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ABSTRACT

The combination of galaxy-galaxy lensing (GGL) and redshift space distortion of galaxy clustering (RSD) is a privileged technique
to test general relativity predictions and break degeneracies between the growth rate of structure parameter f and the amplitude of
the linear power spectrum σ8. We performed a joint GGL and RSD analysis on 250 sq. deg using shape catalogues from CFHTLenS
and CFHT-Stripe 82 and spectroscopic redshifts from the BOSS CMASS sample. We adjusted a model that includes non-linear
biasing, RSD, and Alcock–Paczynski effects. We used an N-body simulation supplemented by an abundance matching prescription
for CMASS galaxies to build a set of overlapping lensing and clustering mocks. Together with additional spectroscopic data, this
helps us to quantify and correct several systematic errors, such as photometric redshifts. We find f (z = 0.57) = 0.95 ± 0.23, σ8(z =
0.57) = 0.55± 0.07 and Ωm = 0.31± 0.08, in agreement with Planck cosmological results 2018. We also estimate the probe of gravity
EG = 0.43 ± 0.10, in agreement with ΛCDM−GR predictions of EG = 0.40. This analysis reveals that RSD efficiently decreases
the GGL uncertainty on Ωm by a factor of 4 and by 30% on σ8. We make our mock catalogues available on the Skies and Universe
database.

Key words. cosmological parameters – cosmology: observations – large-scale structure of Universe

1. Introduction

Since its inception, general relativity theory (GR) has been con-
stantly tested, starting with observations in the solar system and
in our Galaxy (see e.g. Damour 2000). At cosmological scales,
the advent of wide field survey experiments currently yields
very high precision measurements in both the early and late
ages of the universe. A Universe dominated by cold dark mat-
ter and a cosmological constant in the context of GR (hereafter
ΛCDM−GR model) reproduces all these observations with very
high accuracy and for this reason, the model is often referred to
as the standard reference model.

? The catalogues are available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/qcat?J/A+A/627/A137 and at http://
www.skiesanduniverses.org

However, some slight tensions are emerging between pre-
dictions based on the cosmic microwave background measure-
ments from the Planck mission at redshift z = 1089 and
measurements at redshifts z < 1 obtained from galaxy clustering
or gravitational lensing. In particular with Planck, the amplitude
of the matter power spectrum σ8 is larger and the Hubble con-
stant H0 is smaller than what is estimated at redshifts z < 1
at about 2σ confidence level (C.L.; Planck Collaboration XIII
2016; Beutler et al. 2014; Alam et al. 2017; Hildebrandt et al.
2017; DES Collaboration 2018). Although systematic errors in
the analyses can explain a significant fraction of these discrepan-
cies, they might nonetheless suggest some issues with our under-
standing and modelling of the expansion of the Universe, or of
the large-scale structure formation probed by galaxy clustering
and gravitational lensing.

The common approach to test ΛCDM−GR at cosmolog-
ical scales is either to measure the expansion history H(z)
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of the Universe (e.g. Betoule et al. 2014; Alam et al. 2017;
Magaña et al. 2015), or to measure the growth of structures
traced by the velocity or density fields in redshift space (e.g.
de la Torre et al. 2013; Tully et al. 2016; Martinet et al. 2018). In
this paper, we combine galaxy-galaxy lensing (GGL) and RSD
to test both aspects simultaneously at redshift z = 0.57. The
amplitude of GGL measurements is sensitive to H(z) and the
density field, whereas RSD probes the growth of structure f (z)
through galaxy peculiar velocities. The combination of these
two observables has demonstrated its effectiveness at isolating
the independent effects of the growth rate of structure f (z),
the amplitude of the matter power spectrum σ8, and the dark
energy equation of state parameter w involved in H(z) calcula-
tion (Simpson et al. 2013; de la Torre et al. 2017; Joudaki et al.
2017).

Zhang et al. (2007) proposed an alternative method to test
deviations to GR. Assuming small scalar perturbations around
the Friedmann–Lemaître–Robertson–Walker metric (FLRW) in
the conformal Newtonian gauge ds2 = −a(τ)2[1 + 2Ψ]dτ2 +
a(τ)2[1 − 2Φ]dx2, where a is a scale factor, τ is the conformal
time, and x are comoving coordinates, these authors proposed a
statistics EG sensitive to the gravitational slip between the two
gravitational potentials Φ and Ψ as follows:

〈EG〉 =

∇2(Ψ − Φ)
3H2

0a−1 f δ

 , (1)

where all quantities are estimated at the redshift of interest.
Reyes et al. (2010) proposed an associated observational esti-
mator EG = Υgm/βΥgg (see below in Sect. 6.4), which con-
verges to 〈EG〉 in the large-scale limit where the galaxy bias
b and the distortion parameter β = f /b converge to constant
values. The small-scale filtered galaxy-matter cross-correlation
Υgm probed with GGL is sensitive to both b and ∇2(Φ − Ψ)
since photons traverse equal quantity of space and time. The
galaxy-velocity cross-correlation βΥgg probed with RSD is sen-
sitive to galaxy bias and the Newtonian potential Ψ. In GR
and in absence of anisotropic stress, Φ = −Ψ so lensing is
sensitive of 2∇2Φ. In the linear regime, the Poisson equation
relates the potential to the matter density contrast δ, such that
∇2Φ = −∇2Ψ = 3

2 Ωm0H2
0a−1δ. This estimator therefore con-

verges to EG =
Ωm0

f in the standard model.
In their seminal paper, Zhang et al. (2007) predicted devi-

ations from GR with four alternative models: ΛCDM, flat
(Dvali et al. 2000, hereafter DGP), f (R) gravity (Bean et al.
2007), and TeVeS/MOND (Bekenstein 2004). Apart from the
TeVeS/MOND model, which introduces a wavelength differ-
ence between dynamical and lensing power-spectra, all other
models add at most 10% deviations compared to GR predic-
tions. Leonard et al. (2015) reached similar conclusions with
other models based on the empirical extension of the Poisson
equations with the commonly used parameters Σ(a) and µ(a)
(Amendola et al. 2008; Ferreira & Skordis 2010). Most impor-
tantly, these authors found that details of the analysis (e.g. inte-
gration length along the line of sight for projected estimators)
could mimic deviations similar to those predicted with alterna-
tive models of gravity, thus the need for a careful study of these
biases. In any case with 20%–30% precision, current datasets
are not yet at the level of accuracy required to observe these
deviations, and unsurprisingly no deviation to GR predictions
has been detected so far (Blake et al. 2016; Pullen et al. 2016;
de la Torre et al. 2017; Alam et al. 2017; Amon et al. 2018).

Nowadays, cosmological analyses require measurements
with exquisite control of systematic errors, at all levels

from data acquisition to cosmological model inference. The
wide range of expertise needed to reach the requirements
is demonstrated by the size of the on-going and forthcom-
ing cosmological experiments such as Dark Energy Survey
(Dark Energy Survey Collaboration 2005), the Kilo Degree Sur-
vey (Hildebrandt et al. 2017), the Hyper-Suprime Cam survey
(Aihara et al. 2018), the extended Baryonic Oscillation Sky Sur-
vey (Dawson et al. 2013), the Prime Focus Spectrograph project
(Sugai et al. 2012), the Dark Energy Survey Instrument project
(DESI Collaboration 2016a,b), the Large Scale Synoptic Tele-
scope (LSST Dark Energy Science Collaboration 2012), and the
Euclid mission Laureijs et al. (2011).

In this paper, we extend the Leauthaud et al. (2017) analysis
(hereafter L17), by adding RSD measurements of CMASS galax-
ies from the Baryon acoustic Oscillation Spectroscopic Survey
(BOSS) to GGL measurements in the CFHT-Stripe 82 and CFHT-
LS fields. Thanks to refined simulations, we precisely quantify
systematic errors, and thus manage to reconcile real and simu-
lated measurements of clustering and lensing. The work presented
builds on the theoretical model and joint RSD and GGL analysis
developed in de la Torre et al. (2017, hereafter DLT17).

The outline of the paper is as follows. First we present
our galaxy bias model, and its inclusion in standard clustering
and lensing estimators. Next, we present our datasets and mea-
surement estimators. Our tests on simulations are presented in
Sect. 5, and our estimates of the cosmological parameters in
Sect. 6. Finally, we present our measurement of EG and con-
clude. Systematic errors are discussed in the Appendix. Unless
otherwise mentioned, we express the GGL projected densities
Σgm and distances in comoving coordinates. We assume the fidu-
cial ΛCDM−GR cosmology with flat universe, Ωm = 0.31,
h = 0.6777, Ωb = 0.048, σ8 = 0.82 (Planck Collaboration XIII
2016).

2. Method

In the following, we compute the RSD two-point galaxy cor-
relation functions in configuration space. We decomposed the
three-dimensional galaxy separation vector s into polar (s, µ) or
Cartesian (rp, π) coordinates in the frame defined by the line of
sight and the normal to it, where s is the norm of s, µ is the
cosine of the angle between s and the line of sight, π and rp are
the projections of s on the line of sight and its normal, respec-
tively. In the flat-sky approximation, the transformation between
Cartesian and polar coordinates is µ = π/s, rp =

√
s2 − π2

(Fisher et al. 1994). Conversely, the GGL formalism is defined
in real space, where the separation vector r is decomposed into
Cartesian coordinates (R, χ), where χ and R are the projections
of r on the line of sight and its normal, respectively. In GGL, the
radial window function of integration is hundreds of h−1 Mpc, and
the effects of RSD can safely be neglected (Baldauf et al. 2010).
Hereafter, we assume that R in the model corresponds to rp in the
observations.

2.1. Galaxy bias model

In this work, we want to measure the growth rate f and
amplitude of the matter power spectrum σ8 with GGL and
galaxy-clustering measurements. These measurements are not
typically estimated at the same scale. While the GGL sig-
nal typically emerges in the range of transverse distances
0.1< rp < 20 h−1 Mpc, the galaxy clustering signal rises between
10< rp < 100 h−1 Mpc. To maximize the overlap between these
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two observables in the non-linear regime, we adopted the fourth
order perturbation model in the initial density field as proposed
by McDonald & Roy (2009). Assuming homogeneity and
isotropy in the density field, they derived the following expres-
sion for the halo-matter power spectrum:

Pgm(k) = b1Pδδ(k) + b2Pb2,δ(k)

+ bs2 Pbs2 ,δ(k) + b3nlσ
2
3(k)Plin(k), (2)

where Pδδ and Plin represent the non-linear and linear matter
power spectra respectively; Pb2,δ and Pbs2 ,δ are the one-loop
power spectra between the density field δ, its derivative and
the variance of the tidal tensor field s(x). The term b3nlσ

2
3(k)

includes various third order terms of the galaxy bias model (see
McDonald & Roy 2009, for more details). Assuming coevolu-
tion between the halo and matter density fields, and the bias
being purely local in Lagrangian space at initial conditions,
Baldauf et al. (2012) computed the second order halo density
field in both Eulerian and Lagrangian space and found the rela-
tion bs2 = −4/7(b1 − 1). Under the same assumptions as above
to compute bs2 , Saito et al. (2014) obtained the relation b3nl =
32/315(b1 − 1). The analytical expressions for all these terms
are given in Appendix A of DLT17.

2.2. Galaxy-galaxy lensing model

The measured GGL differential excess surface density is
defined as

∆Σgm(R) = Σgm(R) − Σgm(R), (3)

where the mean projected surface density can be read as

Σgm(R) =
2

R2

∫ R

0
Σgm(r) r dr, (4)

and Σgm(R) is the projected surface density defined as a function
of the galaxy-matter cross-correlation function (Dvornik et al.
2018)

Σgm(R) = Ωmρc

∫ ∞

−∞

ξgm

(√
R2 + χ2

)
dχ, (5)

where the mean matter density ρm = Ωmρc = 3Ωm0H2
0/8πG

is constant in comoving coordinates. The galaxy-matter cross-
correlation function ξgm is obtained from the Fourier transform
of the galaxy-matter power spectrum Pgm(k) defined above.

In practice, we used an FFTLog unbiased Hankel transform
with parameter µ = 1

2 in logarithmic space to perform the Fourier
transform1. We truncated the power spectrum at kmin = 10−5 and
kmax = 1000 to minimize cut-off aliasing during the FFT oper-
ation, and we spline-interpolated the resulting correlation func-
tion to obtain the desired binning.

2.3. Redshift space distortions model

In this work, we used the Taruya et al. (2010) model to describe
the RSD effect. In the ideal case in which galaxies are perfect
tracers of the matter density field, this model takes the form

Ps(k, µ) = D(kµσv)
[
Pδδ(k) + 2µ2 f Pδθ(k) + µ4 f 2Pθθ(k)

+ CA(k, µ, f ) + CB(k, µ, f )
]
, (6)

1 http://casa.colorado.edu/ajsh

where θ is the divergence of the velocity field defined as θ =
−∇·v/(aH f ). The values Pδδ, Pθθ, and Pδθ are the non-linear
matter density, velocity divergence, and density–velocity diver-
gence power spectra, respectively; CA(k, µ, f ) and CB(k, µ, f )
terms derive from the general anisotropic power spectrum of
matter and their expressions are given in Taruya et al. (2010) and
de la Torre & Guzzo (2012).

The damping function D(kµσv) essentially (but not only)
describes the Fingers of God effect on the two-point correlation
function, and we modelled it as a Lorentzian damping in Fourier
space, i.e.

D(k, µ, σv) = (1 + k2µ2σ2
v )
−1, (7)

whereσv represents an effective pairwise velocity dispersion that
we fitted for and then treated as a nuisance parameter.

This model can be generalized to the case of biased tracers,
by including our bias model. Hence, we obtain (Beutler et al.
2014; Gil-Marín et al. 2014)

Ps
g(k, µ) = D(kµσv)

[
Pgg(k) + 2µ2 f Pgθ + µ4 f 2Pθθ(k)

+ CA(k, µ, f , b1) + CB(k, µ, f , b1)
]
, (8)

where,

Pgg(k) = b2
1Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2 b1Pbs2 ,δ(k)

+ b2
2Pb2,b2 (k) + 2b2bs2 Pb2,bs2 (k) + b2

s2 Pbs2 ,bs2 (k)

+ 2b1b3nlσ
2
3(k)Plin(k), (9)

Pgθ(k) = b1Pδθ(k) + b2Pb2,θ(k)

+ bs2 Pbs2 ,θ(k) + b3nlσ
2
3(k)Plin(k). (10)

In the above equations Pb2,δ, Pbs2 ,δ, Pb2,b2 , Pb2,bs2 , Pbs2 ,bs2

and σ2
3(k) are one-loop integrals, of which analytical expres-

sions can be found in Appendix A of DLT17. We computed
the linear matter power spectrum Plin using the class Bolzmann
code (Lesgourgues 2011), and the non-linear matter power
spectrum Pδδ using the semi-analytic prescriptions HALOFIT
(Smith et al. 2003; Takahashi et al. 2012). To predict the veloc-
ity spectra Pθθ and Pδθ, we use the nearly universal fitting
functions from Bel et al. (2019), already used in DLT17 and
Pezzotta et al. (2017). These are built such that they converge to
Plin at large scales, but reproduce non-linearities at small scales.
Pezzotta et al. (2017) highlighted that adding a redshift depen-
dency with σ8(z) such that

Pθθ(k) = Plin(k) exp[−k p1 σ
p2
8 (z)], (11)

and

Pδθ(k) =

√
PδδPlin(k) exp[−k p3 σ

p4
8 (z)], (12)

was helping. The coefficients (p1 = 1.906, p2 = 2.163, p3 =
2.972, p4 = 2034) were deduced from a fit to measurements
performed on the DEMNUni simulations (dark energy and mas-
sive neutrino universe). These two fitting functions are accurate
within 5% to the measurements in simulations and appear to be
insensitive to the presence of neutrinos (Carbone et al. 2016).
The overall degree of non-linearity in these terms is therefore
solely controlled by σ8(z), which is left free when fitting the
model to observations. Although these fitting functions possibly
duplicate a fraction of the high-order modes included in the per-
turbation theory model above, we demonstrate in DLT17 and in
Sect. 5 below that it does not bias significantly our cosmological
estimates given data uncertainties.
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Finally, we obtain the multipole moments of the anisotropic
correlation functions in configuration space

ξs
`(s) = i`

∫
k2

2π2 Ps
`(k) j`(ks) dk, (13)

where j`(x) is the spherical Bessel function and Ps
`
(k) is

the anisotropic power-spectrum multipole moment of order `
defined as

Ps
`(k) =

2` + 1
2

∫ 1

−1
Ps

g(k, µ)L`(µ) dµ, (14)

where L`(x) are the Legendre polynomial of order `.
At linear scales, f and σ8 are degenerate, but extending to

non-linear scales with the Taruya et al. (2010) model, b2
1 fσ4

8,
b1 f 2σ4

8, and f 3σ4
8 appear in the calculation of the correction

terms CA and CB, and hence help break the degeneracy. Accord-
ingly, in our model ( f , b1, b2, σv, σ8) are treated as separate
parameters in the fit (de la Torre & Guzzo 2012).

2.4. Spectroscopic redshift uncertainties

It is worth mentioning that redshift errors can potentially affect
the anisotropic RSD signal. They have the same effect as galaxy
random motions in virialized objects. We model the redshift
errors by multiplying the anisotropic power spectrum by the
Fourier transform of a Gaussian damping function of the form

G(k, µ, σz) = exp
(
−

k2µ2σ2
z

2

)
, (15)

such that our predicted signal can be finally written as

P̂s
g = G(k, µ, σz)Ps

g. (16)

Bolton et al. (2012) measured the error on the estimated
spectroscopic velocities, thanks to multiple observations of
the same CMASS galaxies, and found approximately δv =
32 km s−1, which translates to σz = 0.797 h−1 Mpc in comov-
ing distances at redshift z = 0.57 with our fiducial cosmology.
This effect is therefore negligible, but we included it to have a
cleaner estimate of σv.

2.5. Suppressing small-scale modelling uncertainties

Although considered as sufficient for galaxy-clustering analysis,
we find that our weak-lensing (WL) model deviates from our
measurements with simulated data at scales rp ∼ 3 h−1 Mpc (see
Fig. 7 in DLT17). In order to damp the contribution of any sig-
nal below a given cut-off radius R0, we computed the annular
differential excess surface density (ASAD) estimator from the
data (Baldauf et al. 2010). For the lensing observable ∆Σgm(rp),
it is given by

Υgm(rp,R0) = ∆Σgm(rp) −
(

R0

rp

)2

∆Σgm(R0), (17)

and for the galaxy clustering

Υgg(rp,R0) = ρc

 2
r2

p

∫ rp

R0

dr r wp(r) − wp(rp) +
R2

0

r2
p
wp(R0)

 . (18)

These two estimators become useful to estimate EG in the fol-
lowing. We derive the projected correlation wp(rp) from the

projection of the multipole decomposition of the correlation
function in redshift space ξs

`
(s)

wp(rp) = 2
2∑
`=0

α2`

∫ πmax

0
dπ ξs

2`

(√
r2

p + π2
)

× L2`

 π√
r2

p + π2

 . (19)

The α2` coefficients are given in Baldauf et al. (2010)

α0(β) = 1 +
2
3
β +

1
5
β2, (20)

α2(β) =
4
3
β +

4
7
β2, (21)

α4(β) =
8
35
β2. (22)

We integrate along the line of sight up to πmax = 40 h−1 Mpc
to match the integration length used with the data (see the
estimators Sect. 4.2). According to Singh et al. (2019), they
found consistent results whether they use πmax = 50 h−1 Mpc
or 100 h−1 Mpc. Given the low number CMASS galaxies in this
analysis, we set πmax = 40 h−1 Mpc to minimize the noise.

The ASAD can also be predicted from theory. For the lens-
ing part, Υgm(rp,R0) is obtained by filtering the cross-correlation
function ξgm(r)

Υgm(rp,R0) =

∫ ∞

0
ξgm(r)WΥ(r, rp,R0) dr, (23)

with the window function WΥ(x, rp,R0) (Baldauf et al. 2010)
defined as

WΥ(x, rp,R0) =
4x
r2

p

(√
x2 − R2

0 Θ(x − R0) −
√

x2 − r2
p Θ(x − rp)

)

−
2x
r2

p

 r2
p Θ(x − rp)√

x2 − r2
p

−
R2

0 Θ(x − R0)√
x2 − R2

0

 , (24)

where Θ(x) is the Heaviside step function. In a similar manner,
we computed Υgg(rp,R0) by simply replacing ξgm(r) by ξgg(r)
in Eq. (23). We included the RSD effect in the calculation of
Υgg(rp). In both cases, we integrated in logarithmic scale up to
rmax = 100 h−1 Mpc.

We note that we do not include intrinsic alignment in our
modelling. This choice is motivated by the marginal constraints
obtained in Joudaki et al. (2017) on the amplitude of this effect
AIA = 1.67+0.50

−0.49, with small-scale cut on γt at θ > 12 arcmin.
Since we applied the small-scale Υ filter, we anticipate very little
constraint on this parameter as well, at a significant additional
computing cost.

2.6. Alcock–Paczynski effect

We may mention that additional distortions can occur in the cor-
relation functions owing to possible differences between the true
and the fiducial cosmological models used to compute the dis-
tances. This effect was first identified by Alcock & Paczynski
(1979; hereafter AP) as a means to constrain the cosmo-
logical model. However these distortions degenerate with the
RSD effect and considerably limit the constraining power of
the AP effect (Ballinger et al. 1996; Matsubara & Suto 1996).
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Fortunately, the scale-dependence of the AP and RSD effects dif-
fer and thus allow us this degeneracy to break (Seo & Eisenstein
2003; Blake et al. 2011; Chuang & Wang 2012).

In this work, we adopted the AP model proposed by Xu et al.
(2013). The isotropic and anisotropic distortions are expressed
respectively as

α =

 D2
A

D′A
2

H′

H

1/3

, (25)

1 + ε =

(
D′A
DA

H′

H

)1/3

, (26)

where quantities computed with the fiducial cosmology as
denoted with primes. Those parameters modify the transverse
and the radial distances such that

π′ = α(1 + ε)2π, (27)

r′p = α(1 + ε)−1rp. (28)

Given these distortions, the observed redshift-space
monopole and quadrupole expressed in configuration space
become

ξ′0(s′) = ξ0(αs) +
2
5
ε

[
3ξ2(αs) +

dξ2(αs)
d ln(s)

]
, (29)

ξ′2(s′) = 2ε
dξ0(αs)
d ln(s)

+

(
1 +

6
7
ε

)
ξ2(αs) +

4
7
ε

d ln(αs)
d ln(s)

+
4
7
ε

[
5ξ4(αs) +

dξ4(αs)
d ln(s)

]
, (30)

The GGL estimator becomes

Υ′gm(R′) = Υgm[α(1 + ε)−1R]. (31)

3. Data

In our GGL analysis, the lenses are the CMASS galaxies and
the sources are galaxies in the CFHTLens and CFHT-Stripe 82
WL catalogues. Lenses have spectroscopic redshifts and sources
have photometric redshifts. For each lens, we can then discard all
uncorrelated foreground sources and use the background sources
to estimate the lensing signal. The final GGL measurement is the
average of the signals for each lens.

3.1. Weak-lensing datasets

3.1.1. CFHTLens catalogue

In 2013, the CFHTLenS team released a public WL catalogue
covering an area of 154 sq. deg in four wide fields (W1, W2,
W3, and W4; Erben et al. 2013; Heymans et al. 2012). So far,
the depth of the input CFHT Legacy Survey imaging is unri-
valed, with a 5σ point source limiting magnitude iAB ∼ 25.5. The
lensfit algorithm is used to measure the shape of every object
detected with iAB < 24.7. Then, we selected galaxies with good
shape measurements (fitclass = 0 and weight > 3).

We obtained photometric redshifts from five optical band
photometry u, g, r, i, z and reach a precision of about 5% up
to z ∼ 1 (Hildebrandt et al. 2012). Galaxy-galaxy lensing mea-
surements can be significantly biased by inaccurate photometric
redshifts (Nakajima et al. 2012). We computed the photometric

redshift bias estimator 〈bz〉, based on spectroscopic and photo-
metric catalogues matched in position, and averaged over the
CMASS redshift distribution (see appendix details). Since the
spectroscopic calibration sample is significantly shallower than
the photometric sample, we discarded galaxies fainter than the
90% completeness limit of the spectroscopic sample (see below),
i.e. we only kept galaxies brighter than iAB < 24. After this selec-
tion, we obtained 〈bz〉 = +0.003 ± 0.003, 〈bz〉 = −0.014 ± 0.004
and 〈bz〉 = +0.022 ± 0.003 in fields W1, W3, and W4, respec-
tively. We discarded field W2 because it only contains 200
CMASS galaxies on its northern edge.

Our final catalogue contains 3.5 millions galaxies over an
effective area of about 127 sq. deg. The galaxy density2 is neff =
7.0 galaxies arcmin−2. The median redshift is zmed = 0.70.

3.1.2. CFHT-Stripe 82 catalogue

The CFHT-Stripe 82 survey (CS82; Moraes et al. 2014) is an
i-band imaging survey containing 173 tiles (PIs: J.-P. Kneib,
A. Leauthaud, M. Makler, L. Van Waerbeke). It covers about
160 sq. deg of the Sloan Digital Sky Survey (SDSS, Gunn et al.
2006) stripe 82 region, with a 5σ point-source magnitude limit
iAB ∼ 24.1, and a mean seeing of 0.6′′. The effective area
is 129.2 sq. deg after masking out bright stars and other image
artefacts (L17). We used a new version 3.0 of the shape cata-
logue that has shapes measured with lensfit down to magnitude
iAB < 24.7. This new version benefits from internal calibration in
lensfitbased on image simulations inherited from the CFHTLenS
project. Shape measurements are accurate at the 2% level, without
relying on any additional linear correction. In addition, this new
catalogue contains about 40% more galaxies, mostly because of
a better handling of galaxy de-blending and instrument artefacts
in lensfit (L. van Waerbeke, priv. comm.).

Photometric redshifts in the original version of the catalogue
(Bundy et al. 2015) were computed with BPZ (Benítez 2000)
using ugriz from the Stripe 82 co-adds (Annis et al. 2014) and
UJHK from UKIDSS. We use nearest-neighbour interpolation
in sky coordinates, i magnitude, and g − r, r − i, i − z colour
space to get photometric redshifts for the new galaxies. We ver-
ified that the redshift distribution is unchanged. We applied the
same procedure as in the CFHTLS fields to estimate the bias
due to photometric redshifts in our GGL measurements. How-
ever, given the relatively shallow spectroscopic survey coverage
of the CS82 field compared to CFHTLS fields (90% complete-
ness reached at iAB = 22.5), we are forced to select galaxies only
down to iAB < 22.5. Although this cut is quite severe, it allow
us to confidently model and correct photometric redshift bias in
this field. The lack of deeper spectroscopic information prevents
us from exploiting the complete WL catalogue. For iAB < 22.5
sources and CMASS lenses, we find a bias bz = −0.028± 0.006.
In contrast to L17, we apply no cut based on the odd quality
flag because we find it has no impact on our lensing measure-
ments given our stringent cut in magnitude. Our final catalogue
contains 2.2 million galaxies. The galaxy density is neff = 4.7
galaxies arcmin−2. The median redshift is zmedian = 0.53.

3.2. Spectroscopic dataset: BOSS CMASS sample

The BOSS spectroscopic survey (Eisenstein et al. 2011) is a
programme of the SDSS project. The constant (stellar) mass

2 We use the definition neff = 1
Ω

(
∑
wi)2∑
w2

i
(Heymans et al. 2012), where wi

is a galaxy weight and Ω is the opening angle.
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Fig. 1. Redshift distribution of CMASS galaxies (blue) compared to
CS82 (orange) and CFHTLens (green) source distributions, after WL
selection has been performed. WL n(z) are based on photometric red-
shifts (see text for details).

(CMASS) galaxy sample is one of the galaxy samples observed in
this survey. This sample consists of galaxies selected with SDSS
photometry, such that they lie in the redshift range 0.43 < z < 0.7
and represent a sample of galaxies approximately volume-limited
in stellar mass (Reid et al. 2016). Early clustering analysis found
that CMASS galaxies lie in massive haloes and have a mean halo
mass of 2.6 × 1013 h−1 M�, a large-scale bias of b ∼ 2.0, and a
satellite fraction of 10% (White et al. 2011).

We used the public DR12v5 version of the CMASS cata-
logue (Alam et al. 2015). The galaxy surface density is about
100 deg−2 (Reid et al. 2016). We only considered CMASS over-
lapping with our four lensing fields, i.e. covering an area
250 sq. deg. Our catalogue of lenses contains 28 039 CMASS
galaxies, distributed as reported in Table 1. The redshift distri-
bution of CMASS galaxies compared to CS82 and CFHTLens
lensing sources is shown in Fig. 1.

In spite of a careful photometric selection, the observed
CMASS galaxy sample remains contaminated by various obser-
vational effects (Ross et al. 2012). We took these into account
by applying the galaxy weights wg = wstarwsee(wz f + wcp −

1) as defined in Ross et al. (2017). We also included the
Feldman et al. (1994, hereafter FKP) weights with the param-
eter P0 = 20 000 h−3 Mpc3 (Ross et al. 2012), such that the noise
in the power spectrum is minimum at the baryon acoustic oscil-
lation scale k = 0.1 h Mpc−1. Although not optimal for our study
focussed on small-scale clustering, this value of P0 allows for a
consistent comparison with previous measurements. For consis-
tency, we take the same value of P0 for our mock catalogues and
data. Finally, we used the DR12v5_random0 catalogues trimmed
to the regions overlapping with WL data.

4. Measurement estimators
4.1. Galaxy-galaxy lensing estimation

We computed ∆Σgm(rp) using the estimator

∆Σgm(rp) =

∑Nl,s

l,s Σcr(zl, zs)wl,sε+(rp)∑Nl,s

l,s wl,s

−

∑Nr,s
r,s Σcr(zr, zs)wr,sε+(rp)∑Nr,s

r,s wr,s

, (32)

where rp is the comoving transverse distance between the lens
and the source at redshifts zl and zs, respectively. The sub-
script “r” denotes the random catalogue of lensing objects.
Our number of random objects Nr is ten times the number of
lenses Nl. Their redshift distribution n(z) is that from CMASS
galaxies (Nuza et al. 2013). The subtraction of the random sig-
nal decreases the variance at large scales (Singh et al. 2017;
Shirasaki et al. 2017). The value ε+ represents the tangential
component of a source ellipticity around a lens. The weight
wl,s = Σ−2

cr (zl, zs)ws is the product of the shape measurement
weight ws from lensfit and the critical density. This inverse
variance scheme downweights pairs which are close in redshift
(Mandelbaum et al. 2006). The critical lensing density Σcr(zl, zs)
in comoving units is defined as

Σcr(zl, zs) =
c2

4πG(1 + zs)2

DS

DLSDL
, (33)

where DS,DLS,DL are the observer-source, lens-source, and
observer-lens angular diameter distances3 We used the best-
fit estimate of the photometric redshift to compute the dis-
tances, instead of the full probability distribution, as suggested
in Blake et al. (2016). However, our approach described below
and based on full ray-tracing simulations consistently takes this
simplification into account.

4.2. Anisotropic galaxy clustering estimation

We computed the two-point galaxy correlation function in the
polar and Cartesian coordinate systems. The anisotropy in the
signal is due to the RSD effect we are after. The estimator is
the same in each coordinate system and is defined as

ξ(x, y) =
GG(x, y) − 2GR(x, y) + RR(x, y)

RR(x, y)
, (34)

where (x, y) = (s, µ) or (rp, π). GG, GR and RR are the normal-
ized number of pairs between galaxy-galaxy, galaxy-random,
and random–random, respectively, at a given separation.

We compressed the information contained in ξ(s, µ) by pro-
jecting it on the Legendre polynomials using the expressions for
the correlation-function multipole moments

ξ`(s) =
2` + 1

2

∫ 1

−1
ξ(s, µ)L`(µ)dµ, (35)

where L` is the Legendre polynomial of order `. We used the
monopole and quadrupole ` = (0, 2) only because the higher
order non-null multipoles are too noisy.

We also computed the projected correlation function wp(rp)
by projecting ξ(rp, π) along the line of sight such that

wp(rp) = 2
∫ πmax

0
ξ(rp, π)dπ, (36)

where we find the optimal value πmax = 40 h−1 Mpc to minimize
the noise due to the limited number of pairs in our fields.

4.3. Joint lensing and clustering likelihood

We performed a maximum-likelihood analysis to derive the cos-
mological parameters from the GGL and RSD measurements. In

3 The factor (1 + zs)2 is missed in Eq. (10) of de la Torre et al. (2017),
but was properly taken into account in the calculations.
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Table 1. Number of CMASS galaxies per field, effective lensing area after masking and number of WL sources.

Field # CMASS SDSS area SDSS field size Eff. area # sources
(deg2) (deg× deg) (deg2) (×106)

S82 18 675 219.8 87.6 × 2.51 129.2 2.19
W1 3924 54.14 8.66 × 6.3 63.8 1.66
W3 3694 41.91 11.5 × 6.6 44.2 1.26
W4 1746 22.16 5.7 × 5.61 23.3 0.62

each field i, we measured the data vector di = (ξi
0, ξ

i
2,Υ

i
gm) and

we computed the likelihood function per field Li such that

−2 lnLi = (di −m)T Φ̂i(di −m), (37)

where m is the model prediction, and Φ̂i is the precision matrix
estimated from the simulations.

Our four fields are statistically uncorrelated, and therefore
the global likelihood is just the product of the individual likeli-
hoods for each field, i.e.

Ltot = LCS82 × LW1 × LW3 × LW4, (38)

Field W4 partly overlaps with field S82, but this overlap-
ping represents <6% of the total area. In addition, CFHTLens
catalogue used for W4 goes deeper than CS82 catalogue used
for S82, thus decreasing further the correlation between the two
fields.

5. Simulations

5.1. Light cones and lensing mock catalogues

In order to accurately estimate large-scale variance and possi-
bly unveil new systematic errors, we produce light cones with
the same geometry as the observed fields. We used the Big-
Multidark N-body simulation, as it appears to be a good com-
promise between particle resolution and cosmological volume
(mp = 2.5 × 1010 h−1 M�, Lbox = 2.5 h−1 Gpc, Planck cos-
mology with h = 0.6777; Klypin et al. 2016). Following the
approach described in Giocoli et al. (2016), we simulated four
fields, CS82, W1, W3, and W4, which have light cones extend-
ing up to redshift z = 2.3 for the CFHT-LS fields and z = 2
for CS82. We computed lensing properties, such as deflected
positions, shear, and convergence, by ray tracing through 25 lens
planes separated by 161 h−1 Mpc comoving (Giocoli et al. 2016)
using the GLAMER4 code. The spatial resolution of the lensing
maps is 6 arcsec.

5.1.1. Lensing properties

We simulated lensing catalogues of sources including survey
mask, intrinsic shape, and photometric redshift noises. For sur-
vey mask, we placed the source galaxies are the location of
observed sources. Thus, we naturally reproduced the footprint
and the holes around bright stars and other artefacts of the real
WL catalogue. Effects due to the intrinsic clustering of sources
in projection were also included. We got the shear properties for
each source by spatially interpolating the values from the shear
maps computed with GLAMER. For sources intrinsic elliptici-
ties, we randomly drew observed ellipticites εobs from the WL

4 Gravitational Lensing with Adaptive Mesh Refinement
(Metcalf & Petkova 2014).

catalogue, that we multiply by a random orientation φint, such
that ε int

1 = εobs cos(2φint) and ε int
2 = εobs sin(2φint).

5.1.2. Photometric redshifts

To simulate photometric redshifts with catastrophic failures, we
designed a method related to that described in Lima et al. (2008),
also referred as the direct calibration method (DIR) in the Kilo
Degree Survey (KIDS, Hildebrandt et al. 2017). We start by esti-
mating the true redshift distribution ntrue(z) for our CFHTLens
(iAB < 24) and CS82 (iAB < 22.5) WL catalogues from our spec-
troscopic calibration sample described in Appendix A. In prac-
tice, we computed the histograms of the WL and spectroscopic
(ZP) catalogues in the magnitude-color space (i, g− r, r− i, i− z),
that we limited to the region ([18; 25], [−1; 3], [−1; 3], [−1; 3]).
We applied the same binning for both catalogues. For each bin of
coordinates m, we derive the weights W(m) = NWL(m)/NZS(m),
where N is the number of sources per bin. We assume all sources
in a bin have the same weight. Finally, we obtain the true distri-
bution in redshift bin i with the following sum:

ntrue(zi) =

∫
dmNZS(zi|m)W(m). (39)

A drawback of this approach is that if spectroscopic selection
does not cover part of the redshift range, then it truncates ntrue(z).
However, we see in the following that the coverage is sufficient
for our purpose.

Then, we compute the joint probability P(zBPZ, zspec) for each
field, as shown in Fig. 2. We observe that the spectroscopic red-
shift completeness at z < 0.5 in field W1 and W4 is very low
because most of the redshifts come from the CMASS sample.
Fortunately, this has little impact on our simulation of photo-
metric redshift noise because our analysis focusses on the cross-
correlation of CMASS galaxies with lensing sources at z > 0.5.
We also observe that the scatter in the zBPZ of CS82 field is
almost twice as large as in field W3, and differs between the
three CFHTLens fields. This justifies our field-by-field treatment
of the photometric redshift noise. Finally, we assign photometric
redshifts to the simulated sources by randomly drawing a photo-
metric redshift from P(zBPZ, zspec), where we assume the spectro-
scopic redshift zspec is the true redshift that was assigned at the
beginning of the procedure.

5.2. Spectroscopic CMASS mock catalogues

We adopted the sub-halo abundance matching (SHAM) pro-
cedure described in Rodríguez-Torres et al. (2016) to produce
CMASS mock catalogues. Starting from the Rockstar pub-
lic catalogues (Behroozi et al. 2013)5, we computed a scattered
peak velocity Vscat

peak = (1 + N(0, σSHAM))Vpeak, where N is the

5 https://www.cosmosim.org/cms/simulations/bigmdpl/
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Fig. 2. Probability distribution of having a photometric redshift with
BPZ and a spectroscopic redshift for each field. Contours are given for
1, 2, and 3σ C.L.

normal distribution, and σSHAM = 0.31. We also simulated the
CMASS incompleteness in stellar mass and redshift, based on
the stellar mass function (SMF) from the Portsmouth sed-fit
DR12 stellar mass catalogue with Kroupa initial mass function
(Maraston et al. 2013). We binned the catalogue in 12 redshift
intervals between 0.43 < z < 0.7 and in 18 stellar mass bins
between 10.5 < log10(M ∗ /M�) < 12.3. Thus, we obtained
a tabulated SMF that we can interpolate in stellar mass and
redshift. Finally from cumulative stellar mass and halo mass
functions, we constructed a number density matching such that
ngal(> Mi

∗) = nhalo(> Vscat
peak,i). Since different cosmologies were

assumed in the Portsmouth catalogue and in the BigMultidark
simulations, h = 0.73 and h = 0.6777 respectively, we renormal-
ized the stellar masses to the BigMultidark cosmology. As shown
in Fig. 3, our number densities for each of the four fields are
in good agreement with the measurements from Anderson et al.
(2012).

We also include the effect of peculiar velocities by summing
together in redshift-space the halo position rc and the peculiar
velocity vector v in real space using the relation s = rc + v·r̂

a H(zreal)
,

where r̂ is the line-of-sight unit vector, a is the scale factor, and
H(zreal) is the Hubble parameter at redshift zreal, the redshift cor-
responding to rc. Finally, we masked the borders of the square
simulated fields W3 and W4 to reproduce their complex geom-
etry, and we computed the FKP weights, assuming the same
P0 = 20 000 h−3 Mpc3 as in the data. Since data have been cor-
rected for fiber collision, redshift failure, stellar density, and see-
ing, we did not simulate these effects.

5.3. Bias due to photometric redshift noise

We computed successively the lensing signal for catalogues with
and without photometric redshift noise, and compare the mea-
surements in Fig. 4. We find that the large photometric scatter
observed in field S82 (Fig. 2) seems to result in a bias of about
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Fig. 3. Left panel: number density of CMASS mock galaxies for our 4
simulated fields. Limits of our analysis are indicated with blue dashed
lines. Measurements from Anderson et al. (2012, A12) are in grey.
Right panel: CMASS CMF for the 4 fields reproducing the observed
incompleteness. The mock catalogue is complete at high mass in agree-
ment with the model proposed in Rodríguez-Torres et al. (2016) in grey.
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Fig. 4. Comparison of lensing measurements performed on simulated
catalogues affected and not affected by photometric redshifts noise ∆̃Σ
and ∆Σ, respectively. The grey shaded areas correspond to the uncer-
tainties on the mean value obtained by resampling the multiple noises
in different light cones.

10% in the lensing signal at scales R < 10 h−1 Mpc, whereas the
CFHTLens fields seem insignificantly affected. We argue that
this might explain the discrepancy highlighted in L17 between
lensing measurements obtained with real and mock data. Indeed,
in the following, we show that our lensing measurements with
mock data contaminated by photometric redshift noise are in
agreement with real data.

5.4. Bias from small-scale modelling

We used the simulation to quantify the bias in the estimation of
the cosmological parameters f and Ωm due to our model predic-
tion of the small scales. Successively, we cut data points of ξ0
and ξ2 at scales smin = 11.2, 14.1, and 17.8 h−1 Mpc, and Υgm at
scales R0 = 1.0 and 1.5 h−1 Mpc. Overall, we find that the val-
ues smin = 17.8 h−1 Mpc and R0 = 1 h−1 Mpc provide the best
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Fig. 5. Bias between recovered parameters f and Ωm relative to the
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compromise between systematic bias and statistical precision as
can be seen in Fig. 5.

5.5. Covariance matrices

To obtain an unbiased estimate of the precision matrices, we
need minimal errors in the covariance matrices and therefore a
large number of mock catalogues. Noise in the covariance matri-
ces increases the errors on the model parameter estimation (see
e.g. Taylor & Joachimi 2014). Unfortunately, we were limited
by the size of our simulation box L = 2 h−1 Gpc. Escoffier et al.
(2016) proposed a method to increase the number of mocks,
based on Jackknife resampling of the mock catalogues (see
Table 2). Following their prescription, we split each catalogue
into NJK spatial subregions and measured the clustering and lens-
ing signals in each Jackknife subsample using estimators given
in Eqs. (34) and (32). The covariance matrix for each mock cat-
alogue is then

(m)ĈJK
i j =

NJK − 1
NJK

NJK∑
k=1

(dk
i − d̄i)(dk

j − d̄ j), (40)

where the mean vector is obtained from the Jackknife samples

d̄ j =
1

NJK

NJK∑
k=1

dk
i . (41)

In addition, given our limited number of independent mock
catalogue Nm, we increase their number for lensing by resam-
pling Nr times the observed lensing ellipticity distribution func-
tion, and the photometric redshifts distribution. We find this
strategy to efficiently improve the accuracy of the covari-
ance matrix for the lensing, especially at small scales. The
final covariance matrix is therefore obtained by averaging the
Jackknife covariance matrices

C̄i j =
1

Nm × Nr

Nm×Nr∑
m=1

(m)ĈJK
i j . (42)

Table 2. Properties of the simulated fields in terms of independent mock
catalogue, random resampling of lensing shape noise and photomet-
ric redshifts per catalogue, and number of sub-regions for Jackknife
resampling.

Field name Size (deg) Number Number Number of
of mocks of realizations subregions

CS82 87.15 × 2.58 4 60 16
W1 8.7 × 6.3 15 4 12
W3 11.7 × 6.6 11 4 16
W4 5.7 × 5.6 27 3 9
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Fig. 6. Variation of the relative errors on the parameters f and Ωm, as a
function of the smooth scale Tp in the covariance matrices. There is no
improvement below Tp = 12 h−1.

Finally, we computed the precision matrix

Φ̂i j = [C̄i j]−1. (43)

Escoffier et al. (2016) have shown that this expression pro-
vides an unbiased estimate of the true precision matrix.

In spite of our resampling strategy, our covariance matri-
ces are still noisy. Therefore, we adopted the tapering method
proposed by Paz & Sánchez (2015) to damp the noise by a fil-
ter function beyond a given tapering scale Tp. This technique
is based on the assumption that correlation between pairs of
data points far apart is negligible and little information is lost
by treating these points as being independent. Although very
efficient, it is commonly accepted that this method might inad-
vertently remove non-Gaussian terms (Paz & Sánchez 2015).
However this effect is beyond the scope of this analysis given
our data and the range of scales investigated in this work. In
Fig. 6, we observe that large tapering yields errors similar to
no tapering. In contrast, small tapering zeros all off-diagonal
terms, and can also lead to overestimated errors. We find the
errors on f and Ωm to reach a minimum value at the tapering
scale Tp ∼ 12 h−1 Mpc. We adopted this scale in the rest of this
analysis. We should note that all measurements were performed
with smin = 14.1 h−1 Mpc and R0 = 1.5 h−1 Mpc. However,
we repeated some measurements with our final set-up (smin =
17.8 h−1 Mpc and R0 = 1.0 h−1 Mpc) and find that these param-
eters have almost no impact on the tapering scale behaviour.
The covariance and precision matrices obtained before and after
tapering at this scale are shown in Fig. 7. We can observe that
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Fig. 7. Matrices of covariance (top panel) and precision (bottom panel)
in logarithmic color scale for the 4 fields used in this analysis. In both
panels, the upper triangular part of the matrices represents the case
without tapering, while the lower part represents the case with taper-
ing Tp = 12 h−1 Mpc. Noise between far apart scales is significantly
decreased and the errors on the model parameters converge to a min-
imum.

the noise in the off-diagonal terms is significantly reduced after
tapering. This is particularly obvious between clustering and
lensing, which cover very different range of scales.

6. Cosmological results
The quality tests and errors assessment that we performed with
the simulations give us confidence that our dataset can lead to
reliable cosmological constraints.

6.1. Galaxy-clustering and galaxy-galaxy lensing
measurements

In Figs. 8 and 9, we show our RSD and GGL measurements,
along with our theoretical predictions, assuming the fiducial
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Fig. 8. Monopole (red) and quadrupole (blue) measurements with mock
catalogues (shaded region), real data (solid lines), and theoretical pre-
dictions with a linear bias parameter b1 = 1.8 (dashed lines). Black
dots represent pre-reconstruction measurements with the full DR12v5
CMASS sample from Cuesta et al. (2016).
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Fig. 9. Filtered Υgm and non-filtered ∆Σ GGL measurements with
mocks (shaded regions), ∆Σ and Υ data (blue and orange points respec-
tively), and theory with a linear bias parameter b1 = 1.8 (dashed line).
Black dots in S82 panel represent ∆Σ measurements from L16, and Υgm
measurements from Alam et al. (2017) in CFHTLS panels.

parameters of the simulation, and a constant linear bias b1 = 1.8.
We find a good agreement within 1σ C.L. between mocks,
data, and theoretical predictions for all fields. We notice that the
quadrupole of the correlation function measurement in the field
W3 is lower than the 1σ C.L., and that the GGL measurement
in the field W4 is lower than 1σ C.L. at scales R < 1 h−1 Mpc.
For field W3, we found that setting σ8(z = 0.57) = 0.9 and
b1 = 1.5 could reconcile predictions with measurements, thus
suggesting a sample variance effect. These values are within the
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Fig. 10. Improvement on estimating Ωm and σ8 when combining RSD
and WL measurements. The blue and black curves are, respectively,
obtained with WL and RSD constraints only. The orange curves are
obtained with the combination of WL and RSD. Contours are given at
1, 2, and 3σ C.L. Vertical lines indicate Planck TT,TE,EE+lowE 2018
results.

3σ C.L. of the RSD-only fit of the data (see Fig. 10). For field
W4, we attribute the discrepancy to our poor modelling of bary-
onic or lensing effects at small scales, which average out too
slowly in the data to reproduce the simulated dark-matter only
profile. Nonetheless, the overall good agreement gives us confi-
dence that we can proceed with the cosmological analysis.

6.2. Growth of structure and background constraints

We estimate the cosmological parameters f ,σ8, and Ωm by com-
bining ξ0, ξ2, and Υgm measurements. The power of this combi-
nation to break the degeneracy between f and σ8 has already
been demonstrated (see e.g. DLT17, Joudaki et al. 2017). In this
paper, we move one step further by estimating Ωm as well from
the data. Figure 10 shows the independent lensing, clustering,
and combined constraints on these parameters. Best-fit values
and 1σ error estimates are reported in Table 3. A corner plot with
all the parameters involved in the fit is reported in Fig. A.2. On
the one hand, we find that GGL alone constrains Ωm at 45% and
σ8 at 22%. It provides no constraint on the structure growth rate
f . On the other hand, RSD also constrains σ8 at 20% but leaves
Ωm completely unconstrained as expected from the model. When
used in combination, GGL and RSD measurements yield 12%
precision constraint on σ8, i.e. almost as if the two datasets were
independent. In fact, Fig. 10 shows that the well-known WL
degeneracy between Ωm and σ8 intersects almost perpendicu-
larly with the constraint on σ8 from RSD.

In Fig. 11, we present our estimate of the growth rate f ,
and compare to other measurements. In spite of having a wider
area, we obtain a constraint similar to that found in DLT17 with
VIPERS. Clearly, the number of RSD tracers determines the pre-
cision. In both analysis, we have about 28,000 galaxies in the
range 0.5 < z < 0.7. Regarding WL, the number densities of
background sources at z > 0.7 in both analysis are similar. We
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Fig. 11. Growth rate f as a function of redshift compared to recent mea-
surements. The black line and surrounding grey shared area indicate the
Planck TT,TE,EE+lowE 2018 mean and 1σ uncertainty predictions for
ΛCDM−GR flat model.

Table 3. Best-fit and derived parameters obtained by fitting the RSD
only, GGL only, and their combination.

Parameters RSD only GGL only GGL+RSD

α 1.02 ± 0.05 1.01 ± 0.05 1.02 ± 0.05
ε 0.01 ± 0.05 −0.01 ± 0.06 0.00 ± 0.05
f (z = 0.57) 0.86 ± 0.24 – 0.95 ± 0.23
σ8(z = 0.57) 0.63 ± 0.13 0.50 ± 0.11 0.55 ± 0.07
Ωm – 0.51 ± 0.23 0.31 ± 0.08
b1 2.09 ± 0.43 1.94 ± 0.55 2.33 ± 0.33
b2 −0.06 ± 0.53 0.03 ± 0.54 −0.05 ± 0.53
σv (h−1Mpc) 4.55 ± 1.68 – 4.20 ± 1.64
S 8 = σ8

√
Ωm/0.3 – 0.87 ± 0.18 0.72 ± 0.08

ÊG – – 0.33 ± 0.10
fσ8(z = 0.57) 0.53 ± 0.14 0.50 ± 0.86 0.51 ± 0.12
σ8(z = 0) 0.78 ± 0.26 0.70 ± 0.12 0.73 ± 0.08

have neff = 3.45 in CFHTLS fields and neff = 2.33 in CS82 and
CFHTLS fields combined.

We also compare our results with analyses performed on
the full CMASS sample. Singh et al. (2019) performed a joint
analysis with Planck cosmic microwave background lensing and
SDSS galaxy lensing and obtained three times tighter constraints
than ours. Their results are in agreement with ours at the 1σ C.L.

Finally, combining CMASS power spectrum and bi-
spectrum, Gil-Marín et al. (2017) also obtained very competitive
constraints at redshift z = 0.57 in agreement with ours. These
two estimates find a tension on f with Planck predictions at
z = 0.57. Interestingly, this tension was also observed in other
RSD analysis with the CMASS sample, but not with the LOWZ
sample (e.g. Alam et al. 2017; Beutler et al. 2014).

6.3. Comparison with other measurements

From MCMC, we can derive new parameter constraints, defined
as a combination of single parameters. In particular, we look
at the quantity S 8 = σ8

√
Ωm/0.3, very common in gravita-

tional lensing analyses. We find S 8 = 0.72 ± 0.08, which is in
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agreement with the value estimated in L17, but 2 − 3σ smaller
than the cosmic microwave background measurements S 8 =
0.832 ± 0.013 (Planck Collaboration VI 2018). Similarly, our
estimate of σ8 = 0.73± 0.08 is 2− 3σ smaller than the measure-
ment σ8 = 0.8111± 0.0060 from the Planck collaboration 2018.
Our results are also in agreement with KIDS shear peaks statis-
tics S 8 = 0.75 ± 0.059 (Martinet et al. 2018; Shan et al. 2018),
KIDS tomographic WL S 8 = 0.745 ± 0.039 (Hildebrandt et al.
2017), and DES cosmological constraints from WL and cluster-
ing S 8 = 0.783+0.021

−0.025. We note that our fit only performed with
RSD measurements yield an estimate of σ8 = 0.78 ± 0.26, in
better agreement with Planck estimates.

The linear galaxy bias parameter is known to be degener-
ate with the cosmological parameters Ωm and σ8. In our fit-
ting procedure, we assume a uniform prior on b1 between 1
and 3, which largely encompasses the expected value for the
CMASS sample. In their clustering analyses, Gil-Marín et al.
(2017) found b1σ8(z = 0.57) = 1.237± 0.011, and Chuang et al.
(2013) found b1σ8(z = 0.57) = 1.18 ± 0.14. We find b1σ8(z =
0.57) = 1.256 ± 0.097 in full agreement with these previous
measurements. Marginalizing over σ8, we find b1 = 2.33± 0.33,
in agreement with White et al. (2011) and subsequent analyses
(e.g. Ho et al. 2012; Nuza et al. 2013; Rodríguez-Torres et al.
2016).

Our model also contains a second order biasing term, but
our estimated value b2 = −0.04 ± 0.53 is not sufficient to
discuss the non-linearity of the CMASS sample. We note that
Gil-Marín et al. (2017) found b2 = 0.606 ± 0.069, which is in
agreement with us.

Finally, we also include Alcock–Paczynski effect in our
model, but found no significant constraint given the data, α =
1.01± 0.05 and ε = 0.00± 0.05. We note that no significant con-
straint could either be obtained by Gil-Marín et al. (2017) with
the full CMASS DR12 sample.

To conclude, we demonstrated the effectiveness of combin-
ing RSD and GGL to break the degeneracies between the ampli-
tude of the large-scale structure fluctuations σ8 and their growth
rate f at redshift z = 0.57. We also found that the constraints on
the cosmic matter density Ωm, usually derived with WL, could be
significantly improved by combining with RSD. Given the data,
our measurements are still in agreement with Planck predictions.

6.4. Measuring EG

To corroborate the information obtained with the analysis in the
previous section and probe any deviation to ΛCDM−GR pre-
dictions, we estimate EG, as defined in Reyes et al. (2010). The
EG estimator is function of projected scale rp, and is defined as
(Zhang et al. 2007)

EG(rp) =
1
β

Υgm(rp)
Υgg(rp)

· (44)

This estimator is particularly interesting because it appar-
ently just relies on observations. However, we show in the fol-
lowing that this might not be the case in practice.

Indeed, the EG estimator suffers from a few downsides. First,
this estimator relies on a previous determination of β. How-
ever, statistical and systematic error propagation into EG error
might be awkward, unless proper correction terms and covari-
ance matrices are determined from ad hoc mock catalogues of
lensing and clustering. Although seldom the case in the past,
this is becoming more and more common (Blake et al. 2016;
Amon et al. 2018; Singh et al. 2019).
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Fig. 12. Measurement of EG with combined constraints in the fields
CFHT-Stripe 82 and CFHTLs W1, W3, and W4. The horizontal black
line indicates the Planck TT,TE,EE+lowE 2018 prediction. We note that
CFHT-S82 data help shrink the error bars by about 30%. CFHTLens
points have been shifted rightwards for clarity.

Second, it is assumed that galaxy bias is linear, scale-
independent, and the galaxy density field is fully correlated to the
underlying matter density field, i.e. the cross-correlation factor
rcc = 1. Of course, these assumptions hold in the linear regime,
but the scale at which they break depends on the galaxy sample.
Using CMASS mock catalogues, several authors have shown
that they hold in the range 5 < rp < 60 h−1 Mpc (Baldauf et al.
2010; White et al. 2011; Amon et al. 2018; Singh et al. 2019).
This depends on the requested precision on the model though,
and recent works have proposed to take non-linearity and other
effects into account with normalizing functions derived from
simulations (Alam et al. 2017; Singh et al. 2019). The multipli-
cation of these correction terms nonetheless tend to reveal the
limitation of the EG estimator.

Marta Pinho et al. (2018) have noted that EG depends not
only on gravity but also on the background (e.g. quantified with
the matter density Ωm0 in ΛCDM). Although it is always pos-
sible to predict EG for different cosmological models (see e.g.
Zhang et al. 2007, in which predictions are computed for ΛCDM,
Flat DGP, f (R) gravity, TeVeS/MOND), a discrepancy with the
observations therefore does not specifically point to a failure of
GR, but can also be attributed to the background. In this respect,
these authors claim that an estimator such as η, based on indepen-
dent estimates of fσ8(z), H(z), EG might be more appropriate. To
our point of view, adjusting an actual model including modified
gravity parameters might be as helpful.

In spite of these limitations, EG has become quite popular
recently, mostly because of the advent of wide field imaging and
spectroscopic surveys. This estimator has been measured several
times, but no significant deviation from ΛCDM−GR has been
found so far. In particular with the CMASS sample at redshift
z = 0.57, Amon et al. (2018) found EG = 0.26±0.08, Blake et al.
(2016) found EG = 0.30 ± 0.07, Pullen et al. (2016) found EG =
0.24 ± 0.06, Alam et al. (2017) found EG = 0.42 ± 0.06, and
Singh et al. (2019) found EG = 0.39 ± 0.05. The dispersion in
the estimates reveal that the method is probably not fully mature
yet, and deserves further investigation, in particular regarding the
observational biases such as photometric redshifts.

Figure 12 shows our measurements of EG as a function of
scale. We estimate β = 0.41 ± 0.15 from our fit to the RSD
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measurements only. Although it is difficult to compare our work
with other works because authors use different models, this value
is larger but statistically consistent with that found with the full
CMASS sample β = 0.34 ± 0.02 from Amon et al. (2018). For
each bin of EG(rp), we add in quadrature the errors on the ratio
U i = Υi

gm/Υ
i
gg derived from the data and the error on β = f /b1

derived from the fit, with the following chain rule formula:

Ĉ(Ei
G)

Ei
GEi

G

=
Ĉ(U i)
U iU i +

Ĉ(β)
β2 + 2

√
Ĉ(β)
β2

√
Ĉ(U i)
U iU i ρ(β,U i). (45)

Using the MCMC samples from the fit of the GGL and RSD
measurements, we use our model to reconstruct the ratio U i. We
also determine the correlation coefficients ρ(β,U i) ∼ 0.3, i.e. β
and U i are significantly correlated.

We average in the scale range 10 < rp < 60h−1 Mpc,
and we find EG = 0.48 ± 0.15 for CFHTLens field only, and
EG = 0.43 ± 0.11 for CFHTLens and CS82 fields combined,
i.e. a 30% improvement in precision for a 100% increase in
area. In the average EG calculation, we consider the full covari-
ance matrix between the EG points estimated from our simula-
tions in Sect. 5.1. We note finally that our current precision does
not justify applying scale-dependent bias, redshift weighting,
or integration window corrections since their effect is less than
5% at the scales we consider (see Alam et al. 2017; Singh et al.
2019).

To put our measurement in context, we collected the EG mea-
surements at different redshifts from the literature in Fig. 13.
Overall, we observe a trend of EG values lower than predicted
by Planck 2018. In the appendix, we forward model the EG sig-
nal based on the MCMC samples output from the joint fit of
the GGL and RSD measurements on mocks. Figure A.1 shows
that the probability distribution function of the EG estimator is
skewed towards low values. Taking its mean value then necessar-
ily leads to a biased-low estimation of EG(rp). This result con-
firms the previous claim from Alam et al. (2017), and might also
explain why so many EG measurements are below the Planck
2018 predictions.

7. Conclusions

Understanding the current acceleration of the expansion of the
Universe is one of the major goal of cosmology today. The com-
bination of GGL and RSD is a remarkable avenue to distinguish

the effect of gravity due to large-scale structures, and the effect
of some scalar field on the background expansion rate.

In this work, we have demonstrated the power of this combi-
nation applied to the well-studied CMASS galaxy sample at the
effective redshift z = 0.57. Using a comprehensive set of lens-
ing and galaxy mock catalogues, we investigated several sources
of systematic biases and determined the confidence limits for
our datasets. In particular, we found that thanks to spectroscopic
data, we could correct the bias due to photometric redshift uncer-
tainty for galaxies brighter than iAB < 22.5, and iAB < 24 in our
CFHT-S82 and CFHTLens WL catalogues, respectively. These
conservative magnitude cuts allow us to match our GGL mea-
surements in the CFHT-S82 and CFHTLS fields, although at the
cost of drastically reducing the number of WL sources. This con-
clusive remark highlights the crucial need of spectroscopic red-
shifts to calibrate the photometric redshift faint galaxies.

Building on this encouraging result, we pursue a cosmo-
logical analysis of the combined dataset. Thanks to the joint
GGL and RSD constraints, we efficiently break the degener-
acy between galaxy bias b1, matter density Ωm, matter power
spectrum amplitude σ8, and the structure growth rate f at
z = 0.57. We find astrophysical CMASS parameters and cos-
mological parameters in agreement with measurements previ-
ously obtained by other authors (White et al. 2011; Beutler et al.
2014; Chuang et al. 2013; Gil-Marín et al. 2017; Joudaki et al.
2017) and with Planck 2018 predictions in the frame of the
ΛCDM−GR model.

Finally, we combine GGL and RSD measurements to esti-
mate EG. By averaging in the range of scales 10 < rp <

60 h−1 Mpc, we find EG(z = 0.57) = 0.43 ± 0.11, which is in
perfect agreement with Planck 2018 prediction EG = 0.40. Also,
we use our mocks to characterize the statistical properties of EG,
and find that it has an asymmetric probability distribution, which
tends to underestimate its mean value. This might explain part
of the low values found in previous analysis. We also find that
the reconstructed value of EG = Ωm0/ f derived from the fit of
the GGL and RSD measurements results in a value with smaller
errors bars than that obtained directly from the data. More impor-
tantly, this value naturally includes the cross-correlation terms
between β and Υgg.

Back in 2012, Gaztañaga et al. (2012) was already advocat-
ing that overlapping lensing and spectroscopic surveys were 100
times more constraining on the dark energy equation of state and
cosmic growth history parameter γ. Although it might not be the
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cleanest way to test gravity, the recent progress in estimating
EG at different redshifts with different tracers comes as a confir-
mation. In the future, wider imaging and spectroscopic surveys
will result in very tight constraints on cosmological parameters.
In contrast, it will probably take us more time to fully profit
from smaller but deeper imaging surveys. Deep imaging sur-
veys are helpful for many reasons, but also introduce additional
systematic errors on the lensing side, in particular with respect
to blending (Harnois-Déraps et al. 2018; Euclid Collaboration
2019). Nonetheless, both strategies lead to very exciting perspec-
tives regarding our understanding of the dark sector.
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Appendix A: Weak-lensing systematics tests

Masking. In order to assess the impact of missing tiles and
large-scale masking (e.g. due to very bright stars), we compute
the density of CS82 galaxies on a grid with pixel size ∼1 deg.
Then, we randomly draw mock galaxies in the field such that the
overall redshift distribution and total number of sources matches
observations. Finally, we down-sample this catalogue accord-
ing the density fluctuations attributed to masking. We find that
masking increases the statistical noise in the GGL measurement
by about 20% at all scales. However we could not identify any
obvious systematic bias related to masking.

Photometric redshifts bias. Mandelbaum et al. (2008) and
Nakajima et al. (2012) proposed an alternative method to esti-
mate the bias introduced by photometric redshifts on GGL mea-
surements. These authors proposed to estimate the bias bz(zlens)
between photometric redshifts ∆Σ̃ and spectroscopic redshifts
∆Σ measurements,

1 + bz(zlens) =
∆Σ̃

∆Σ
=

∑
j w jΣ

−1
cr Σ̃−1

cr∑
j w jΣ̃

−2
cr
· (A.1)

The summation is performed over the subset of source
galaxies with both spectroscopic and photometric redshifts. We
adapted the original expression from Mandelbaum et al. (2008)
such that the inverse critical densities Σ−1

cr = 4πG
c2 DL(1 − DL

DS
)

converges to zero when the source redshift becomes smaller
than zlens. The value w j is the weight on source galaxy j in the
lensing catalogue. In order to estimate the effective bias on our
GGL measurements with CMASS galaxies, we need to integrate
the bias function bz(zlens) over the CMASS redshift distribution
p(zlens) such that

〈bz〉 =

∫
dzlens p(zlens)w̃l(zlens)bz(zlens)∫

dzlens p(zlens)w̃l(zlens)
, (A.2)

where the weight on each lens place w̃l = D−2
L (1 +

zlens)−2 ∑
j w jΣ

−2
cr is correcting for the fact that the number of

sources involved in a given aperture in physical coordinates
includes more objects at lower than at higher redshifts. We boot-
strapped our catalogues to estimate the uncertainties on our bias
estimates.

For this measurement, we used VVDS (iAB < 22.5,
Garilli et al. 2008), DEEP2 (RAB < 24.1, Newman et al. 2013),
PRIMUS (iAB < 23.5, Coil et al. 2011), VIPERS (iAB < 22.5,
Guzzo et al. 2014), and SDSS-DR13 spectroscopic redshifts,
which we matched to our lensing sources in our four fields. On
Stripe 82, we obtained bz = −0.028±0.006, bz = −0.131±0.004
and bz = −0.082 ± 0.004 for BPZ, neural network or LeP-
hare codes, respectively. With CFHTLens, we obtained bz =
+0.003 ± 0.003, bz = −0.014 ± 0.004 and bz = +0.022 ± 0.003
on fields W1, W3, and W4, respectively.

We also adapted our code to assess the improvement
obtained by using the photometric redshift probability of each
source galaxy p(zs) instead of maximum-likelihood values. The
critical densities then become

Σ̃−1
cr =

4πG
c2 DL

∫
dzs p(zs)

(
1 −

DL

DS

)
. (A.3)

On field Stripe 82, we found that using the full proba-
bility p(zs) halved the bias obtained with LePhare code to
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Fig. A.1. Recovered signal in the mocks, when EG =
Υgm
βΥgg

(grey shared

area with 1σ and 2σ C.L. contours) and ÊG = Ωm/ f (orange 1σ shaded
area) are computed from the MCMC samples, and when EG =

Υgm
βΥgg

is directly estimated from the mocks (red data points with 1σ error
bars). In this latter case, we take β = 0.84/2.13 = 0.39, as obtained
from a previous fit of our model to the RSD-only measurements in
the mocks. Both definitions are in agreement with the value of Ωm/ f
computed using the Planck cosmology 2018 of the simulation (black
dashed line). Measurements are performed with R0 = 1.0 h−1 Mpc,
smin = 17.8 h−1 Mpc and no tapering.

bz = −0.031 ± 0.005. Nonetheless, using the best-fit redshifts
provided by BPZ still yields the smallest bias.

Catastrophic photometric redshifts. In order to assess the
impact of catastrophic redshifts on the lensing measurements,
we computed the two-dimensional probability p(zLP|zANNZ) of
obtaining a photometric redshift with Le Phare given a pho-
tometric redshift obtained with neural network. Assuming this
later to be the true redshift, we degraded the true redshifts in
our mocks to reproduce the catastrophic outlier effects. Overall,
we found that catastrophic redshifts could bias the lensing signal
by about bz = +0.03. This is in agreement with our estimations
above with spectroscopic redshifts and the estimates found in
Leauthaud et al. (2017).

Asymmetric posterior on. EG It is very typical that obser-
vational estimators obtained from a ratio of observables have
asymmetric probability distribution function. Indeed using our
simulations, we found that EG is systematically lower than
ΛCDM−GR predictions, with a long tail towards larger values
of EG, as shown in Fig. A.1. When applying the usual EG =

Υgm

βΥgg

estimator on our mocks, we also find mean values smaller than
expected, although still in statistical agreement. We note finally
that 1σ constraints are tighter with the fit than with the usual
EG estimator. Given that Amendola et al. (2013) have demon-
strated that EG is probably not as effective as anticipated in
some particular cosmological models, and Alam et al. (2017)
and Singh et al. (2019) have started to apply bias corrections to
this estimator based on mock catalogues built with fiducial cos-
mological models, we think it might be as efficient and clean
to fit the correlation functions, and derive EG by marginalizing
over the model parameters, or simply compare Ωm0 and f to their
ΛCDM+GR predictions.
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Fig. A.2. Contours at 1, 2, and 3σ C.L. of all our model parameters estimated with the RSD only, GGL only, and their combination. In all cases,
we set smin = 17.8 h−1 Mpc and R0 = 1.0 h−1 Mpc (see text for details).
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