of resource
k at substrate node n. Note that each VNF is deployed at only
one substrate node n; thus

>oon <1 2)

A VL is successfully deployed when its ends (VNFs) are
deployed and its QoS requirements are met. We have

S0 b < s (3)
l/
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where ¢§l is a binary variable which is 1 if I’ is deployed at
the substrate link [, 7; p,, is the available amount of bandwidth
at the substrate link /, and D(¢!) and R(¢") are the actual
latency and loss rate corresponding to a given mapping (;Sl

[¢0 ) ¢1 [RRRS) ¢|L\f

The requests of VNF-FGs are described by a 3D-array
of |N'| x [N'| x (2 x Kynr + Kvr). This 3D-array is a
(2 x Kynr + Kvi)-channel of |[N7| x || matrices. The first
Ky channel describes VLs requirements. The next 2 x Kyng
channels express the resource requests of the source and
destination VNFs respectively. As convolutional layers are able
to extract mutual impacts between links in a network (shown
in [20]), this form of VNF-FG requests enables us to apply
convolutional layers to learn the mutual impacts between VLs.

VNEF-FG requests are sent by the client who is the owner of
the VNF-FG as the state to different domains. Then, each
domain inputs it into a DRL network in order to determine
an action which expresses the mapping of VNF-FGs to its
substrate network. Even though we can define a discrete
action space for this problem, its size could be enormous.
For instance, each VL can be mapped to an ordered subset of

substrate links, thus we have the number of actions for only
k=|L]

mapping VLs is |£/] x Z e LI k), In [20], the continuous
k=

link weights were adopted as the action space of routing
problems since it reduces the size of action space to |£| and
improves the performance of learning process. Then, the deep
deterministic policy gradient (DDPG) method was utilized to
deal with continuous action space thanks to its performance
[21]. We exploit this idea to our problem and the action space
becomes the prices proposed to the client to satisfy the request.

The price of resource m at substrate node n of
VNF n' is denoted as cj,,. The price vector of VNF
n is ¢, = [CO,n/yCl,n s CW|,1W], where c¢;, =
[cg’n,,...,cnKj{iF*l . Therefore, it needs |[N'| X |[N| x Kyng
entries in the action to express the prices of computing
resources. Moreover, we need |£'| x |L£| entries in the ac-
tion to express the price of using a unit of bandwidth of
substrate links for each VL. The price vector of VL [’ is
cy = [CO,I’acl,l’a ...,C|L|,1’l/}, where c; ;- is the price of a
unit of bandwidth for VL {’. These prices are determined by
each domain, which are then sent to the client. We limit the
lowest price in order to guarantee it is greater or equal to
the actual deployment cost. The client who wants to deploy
VNF-FGs observes the prices proposed by domains and makes
a final decision so as to minimize its deployment cost. This
process will be detailed in next section.

IV. MULTI-DOMAIN NON-COOPERATIVE VNF-FG
EMBEDDING

A. The framework

In this section, we propose a framework for multi-domain
non-cooperative VNF-FG embedding. As a non-cooperative
framework, each domain does not have information of the

topology as well as the available resources of other domains.
Moreover, they do not communicate to each other to determine
the global optimal solution. Each domain only exposes the
prices of resources to the client, then the client makes a final
decision based on these prices. Fig. 1 describes the framework
that we propose in this paper.

Client

Final DECISIOI’\
Flnal Decision

Fig. 1: Non-cooperative Multidomain VNF-FG embedding
framework

Recall, the state is a 3D-array representing VNF-FG re-
quests, which is input to the DRL module present in the
domain. The action determined by DRL is the price sent by a
domain to the client. The client then decides where to finally
embed the VNF-FG as the final action. The final action also
determines the reward to different domains bidding to embed
the VNF-FG. The framework comprises rounds of 3 steps:

o Step 1: The client who owns the VNF-FGs translates the
requests of VNF-FGs (CPU, RAM, Storage, bandwidth,
latency, and loss rate) to a 3D-array and sends it to
domains. It represents the state of VNF-FGs. We
assume that a unique request of VNF-FGs arrives and
is also finally embedded in each round if resources are
available.

o Step 2: Each domain uses state to compute the action
through the actor network. Note that the action of domain
1 (A;) is the price proposed to the client which in turn
is a function of the cost of using its resources, i.e.,

nn,,Vn € N; and ¢ 1/,Vl € L;, where N; and L;
represent, respectively, the sets of nodes and links of the
substrate network of the domain 3.

e Step 3: AFinal Decision is made by the client and
domains are informed about it. Each domain follows the
Final Decision to deploy VNFs and VLs and this
final action also results in a reward for the domain.

B. Deep RL agent model

The proposed approach adopts an off-policy, actor-critic,
deterministic policy gradient algorithm (DDPG) [22] RL agent
that interacts with the data network through states, actions, and
rewards [17]. The state is the requests of VNF-FGs, which is
sent by the client in step 1. Each domain determines the prices
of its resources corresponding to the request and sends them
to the client (step 2). Thus actions are like bids of domains
for selling their resources. Client then makes the Final
Decision. After receiving the Final Decision from
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Fig. 2: DDPG in non-cooperative multidomain VNF-FG em-
bedding

the client, domains deploy the VNFs and VLs, accordingly.
The client observes the performance and gives the reward
to domains according to their offered prices. The reward of
domain % can be determined as follows

Z Z an nn’h’k+z Zwlcll/hl/bw

n' €N’ neEN; keK, leLiver!
(6)

where wﬁ/ =1 (o.)ll/ = 1) if and only if ¢z/ =1 (¢§l =1) and
the requested resources (QoS) are satisfied.

In DDPG, two neural networks are maintained to learn
the policy (the actor network) and the Q-value (the critic
network) separately. Fig. 2 presents the operation of DDPG
algorithm. The state s; is observed by the DRL agent of
each domain. An action is determined by the actor with its
current parameters. This action could be added with noise N
to explore the environment better. The critic network assess the
advantages of an action and leads the actor to a better policy.
The client collects actions of domains (bidding prices), decides
a final action and executes it. Each domain receives its rewards
in return to providing resources to the client. These rewards
are fed into DRL agent to compute the loss and update the
parameters of DRL agent.

The objective of domain ¢ is to identify the optimal policy
1; mapping the requests of VNF-FGs to the local action
A;, p; S — A,;, that maximizes its reward presented in
Eq. (6). It is done by repeatedly enhancing its knowledge of
the connections between the requests, actions, and rewards
through the means of deep neural network consisting in the
actor and the critic networks. Meanwhile, the objective of the
client is to maximize the number of allocated VNFs and VLs
with the lowest cost. A lightweight heuristic algorithm will be
discussed in the next section to handle this task. The actor and
critic networks are composed of different layers used to extract
useful information from the state as shown in Fig. 3. We use
three convolutional layers (ConvLayers). The number of filters
and the kernel size of ConvLayer ¢ are C; and (F;, F;). In
addition, we add average pool layers to reduce the amount of
parameters and control overfitting. The output of ConvLayers
expresses the mutual impacts between VLs taking into account
all properties of VLs. Also, we use Fully Connected (FC)
layers to map mutual impacts to the action. The number of
units of FC ¢ is D,. Note that we also convert the action by a
FC layer in the critic.

N N )
ConvLayer Convlayer Convlayer FC FC
Iput =11 Faxra) 7] AV8PO! 71 (2, Faxr2) [ AV8PO0! 7 (c3 rax3) [ (1) [ (D2) [7] OUtPUt
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(a) Actor
' NN
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N N N N 7Y N ) /ﬁ:< /Y
Convlayer Convlayer Convlayer FC FC
I
Lsme (€1, F1xr1) [ AVBPOO! 2T (e, baa) [ AVBPOO! P (3 ranrs) ] 1) [ (02) [ OVtPUt
J AN /
(b) Critic

Fig. 3: Neural networks

C. Decision maker models

After collecting the prices from the different domains (A;),
the client has to make a decision in order to deploy its VNF-
FGs. While it is difficult to guarantee that a path will meet the
required QoS of virtual links, it is possible to guarantee the
needs of resources of VNFs. Consequently, the decision has
to consider the capabilities of substrate nodes when deploying
VNFs as well as the cost of deployment. We revise First Fit
algorithm, a well-known resource allocation algorithm, into
the Cost-based First Fit (CFF) algorithm in order to address
the needs of a decision.

Alg. 1 describes the CFF algorithm. The global action A,
formed by actions of domains is split into the costs related
to VNFs A, ., and the cost related to VLs A, ,;. For VNF
i, a dot product between the cost of VNF i (A, . f[i] = ¢;)
and its request resource (h;) provides the deployment cost
corresponding to each substrate node (line 6). From line 8 to
line 12, the substrate node that has sufficient resources and
the lowest deployment cost will be selected. The client sends
request to the domain D(j) which has the substrate node j.
Domain D(j) checks if it can provide the resources and replies
to the client. If D(j) accepts the request, CEF algorithm moves
to the next VNF. Otherwise, it checks the next lowest cost
substrate node. CFF algorithm continues until all VNFs are
considered. The CFF algorithm outputs a mapping between
VNFs and the substrate nodes. The VNF mapping obtained by
CFF algorithm identifies the locations of VNFs. To map VL
', we exploit A, ,;[l'] as the weight of links, then executing
Dijkstra algorithm to find the lowest cost path of I’.

V. SIMULATION RESULTS

To assess the performance of the proposed approach we
use a network topology BtEurope [23] of 24 nodes and 37
full-duplex links. The capacity of links are assigned one of
following values randomly: 20 Mbps, 30 Mbps, 50 Mbps
or 100 Mbps. The OMNeT++ discrete event simulator [24]
(v5.4.1) was used to obtain the latency and packet loss rate to
assess the quality of deployed VLs.

For each configuration, we execute 10 simulations with
random numbers, sizes, and shapes of VNF-FGs. Each VNF-
FG has from 3 to 6 VNFs and the connectivity of 0.5. The
requested resources of VNFs are normalized and distributed
uniformly. The amounts of available resources of each sub-
strate node are random in the range (0.3,2.0). Each virtual
links arbitrarily requests a bandwidth in range of 1 Mbps to 30



Algorithm 1: Cost-based First Fit Algorithm (CFF)
1 Input: A;;i =1,..., D from D domains

2 Output: VNF mapping ¢2,

3 Initialize ¢" = 0,Vn,n’ A, < [A4,...,Ap],

4 A*,vnf7A*,vl = split [A*}’

5 foreach VNF i do

6 Compute P = A, ,,¢[4] - hy;

7 Sort P in ascending order;

8 foreach entry j in P do

9 Send request to D(j);

10 if D(j) accepts request then
1 L <;$§ =1;

12 D(j) deploys j at node i;

Mbps, latency of 1 ms to 100 ms, and loss rate of 0% to 0.5%.
An Ornstein-Uhlenbeck process is used for the exploration
noise [21].

Adam [25] is used for learning the neural network parame-
ters. The learning rates of actor and critic networks are 10~4
and 1073, respectively. The discount factor + is 0.99. The
parameter of target network is updated with the coefficient
of 7 = 0.001. The batch size is 32. The number of units of
fully-connected layers is 300. The numbers of features of 3
ConvLayers are 16, 64, and 128 respectively. The kernel sizes
of ConvLayers are (4,4), (2,2), and (5,5).

We compare four configurations: single domain
with CFF (CFF-SD), three domains with CFF (CFF-3D),
simulated annealing algorithm (SA) [26], simulated annealing
algorithm with CFF (SA-CFF). First, we compare the average
reward of CFF-SD and CFF-3D. The results are presented
in Fig. 4a. Generally, both CFF-SD and CFF-3D are able
to obtain better reward over time. In CFF-SD, there is no
competition; thus the DRL agent can increase the price
to the upper limit in order to achieve better rewards. In
CFF-3D, each domain attempts to achieve better rewards
by competing with other domains to provide resources and
increasing the prices. When there are limitations of resources
in several domains, there may be only one domain can
host VNFs and VLs. Then, the price will increase due to
the lack of competitions. We confirm the above claim by
considering the average normalized price in two cases: (i)
default available resources (amounts of resources of each
substrate node in range (0.3,2.0)) and (ii) high available
resource (CEFF-SD-HR and CFF-3D-HR) where the lower
bound of available resources is 1 instead of 0.3. It means
each substrate node in high available resource scenario can
host at least one VNF. Fig. 4b describes the normalized
prices in these scenarios. The price in CFF-SD increases
faster than CFF-3D due to the lack of competitions. The
normalized price in CFF-3D also increases because of the
limitations of resources at substrate nodes. When we loose
these limitations, the normalized price is much lower thanks
to the competitions between domains (CFF—-3D-HR).

Generally, CFF-3D offers lower prices than CFF~-SD while
providing a slightly better percentages of deployed VNFs and
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Fig. 5: Percentage of deployed VNFs and VLs

VLs as shown in Fig. 5. This may be because each DRL agent
in CFF-3D manages a smaller networks compare to the DRL
agent in CFF-SD. Consequently, both the state and the action
space of DRL agents in CFF—-3D are smaller of DRL agents
in CFF-SD. The smaller state and action spaces help DRL
agents obtain better solutions.

The comparison of the performance of CFF-SD and
CFF-3D, with SA and SA-CFF is presented in Fig. 6.
Note that we consider single domain scenario when applying
simulated annealing. The very large action state of VNF-
FG embedding problem causes challenges for simulated an-
nealing method in searching good solutions. Consequently,
the percentage of deployed VNFs of SA is much lower
than of CFF-3D and CFF-SD. CFF algorithm can help
SA in finding the capable substrate nodes; however, it cannot
guarantee these VNF placements can lead to a good VL
deployment. Consequently, the percentage of deployed VLs
of SA and SA-CFF are similar and remarkable lower than of
CFF-3D and CFF-SD.

The next simulations are to confirm the load balancing capa-
bilities of DRL-agents. Table I shows the average resources of
domains. Domain 1 has the lowest CPU and RAM resources,
while domain 3 has the lowest storage resource. Note that
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Fig. 6: Comparison of CFF-SD, CFF-3D, SA, and SA-CFF



[ Domain | 1 [ 2 [ 3 ]
CPU 7.93 8.14 8.35
RAM 8.21 8.29 8.72

Storage 8.53 7.82 6.95
Capacity | 540 Mbps | 710 Mbps | 570 Mbps

TABLE I: Resources of domains
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Fig. 7: Mean of deployed VNFs and deployed VLs of each
domain

the limitation in one of resources may cause the failure in
deploying VNFs. Consequently, domain 2 can host more VNFs
than other domains as shown in Fig. 7a. The limitations in
storage resource of domain 3 prevents it from deploying VNFs,
thus it can host less VNFs than domain 1. Fig. 7b shows the
mean of deployed VLs over time of each domain. Domain
2 has the best network capacity, thus it can host more VLs
than other domains. Domain 3 has slightly better capacity than
domain 1; thus its mean of deployed of VLs is a bit better than
of domain 1. Generally, the domain with higher resources will
host more VNFs and VLs. In other words, DRL-agents are
able to balancing the load between them even though they
acts selfishly while determining the actions.

(b) VLs of each domain

VI. CONCLUSIONS

In this paper, we studied the multi-domain non-cooperative
VNF-FG embedding problem. We introduced a framework in
which each domain determines the bidding price of using its
own resources selfishly, then the final decision is made by the
owner of VNF-FGs by executing CFF, a light-weight heuristic
algorithm. The results confirmed embedding VNF-FG in non-
cooperative multi-domain offers gains to the owner of VNF-
FGs by reducing the bidding prices thanks to competitions
between domains while the successful deployment of VNFs
and VLs is slightly improved. The analysis of each domain
confirmed the inter-domain load balancing capabilities in
order to achieve the best performance. A thorough study will
be conducted in future to compare the performance of this
proposed approach with more approaches.
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