
HAL Id: hal-02088738
https://hal.science/hal-02088738v1

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Augmented Lagrangian Preconditioner for Large-Scale
Hydrodynamic Stability Analysis

Johann Moulin, Pierre Jolivet, Olivier Marquet

To cite this version:
Johann Moulin, Pierre Jolivet, Olivier Marquet. Augmented Lagrangian Preconditioner for Large-
Scale Hydrodynamic Stability Analysis. Computer Methods in Applied Mechanics and Engineering,
2019, �10.1016/j.cma.2019.03.052�. �hal-02088738�

https://hal.science/hal-02088738v1
https://hal.archives-ouvertes.fr

Augmented Lagrangian Preconditioner for
Large-Scale Hydrodynamic Stability Analysis

Johann Moulin∗ Pierre Jolivet† Olivier Marquet∗

Abstract

Hydrodynamic linear stability analysis of large-scale three-dimensional configura-
tions is usually performed with a “time-stepping” approach, based on the adaptation
of existing solvers for the unsteady incompressible Navier–Stokes equations. We pro-
pose instead to solve the nonlinear steady equations with the Newton method and to
determine the largest growth-rate eigenmodes of the linearized equations using a shift-
and-invert spectral transformation and a Krylov–Schur algorithm. The solution of the
shifted linearized Navier–Stokes problem, which is the bottleneck of this approach,
is computed via an iterative Krylov subspace solver preconditioned by the modified
augmented Lagrangian (mAL) preconditioner [12]. The well-known efficiency of this
preconditioned iterative strategy for solving the real linearized steady-state equations
is assessed here for the complex shifted linearized equations. The effect of various
numerical and physical parameters is investigated numerically on a two-dimensional
flow configuration, confirming the reduced number of iterations over state-of-the-art
steady-state and time-stepping-based preconditioners. A parallel implementation of
the steady Navier–Stokes and eigenvalue solvers, developed in the FreeFem++ lan-
guage, suitably interfaced with the PETSc/SLEPc libraries, is described and made
openly available to tackle three-dimensional flow configurations. Its application on a
small-scale three-dimensional problem shows the good performance of this iterative
approach over a direct LU factorization strategy, in regards of memory and computa-
tional time. On a large-scale three-dimensional problem with 75 million unknowns, a
80% parallel efficiency on 256 up to 2,048 processes is obtained.

Keywords Navier–Stokes equations, Newton method, Krylov–Schur method, linear sta-
bility analysis, recycled Krylov methods, distributed computing

1 Introduction

Over the past century, hydrodynamic linear stability theory was developed to understand
the early stage of laminar-turbulence transition in parallel flows, such as boundary layers
and shear flows [28]. In the local stability theory, the growth or decay of perturbations de-
veloping on parallel flows, described with mono-dimensional velocity profiles, is investigated
assuming a normal form decomposition. The resulting eigenproblem is of small size and
∗ONERA-DAAA, 8 rue des Vertugadins, 92190 Meudon, France ([johann.moulin|olivier.marquet]

@onera.fr)
†CNRS-IRIT, 2 rue Charles Camichel, 31071 Toulouse Cedex 7, France (pierre.jolivet@enseeiht.fr)

1

[johann.moulin|olivier.marquet]@onera.fr
[johann.moulin|olivier.marquet]@onera.fr
pierre.jolivet@enseeiht.fr

does not require large computational resources to be solved. Although the local stability
theory (mono-dimensional) was then extended to the description of spatially developing
flows [37], the linear stability analysis of truly two- and three-dimensional flows has gained
in popularity since the beginning of the century [68, 21, 4, 66, 69, 26, 47] thanks to the de-
velopment of computational resources and numerical tools allowing (a) to compute steady
solutions of the governing equations and (b) to determine the most unstable eigenmodes
of the linearized equations around this steady solution. An efficient and highly-parallel
numerical tool is proposed in the present paper to achieve these two steps in the case of
the incompressible Navier–Stokes equations.

Two main numerical approaches exist to carry out a linear stability analysis. The first
one is the “time-stepping” [47] or “matrix-free” [4] approach based on the use of exist-
ing unsteady nonlinear solvers, developed in Computational Fluid Dynamics (CFD). The
“matrix-free” denomination indicates that the action of matrices onto vectors is obtained
without assembling them. The unsteady solvers are adapted to compute steady solutions
and to extract the eigenmodes of largest growth rate, relevant in linear hydrodynamic
stability analysis. For computing steady (stable or unstable) solutions, stabilization pro-
cedures, such as the recursive projection method [65], the selective frequency damping
method [2], or more recently the BoostConv algorithm [24], are applied together with the
unsteady nonlinear solver. The computation of leading eigenvalues is then achieved by
noticing that the operations performed at each iteration of the linearized time-stepping
solver correspond to an exponential-based transformation of the Jacobian operator [4, 47].
Classical Krylov subspace-based methods like Arnoldi or Krylov–Schur are then commonly
used to compute the eigenvalues of the exponential operator with largest magnitude, which
are also the leading (rightmost) eigenvalues of the Jacobian operator. One of the advan-
tages of this approach is the computational-time efficiency of applying one time-step of
the unsteady solvers. Indeed, these solvers are often highly optimized, not only thanks to
very scalable parallel implementation, but also because efficient numerical algorithms have
been developed for solving the time-discretized problems (e.g., splitting [41] or fractional
step [44] methods). The drawback of the this approach is the slow convergence of the
Arnoldi method induced by the use of time-steppers. Indeed, small time-steps are required
for an application of the linearized time-stepper to approximate accurately the exponential
transformation [72]. This leads to a large number of so-called “outer” iterations (in the
103–104 range) to converge only a few eigenvalues. The efficiency of the “time-stepping”
approach is thus mainly based on fast outer iterations at the expense of a large number of
such iterations in the Arnoldi process. Note that other strategies for computing matrix ex-
ponential allow to relax the small time-step constraint and thus provide better convergence
properties [19, 60].

The second existing numerical approach to perform linear stability analysis in hydro-
dynamics [66] is referred here to as the “matrix-based” approach. It relies on the assembly
of sparse matrices resulting from the spatial discretization of the underlying problem and
the solution of corresponding linear systems using existing parallel libraries that imple-
ment direct sparse LU factorization of those matrices (MUMPS [3], SuperLU [45]). The
steady-state solutions are then computed by solving the steady nonlinear equations with
a (quasi-)Newton method. An invert-based spectral transformation of the Jacobian op-
erator, like the shift-and-invert [22, 29, 63, 66] or Cayley [25, 52, 49] transformations, is
then applied with a Krylov subspace-based method (typically, the Arnoldi method [61]) to

2

determine the leading eigenvalues. The Newton method and the shift-and-invert strategy
allow, respectively, to achieve fast convergence towards the steady solution and the lead-
ing eigenvalues. Usually, the number of Newton iterations is around 10 or so to compute
a steady solution, while it may require a few hundred outer iterations in the Arnoldi al-
gorithm to compute a few eigenvalues. This reduced number of applications comes at a
price: it requires the ability to invert the linearized steady (and generally shifted) Navier–
Stokes equations. Consequently, it has mainly been used for linear stability analysis of
two-dimensional flow configurations, for which the number of unknowns remains limited
(not much greater than 105 unknowns) and the Jacobian matrices remain sparse, so that
the LU factorization is affordable. The “matrix-based” strategy is particularly efficient for
the eigenvalue computation, since the time-consuming LU factorization of the sparse Jaco-
bian matrix is done once for all, while only the forward elminations and back substitutions
are repeated at each outer iteration. The main drawback of this approach is the large
amount of memory needed to perform factorization, especially for three-dimensional flow
configurations [51]. For large-scale hydrodynamics problems, the high cost of forming the
Jacobian matrix explicitly, and the prohibitive memory requirements of direct solvers drove
many authors [5, 48, 23] towards the “matrix-free” strategy.

At the early beginning of nineties, Tuckerman [70, 50, 72] proposed to improve the slow
convergence of the “matrix-free” approach by using a Newton method (resp. a shift-and-
invert strategy) for the steady-state (resp. eigenvalue) computation, while still using an
existing unsteady solver. This method is based on the observation that one can adapt a
(linearized) unsteady solver in order to apply, to some given vector, the steady Navier–
Stokes Jacobian operator, left-preconditioned by the (unsteady) Stokes operator. Thus,
this technique provides a cheap “matrix-free” way of preconditioning the Navier–Stokes Ja-
cobian operator by the (unsteady) Stokes operator, for use inside Krylov subspace linear
solvers typically. The method is nowadays known as the “Stokes” preconditioning technique
and has been largely applied during the last decades for the computation of steady-state
and leading eigenvalues [7, 15, 73, 53, 71]. Recently, it has been adapted and applied to
the determination of resolvent modes in large-scale three-dimensional configurations [17].
In the Stokes preconditioning technique, the time-step of the linearized unsteady solver
becomes a parameter of the preconditioner. Large time-steps usually provide better pre-
conditioning, but make the application of one linearized time iteration harder. More details
and improvements of the method can be found in [8]. In any case, the performance of this
method remains limited by the efficiency of the (unsteady) Stokes operator to precondition
the linearized steady Navier–Stokes operator.

In the present paper, we propose to develop a “matrix-based” specific solver for perform-
ing linear stability analysis, which relies on state-of-the-art preconditioners for the linearized
steady incompressible Navier–Stokes equations, thus avoiding the use of direct solvers on
the full problem. Over the last decades, various promising approaches have been developed
aiming at overcoming the two main difficulties of this problem: the saddle-point structure
of the equations deriving from the incompressibility constraint and the absence of a (small)
time-step parameter that greatly enhances the convergence of iterative algorithms, due
to the resulting diagonal dominance of the matrix. Among those steady preconditioners
are the well-known SIMPLE preconditioner [58], the more recent Pressure Convection–
Diffusion (PCD) preconditioner proposed by [43], as well as the original augmented La-
grangian (AL) [10, 11, 35] and modified augmented Lagrangian (mAL) [12, 13, 11, 14] pre-

3

conditioners. Several authors showed the superiority of the modified augmented Lagrangian
approach over other state-of-the-art alternatives for solving the Oseen and linearized incom-
pressible Navier–Stokes equations [64, 33]. Moreover, a very recent work [31] proposed an
efficient and highly scalable steady Navier–Stokes solver based on the original augmented
Lagrangian preconditioner. If the augmented Lagrangian strategy has been regularly used
for steady-state computations, it was never tested on practical case of eigenvalue compu-
tations. A work in that direction was however proposed by Olshanskii and Benzi [56], who
adapted the original augmented Lagrangian preconditioner to solve the shifted linearized
Navier–Stokes equations. They showed theoretically and numerically that AL was robust
to a real-valued shift on a variety of 2D flow configurations. Complex-valued shifts, as
needed in practice to efficiently explore the complex plane with a shift-and-invert strategy,
were not considered.

The first objective of the present paper is to assess the efficiency of the modified aug-
mented Lagrangian preconditioner for the computation of steady-state solutions with a
Newton method and leading eigenvalues with a complex shift-and-invert strategy. The
second objective is to describe, and test on a three-dimensional flow configuration, an
open-source parallel implementation of the modified augmented Lagrangian preconditioner
for linear stability analysis purposes, using the FreeFem++ finite element library [34]
interfaced with PETSc [6] and SLEPc [36]. The full code is made available at https:
//github.com/prj-/moulin2019al.

The paper is organized as follows. The governing equations required to carry out the
linear stability analysis of incompressible flows are introduced in section 2. The Newton
method used to solve the steady nonlinear equations and the eigensolver based on the shift-
and-invert strategy are also described. The preconditioning technique and the modified
augmented Lagrangian preconditioner are introduced in section 3. The parallel implemen-
tation is detailed in section 4. Numerical results are given in section 5. First we examine, on
a two-dimensional problem, the effect of various numerical and physical parameters on the
performance of the mAL preconditioner for solving the complex shifted linearized Navier–
Stokes problem. Then we compare the performance of mAL with other state-of-the-art
preconditioners. Finally, we evaluate the performance of the proposed parallel implemen-
tation by first comparing it to a sparse direct solver on a small-scale three-dimensional
test case and then, by testing its scalability on a large-scale configuration that cannot be
afforded with a direct sparse solver.

2 Methods for linear stability analysis in hydrodynamics

2.1 Governing equations

Let us consider an incompressible flow, described by the two-dimensional (resp. three-
dimensional) velocity field u = [u, v]T (resp. u = [u, v, w]T) and the pressure field p, that
satisfy the incompressible Navier–Stokes equations:

∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∇2u = 0 , −∇ · u = 0

4

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al

The Reynolds number is defined as Re = U∞L/ν, where U∞ and L are characteristic
velocity and length used to make non-dimensional the velocity and pressure fields, and ν
is the kinematic viscosity. For conciseness, the Navier–Stokes equations are rewritten in a
state-space form as follows

M∂q

∂t
+R(q) = 0, M =

(
1 0
0 0

)
, R(q) =

(
(u · ∇)u +∇p−Re−1∇2u

−∇ · u

)
(1)

where q = (u, p)T is the state-space vector. Base flows, denoted hereinafter qb(x), are
time-independent (steady) solutions of the Navier–Stokes equations (1) and thus satisfy
the nonlinear steady Navier–Stokes equations

R(qb) = 0. (2)

Linear stability of base flows is investigated by superimposing infinitesimal perturbations
q′(x, t) to the base flow solution, i.e. q(x, t) = qb(x) + εq′(x, t), where ε is an infinitesimal
parameter. After inserting this decomposition into eq. (1), using the definition eq. (2) of
the base flow and neglecting high-order terms in ε, one obtains the linearized Navier–Stokes
equations governing the temporal evolution of the infinitesimal perturbation,

M∂q′

∂t
+ J (qb)q

′ = 0, where J (qb) =

(
(ub · ∇)(•) + (• · ∇)ub −Re−1∇2• ∇•

−∇ · • 0

)
is the Jacobian operator defined around the base flow qb. The long-term evolution of any
infinitesimal perturbation is conveniently described by assuming a spectral decomposition
of perturbations as q′ = q̂(x)eσt+c.c., where q̂(x) is a complex spatial field whose temporal
evolution is exponential and given by the complex number σ = λ + iω. λ is the growth
rate and ω is the angular frequency. Inserting this modal decomposition into the above
linearized equations shows that σ and q̂ are respectively eigenvalues and eigenmodes of the
generalized eigenproblem:

σM q̂ + J (qb) q̂ = 0. (3)

The stability of the base flow is then determined by considering the leading eigenmode q̂0

associated to the eigenvalue σ0 = λ0 + iω0 with the largest real part λ0. When the growth
rate of the leading eigenmode is negative (λ0 < 0), all the eigenvalues have negative real
parts, and the base flow is linearly stable since any perturbations superimposed to the base
flow is damped at sufficiently large time. On the other hand, when the growth rate of the
leading eigenmode is positive (λ0 > 0), the perturbation will grow in time and the base
flow is linearly unstable [66].
A linear stability analysis thus consists first in computing a base flow, which is a solution
of the steady Navier–Stokes eq. (2), and then in determining the leading eigenvalues/eigen-
modes of the eigenproblem (3) with the largest growth rate.

2.2 Spatial discretization

In the present paper, a finite element method is used for the spatial discretization of the
nonlinear steady equations (2) and of the linear eigenproblem (3) on a d-dimensional (d =
2, 3) domain Ω. A grad–div stabilizated weak formulation [54] of eq. (2) is used, which

5

consists in finding ub in VΓ =
{
u ∈ (H1(Ω))d, s.t. u = uΓ on Γ

}
and pb in Q = L2(Ω) such

that:

Ru(qb; ǔ) = 〈ub · ∇ub, ǔ〉+ 〈Re−1∇ub,∇ǔ〉 − 〈pb,∇ · ǔ〉+ γ〈∇ · ub,∇ · ǔ〉 = 0 (4a)
Rp(qb; p̌) = −〈∇ · ub, p̌〉 = 0 (4b)

for all (ǔ, p̌) in V0×Q, where 〈•, •〉 denotes the L2 inner-product and V0 = {u ∈ (H1(Ω))d, s.t. u =
0 on Γ} is the velocity space with vanishing velocity on the boundary Γ. The weak residuals
of the momentum and mass conservation equations are Ru and Rp, respectively. The last
term in the momentum residual Ru is the grad–div stabilization (also called augmentation)
term that corresponds to the weak form of −γ∇ (∇ · ub), with γ ≥ 0 a numerical parame-
ter. In the above continuous weak formulation, the stabilization term strictly vanishes on
the solution: 〈∇ · ub,∇ · ǔ〉 = 0. Indeed, the divergence-free condition 〈∇ · ub, p̌〉 = 0 is
satisfied for all p̌ ∈ Q, and in particular for ∇ · ǔ ∈ Q.

A Delaunay triangulation of the domain Th = {K}, consisting in triangular (d = 2)
or tetrahedral (d = 3) elements K, is used. In order to satisfy the inf–sup Ladyženskaja–
Babuška–Brezzi (LBB) condition (see [16]), the Taylor–Hood finite element pair is chosen,
so that the discrete velocity uhb and pressure phb are sought respectively in VhΓ = {uh ∈
C0(Ω), s.t. uh

∣∣
K
∈ P2(K), ∀K ∈ Th , uh = uΓ on Γ} and Qh = {ph ∈ C0(Ω), s.t. ph

∣∣
K
∈

P1(K), ∀K ∈ Th}. Note that, with the Taylor–Hood finite element pair, the discrete
divergence of the velocity test functions does not belong to the discrete pressure space,
i.e. ∇ · ǔh 6∈ Qh. Therefore, contrary to the continuous case, the stabilization term
does not vanish from the discrete momentum equation (〈∇ · uhb ,∇ · ǔh〉 6= 0), and the
discrete solution depends on the value of the stabilization parameter γ. Here, the grad–
div stabilization is mainly introduced to improve, thanks to an efficient preconditioner
(see section 3), the iterative solution of linear systems involved when solving the nonlinear
discrete equations (5). The question of whether the grad–div stabilized discrete solution
is closer or further from the continuous weak solution is out of the scope of this paper.
However, several studies (e.g. [55, 57, 54, 46, 35]) showed that the grad–div stabilization
often improves the mass conservation property and the velocity error of the discrete solution,
for adequate values of γ. Numerical experiments are performed in section 5.2.1 to assess
the accuracy of the stabilized discrete solution and to determine adequate values of γ.

Such a discretization yields the following discrete version of the nonlinear base flow eq. (2):

R(qhb) = 0 (5)

where qhb denotes now the vector of coefficients of uhb and phb in the finite elements basis.
The generalized eigenproblem (3) is discretized similarly, yielding

σM q̂h + J(qb
h) q̂h = 0 (6)

where M and J(qb
h), the finite element matrices obtained after discretization of the mass

M and Jacobian operator J (qb
h), are respectively defined as

M =

(
Mu 0

0 0

)
and J(qb

h) =

(
Aγ BT

B 0

)
. (7)

The rectangular matrix B is the discretization of the divergence operator and its transpose
BT represents the discrete gradient. The mass matrix on the velocity space Mu can be

6

written as a 3-by-3 block diagonal matrix corresponding to the three velocity components.
The 3-by-3 block matrix Aγ = A + γΓ is the sum of A, which represents the linearized
diffusion and convection terms in the momentum conservation equation, and Γ, obtained
after discretization of the grad–div stabilization term. They write:

Aγ =

Auu + γΓuu Auv + γΓuv Auw + γΓuw
Avu + γΓvu Avv + γΓvv Avw + γΓvw
Awu + γΓwu Awv + γΓwv Aww + γΓww

 , Mu =

Mu 0 0
0 Mv 0
0 0 Mw

 .

(8)
In the following, we will mostly refer to the discrete solutions. Therefore, the superscript h

is dropped unless confusion is possible.

2.3 Nonlinear steady-state solver

The nonlinear solution qb of the discrete problem eq. (5) is obtained by the classical Newton
method. The approximated solution at the kth iteration is obtained as

qkb = qk−1
b + δqkb , (9)

where δqb
k denotes the solution increment, obtained by solving the linear problem

J(qk−1
b) δqkb = −R(qk−1

b) (10)

where J(qk−1
b) is the Jacobian matrix defined in eq. (7) with the known approximation of

the steady solution qk−1
b . The solution of this linear system is repeated for each iteration of

the Newton algorithm, that is considered to be converged when the l2 norm of the residual
||R(qb)||2 is below some numerical tolerance.

2.4 Linear eigensolver

The Krylov–Schur algorithm [67] is used in the present study to solve the generalized
eigenproblem (6). In order to compute the leading eigenvalues, which lie in the complex
plane close to the zero growth-rate axis (λ = 0) for any frequency ω, a shift-and-invert
spectral transformation is first applied, yielding the transformed eigenproblem

µ q̂ + Tq̂ = 0, T = (J(qb) + sM)−1 M (11)

where s = sr + isi is the so-called complex shift. The eigenvalues µ of the transformed
problem are related to the eigenvalues σ of eq. (6) through µ = (σ − s)−1 while the eigen-
vectors are left unchanged by the spectral transformation. Like the classical power method,
the Krylov–Schur algorithm allows to compute the eigenvalues of largest magnitude. When
applied to the transformed problem, it gives the eigenvalues µ of largest magnitude, which
correspond to the eigenvalues σ closest to the complex shift s. To determine the leading
eigenvalue of eq. (6), the eigenproblem (11) is solved for several values of the complex s
close to the real axis, spanning appropriately the imaginary axis. For each eigenvalue com-
putation, the Krylov–Schur algorithm requires multiple “matrix–vector” applications of the
matrix T. In other words, repeated solutions of the linear system (J(qb) + sM) qo = qi
are required, where the right-hand side vectors qi are given by the Krylov–Schur algorithm.

7

In the present work, linear stability analysis is thus performed using a nonlinear steady-
state solver and a linear eigensolver, that both rely on multiple solutions of linear systems
involving the complex shifted Jacobian matrix (J + sM). For the steady-state solver, this
matrix reduces to the real Jacobian matrix J as the complex shift vanishes s = 0. The next
section introduces a preconditioned iterative method used to solve efficiently such systems.

3 An augmented Lagrangian approach for the shifted Jaco-
bian matrix

As explained in the previous section, the main challenge of an hydrodynamic stability
analysis is to solve efficiently the following linear equation:

Aγ,uu + sMu Aγ,uv Aγ,uw BT
u

Aγ,vu Aγ,vv + sMv Aγ,vw BT
v

Aγ,wu Aγ,wv Aγ,ww + sMw BT
w

Bu Bv Bw 0



uo
vo
wo
po

 =


ui
vi
wi
pi

 (12)

where Aγ,αβ = Aαβ+γΓαβ (α, β = u, v, w), qo = (uo, vo, wo, po)
T is the solution vector and

qi = (ui, vi, wi, pi)
T is a right-hand side vector. In the perspective of large-scale computa-

tions, we must avoid the use of direct solvers applied directly to eq. (12), due to their huge
memory cost [51]. Instead, we use the flexible Generalized Minimal Residual algorithm
(GMRES) [62] for solving iteratively eq. (12). The shifted-Jacobian matrix being indefinite
and ill-conditioned, the use of an iterative method without preconditioning is inefficient as
it requires a very large number of iterations [71]. To improve the numerical efficiency of
the iterative solution, the above linear system is replaced by the right-preconditioned linear
system:


Aγ,uu + sMu Aγ,uv Aγ,uw BT

u

Aγ,vu Aγ,vv + sMv Aγ,vw BT
v

Aγ,wu Aγ,wv Aγ,ww + sMw BT
w

Bu Bv Bw 0

P−1


ũo
ṽo
w̃o
p̃o

 =


ui
vi
wi
pi

 (13)

where the matrix P is the so-called preconditioner and (ũo, ṽo, w̃o, p̃o)
T is an intermediate

solution. The final solution is found by solving the following linear system

P


uo
vo
wo
po

 =


ũo
ṽo
w̃o
p̃o

 (14)

The GMRES algorithm is applied to the right-preconditioned eq. (13) which, in addition
to matrix–vector products with the shifted-Jacobian matrix, requires the repeated appli-
cation of P−1, i.e., the solution of eq. (14). A good preconditioner achieves a compromise
between a fast application of the preconditioner and a small number of iterations to solve

8

the preconditioned system.

The augmented Lagrangian preconditioner allows to solve iteratively the Oseen [10,
12, 11, 35] and linearized Navier–Stokes equations [13, 56] in a very limited number of
iterations, regardless of the mesh refinement and the Reynolds number value. Nevertheless,
these interesting properties are counterbalanced by the difficulty of solving iteratively the
coupled (two or three-dimensional) velocity subproblem arising in the application of the
original preconditioner, as it requires highly specific multigrid solvers [10, 31]. In order
to circumvent this particular issue, the so-called modified augmented Lagrangian (mAL)
preconditioner was introduced in [12]. It is derived from the original augmented Lagrangian
preconditioner by neglecting either the lower block matrices [12] or the upper block matrices
[33], as follows

PmAL =


Aγ,uu + sMu 0 0 0

Aγ,vu Aγ,vv + sMv 0 0

Aγ,wu Aγ,wv Aγ,ww + sMw 0

Bu Bv Bw Sp

 , (15)

where Sp is an approximation of the pressure Schur complement −B (Aγ + sMu)−1 BT.
Rather than being explicitly specified, this matrix is defined by the action of its inverse as

Sp
−1 = −(γ +Re−1)Mp

−1 − sLp−1, (16)

where Mp is the mass matrix and Lp the Laplacian matrix, both defined on the discrete
pressure space. Note that, for base flow computations s = 0, only the first term remains in
the definition of the approximated Schur complement eq. (16). The lower block-triangular
version of the preconditioner is chosen for practical reasons explained in section 4. In the
original preconditioner proposed by [10, 12], the augmentation term of the Jacobian matrix
Γ was defined algebraically as BTMp

−1B, thus requiring two sparse matrix products to
be constructed explicitly. As proposed in [35], the construction cost can significantly be
reduced by building the matrix Γ from the finite element discretization of the grad–div
stabilization term. They showed that Γ is then the sum of the algebraic augmentation
BTMp

−1B and of a stabilization matrix. The efficiency of the mAL preconditioner is
thus conserved while significantly reducing the construction costs. Finally, the grad–div
augmentation matrix Γ is much more sparse than its algebraic counterpart, thus motivating
our choice for this implementation of the mAL preconditioner, in the perspective of large-
scale three-dimensional computations.

4 Parallel implementation with FreeFem++ and its interface
to PETSc/SLEPc

For realistic three-dimensional geometries, the approach derived in the previous sections
requires the solution of nonlinear systems and generalized eigenproblems of large dimen-
sions. Thus, high-performance computing becomes necessary. The goal of this section is to
show how this is done using a finite element domain specific language, FreeFem++ [34, 39],

9

interfaced with distributed linear algebra backends, PETSc [6] and SLEPc [36]. A thor-
ough introduction of these libraries may be found in their respective manuals1,2,3. Our
implementation is openly available at https://github.com/prj-/moulin2019al and the
rest of this section follows the available source code.

4.1 Outer solvers

In this section, we describe how the outer solvers (i.e. the nonlinear steady-state solver and
the eigensolver) are implemented.

The Newton method described in section 2.3 is implemented using FreeFem++. Only
the inversion of the Jacobian matrix J of eq. (10) is performed by PETSc. Given a
FreeFem++ distributed version of the Jacobian matrix dJ, PETSc options defining the
linear solver for eq. (10) are set using the following FreeFem++ syntax:

set(dJ, sparams = params, fields = vX[], names = names,
schurPreconditioner = S, schurList = listX[]);

The keyword sparams is a string defined by the user gathering the PETSc runtime op-
tions for the Krylov subspace solver (KSP) and preconditioner (PC). The interested reader
should refer to PETSc manual for details on the use of runtime options. The keywords
fields, names, schurPreconditioner, and schurList allow to implement specific block
preconditioners, like mAL, and their use is detailed in the next sections.

For the eigenvalue computation presented in section 2.4, only the finite element matrices
are built by FreeFem++. Then, the Krylov–Schur algorithm is performed entirely by SLEPc
through the use of the eigenvalue problem solver framework (EPS), which is called from
within FreeFem++.

int k = zeigensolver(dJ, dM, vectors = vec, values = val, sparams = params,
fields = vX[], names = names, schurPreconditioner = S, schurList = listX[]);

// solves the eigenvalue problem dJq̂ = σdMq̂

Contrary to the case of the linear solver interface, two matrices dJ and dM that define
the generalized eigenproblem (6) must now be passed to SLEPc. In addition, sparams must
also contain the SLEPc runtime options defining the eigensolver.

4.2 Inner mAL-preconditioned linear solvers

The inner linear solves of system eq. (12) with a mAL-preconditioned GMRES require the
implementation of the block structure of the preconditioner (eq. (15)). This is done in
PETSc by using the so-called fieldsplit structure that gives to the users a high-level of
abstraction to define operators by blocks. The following PETSc runtime options define
such a preconditioner:

string params = paramsXYZ + " " + paramsP + " " + paramsKrylov +
" -pc_type fieldsplit -pc_fieldsplit_type multiplicative";

1http://www.freefem.org/ff++/ftp/freefem++doc.pdf
2http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
3http://slepc.upv.es/documentation/slepc.pdf

10

https://github.com/prj-/moulin2019al
http://www.freefem.org/ff++/ftp/freefem++doc.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://slepc.upv.es/documentation/slepc.pdf

The desired lower block-triangular structure of the preconditioner is obtained by the
use of PETSc keyword multiplicative. The strings paramsXYZ and paramsP respectively
contain the innermost velocity and pressure block solvers options that will be detailed later
on. The string paramsKrylov contains the definition of the Krylov subspace linear solver.
For example, one should simply write paramsKrylov = "-ksp_type fgmres" to use the flex-
ible GMRES. In order to implement the modified augmented Lagrangian preconditioner
PmAL through the fieldsplit structure, in 3D, the four fields u, v, w, and p must be defined.
Assuming the problem is formulated in the full vectorial finite element space Wh, containing
the velocities and pressure unknowns, one must be able to differentiate the degrees of free-
dom belonging to each field. To that aim a finite element function taking a different integer
value for each one of the four fields is defined in FreeFem++ and passed to PETSc/SLEPc
through the keyword fields. Then, for simplicity, each field is attributed a name that
will be used to identify it when defining the different innermost solvers associated to the
diagonal blocks of PmAL, c.f. section 4.3. Those names are contained in an array of strings,
that is provided to the solver through the keyword names.

Wh [vX, vY, vZ, p] = [1, 2, 3, 4]; // numbering of each field
string[int] names(4); // prefix of each field
names[0] = "vX"; // x-velocity
names[1] = "vY"; // y-velocity
names[2] = "vZ"; // z-velocity
names[3] = "p"; // pressure

Approximate Schur complements The default setting in PETSc, when using a mul-
tiplicative fieldsplit preconditioner, is to define the preconditioner as the lower block tri-
angular part of the system matrix in eq. (12). Thus, on the block diagonal of such a
preconditioner, one would have Aγ,uu + sMu, Aγ,vv + sMv, Aγ,ww + sMw and the null
matrix. In order to implement PmAL, one must replace, in the preconditioner only, the
default operator for the pressure field (the null matrix) by the ones necessary to imple-
ment the desired Schur complement approximation eq. (16). This is done in PETSc using
PCFieldSplitGetSubKSP to retrieve the operators linked to each field of the fieldsplit struc-
ture and then KSPSetOperators to set the new operators that define eq. (16).

When the shift s is null, for base flow computations, the approximate Schur complement
only requires the assembly of one operator: (γ +Re−1)−1Mp. This is done in FreeFem++
as shown below, and then passed to PETSc with the keyword schurPreconditioner.

matrix[int] S(1); // array with a single matrix
varf vSchur(p, q) = int3d(th, qforder = 3)
(-1.0/(gamma + 1.0/Re) * p * q); // eq. (16) with s = 0

S[0] = vSchur(Qh, Qh); // matrix assembly

For eigenvalue computations, two auxiliary operators are now needed: (γ+Re−1)−1Mp

and s−1Lp. The construction in FreeFem++ is performed using the following lines, and
then again passed to SLEPc with the keyword schurPreconditioner.

11

matrix<complex>[int] S(2); // array with two matrices
complex scale;
varf vMp(p, q) = int3d(th, qforder = 3)(scale * p * q); // eq. (7)
scale = 1.0/(gamma + 1.0/Re);
S[0] = vMp(Qh, Qh); // first matrix assembly
macro grad(p)[dx(p), dy(p), dz(p)]// macro for computing ∇p
varf vLp(p, q) = on(3, p = 1) // inlet boundary condition
+ int3d(th, qforder = 2)(scale * (grad(p)’ * grad(q)));

// shift value s
complex s = getARGV("-shift_real", 1.0e-6) + getARGV("-shift_imag", 0.6) * 1i;
scale = 1.0/s;
S[1] = vLp(Qh, Qh); // second matrix assembly

Finally, we note that the operators needed for the Schur complement approximation
are built on the pressure space Qh. However, in FreeFem++, it is not possible to know a
priori the correspondence between the numbering of Wh, where the full solution is defined,
and Qh. To circumvent this issue, we compute this correspondence in FreeFem++ from
an interpolation between Qh and Wh, and then pass it to PETSc/SLEPc with the keyword
schurList:
Qh pIdx; // function from the pressure space
pIdx[] = 1:pIdx[].n; // numbering of the unknowns of Qh
// renumbering into the complete space by doing an interpolation on Wh
Wh [listX, listY, listZ, listP] = [0, 0, 0, pIdx];

4.3 Innermost velocity and pressure linear solvers

The approximate inverse of the diagonal blocks in eq. (15) are defined using off-the-
shelf iterative methods from PETSc. For each velocity field, the GMRES is used, right-
preconditioned by an additive Schwarz method (ASM) with one-level of algebraic overlap,
as well as exact LU factorizations for each subdomain solver. These factorizations are
carried out by MUMPS [3]. A maximum Krylov dimension of 50 is prescribed and the
GMRES is stopped when the relative unpreconditioned residual norm is lower than 10−1.
In our implementation, the PETSc runtime options defining the approximate inverse of the
diagonal velocity blocks are contained in the string paramsXYZ detailed below:

real tolV = getARGV("-velocity_tol", 1.0e-1); // default to 10−1

// monodimensional velocity solver
string paramsV = "-ksp_type gmres -ksp_converged_reason -ksp_pc_side right " +
"-ksp_rtol " + tolV + " -ksp_gmres_restart 50 -pc_type asm " +
"-pc_asm_overlap 1 -sub_pc_type lu -sub_pc_factor_mat_solver_type mumps";

// each velocity component gets the same monodimensional solver
// defined by paramsV
string paramsXYZ = "-prefix_push fieldsplit_vX_ " + paramsV + " -prefix_pop"

+ " -prefix_push fieldsplit_vY_ " + paramsV + " -prefix_pop"
+ " -prefix_push fieldsplit_vZ_ " + paramsV + " -prefix_pop";

For the pressure Schur complement approximate inverse eq. (16), the PETSc runtime op-
tions defining the solver are contained in the string paramsP. We must distinguish the cases
of the base flow and eigensolvers. For the former (s = 0), only the action of Mp

−1 has to

12

be evaluated. For that purpose, we use at most five iterations of the Jacobi-preconditioned
conjugate gradient algorithm:

string paramsP = "-prefix_push fieldsplit_p_ " +
"-ksp_type cg -ksp_max_it 5 -pc_type jacobi -prefix_pop";

For the eigensolver (s 6= 0), the action of the inverse of the Schur complement is ap-
proximated by the sum of the action of (γ +Re−1)Mp

−1 and sLp−1. This is done through
PETSc composite preconditioner:

string paramsP = "-prefix_push st_fieldsplit_p_ " +
"-ksp_type preonly -pc_type composite " +
"-prefix_push sub_0_ " + // action of (γ +Re−1)Mp

−1

"-pc_type bjacobi -sub_pc_type icc -prefix_pop " +
"-prefix_push sub_1_ " + // action of sLp

−1

"-pc_type gamg -pc_gamg_square_graph 10 -prefix_pop " +
"-prefix_pop";

Here only one application of the block Jacobi preconditioner with ICC(0) subsolvers [20]
is used for approximating the mass matrix inverse while one V-cycle of GAMG [1] is used
for the Laplacian term.

5 Numerical results

The efficiency of the modified augmented Lagrangian (mAL) preconditioner is investigated
in this section by performing the linear stability analysis of two- and three-dimensional
flow configurations described in section 5.1. The two-dimensional computations are always
performed on one process as they are of limited size. For the three-dimensional case,
the fully parallel implementation presented in section 4 is used. The influence of various
numerical and physical parameters, such as the augmentation parameter, the mesh size and
the Reynolds number, is first assessed in section 5.2 for the two-dimensional configuration,
before comparing the performance of mAL preconditioner with other block preconditioners
(PCD, SIMPLE, Stokes) in section 5.3. The efficiency of the parallel implementation is
finally investigated in section 5.4 for the three-dimensional configuration.

5.1 Two- and three-dimensional test cases

The two-dimensional flow configuration is sketched in fig. 1a. A thin plate of height h and
thickness t = h/6 is immersed in an incoming flow of uniform velocity U∞. The size of the
computational box indicated in the figure and the flow variables are made non-dimensional
using h as characteristic length and U∞ as characteristic velocity, so that the Reynolds
number is defined as Re = U∞h/ν, where ν is the kinematic viscosity.
Triangulations of the computational domain are obtained with the internal mesh generator
of FreeFem++. The no-slip boundary condition u = v = 0 is applied on the plate, symmetry
boundary conditions (∂yu = 0 and v = 0) are applied at the top and bottom boundaries
of the computational domain, and a stress-free boundary condition is applied at the outlet
boundary.
A typical steady solution of the incompressible Navier–Stokes equation is displayed in fig. 2a

13

ex

ey

35

14

10

t

h

(a) Two-dimensional geometry

ez

ey

30

14h

L

(b) Three-dimensional geometry (span view)

Figure 1: Two-dimensional and three-dimensional flow configurations. Sketch of the com-
putational domains used for (a) the two-dimensional plate of height h = 1 and thickness
t = 1/6 and (b) the three-dimensional plate of span L = 2.5 immersed in an upstream
uniform streamwise flow U∞.

for Re = 40. The flow recirculates in two symmetric regions in the wake of the plate, as
indicated by the streamlines. The linear stability analysis of this base flow yields the
eigenvalue spectrum shown in fig. 2c with circles. A pair of complex conjugate unstable
eigenvalues is found (λ > 0) characterized by an angular frequency ω = 0.70. For a lower
value of the Reynolds number Re = 30, this eigenvalue is stable as shown by the square
symbols. The real part of the eigenmode associated to this leading eigenvalue is depicted in
fig. 2b with isocontours of the streamwise velocity. The spatial structure of this eigenmode
breaks the symmetry of the steady solution and is responsible for the onset of the well-known
Von Kármán vortex-street that becomes visible behind bluff bodies once the exponential
growth of the linear instability saturates due to nonlinearities.

14

−4 0 4 8 12 16
−4

−2

0

2

4

−0.2
0

1.2

ub

(a) Base flow (Re = 40)

−4 0 4 8 12 16
−4

−2

0

2

4

−0.09

0.00

0.09

Re (û)

(b) Leading eigenmode (Re = 40)

−0.4 −0.2 0 0.2
0

0.5

1

1.5

λ

ω

Re = 30

Re = 40

(c) Eigenvalue spectra

Figure 2: Results of the linear stability analysis for the two-dimensional configuration.
Streamwise velocity u of (a) the steady-state solution and (b) the real part of the unstable
eigenmode. (c) Eigenvalues are depicted with circles in the complex plane (growth rate λ
and frequency ω). The unstable region is shown in gray. Only eigenvalues with positive
frequencies are shown, the spectrum being symmetric.

The three-dimensional flow configuration is a plate of height and thickness identical to
the two-dimensional plate, but of finite length L in the spanwise direction z, as sketched
in fig. 1b. The computational domain is discretized using Gmsh [32] by a Delaunay mesh
composed of 17 million tetrahedra, which are then partitioned between processes with
ParMETIS [42]. Using Taylor–Hood finite element pair, cf. section 2.2, this leads to a total
of 75 million unknowns. The boundary conditions are similar to those detailed above for
the two-dimensional configuration.
The linear stability analysis of this flow configuration has been performed by [51] who
determined the neutral curves of various unstable eigenmodes in the range of Reynolds
number 40 ≤ Re ≤ 200 and length 1 ≤ L ≤ 6. Here, we specifically investigate the plate
of length L = 2.5 for the Reynolds number Re = 100. The steady solution, depicted in
fig. 3a, exhibits a large three-dimensional recirculation region in the wake of the plate.
The stability analysis performed in [51] revealed that two pairs of complex eigenvalues get
unstable above Re ' 101 for this parameter choice, with respective angular frequencies of
ω ' 0.3 and ω ' 0.57. Hereinafter, we focus on the high-frequency eigenmode, depicted in
fig. 3b. As shown in the figure, the three-dimensional eigenmode breaks the top/bottom
symmetry of the steady-state solution, as for the two-dimensional plate.

15

−0.4
0.0

0.8

ub

(a) Steady solution

−5 · 10−4

0

5 · 10−4

Re (û)

(b) High-frequency unstable eigenmode

Figure 3: Linear stability analysis for the three-dimensional flow around of plate of spanwise
length L = 2.5 and Re = 100. Streamwise velocity contours of (a) the steady solution and
(b) the high-frequency unstable eigenmode (ω = 0.57) are presented.

5.2 Influence of numerical and physical parameters

We investigate in this section the influence of various numerical and physical parameters on
the performance of the mAL preconditioner. Tests are performed on the two-dimensional
flow configuration previously introduced. The effect of the augmentation parameter on the
preconditioner efficiency and solution accuracy is reported in section 5.2.1. The performance
of the preconditioner is tested in section 5.2.2 for many values of the complex shift parameter
used in the shift-and-invert strategy to compute the leading eigenvalues. The behavior of
the preconditioner in regards to the mesh refinement and the Reynolds number is finally
tested in section 5.2.3.
In all the numerical tests performed in this section, the full GMRES without restart is
used in order to fairly assess the performance of the preconditioner. The diagonal blocks
defined by the mAL preconditioner eq. (15) are here inverted using the sparse direct solver
MUMPS.

5.2.1 Effect of the augmentation parameter

The effect of the augmentation parameter γ on the performance of the mAL preconditioner
is first assessed by considering the number of GMRES iterations. Using the Newton method
described in section 2.3, steady solutions are computed for the Reynolds number Re = 40
and several values of the augmentation parameters reported in the first columns of table 1a
and table 1b, that correspond to results obtained with a coarse mesh (14,674 triangles) and
a finer mesh (1.29 · 105 triangles), respectively. The GMRES relative tolerance being fixed
to 10−6, the average numbers of inner (GMRES) iterations per outer (Newton) iteration are
reported in the second columns of those tables. For both meshes, there exists an optimal
value of the augmentation parameter, γ ' 1, for which a minimum number of iterations is
reached. Similar observations are reported in other studies [12, 13, 35, 14, 33] for different
flow configurations such as the lid-driven cavity flow, the backward facing step or the flow
over a flat plate. Note also that the number of iterations is quite similar for the coarse
and fine meshes, regardless of the augmentation parameter value. For the optimal γ, the

16

average number of inner iterations is around 50.
As briefly discussed in section 2.2, the introduction of the grad–div stabilization term

in the weak formulation 4a does not modify the conservation of momentum at the con-
tinuous level, since the continuous solution is divergence-free. However, with the spatial
discretization chosen in the present study (Taylor–Hood finite element), the divergence of
the velocity is only weakly satisfied and the grad–div stabilization term modifies the dis-
crete momentum equation. The augmentation parameter has therefore an influence on the
accuracy of the discrete solution. To assess this effect, a reference steady solution, denoted
(urb , p

r
b), is computed without stabilization parameter (γ = 0) on a very-fine mesh made of

5.13 ·105 triangles. The corresponding leading eigenvalue denoted σr is also computed. The
two last columns of table 1a and table 1b report the relative errors of the steady velocity
and the leading eigenvalue computed with the coarse and fine meshes, respectively, for sev-
eral values of γ. Examining first the results obtained with the coarse mesh (see table 1a), a
minimal error is obtained for γ ' 1, not only for the steady solution but also for the leading
eigenvalue. When the mesh is refined (see table 1b), a minimal error is still obtained for
γ ' 1, although less pronounced. Compared to results obtained with the coarse mesh,
the relative error is decreased whatever the value of the augmentation parameter. As ex-
pected, the augmentation parameter less affects the accuracy of the discrete solution when
the mesh is refined, since the discrete solution tends towards the continuous solution. It is
worth noticing that the use of the stabilization term can significantly improve the accuracy
of the solution. For instance, the accuracy of the eigenvalue obtained for the coarse mesh
with γ = 1 is identical to the one obtained for the fine mesh without stabilization γ = 0.
In other words, the same accuracy is obtained but with ten times fewer mesh elements.

The present results clearly indicate that γ ' 1 is an optimal value from both the solution
accuracy point of view and the preconditioning efficiency point of view when considering
not only steady solutions, as reported before [35], but also leading eigenvalues. As a con-
sequence, in the following, we consider that γ can be chosen on preconditioning efficiency
criteria only without compromising accuracy.

γ
of

GMRES
iterations

∥∥uhb − urb
∥∥

2∥∥urb∥∥2

|σh − σr|
|σr|

0 860 2.8 · 10−4 9.8 · 10−4

10−1 191 2.1 · 10−4 7.9 · 10−4

100 52 8.4 · 10−5 1.1 · 10−4

101 337 4.4 · 10−4 1.5 · 10−3

102 >1,000 1.3 · 10−3 4.6 · 10−3

(a) Coarse mesh (14,674 triangles)

of
GMRES
iterations

∥∥uhb − urb
∥∥

2∥∥urb∥∥2

|σh − σr|
|σr|

873 3.2 · 10−5 1.1 · 10−4

194 2.7 · 10−5 1.1 · 10−4

53 1.4 · 10−5 5.4 · 10−5

363 2.7 · 10−5 8.5 · 10−5

>1,000 6 · 10−5 2.1 · 10−4

(b) Fine mesh (1.29 · 105 triangles)

Table 1: Effect of the grad–div augmentation parameter γ on the mAL preconditioning
efficiency and the solution accuracy. For both tables, the first column indicates values of
γ. The second column represents the average number of mAL preconditioned GMRES
iterations per Newton iteration. The last two columns give the relative errors of the steady
solution and the leading eigenvalue compared with a reference solution (urb , σ

r) computed
on a very fine mesh without stabilization (γ = 0).

17

5.2.2 Effect of the shift parameter

The shift-and-invert strategy, adopted in the present study to compute the eigenvalues
with largest real part, requires to specify the complex value s = sr + isi that appears in the
spectral transformation section 2.4. When investigating the transition of a steady solution
from a stable to an unstable state, a common practice is to choose the shift parameter as
a pure imaginary number, i.e. s = isi, and to vary the imaginary part in order to compute
complex eigenvalues with growth rates close to λ = 0. Depending on the flow configuration
investigated, the steady solution may get unstable for eigenmodes characterized by very
different frequencies. Ideally, the number of preconditioned GMRES iterations should be
insensitive to the value of the complex shift, for the Krylov–Schur algorithm to converge
rapidly whatever the eigenvalue of interest. To the best of our knowledge, only the case
of a real-valued shift has been considered so far, either positive when solving the unsteady
Oseen problem [12, 35] or negative when solving the linearized Navier–Stokes equation [56].

Here, we vary s in the whole complex plane and assess its effect on the efficiency of the
mAL preconditioner by performing the following numerical experiment. The linear system
eq. (12) is solved with right-hand side vectors whose coefficients are randomly generated
in [0, 1] + [0, 1]i, as done for instance in [9]. The Jacobian matrix J of the linear system is
computed with the steady solution atRe = 40 and the augmentation parameter γ = 0.7. In
other words, only the inner solver is studied, no outer iteration (Newton or Krylov–Schur)
is performed. The isocontours shown in fig. 4 in the complex plane (sr, si) correspond to the
number of inner (GMRES) iterations required to decrease the relative residual to 10−6. The
red circles are eigenvalues of the Jacobian matrix. First, the number of iterations increases
when the shift gets closer to any eigenvalue. In that case, the matrix J + sM involved in
the spectral transformation (2.4) becomes singular, leading to a very ill-conditioned linear
system and thus high iteration counts. Second, the number of iterations is reduced when
increasing sr. Solving the linear system for sr < 0 is generally more expensive than for
sr > 0. According to [56], this is due to the indefiniteness of the velocity block Aγ + sMu

in eq. (12) for sufficiently large negative values of sr. On the contrary, the velocity block
is definite when sr > 0. The contribution of the shift can be interpreted as a (positive
definite) time-step term, which reinforces the diagonal dominance of the problem and thus
improve its spectral properties. For more details, the reader can refer to [12, section 2.6],
where the mAL preconditioner is used to solve the unsteady Oseen problem. Finally, no
particular trend is observed in the number of inner iterations when fixing the real part sr
and varying the imaginary part si, except when getting closer to an eigenvalue. For sr = 0,
the number of iterations is roughly constant for si < 0.5 and increases around si = 0.6 due
to the proximity of the unstable eigenvalue marked by the red circle. By further increasing
si, the number of iterations then decreases.

5.2.3 Effect of the mesh refinement and Reynolds number

The modified augmented Lagrangian preconditioner allows to compute steady solution in a
number of GMRES iterations independent of the mesh refinement, as previously observed
in table 1, and mildly dependent of the Reynolds number [12, 11]. The influence of the
mesh refinement and Reynolds number on the number of iterations needed to solve the
complex-shifted linear system eq. (12) has not been investigated so far. The numerical

18

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

sr

s i

55

100

130

of GMRES iterations

Figure 4: Influence of the complex shift. Isocontours represent the number of GMRES
iterations needed to solve the linear system (13) with the mAL preconditioner, depicted in
the complex plane (sr, si), and computed for Re = 40 and γ = 0.7. The red circles are the
eigenvalues of the Jacobian matrix (6).

experiment consists in solving the linear system to the relative tolerance of 10−6 for right-
hand side vectors with randomly generated coefficients as explained before. First, the
Reynolds number is fixed (Re = 40) as well as the augmentation parameter (γ = 0.7) while
the mesh refinement changes. The number of inner GMRES iterations is reported in fig. 5a
as a function of the number of triangles. The curves correspond to different values of the
(purely imaginary) shift. Clearly, the iteration count is independent of the mesh refinement,
regardless of the shift. Second, a fixed mesh refinement is chosen (14,828 triangles) and the
linear system is solved for different values of the Reynolds number in the range [10; 500]
for different shift values. As reported in [13] when computing steady solutions, the optimal
value of the augmentation parameter that minimizes the number of iterations depends on
the Reynolds number. The optimal value of γ has been first determined for each value ofRe.
For Re = 10, the optimal value is γ ' 1.2 and it decreases to γ ' 0.4 for Re = 500. These
optimal values of γ have been determined for s = 0 but are used in the following regardless
of the values of s. The number of iterations is depicted in fig. 5b as a function of the
Reynolds number. The mAL preconditioner shows a mild degradation of its performance
as Re increases, independently of the values of the shift. The increase of the number of
inner iterations is proportional to Re0.5 in this numerical experiment.

19

104 104.5 105 105.5
101

102

103

of mesh elements

#
of

G
M
R
E
S
it
er
at
io
ns

(a) Mesh dependence (Re = 40)

101 102 103
101

102

103

∝ Re0.5

Re
(b) Reynolds dependence (14,828 triangles)

Figure 5: Effect of mesh refinement (a) and Reynolds number (b) on mAL preconditioning
efficiency. The GMRES iteration count for solving eq. (12) to a relative tolerance of 10−6 is
presented for different shifts: s = 0 (), s = 0.3i (), s = 0.6i () and s = 1i ()

As a conclusion, the modified augmented Lagrangian preconditioner exhibits interest-
ing properties for performing efficiently a linear stability analysis using a shift-and-invert
strategy: robustness with respect to a complex-valued shift, mesh independence, and a mild
deterioration as Re increases.

5.3 Comparison with other block preconditioners

The mAL preconditioner is one of many other preconditioners developed to solve the steady
incompressible Navier–Stokes equations. Among them, we select the Pressure Convection–
Diffusion (PCD) [43] and the SIMPLE [58] preconditioners, widely used and easily imple-
mented, and compare their performance with those of the mAL preconditioner. In addition,
we also test the unsteady Stokes preconditioner [70] which has gained in popularity in the
hydrodynamic stability community [74], as it can be easily implemented using existing
time-steppers so as to compute base flows and leading eigenvalues [72]. In our implemen-
tation however, the Stokes preconditioner is itself applied using a nested Krylov subspace
method instead of an existing time-stepper. More details on those preconditioners are
given in section B but it is worth recalling here that they are designed for classical Galerkin
discretization of the Navier–Stokes equations. Therefore, their application to the iterative
solution of eq. (12) is meant for γ = 0, i.e. without grad–div stabilization terms.

The numerical test case consists in solving iteratively eq. (12) with a random right-
hand side vector, as detailed before, for a large relative tolerance equal to 10−3 to limit the
number of iterations. The shift is fixed to s = 0 since it was shown in section 5.2.3 that the
mAL preconditioner depends very weakly on the shift parameter when the mesh is refined
or the Reynolds number is increased. All innermost block solutions are performed using
exact LU factorizations. The PCD and SIMPLE preconditioners are parameter-free, unlike
the mAL and Stokes preconditioners. For the latter, the optimal values of the parameter
(γ for mAL and a time-step like parameter for Stokes) are determined for each values of
the Reynolds number.

20

The effect of the mesh refinement and Reynolds number on the number of inner itera-
tions, studied in the previous paragraph for the mAL preconditioner, is assessed here for
all the other preconditioners. Results are compared in fig. 6. This number of iterations is a
good measure to compare the efficiency of the different preconditioners, in a first approxi-
mation, because for each inner iteration, the application of all preconditioners requires the
solution of subproblems with similar complexities4. Therefore, the computational time of
one inner iteration is roughly similar for all preconditioners.

All the preconditioners are independent of the mesh refinement, as shown in fig. 6a,
except for the SIMPLE preconditioner for which the number of inner iterations slightly
increases whith the number of triangles. Interestingly, the number of iterations is signifi-
cantly less for mAL and PCD (around 50) than for Stokes and SIMPLE (around 1, 000).
Note that for the two preconditioners depending on a parameter (mAL and Stokes), their
optimal value was found to be independent of the mesh refinement.

The effect of the Reynolds number is reported in fig. 6b. For all tested preconditioners,
the number of iterations increases with the Reynolds number, but with different slopes.
The mAL preconditioner exhibits the best performance for all Reynolds numbers, except
for low Reynolds number (Re < 20) where PCD is more efficient. However, the number
of iterations obtained with the PCD preconditioner increases strongly for larger values of
the Reynolds number (Re > 80). The mAL and SIMPLE preconditioners exhibit a similar
trend: the number of iterations scales with the Reynolds number as Re0.5. However, it is
significantly larger with SIMPLE than with mAL, regardless of the Reynolds number. At
low Re, the Stokes preconditioner behaves similarly to the SIMPLE preconditioner, but for
larger Re, it degrades significantly and exhibits the same trend as the PCD preconditioner.
Finally, when considering the number of iterations, the mAL preconditioner is undoubtedly
the best preconditioner. We note that, contrary to the mesh dependence study, the optimal
parameters of mAL and Stokes showed some variations with respect to Re.

4two scalar velocity solves and one pressure Schur complement solve for mAL and Stokes; one vectorial
velocity solve and one pressure Schur complement solve for PCD and SIMPLE

21

104 104.5 105 105.5
101

102

103

104

of mesh elements

#
of

G
M
R
E
S
it
er
at
io
ns

(a) Mesh dependence (Re = 40)

101 102 103
101

102

103

104

∝ Re

∝ Re0.5

Re
(b) Reynolds dependence (14,828 triangles)

Figure 6: Influence of (a) the number of mesh elements and (b) the Reynolds number Re
on the number of inner iterations required to solve eq. (12) with the mAL (), PCD
(), SIMPLE (), and Stokes () preconditioners. The relative tolerance is set to
10−3 and the shift to zero.

Let us now compare the computational time for applying the four preconditioners. To
that aim, the direct LU factorizations used until now for the innermost velocity blocks
solvers are replaced by GMRES right-preconditioned with an ILU(2) method (as imple-
mented in PETSc). The choice of an innermost iterative solution allows for a more com-
prehensive interpretation of the computational time, since it accounts for the various com-
plexities in solving iteratively the velocity blocks involved in the different preconditioners.
Moreover, such an innermost iterative solution is necessary when considering large-scale
three-dimensional problems, as shown in the next section. The relative tolerance of the
inner (resp. innermost) GMRES is fixed to 10−3 (resp. 10−2). The computational times ob-
tained with the four preconditioners are reported in fig. 7 for Re = 40 (left) and Re = 100
(right). The total time is split into the time spent in computing matrix–vector products,
in applying the global preconditioner, and in constructing the global Krylov subspace. The
inner iteration counts are given between parenthesis. Note that it may be slightly higher
than what is presented in fig. 6 since the velocity blocks are now solved only approximately.
All computations are run on a standard laptop computer.

For the low Reynolds number Re = 40, the mAL and PCD preconditioners are about
ten times faster than the SIMPLE and Stokes preconditioners5. For this Reynolds number,
the PCD preconditioner is comparable with the mAL preconditioner, as it is only 40%
slower. However, when the Reynolds number is increased to Re = 100, the performance
of PCD degrades significantly with respect to mAL, as it is now about five times slower.
The computational times are not given for the SIMPLE and Stokes preconditioners because
they largely exceed 2,100 seconds. The deterioration in the computational time of the PCD

5note that the time for building the inner Krylov subspace is very small for the Stokes preconditioner
at Re = 40, despite a large number of iterations. This is due to the fact that, in the implementation
detailed in section B, the Stokes preconditioner is itself applied with a nested iterative method. Therefore,
no Krylov subspace of dimension 947 is actually built

22

preconditioner when the Reynolds number is increased, is in agreement with the growth in
the number of iterations observed before. For even higher Reynolds numbers Re > 100, the
mAL preconditioner is expected to be increasingly more interesting than its competitors.

As a conclusion, this benchmark shows that, compared to other widely used precon-
ditioners, mAL provides a more efficient approach for solving eq. (12) on a configuration
typical of two-dimensional external flows around bluff bodies. In particular, among the al-
ternatives tested here, it is the only preconditioner combining a mesh-independent iteration
count and a mild degradation with Re0.5, making it the most efficient preconditioner for
Re > 20.

mAL PCD SIMPLE Stokes
0

150

500

1,000

1,500

2,000

(947)

(729)

(93)(56)

T
im

e
(s
)

MatMult PCApply KSPSolve

(a) Re = 40

mAL PCD SIMPLE Stokes
0

150

500

1,000

1,500

2,000

(432)

(102)

T
im

e
(s
)

MatMult PCApply KSPSolve

(b) Re = 100

Figure 7: Comparison of the performance of various preconditioners on the two-dimensional
test case (14,828 triangles). The total time is split between matrix–vector products, apply-
ing the preconditioner, and building the Krylov subspace. The number of global GMRES
iterations is given between parenthesis. System eq. (12) is solved to a relative tolerance of
10−3. For Re = 100, the hatched bars correspond to preconditioners for which the total
time largely exceeded 2,100 seconds and is not reported in details. The velocity blocks in
the preconditioners are solved iteratively to a relative tolerance of 10−2 using an innermost
GMRES, right-preconditioned with ILU(2). The pressure blocks are solved exactly with
MUMPS. These times will depend on the particular preconditioners used for solving the
diagonal blocks. Therefore, those results should be considered qualitatively.

5.4 Performance of the parallel implementation

In this section, the performance of the parallel implementation detailed in section 4 is tested
on the three-dimensional configuration presented in section 5.1. First, a coarse mesh is used,
in order to be able to compare our approach with the direct parallel solver MUMPS. Then,
the full size 3D configuration presented before is considered to test the parallel performance
of our approach on a problem that a direct solver could not handle at a reasonable memory
cost.

23

5.4.1 Comparison with a direct solver on a small-scale 3D configuration

Despite its large memory requirements, some authors have used the “matrix-based” ap-
proach, combined with direct solvers for the arising linear systems, to perform the stability
analysis of three-dimensional flows [51, 38]. In this section, we aim at comparing the perfor-
mance of this approach to ours. To that end, the three-dimensional test case is considered
using a coarse mesh of 1.1 million tetrahedra (4.8 million unknowns), in order to keep the
memory consumption of the direct solver reasonable. The computations are performed on
Sator, an ONERA cluster composed of 620 nodes with two fourteen-core Intel Broadwell
clocked at 2.4 GHz. The direct solver we compare ourselves to is MUMPS.

5.4.1.1 Nonlinear solver

In this section, the Newton nonlinear tolerance and the GMRES relative tolerance are both
set to 10−6. In fig. 8a we report the average wall-clock time per Newton iteration for the
mAL and MUMPS approaches, as a function of the number of processes. On the top x-
axis, we report the amount of available memory corresponding to each number of processes.
First, as expected, the memory requirements of our approach are lower than with MUMPS:
we observe that MUMPS cannot be run on less than 224 processes, which corresponds to
an available memory of 1,024 GB, whereas the mAL approach can be run on 28 processes
(128 GB). Note that the memory requirements of the mAL approach could be even lower
by using iterative methods for the subdomain solvers of the innermost ASM-preconditioned
GMRES iterations. Moreover, thanks to good scalability properties and the absence of a
full LU factorization at each Newton iteration, the mAL approach is clearly faster than
MUMPS (about ten times with 448 processes).

5.4.1.2 Eigensolver

For the eigensolver, the Krylov–Schur tolerance is 10−6 whereas the inner relative tolerance
is 10−3. Note that we use a larger tolerance for the inner linear solve than for the outer
Krylov–Schur solver. Indeed, contrary to what is often recommended in the literature
(e.g., [59, § 3.4.1]), we observed that it was not necessary to use a smaller tolerance for the
inner solution of eq. (12) in order to keep a satisfying accuracy on the computed eigenvalues.
More details on that aspect may be found in section C.

We show in fig. 8b the total wall-clock time for computing 5 eigenvalues closest to the
shift s = 0.6i, using mAL and MUMPS as inner solvers, as a function of the number of
processes. The available memory is again reported on the top x-axis. Similar conclusions
as for the nonlinear solver can be made for memory consumption with a multiplication
factor of two, due to the use complex instead of real algebra. From a wall-clock time point
of view, we observe, as for the nonlinear solver, that the mAL approach possesses much
better scalability than MUMPS, which leads to a faster computation. We note however that
MUMPS is harder to beat with an iterative approach when used in the eigensolver than in
the nonlinear solver. The reason is that, in the Krylov–Schur method, the very high cost
of forming the full LU factorization is greatly amortized by the many inner solves realized
with it, whereas in the Newton method, each inner solve requires to build the factorization
again.

24

As a conclusion, the mAL approach presents the double advantage of being much less
memory-intensive than the direct solver and also faster, even for the unfavorable case of
eigenvalue computations.

28 56 112 224 448 896101

102

103

MUMPS out of memory

of processes

T
im

e
(s
)

128 256 512 1,024 2,048 4,096

Available memory (GB)

(a) Nonlinear solver (average time per Newton
iteration)

56 112 224 448 896 102

103

104

MUMPS out of memory

of processes

T
im

e
(s
)

256 512 1,024 2,048 4,096

Available memory (GB)

(b) Eigensolver (overall time for 5 eigenvalues,
s = 0.6i)

Figure 8: Comparison of mAL () and MUMPS () as inner solvers on (a) the nonlin-
ear solver and (b) the eigensolver. The computation are performed on the three-dimensional
test case using a coarse mesh (4.8 million unknowns) and γ = 0.3. The grey area indicates
when the LU factorization is not feasible due to too large memory requirements. The
dashed line represents ideal scalability.

5.4.2 Parallel performance on a large-scale 3D configuration

In this section, the 3D plate configuration is used, with a fine mesh, resulting in 75 million
unknowns. The parallel performance of our implementation is investigated for the nonlinear
base flow solver and eigenvalue solver.

Results were obtained on Curie, a system composed of 5,040 nodes with two eight-core
Intel Sandy Bridge clocked at 2.7 GHz. The interconnect is an InfiniBand QDR full fat
tree and the MPI implementation exploited was bullxMPI version 1.2.9.2. All binaries and
shared libraries were compiled with Intel compilers and Math Kernel Library support (for
dense linear algebra computations) version 18.0.1.163. Recent releases of FreeFem++ and
PETSc/SLEPc were used (version 3.61 and 3.9.3 respectively). In all following plots and
tables, the time spent in the finite element kernel is never accounted for because we are
mostly interested in the performance of the preconditioner. Only the time spent in PETSc
or SLEPc is reported.

5.4.2.1 Nonlinear solver

In this paragraph, we investigate the parallel performance of the nonlinear steady-state
solver. The inner Krylov solver is the flexible GMRES algorithm [62], which is stopped
when the relative unpreconditioned residual norm is lower than 10−1. The Newton method

25

256 512 1,024 2,048

10

100

1,000

10,000

of processes

T
im

e
to

so
lu
ti
on

(s
)

Setup Solve Ideal

P Setup (s) Solve (s) Speedup

256 364.6 5,739.9 −
512 88.9 2,994.9 2.0

1,024 56.6 1,523.6 3.9
2,048 13.9 895.1 6.7

Figure 9: Scalability of the 3D nonlinear solver with respect to the number of processes.

is stopped when the l2 norm of the residual is lower than 10−6. As an initial guess for the
computation atRe = 100, a solution at a lower Reynolds numberRe = 50 is first computed
using a higher nonlinear outer tolerance of 10−4. Also note that in this preprocessing step,
all the domain decomposition information obtained from ParMETIS partitioning is dumped
and will be used in successive runs for the nonlinear and generalized eigenvalue solvers. In
table 2, the numerical performance of the nonlinear solver are reported. One may notice
that even if a high relative tolerance is used to stop the flexible GMRES, very few Newton
iterations (second column) are needed for the solver to converge, independently of the
number of subdomains (first column). The number of mAL-preconditioned inner iterations
needed to reach convergence, averaged over all Newton iterations, is reported in the third
column. It is seen not to depend on the number of processes. Eventually, in the last
three columns, we show the average number of ASM-preconditioned innermost iterations
needed for each velocity block of PmAL to reach the desired convergence tolerance of 10−1

(see section 4.3). A slight increase is observed with the number of processes. This is
an expected feature of simple one-level domain decomposition methods, like the additive
Schwarz method, that are known to not scale numerically [27].

P
of Newton
iterations

of iterations
per Newton it.

of iterations
per field (x, y, z)

256 6 83 30 12 19
512 5 81 31 13 20

1,024 5 84 35 15 21
2,048 5 84 44 17 27

Table 2: Numerical performance of the 3D nonlinear solver with respect to the number of
processes (Re = 100). The second column represents the number of Newton outer itera-
tions, the third is the number of mAL-preconditioned inner GMRES iterations per Newton
step. The last three columns correspond to the average number of ASM-preconditioned
innermost GMRES iterations for each velocity block per inner iteration.

In fig. 9, the scalability of our implementation is shown, using the run with 256 processes

26

as the reference, and going up to 2,048 processes. The parallel efficiency of this approach
remains above 83%. The fact that one additional Newton iteration is needed with 256
processes has to be highlighted, since it does improve the efficiency. Other than that,
because exact LU factorizations are used as subdomain solvers in the additive Schwarz
method used for each velocity field, the setup phase scales superlinearly (see the second
column of the table in fig. 9). Moreover, because the number of iterations needed for the
corresponding solvers only grows slightly, as shown in the three last columns from table 2,
the solution phase also scales appropriately.

5.4.2.2 Eigensolver

We now evaluate the parallel performance of the eigensolver. The tolerance on the Krylov–
Schur algorithm is 10−6 whereas the relative tolerance for the inner linear solver is set6 to
10−4. The main difference with the Newton method is that the multiple inner linear solves
involve the very same shifted operator (J+sM) and preconditioner PmAL. To improve the
performance of the eigensolver, let us show first the effect of using a recycled Krylov method
for solving these systems, instead of the standard GMRES. This can be done by switching
from the KSP objects of PETSc to the iterative methods of the HPDDM library [40] which
handle subspace recycling. In particular, the flexible GCRO-DR method is used, with a
recycled subspace between each linear solves of dimension five. The following lines allow
to switch between PETSc and HPDDM Krylov methods from within FreeFem++:

int recycle = getARGV("-recycle", 0); // use GMRES by default
int restart = getARGV("-restart", 200); // default to 200
real tolInner = getARGV("-inner_tol", 1.0e-4); // default to 10−4

string paramsKrylov = (recycle == 0 ? "-st_ksp_type fgmres " +
"-st_ksp_monitor -st_ksp_rtol " + tolInner +
" -st_ksp_gmres_restart " + restart + " -st_ksp_max_it 1000"
:
"-st_ksp_type hpddm -hpddm_st_krylov_method gcrodr " +
"-hpddm_st_recycle " + recycle + " -hpddm_st_max_it 1000" +
" -hpddm_st_verbosity 4 -hpddm_st_gmres_restart " + restart +
" -hpddm_st_tol " + tolInner + " -hpddm_st_variant flexible");

In fig. 10, the number of mAL-preconditioned inner linear iterations needed for each
iterative method (FGMRES or FGCRO-DR) to solve the sequence of linear systems of the
first iteration of the Krylov–Schur algorithm is reported. For this particular Krylov–Schur
iteration, fifteen systems have to be solved. When using FGMRES, it corresponds to a total
of 3,751 inner linear iterations. When using FGCRO-DR, it corresponds to only 2,209 inner
linear iterations. Even though the solutions of all fifteen systems are not rigorously equal
when switching from FGMRES to FGCRO-DR, after the first iteration of the eigensolver,
convergence is reached for the two eigenpairs closest to the shift: −1.03 · 10−2 + 0.57i and
−7.81 · 10−2 + 0.57i.

In all the following runs, FGCRO-DR is used in order to reduce the number of inner iter-
ations. The number of Krylov–Schur iterations needed to retrieve the requested eigenpairs
is reported in the second column of table 3. In the third column is the average number of

6for the same reasons explained in 5.4.1.2, we use a larger tolerance for the inner linear solves than for
the outer Krylov–Schur algorithm (see also section C)

27

2 4 6 8 10 12 14
0

100

200

300

System index

#
of

in
ne

r
so
lv
er

it
er
at
io
ns

FGMRES(200)

FGCRO-DR(200,5)

Figure 10: Effect of a recycled Krylov method on the performance of the eigensolver. The
number of mAL-preconditioned inner iterations for the flexible GMRES and GCRO-DR
algorithms is compared for each linear solve of a Krylov–Schur iteration.

solved linear systems per eigensolver iteration. The average number of mAL-preconditioned
FGCRO-DR iterations (inner iterations) per linear solve (outer iteration) is presented in
the fourth column whereas the last three columns contain the average number of innermost
iterations for each velocity field, per application of PmAL. It was not possible to have the
code run on 256 processes due to memory requirements significantly higher than for the
nonlinear solver. Indeed, we switch from a real-valued to a complex-valued problem and
the additional operators M and Lp are assembled explicitly. In table 4, the scalability of
our implementation is shown, using the run with 512 processes as the reference, and going
up to 2,048 processes. The parallel efficiency of this approach is approximately the same
as for the nonlinear solver, though on a narrower range of process counts, remaining above
82%.

P
of eigensolver

iterations
of linear

solves

of iterations
per linear

solve

of iterations
per field (x, y, z)

512 7 7 120 7 10 11
1,024 7 8 127 7 10 13
2,048 7 8 119 10 13 17

Table 3: Numerical performance of the 3D eigensolver with respect to the number of
processes. The second and third columns represent respectively the number of Krylov–Schur
iterations and the number of linear solves (outer iterations) per Krylov–Schur iteration.
The fourth column is the number of mAL-preconditioned FGCRO-DR inner iterations per
linear solve. The last three columns correspond to the average number of innermost ASM-
preconditioned GMRES iterations for each velocity sub-block per inner iteration.

28

P Setup (s) Solve (s) Speedup

512 55.3 39,160.7 −
1,024 25.7 24,508.3 1.6
2,048 27.1 11,849.9 3.3

Table 4: Scalability of the 3D eigensolver with respect to the number of processes.

6 Conclusion

The stationary base flow as well as the eigenvalue computations involved in hydrodynamic
linear stability analysis require multiple solutions of linear systems based on the (shifted)
Jacobian operator of the incompressible steady Navier–Stokes equations. To solve such sys-
tems on large-scale configurations involving hundreds of millions of unknowns, we proposed
to use a Krylov subspace linear solver like the flexible GMRES algorithm, preconditioned
by the modified augmented Lagrangian (mAL) preconditioner [12]. On a two-dimensional
bluff-body flow, we studied numerically the performance of the mAL preconditioner for
linear stability analysis purposes. We showed in particular that this approach handles ef-
ficiently complex-valued shifts and thus is well-suited for the computations of eigenvalues
with possibly large frequencies, using the shift-and-invert spectral transformation. Then,
the mAL preconditioner was tested against some other widely used steady-state (PCD,
SIMPLE) and time-stepping-based (Stokes) preconditioners, all of them used in a sequen-
tial version. The mAL preconditioner was shown to require lower numbers of GMRES
iterations and to be faster than all its competitors.

In order to perform large-scale three-dimensional stability analysis computations, a par-
allel implementation of the mAL preconditioner was presented and is made available online:
https://github.com/prj-/moulin2019al. The FreeFem++ finite element language was
used as a discretization kernel whereas PETSc and SLEPc were used as distributed linear
algebra backends. First, a comparison with the parallel direct solver MUMPS was pre-
sented on a three-dimensional bluff-body flow configuration, using a coarse enough mesh
to make the LU factorization possible. The mAL approach required about one tenth as
much memory and had better strong scaling properties. Despite the attractiveness of a
direct linear solver — when it can be afforded — for the eigenvalue computations (the fac-
torization is done once and re-used multiple times), the mAL approach turned out to be a
faster alternative than the direct approach, thanks to its much better parallel performance.
Finally, the implementation was used on a fine mesh resulting in 75 million unknowns and
showed satisfying strong scaling properties up to 2,048 processes, for both the base flow
and eigenvalue computations. The role of subspace recycling between the multiple consec-
utive linear solves, inside the Krylov–Schur eigensolver, was tested and allowed significant
performance gains.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation program (grant agreement number

29

https://github.com/prj-/moulin2019al

638307). Moreover, this work was granted access to the HPC resources of TGCC@CEA
under the allocation A0030607519 made by GENCI.

Appendix A Reproducibility

In addition to the few extracts of the code used in the paper, the interested reader can find
the complete FreeFem++ code in the following repository: https://github.com/prj-/
moulin2019al.

Appendix B Definition of other block preconditioners

Here are defined the classical block preconditioners for incompressible Navier–Stokes that
are compared to the modified augmented Lagrangian approach in section 5.3. Contrary to
mAL, those preconditioners do not require an augmentation. Thus, they are used without
grad–div stabilization (γ = 0). Versions that incorporate a complex shift s are proposed
here.

Pressure convection–diffusion preconditioner The pressure convection–diffusion (PCD)
preconditioner was proposed by [43]:

PPCD =

(
A + sMu BT

0 Sp

)
, (17)

with Sp
−1 = −Mp

−1(Fp+ sMp)Lp
−1, where Fp is a convection–diffusion operator built on

the pressure space. Compared to the classical PCD preconditioner for steady-state Navier–
Stokes equations, the shift contribution sMp is added to the pressure Schur complement
approximation.

SIMPLE preconditioner The SIMPLE preconditioner was proposed as a solver by [58].
We use its preconditioner version [30]:

PSIMPLE =

(
A + sMu 0

B Sp

)(
I diag(A + sMu)−1BT

0 I

)
, (18)

and Sp
−1 = −

[
Bdiag(A + sMu)−1BT

]−1.

Stokes preconditioner The Stokes preconditioning approach was popularized by [73] in
the hydrodynamic stability community. Tuckerman’s idea is two-fold:

1. preconditioning the linearized Navier–Stokes problem eq. (12) by the Stokes problem,
i.e.,

PStokes =

(
AStokes + sMu BT

B 0

)
,

30

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al

with AStokes = D + ∆t−1Mu and D contains only the diffusion terms. Note that
the time-step contribution ∆t has no physical meaning here: it only represents some
numerical parameter of the preconditioner. A case-dependent optimal value may
exist, as reported in [8]. We determined this optimal value numerically.

2. applying the preconditioner by adapting a pre-existing time-stepping code, which
significantly reduces the development costs. In this work however, we prefer to apply
PStokes

−1 by using a few inner iterations of GMRES, preconditioned by:

PStokes, inner =

(
AStokes + sMu BT

0 Sp

)
,

with Sp
−1 = −Re−1Mp

−1−(∆t+s)Lp
−1 [18]. A large relative tolerance of 10−2 is set

for the inner iterations, as we observed that further convergence of the inner iterations
did not improve the convergence of the outer GMRES iterations. Obviously, AStokes
being block diagonal, applying PStokes, inner

−1 naturally requires two scalar velocity
solves (in 2D) and one pressure solve.

Note that, in section 5.3, the GMRES iteration count reported for the Stokes precondi-
tioner corresponds to the total number of applications of PStokes, inner necessary to converge
eq. (12) to the desired tolerance.

Appendix C Linear solver tolerance and eigenvalue conver-
gence criterion

In cases where an iterative linear solver is used, the action of (J + sM)−1, required when
applying the spectrally transformed operator T in the Krylov–Schur algorithm (see sec-
tion 2.4), is approximated using some user-defined tolerance. As a consequence, matrix T
in eq. (11) is replaced by some approximation T̃. It is usually recommended to set the
tolerance for the linear solver lower than the one prescribed to the eigensolver, so that the
imprecision of the linear solver does not pollute the eigensolver accuracy (see e.g. [59, §
3.4.1]). Here, we re-evaluate this statement numerically on the two-dimensional test case
presented in section 5.1.

The following numerical experiment is performed. We solve the eigenproblem (11) using
a mAL-preconditioned GMRES algorithm to apply (J + sM)−1. The relative tolerance
of the GMRES algorithm εlin is varied between 10−8 and 10−1 while the tolerance of
the Krylov–Schur algorithm εeig is kept constant to 10−6. Only one eigenvalue, closest
to the shift s = 0.7i, is demanded. In the second column of table 5, the number of
GMRES iterations required to apply (J + sM)−1 is shown. The value is averaged over all
applications of (J + sM)−1 to compute the demanded eigenvalue. In the third column,
the total number of applications of T̃ is shown. In the last three columns, we monitor the
eigenvalue and the discrete l2 norm of the eigenproblem residual. It is observed that one
can in practice increase εlin well above εeig = 10−6, without compromising significantly the
accuracy of the computed eigenvalue. At least up to εlin = 10−3, the computed eigenvalue is
converged to satisfying accuracy, for a cost divided by two with respect to the “safe choice”
εlin = 10−6. Increasing εlin may thus allow some performance improvement.

31

Finally, the interpretation of the last column of table 5 deserves some further explana-
tion. Indeed, one can observe that, for εlin = 10−1 and εlin = 10−2, despite the fact that
we kept εeig = 10−6, the Krylov–Schur algorithm considered it had converged to an appro-
priate eigenvalue, while the residual was still above εeig. The reason to that observation
is that most Arnoldi-based eigensolver packages, such as SLEPc, use convergence criteria
based on the residual of the transformed problem eq. (11), not the original one eq. (6). As
a consequence, the effect of using a large linear tolerance εlin is to apply an approximate
operator T̃ far from the exact one. But the eigenvalues of T̃ can be computed to any
prescribed tolerance by the Krylov–Schur algorithm. Note that, in SLEPc, a workaround is
to use the option -eps_true_residual which forces the computation of the residual on the
original problem eq. (6) and thus is free from any approximation linked to the underlying
linear solver. In this case, the effect of using a large linear tolerance εlin would be to make
the convergence of the Krylov–Schur algorithm increasingly slow (or even impossible). This
option being more costly, it should however be avoided for large-scale computations.

εlin
of GMRES
iterations per
linear solve

of linear
solves

λ ω ‖σMq̂+ J(qb)q̂‖2

10−1 15 12 4.48 · 10−2 6.90 · 10−1 1.5 · 10−4

10−2 28 10 3.77 · 10−2 7.01 · 10−1 2.6 · 10−6

10−3 36 8 3.75 · 10−2 7.01 · 10−1 9.5 · 10−7

10−4 45 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−5 53 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−6 62 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−7 71 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−8 80 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

Table 5: Effect of linear solver tolerance on eigenvalue computation (Re = 40, γ = 0.7,
εeig = 10−6, s = 0.7i)

32

References

[1] M. Adams, H. Bayraktar, T. Keaveny, and P. Papadopoulos, Ultrascalable
Implicit Finite Element Analyses in Solid Mechanics with over a Half a Billion Degrees
of Freedom, in Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
SC04, IEEE Computer Society, 2004, pp. 34:1–34:15.

[2] E. Åkervik, L. Brandt, D. S. Henningson, J. Hœpffner, O. Marxen, and
P. Schlatter, Steady solutions of the Navier–Stokes equations by selective frequency
damping, Physics of Fluids, 18 (2006), pp. 1–5.

[3] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix
Analysis and Applications, 23 (2001), pp. 15–41.

[4] S. Bagheri, E. Åkervik, L. Brandt, and D. S. Henningson, Matrix-Free Meth-
ods for the Stability and Control of Boundary Layers, AIAA Journal, 47 (2009),
pp. 1057–1068.

[5] S. Bagheri, P. Schlatter, P. J. Schmid, and D. S. Henningson, Global stability
of a jet in crossflow, Journal of Fluid Mechanics, 624 (2009), pp. 33–44.

[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, PETSc web page.
http://www.mcs.anl.gov/petsc, 2019.

[7] D. Barkley and L. S. Tuckerman, Stokes Preconditioning for the Inverse Power
Method, in Lecture Notes in Physics: Proceedings of the Fifteenth International Con-
ference on Numerical Methods in Fluid Dynamics, P. Kutler, J. Flores, and J.-J.
Chattot, eds., New York, 1997, Springer, pp. 75–76.

[8] C. Beaume, Adaptive Stokes Preconditioning for Steady Incompressible Flows, Com-
munications in Computational Physics, 22 (2017), pp. 494–516.

[9] M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algo-
rithms for complex linear systems, IMA Journal of Numerical Analysis, 28 (2008),
pp. 598–618.

[10] M. Benzi and M. A. Olshanskii, An Augmented Lagrangian-Based Approach to
the Oseen Problem, SIAM Journal on Scientific Computing, 28 (2006), pp. 2095–2113.

[11] M. Benzi and M. A. Olshanskii, Field-of-Values Convergence Analysis of Aug-
mented Lagrangian Preconditioners for the Linearized Navier–Stokes Problem, SIAM
Journal on Numerical Analysis, 49 (2011), pp. 770–788.

[12] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian pre-
conditioners for the incompressible Navier–Stokes equations, International Journal for
Numerical Methods in Fluids, 66 (2011), pp. 486–508.

33

http://www.mcs.anl.gov/petsc

[13] M. Benzi and Z. Wang, Analysis of Augmented Lagrangian-Based Preconditioners
for the Steady Incompressible Navier–Stokes Equations, SIAM Journal on Scientific
Computing, 33 (2011), pp. 2761–2784.

[14] M. Benzi and Z. Wang, A parallel implementation of the modified augmented La-
grangian preconditioner for the incompressible Navier–Stokes equations, Numerical Al-
gorithms, 64 (2013), pp. 73–84.

[15] A. Bergeon, D. Henry, H. Benhadid, and L. S. Tuckerman, Marangoni con-
vection in binary mixtures with Soret effect, Journal of Fluid Mechanics, 375 (1998),
pp. 143–177.

[16] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer
Series in Computational Mathematics 15, Springer-Verlag New York, 1 ed., 1991.

[17] M. Brynjell-Rahkola, L. S. Tuckerman, P. Schlatter, and D. S. Henning-
son, Computing Optimal Forcing Using Laplace Preconditioning, Communications in
Computational Physics, 22 (2017), pp. 1508–1532.

[18] J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers for the gener-
alized Stokes problem, International Journal for Numerical Methods in Fluids, 8 (1988),
pp. 869–895.

[19] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, Comparison of soft-
ware for computing the action of the matrix exponential, BIT Numerical Mathematics,
54 (2014), pp. 113–128.

[20] T. F. Chan and H. A. Van Der Vorst, Approximate and Incomplete Factoriza-
tions, in Parallel Numerical Algorithms, Springer, 1997, pp. 167–202.

[21] J.-M. Chomaz, Global Instabilities in Spatially Developing Flows: Non-Normality and
Nonlinearity, Annual Review of Fluid Mechanics, 37 (2005), pp. 357–392.

[22] K. N. Christodoulou and L. E. Scriven, Finding Leading Modes of a Viscous Free
Surface Flow: An Asymmetric Generalized Eigenproblem, J. Sci. Comput., 3 (1988),
pp. 355–406.

[23] V. Citro, F. Giannetti, P. Luchini, and F. Auteri, Global stability and sensi-
tivity analysis of boundary-layer flows past a hemispherical roughness element, Physics
of Fluids, 27 (2015), p. 084110.

[24] V. Citro, P. Luchini, F. Giannetti, and F. Auteri, Efficient stabilization and
acceleration of numerical simulation of fluid flows by residual recombination, Journal
of Computational Physics, 344 (2017), pp. 234–246.

[25] K. A. Cliffe, T. J. Garratt, and A. Spence, Eigenvalues of the discretized
Navier–Stokes equation with application to the detection of Hopf bifurcations, Advances
in Computational Mathematics, 1 (1993), pp. 337–356.

34

[26] H. A. Dijkstra, F. W. Wubs, A. K. Cliffe, E. Doedel, I. F. Dragomirescu,
B. Eckhardt, A. Y. Gelfgat, A. L. Hazel, V. Lucarini, A. G. Salinger,
E. T. Phipps, S. U. Juan, H. Schuttelaars, L. S. Tuckerman, and U. Thiele,
Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond
simulation, Communications in Computational Physics, 15 (2014), pp. 1–45.

[27] V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition
Methods: Algorithms, Theory and Parallel Implementation, SIAM, 2015.

[28] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge university press,
2004.

[29] U. Ehrenstein and F. Gallaire, On two-dimensional temporal modes in spatially
evolving open flows: The flat-plate boundary layer, Journal of Fluid Mechanics, 536
(2005), pp. 209–218.

[30] H. C. Elman, V. Howle, J. Shahid, R. Shuttleworth, and R. S. Tuminaro,
A taxonomy and comparison of parallel block multi-level preconditioners for the in-
compressible Navier–Stokes equations, Journal of Computational Physics, 227 (2008),
pp. 1790–1808.

[31] P. E. Farrell, L. Mitchell, and F. Wechsung, An augmented Lagrangian
preconditioner for the 3D stationary incompressible Navier–Stokes equations at high
Reynolds number, arXiv:1810.03315, (2018).

[32] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities, International Journal for Numerical Methods
in Engineering, 79 (2009), pp. 1309–1331, http://geuz.org/gmsh.

[33] X. He and C. Vuik, Comparison of Some Preconditioners for the Incompressible
Navier–Stokes Equations, Numerical Mathematics, 9 (2016), pp. 239–261.

[34] F. Hecht, New development in FreeFem++, Journal of Numerical Mathematics, 20
(2012), pp. 251–266.

[35] T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for
the Oseen problem using grad–div stabilization, International Journal for Numerical
Methods in Fluids, 71 (2013), pp. 118–134.

[36] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A Scalable and Flexible
Toolkit for the Solution of Eigenvalue Problems, ACM Transactions on Mathematical
Software, 31 (2005), pp. 351–362.

[37] P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially devel-
oping flows, Annual review of fluid mechanics, 22 (1990), pp. 473–537.

[38] M. C. Iorio, L. M. González, and E. Ferrer, Direct and adjoint global stability
analysis of turbulent transonic flows over a NACA0012 profile, International Journal
for Numerical Methods in Fluids, 76 (2014), pp. 147–168.

35

http://geuz.org/gmsh

[39] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud’homme, and
N. Spillane, High performance domain decomposition methods on massively par-
allel architectures with FreeFem++, Journal of Numerical Mathematics, 20 (2012),
pp. 287–302.

[40] P. Jolivet and P.-H. Tournier, Block Iterative Methods and Recycling for Im-
proved Scalability of Linear Solvers, in Proceedings of the 2016 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC16,
IEEE, 2016.

[41] G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods
for the incompressible Navier–Stokes equations, Journal of Computational Physics, 97
(1991), pp. 414–443.

[42] G. Karypis and V. Kumar, A Parallel Algorithm for Multilevel Graph Partitioning
and Sparse Matrix Ordering, Journal of Parallel and Distributed Computing, 48 (1998),
pp. 71–95.

[43] D. Kay, D. Loghin, and A. Wathen, A Preconditioner for the Steady-State Navier–
Stokes Equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 237–256.

[44] J. Kim and P. Moin, Application of a fractional-step method to incompressible
Navier–Stokes equations, Journal of Computational Physics, 59 (1985), pp. 308–323.

[45] X. S. Li, An overview of SuperLU: Algorithms, implementation, and user interface,
ACM Trans. Math. Softw., 31 (2005), pp. 302–325.

[46] A. Linke, L. G. Rebholz, and N. E. Wilson, On the convergence rate of grad–div
stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems,
Journal of Mathematical Analysis and Applications, 381 (2011), pp. 612–626.

[47] J.-C. Loiseau, M. A. Bucci, S. Cherubini, and J.-C. Robinet, Time-Stepping
and Krylov Methods for Large-Scale Instability Problems, Springer International Pub-
lishing, 2019, pp. 33–73.

[48] J.-C. Loiseau, J.-C. Robinet, S. Cherubini, and E. Leriche, Investigation of
the roughness-induced transition: Global stability analyses and direct numerical simu-
lations, Journal of Fluid Mechanics, 760 (2014), pp. 175–211.

[49] C. J. Mack and P. J. Schmid, A preconditioned Krylov technique for global hydro-
dynamic stability analysis of large-scale compressible flows, Journal of Computational
Physics, 229 (2010), pp. 541–560.

[50] C. K. Mamun and L. S. Tuckerman, Asymmetry and Hopf bifurcation in spherical
Couette flow, Physics of Fluids, 7 (1994), pp. 80–91.

[51] O. Marquet and M. Larsson, Global wake instabilities of low aspect-ratio flat-
plates, European Journal of Mechanics - B/Fluids, 49 (2015), pp. 400–412.

36

[52] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost
eigenvalues of large sparse non-symmetric eigenvalue problems, IMA Journal of Nu-
merical Analysis, 16 (1996), pp. 297–346.

[53] I. Mercader, O. Batiste, and A. Alonso, Continuation of travelling-wave solu-
tions of the Navier–Stokes equations, International Journal for Numerical Methods in
Fluids, 52 (2006), pp. 707–721.

[54] M. Olshanskii, G. Lube, T. Heister, and J. Löwe, Grad–div stabilization and
subgrid pressure models for the incompressible Navier–Stokes equations, Computer
Methods in Applied Mechanics and Engineering, 198 (2009), pp. 3975–3988.

[55] M. A. Olshanskii, A low order Galerkin finite element method for the Navier–Stokes
equations of steady incompressible flow: a stabilization issue and iterative methods,
Computer Methods in Applied Mechanics and Engineering, 191 (2002), pp. 5515–5536.

[56] M. A. Olshanskii and M. Benzi, An Augmented Lagrangian Approach to Linearized
Problems in Hydrodynamic Stability, SIAM Journal on Scientific Computing, 30 (2008),
pp. 1459–1473.

[57] M. A. Olshanskii and A. Reusken, Grad–div stabilization for Stokes equations,
Mathematics of Computation, 73 (2004), pp. 1699–1718.

[58] S. Patankar and D. Spalding, A calculation procedure for heat, mass and momen-
tum transfer in three-dimensional parabolic flows, Numerical Prediction of Flow, Heat
Transfer, Turbulence and Combustion, (1983), pp. 54–73.

[59] J. E. Roman, C. Campos, E. Romero, and A. Tomás, SLEPc Users Man-
ual Scalable Library for Eigenvalue Problem Computations. http://slepc.upv.es/
documentation/slepc.pdf, 2019.

[60] M. W. Rostami and F. Xue, Robust Linear Stability Analysis and a New Method
for Computing the Action of the Matrix Exponential, SIAM Journal on Scientific Com-
puting, 40 (2018), pp. A3344–A3370.

[61] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large un-
symmetric matrices, Linear Algebra and its Applications, 34 (1980), pp. 269–295.

[62] Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM Journal
on Scientific Computing, 14 (1993), pp. 461–469.

[63] F. Sartor, C. Mettot, and D. Sipp, Stability, Receptivity, and Sensitivity Analyses
of Buffeting Transonic Flow over a Profile, AIAA Journal, 53 (2015), pp. 1980–1993.

[64] A. Segal, M. Ur Rehman, and C. Vuik, Preconditioners for incompressible
Navier–Stokes solvers, Numerical Mathematics, 3 (2010), pp. 245–275.

[65] G. M. Shroff and H. B. Keller, Stabilization of unstable procedures: the recursive
projection method, SIAM Journal on Numerical Analysis, 30 (1993), pp. 1099–1120.

37

http://slepc.upv.es/documentation/slepc.pdf
http://slepc.upv.es/documentation/slepc.pdf

[66] D. Sipp, O. Marquet, P. Meliga, and A. Barbagallo, Dynamics and Con-
trol of Global Instabilities in Open-Flows: a Linearized Approach, Applied Mechanics
Reviews, 63 (2010).

[67] G. W. Stewart, A Krylov–Schur Algorithm for Large Eigenproblems, SIAM Journal
on Matrix Analysis and Applications, 23 (2002), pp. 601–614.

[68] V. Theofilis, Advances in global linear instability analysis of nonparallel and three-
dimensional flows, Progress in Aerospace Sciences, 39 (2003), pp. 249–315.

[69] V. Theofilis, Global Linear Instability, Annual Review of Fluid Mechanics, 43 (2011),
pp. 319–352.

[70] L. S. Tuckerman, Steady-state solving via Stokes preconditioning; Recursion rela-
tions for elliptic operators, in 11th International Conference on Numerical Methods
in Fluid Dynamics, D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt, eds., Berlin,
Heidelberg, 1989, Springer Berlin Heidelberg, pp. 573–577.

[71] L. S. Tuckerman, Laplacian Preconditioning for the Inverse Arnoldi Method, Com-
munications in Computational Physics, 18 (2015), pp. 1336–1351.

[72] L. S. Tuckerman and D. Barkley, Bifurcation Analysis for Timesteppers, in
Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems,
Springer, New York, NY, 2000, pp. 453–466.

[73] L. S. Tuckerman, F. Bertagnolio, O. Daube, P. Le Quéré, and D. Barkley,
Stokes Preconditioning for the Inverse Arnoldi Method, in Continuation Methods for
Fluid Dynamics, D. Henry and A. Bergeon, eds., Aussois, 2000, pp. 241–255.

[74] L. S. Tuckerman, J. Langham, and A. Willis, Order-of-magnitude speedup for
steady states and traveling waves via Stokes preconditioning in channelflow and open-
pipeflow, Computational Methods in Applied Sciences, 50 (2019), pp. 3–31.

38

	Introduction
	Methods for linear stability analysis in hydrodynamics
	Governing equations
	Spatial discretization
	Nonlinear steady-state solver
	Linear eigensolver

	An augmented Lagrangian approach for the shifted Jacobian matrix
	Parallel implementation with FreeFem++ and its interface to PETSc/SLEPc
	Outer solvers
	Inner mAL-preconditioned linear solvers
	Innermost velocity and pressure linear solvers

	Numerical results
	Two- and three-dimensional test cases
	Influence of numerical and physical parameters
	Effect of the augmentation parameter
	Effect of the shift parameter
	Effect of the mesh refinement and Reynolds number

	Comparison with other block preconditioners
	Performance of the parallel implementation
	Comparison with a direct solver on a small-scale 3D configuration
	Nonlinear solver
	Eigensolver

	Parallel performance on a large-scale 3D configuration
	Nonlinear solver
	Eigensolver

	Conclusion
	Appendix Reproducibility
	Appendix Definition of other block preconditioners
	Appendix Linear solver tolerance and eigenvalue convergence criterion

