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Résumé – Grâce à leur propriété de répulsion, les processus ponctuels déterminantaux (DPP) constituent un outil efficace pour sous-
échantillonner des distributions discrètes. Nous cherchons ici à utiliser les DPP pour sous-échantillonner la distribution des patchs d’une texture.
Nous montrons que dans un modèle de texture basé sur du transport optimal, les DPP permettent d’atteindre un bon compromis entre qualité
visuelle de la synthèse et temps d’exécution.

Abstract – Because of their repulsive property, determinantal point processes (DPPs) provide an efficient tool to subsample discrete distribu-
tions. In this paper, we investigate the use of DPPs to subsample the distribution of patches of a texture image. We show that in a texture model
based on optimal transportation, DPP subsampling helps to reach a good compromise between visual quality of the synthesis and execution time.

1 Introduction

Exemplar-based texture synthesis consists in producing tex-
ture samples that look similar to a given original texture called
the exemplar. Many methods have been proposed to solve this
problem, broadly categorized between parametric methods [13,
6] and patch-based methods [3, 4, 11]. Here we build on the
texture model proposed in [5], which exploits optimal trans-
port (OT) in the patch space in order to reimpose statistics of
local features at several resolutions.

More precisely, this model is based on semi-discrete OT,
meaning that it uses transformations of the patch space that
are designed to optimally transport an absolutely continuous
source measure onto a discrete target measure. The chosen dis-
crete target measure in [5] is the subsampled empirical patch
distribution of the exemplar texture, so that these OT maps help
to reimpose the patch statistics of the exemplar. These OT maps
are given by weighted nearest neighbor (NN) assignment on the
points of the target measure support. Therefore, the computa-
tional time for synthesis highly depends on the discrete sam-
pling of the target distribution. For 3 × 3 patch distributions,
a naive 1000-uniform subsampling gives good results in gene-
ral. But more accurate subsampling strategies could be used by
taking profit of the structure in the patch point cloud.

In this paper, we propose to use a different subsampling stra-
tegy based on determinantal point processes (DPPs) defined on
patches. A DPP tends to produce diverse sets of points and have
appealing theoretical properties [10]. They are defined through
a kernel matrix related to the similarity between the points of

the original set. The more similar two points are, the less li-
kely they are to be selected together. For that reason, DPPs
constitute a common tool to efficiently subsample large data
sets. For instance, the authors of [10] use DPPs to summarize
text documents. The authors of [14] also study the properties
of weighted sub-samples, called coresets, in order to approxi-
mate an initial data set with respect to a given learning task,
and prove that DPPs produce better coresets than iid methods.
The authors of [12] show that DPPs are a convenient object to
estimate various statistics on a large population.

Here we propose to integrate the DPP subsampling strategy
in the OT-based texture model of [5]. We show that because of
the repulsion property of the DPP, it is able to cover efficiently
the original patch cloud with a low number of samples. As a
result, the obtained transport maps can be applied faster, thus
allowing to synthesize very large structure textures with com-
petitive computational time. We also discuss the parameters of
the model, in particular the expected cardinal of the DPP, which
should depend on the complexity of the input texture.

2 Texture Synthesis with Semi-Discrete
Optimal Transport

In this section, we will recall the definition given in [5] of
the texture model based on semi-discrete optimal transport. Let
u : Ω→ Rd be the exemplar texture defined on a domain Ω ⊂ Z2.
The patch domain will be denoted by ω = {0, . . . , w−1}2 and
the patch space by RD where D = dw2.



2.1 Monoscale Model
The model is based on a coarse synthesis obtained with a

Gaussian field U defined by

∀x ∈ Z2, U(x) = ū+
∑
y∈Z2

tu(y)W (x− y) (1)

where ū = 1
|Ω|
∑
u(x), tu = 1√

|Ω|
(u− ū)1Ω and W is a nor-

malized Gaussian white noise on Z2. This Gaussian random
field is adapted only to the synthesis of unstructured textures.
For that reason, the authors of [5] proposed to apply local modi-
fications to reinforce geometric structures in a statistically co-
herent way. In other words, a transformation T : RD → RD is
applied to all patches of U , an image is recomposed by simple
averaging, thus obtaining the transformed random field

∀x ∈ Z2, V (x) =
1

|ω|
∑
h∈ω

T (U|x−h+ω)(h). (2)

The map T is chosen to solve a semi-discrete optimal transport
problem between the probability distribution µ of Uω and a
discrete target distribution ν =

∑J
j=1 νjδqj representing the

patches of u (see Section 3.1). This problem can be written as

inf

∫
RD

‖p− T (p)‖2dµ(p) (3)

where the infimum is taken over all measurable maps T for
which the image measure of µ is ν. As proved in [2, 9], the
solution can be obtained as a weighted NN assignment

Tv(p) = qj(p) where j(p) = Argmin
j

‖p− qj‖2 − vj (4)

where v ∈ RJ solves a concave maximization problem. Sol-
ving for v relies on a costly stochastic gradient procedure (see
the details in [7, 5]) which is more and more difficult when
the number J of points in the target distribution increases. This
is a first reason to look for a simplification of the target mea-
sure ν with the least possible points. Another reason, which
will be highlighted in the experimental section, is that once the
map Tv is estimated, applying it to all patches of U amounts to
applying a weighted NN projection on a set of J patches ; thus
the required computational time for synthesis also depends on
the number J of points in the target distribution.

2.2 Multiscale Model
One drawback of the stochastic algorithm for semi-discrete

OT is that it gets slower when the dimension D increases. In
practice, it is thus only applicable for patches of size 3 × 3.
A multiscale extension was proposed in [5] in order to deal
with larger structures. It consists in working with subsampled
versions u`, ` = 0, . . . , L− 1 of the original texture defined on
coarser grids Ω` = Ω ∩ 2`Z2, and with discrete target patch
distributions ν`, ` = 0, . . . L− 1.

Starting from a Gaussian random field UL−1 estimated from
uL−1 as in (1), for ` = L − 1, . . . , 0, we apply a transport

map T ` to all patches of U `

V `(x) =
1

|ω|
∑
h∈2`ω

T `(U `|x−h+2`ω)(h), x ∈ 2`Z2 (5)

and we get U `−1 by exemplar-based upsampling (taking the
same patches than T ` but twice larger). The transport map T ` is
designed to solve a semi-discrete OT problem between a source
measure µ` (a GMM estimated from the patches of the current
synthesis) and a discrete target distribution ν` representing the
patches of u`. The output texture is V 0.

One strong feature of this multiscale model is that the maps T `

can be estimated once and for all. Once the model estimated, it
can be sampled efficiently since applying the map T ` at each
scale consists in a simple weighted NN projection on 3 × 3
patches.

3 DPP Subsampling of the Target Dis-
tribution

In this section, we discuss how to choose the discrete target
distribution ν in order to represent efficiently the patches of the
original texture u.

3.1 Choosing the Target Distribution
One natural choice to represent all the patches of u is of

course to consider the empirical distribution

νemp =
1

I

I∑
i=1

δpi (6)

where {pi, 1 6 i 6 I} is the set of all patches of u. Unfortuna-
tely, this choice must often be discarded because the number I
of patches is in general very large (I � 105) and thus unsui-
table for the stochastic algorithm for semi-discrete OT.

The authors of [5] coped with this problem by considering
the simple subsampling

νunif =
1

J

J∑
j=1

δqj (7)

where the patches (qj) are chosen at random (uniformly) among
the patches (pi). Although naive, this solution proved to be suf-
ficient for many textures, with a value of J set as a ground rule
to J = 1000 for subsampling 3 × 3 patch distributions. But
we propose here to consider alternative choices in order to use
even lower values of J while maintaining the visual quality of
the output texture.

3.2 DPP Definition and Properties
Determinantal point processes are increasingly used to sub-

sample sets of items containing redundancy, as they capture
diversity and assign a low probability to sets of similar items.



A determinantal point process relies on a similarity measure
defined on the points of the initial set and stored in a positive
semi-definite kernel matrix K = (Ki,j)16i,j6N .

Definition 3.1 ([10]). A point process Y with values in Y =
{1, . . . , N} is said to be determinantal with kernel K if for all
subset A ⊂ Y ,

P(A ⊂ Y ) = det(KA), with KA = (Ki,j)i,j∈A. (8)

More generally, one can define a DPP with values in a set Y
with cardinalN by using a bijection betweenY and {1, . . . , N}.

The existence of such a DPP imposes that the eigenvalues
{λ1, . . . λN} of K must be in [0, 1]. One can notice that the
diagonal coefficients of K define the marginal probabilities of
any singleton, as P(i ∈ Y ) = Kii for any i ∈ Y . As the off-
diagonal coefficients of K give the similarity between points,
the more similar two points are, the less likely they are to be
selected together

P({i, j} ⊂ Y ) = P(i ∈ Y )P(j ∈ Y )− |Ki,j |2. (9)

Besides, it is possible to control the cardinal |Y | of the DPP
since E(|Y |) =

∑
λi = tr(K) and Var(|Y |) =

∑
λi(1− λi).

In practice, for a given subsampling problem, the main issue is
to define an appropriate matrix K that reflects the structure of
the original set Y .

3.3 Determinantal Patch Processes
We want to subsample the set of patches of u with a DPP. A

common method to control the repulsion and define an appro-
priate kernel K is to set K = L(Id + L)−1, where Id is the
identity matrix and L a positive semi-definite kernel. Here, we
use a Gaussian matrix with parameter s

∀i, j ∈ {1, . . . , N}, Lij = exp

(
−‖pi − pj‖

2
2

s2

)
(10)

We choose to apply the squared Euclidean distance between
patches. It is widely used as a similarity measure on patches,
for instance in the patch-based denoising method NL-means.
Indeed, it is fast to compute and, despite its natural limitations,
it provides satisfying results.

Regarding the choice of the bandwidth parameter s, one can
remark that if it is set small,K will become close to the identity
matrix and the selection of patches will be close to a random
uniform sampling. The larger s is, the more repulsive the DPP
is. Yet, because of numerical instability, s should not be too
large either. As noticed by [1] or [14], the median of the in-
terdistances between the patches seems to be a satisfying and
common choice for s, even if no theoretical guarantee exists to
support it. In practice, we also add a multiplicative coefficient
so that s evolves in function of the number of samples we want.

The usual algorithm to sample DPPs [8] uses the eigende-
composition of K and costs O(N3), which is very costly. Yet,
we only need to perform this sampling once and as it enables
to significantly reduce the number of patches used to estimate
the target distribution, we will see in the next section that this
cost can be afforded.

3.4 Setting the Weights
Once the support Q = {qj , 1 6 j 6 J} has been fixed, one

must build a measure ν supported on Q that accurately repre-
sents the patches of u. This amounts to adjusting the masses
(νj) associated with (qj) such that ν =

∑J
j=1 νjδqj realizes a

good approximation of νemp. One can formulate this problem
using the L2-Wasserstein distance between discrete distribu-
tions µ =

∑I
i=1 µiδpi and ν =

∑J
j=1 νjδqj defined by

W 2
2 (µ, ν) = inf

(πi,j)

∑
i,j

πi,j‖pi − qj‖2 (11)

where the infimum is taken on (πi,j) ∈ RI×J+ such that for all i,∑
j πi,j = µi and for all j,

∑
i πi,j = νj . Finding the masses

(νj) that minimizes W 2
2 (νemp, ν) is equivalent to solving

π∗i,j = Argmin
(πi,j)

∑
i,j

πi,j‖pi − qj‖2 (12)

such that ∀(i, j), πi,j ≥ 0 and
∑
j πi,j = 1

I , which is similar
to the original OT problem, but relaxing the second marginal
constraint. The solution ν can thus be obtained with

∀j ∈ {1, . . . , J}, ν∗j =
∑
i

π∗i,j . (13)

This is simply a linear programming problem with the projec-
tion on a simplex that can be solved with the ”Interior point” or
”Dual simplex” algorithms. Finally we approximate the empi-
rical distribution with the (random) distribution

νDPP =

J∑
j=1

ν∗j δqj , (14)

where (qj) is a realization of the DPP with kernel K.

4 Results
We will now comment the synthesis results obtained by sub-

sampling the target patch measures with DPPs. All parameters
of the texture model are set to the default values listed in [5]
(4 scales, patches of size 3 × 3). The only difference lies in
the subsampling strategy. At each scale, a first naive subsam-
pling is performed by drawing (uniformly) 1000 patches in the
exemplar texture. Then, a second subsampling step is perfor-
med with either another uniform subsampling to cardinal J or
a DPP subsampling with expected cardinal J . Let us mention
that we cannot use a direct DPP subsampling of νemp because
I is often very large (≈ 106) and it is thus impractical to com-
pute the eigenvalues of the kernel (which is needed for the DPP
sampling). In the following experiments, J ∈ {50, 100, 200}.

In Fig. 1, one can observe a predictable loss of quality when
going from 1000 to 100 patches. However, one can see that for
many textures, the visual quality can be maintained to a rea-
sonable level while using 10 times less patches. This will help
us to reach a compromise between visual quality and execution
time for synthesis (see below). One can also observe on Fig. 1



Original Unif-1000 Unif-100 DPP-100

FIGURE 1 – We compare the synthesis results when using ei-
ther a target distribution with uniform subsampling (with car-
dinal 100) and DPP subsampling (with expected cardinal 100).

DPP-50 DPP-100 DPP-200 Unif-1000

FIGURE 2 – We display the impact on the visual results of the
expected cardinal of the DPP. See the text for comments.

that uniform and DPP subsampling behave quite differently. In
particular, DPP subsampling seems to favor patches with shar-
per edges and less noise. Also, on several textures (like the last
example of Fig. 2), the output seems statistically closer to the
input texture ; but it would require a more involved analysis to
precisely assess this fact.

In Fig. 2, we analyze the influence of the cardinal of the tar-
get discrete distribution. For each texture there is a cardinal
value under which results get degenerate and over which the
visual quality is maintained to a reasonable level. The results
shown in Fig. 3 also help to numerically evaluate the gain to
use DPP sampling instead of uniform sampling.

Finally, let us highlight the main benefit obtained with the
proposed subsampling strategies, which lies in the gain in com-
putation time for synthesis. Once the texture model is estima-
ted, it is indeed very fast to sample large pieces of it, and since
it relies on weighted NN assignments at each scale, the execu-
tion time depends quasi-linearly on the cardinal J of the target
measures. Using a CPU Intel i7-5600U (4 cores at 2.6GHz), for
J 6 200 we are able to synthesize 512×512 images in≈ 0.4”
and 1024 × 1024 in ≈ 1.6”. This execution time would be
improved with a GPU implementation. For some textures, the
suggested approach thus allows to accelerate the synthesis al-
gorithm of [5] while maintaining the quality of synthesis.

FIGURE 3 – These plots shows, for five textures the mean L2

distance from a patch to its NN in the DPP, depending on the
expected cardinal.
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