H Houamed 
  
P Dreyfuss 
email: pierre.dreyfuss@univ-cotedazur.fr
  
Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation

Keywords: Boussinesq sytem, horizontal dissipation, anisotropic inequalities, uniqueness, global well-posedness. 2010 MSC: 76D03, 76D05, 35B33, 35Q35

In this paper, for the 3-D Navier-Stokes-Boussinesq system with horizontal dissipation, where there is no smoothing effect on the vertical derivatives, we prove a uniqueness result of solutions

 in order to obtain a global well-posedness result in the case of axisymmetric initial data.

Introduction and main results

The Navier-Stokes-Boussinesq system is obtained from the density dependent Navier-Stokes equations by using the Boussinesq approximation. It is widely used to model geophysical flows (for instance oceanical or atmospherical flows) whenever rotation and stratification play an important role (see [START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]). We will consider the following so-called Navier-Stokes-Boussinesq equations with horizontal dissipation:

(N SB h )        ∂ t + u • ∇ u -∆ h u + ∇P = ρe 3 in R + × R 3 ∂ t + u • ∇ ρ -∆ h ρ = 0 div(u) = 0 (u, ρ) |t=0 = (u 0 , ρ 0 ),
where ∆ h := ∂ 2 1 + ∂ 2 2 denotes the horizontal laplacian and e 3 = (0, 0, 1) T is the third vector of the canonical basis of R 3 . The unknowns of the system are u = (u 1 , u 2 , u 3 ), ρ and P which represent respectively: the velocity, the density and the pressure of the fluid.

In the following we will say that (u, ρ) is a solution of (N SB h ) if it is a weak solution in the classical sense (see for instance [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] pages 123,132 and 204). We recall also that from a solution (u, ρ) we may use a result of De Rham in order to recover a pressure P (which depends on u and ρ) and to obtain a distributional solution (u, ρ, P ) of the system (N SB h ).

Note that in (N SB h ) the diffusion only occur in the horizontal direction. This is a natural assumption for several cases of interest in geophysical fluids flows (see [START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]). However -∆ h is a less regularizing operator than the laplacian -∆ and we cannot expect a better theory than for the classical Navier-Stokes-Boussinesq equations:

(N SB)        ∂ t + u • ∇ u -∆u + ∇P = ρe 3 in R + × R 3 ∂ t + u • ∇ ρ -∆ρ = 0 div(u) = 0 (u, ρ) |t=0 = (u 0 , ρ 0 ),
In particular, the question of the global well-posedness of (NSB) and consequently of (N SB h ) remains largely open, but recently the system (N SB h ) has received a lot of attention from mathematicians (see for instance [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF][START_REF] Adhikari | Global regularity results for the 2D Boussinesq equations with vertical dissipation[END_REF][START_REF] Wu | The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion[END_REF]) and significant progress in its analysis have been made.

Note again that (N SB h ) involves the operator -∆ h which smooth only along the horizontal variables. Hence we need to estimate differently the horizontal and the vertical directions, and the natural functional setting for the analysis involves some anisotropic Sobolev and Besov spaces. The definitons of these spaces and some of their important properties are recalled in the next section.

In order to analyse (N SB h ) it is usefull to forget its second equation for a while, and to consider first the Navier-Stokes equations with horizontal laplacian:

(N S h )    ∂ t + u • ∇ u -∆ h u + ∇P = 0 in R + × R 3 div(u) = 0 u |t=0 = u 0
Several interesting studies for this last system were done. In [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], the authors proved the local existence and the global one for small data in H 0,s for some s > 12 . The proof of the exsitence part in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] uses deeply the structure of the equation and the fact that u is a divergence free vector field. The key point used in their estimates is related to the fact 1 that H 1 2 (R 2 ) → L 4 (R 2 ) and that H s (R) is an algebra. Hence it is easy to deal with the term u h • ∇ h u by using some product rules in the well chosen spaces. Next, after using the divergence free condition together with some Littlewood-Paley stuffs in a clever way they were able to treat the term u 3 ∂ 3 u with the same argument. Always in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], the authors proved also a uniqueness result (but only for s > 3 2 , because of the term w 3 ∂ 3 u) by establishing a H 0,s 0 -energy estimate for a difference between two solutions w = u -v, where s 0 ∈] 1 2 , s]. Later in [START_REF] Iftimie | A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity[END_REF], D.Iftime had overcome the difficulty by remarking that it is sufficient to estimate w in H -1 2 with respect to the vertical variable, and this only requires an H 1 2 regularity for u in the vertical direction. Then he proved a uniqueness result for any s > 1 2 , and the gap between existence and uniqueness was closed.

To do something similar with system (N SB h ) we begin by estimating the horizontal terms (terms which contain only horizontal derivatives) by using some product rules in the adequate Besov and Sobolev spaces. For the vertical terms (terms which contain only vertical derivatives) we follow in general the idea in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] in order to transform them into terms similar to the horizontal ones by using the divergence free condition. Hence, for s ∈] 1 2 , 1], we first propose to estimate the difference between two solutions w = u -v in H 0,s-1 instead of H 0,-12 providing that the solution u already exists in the H 0,s energy-space (see Appendix for a proof of an existence result). For the second equation, denoting the difference between two solutions θ = ρ 1 -ρ 2 we remark that:

• The function ρ only appears in the third equation of u (the equation for the component u 3 ). Hence a priori, we only need to estimate ρ in the H s-1 -norm with respect to the vertical variable.

• In order to deal with the term u h • ∇ h θ, we must estimate θ with respect to the vertical variable in some space H -α , with α ≥ 0 and such that H s (R) × H -α (R) holds to be a subspace of H -α (R). In fact, lemma 2 bellow says that the minimum index -α that can be chosen is -α = -s.

• For the term w h • ∇ h ρ, if we consider that ρ lies in some H β -space, with respect to the vertical variable, then a direct application of the product rules shows that we need β ≥ 1 -s. Moreover, because the system is hyperbolic in the vertical direction, we expect the loss of one derivative.

Hence we will estimate vertically ρ in H 1-s and θ in H -s .

For the critical case where s = 1 2 , in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] M.Paicu proved a uniqueness 2 result for (N S h ) in

L ∞ T (H 0, 1 2 ) ∩ L 2 T (H 1, 1 2
). It is clear that such a space falls to be embedded in L ∞ in the vertical direction which is the major problem that prevents using similar arguments to those in the case where s > 1 2 . In order to prove the uniqueness, the author in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] established a double logarithm estimate (see [START_REF] Hmidi | Global well-posedness for the Euler-Boussinesq system with axisymmetric data[END_REF]) and concluded by using the Osgood lemma. We will show that (N SB h ) can be treated in the same way.

Our main result is the following:

Theorem 1. Uniqueness Let s ∈ [1/2,
1] and (u, ρ), (v, η) be two solutions for system (N SB h ) in

L ∞ loc (R + ; H 0,s ) ∩ L 2 loc (R + ; H 1,s ) × L ∞ loc (R + ; H 0,1-s ) ∩ L 2 loc (R + ; H 1,1-s ) Then (u, ρ) = (v, η)
As an interesting consequence, we can improve the results of global well-posedeness in the case of axisymmetric initial data established in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF].

Let us first recal some basic notions: We say that a vector field u is axisymmetric if it satisfies

R -α (u(R α (x))) = u(x), ∀α ∈ [0, 2π], ∀x ∈ R 3 ,
where R α denotes the rotation of axis (Oz) and with angle α. Moreover, an axisymmetric vector field u is called without swirl if it has the form:

u(x) = u r (r, z)e r + u z (r, z)e z , x = (x 1 , x 2 , x 3 ), r = x 2 1 + x 2 2 and z = x 3 .
We say that a scalar function f is axisymmetric, if the vector field x → f (x)e z is axisymmetric. We also denote by ω = curl u the vorticity of u. Then we will prove:

Theorem 2. Let u 0 ∈ H 1 (R 3
) be an axisymmetric divergence free vector field without swirl such that ω 0 r ∈ L 2 and let ρ 0 ∈ L 2 be an axisymmetric function. Then there is a unique global solution (u, ρ) of the system (N SB h ). Moreover we have:

u ∈ C(R + ; H 1 ) ∩ L 2 loc (R + ; H 1,1 ∩ H 2,0 ), ω r ∈ L ∞ loc (R + ; L 2 ) ∩ L 2 loc (R + ; H 1,0 ) ρ ∈ C(R + ; L 2 ) ∩ L 2 loc (R + ; H 1,0 )
Note that in Theorem 2, we only assume that (u 0 , ρ 0 ) ∈ H 1 × L 2 whereas in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] the authors consider a stronger condition. Namelly they assume that (∇ × u 0 , ρ 0 ) is in H 0,1 × H 0,1 or in L ∞ × H 0,1 . In both works the key point consists to establish an uniqueness result: it is the Theorem 1 for us, whereas in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] the authors assume a strong initial condition in order to obtain some double exponential control in time for the gradient of u.

The paper is organized as follows: in section 2, for the reader's convenience we recall the required background concerning the functional spaces and some useful technical tools. In section 3, we establish several a priori estimates which are then used in section 4 to prove the two theorems above. Finally in Appendix we shall prove a result of well posedeness for (N SB h ) under some smallness conditions involving only T , the L 2 -norm of ρ 0 and the H 0,s -norm of u 0 . The uniqueness part of this result is a consequence of Theorem 1.

Notations and functional spaces

Throughout this paper we write R 3 = R 2 h × R v and for any vector ξ = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 , we will denote the two first componants by ξ h and the last one by ξ v , that is to say: ξ = (ξ 1 , ξ 2 , ξ 3 ) := (ξ h , ξ v ). Similarly, for any vector field X = (X 1 , X 2 , X 3 ) we will write X = (X h , X v ) with the meaning that X h = (X 1 , X 2 ) and X v = X 3 .

We will also use the notations:

H s h = H s (R 2 h ), H s v = H s (R v ), L p v (H s h ) = L p (R v ; H s h ) and L r T L p h L q v = L r (0, T ; L p (R 2 h ; L q (R v ))).
Recall that (N SB h ) involves the operator -∆ h which only regularizes along the horizontal direction. Hence the regularity of the functions along the vertical variable must be mesured differently than the horizontal ones, and we then need some anisotropic function spaces. We now provide the definition of these spaces which are based on an anisotropic version of the Littlewood-Paley theory (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for more details).

Let (ψ, ϕ) be a couple of smooth functions with value in [0, 1] satisfying:

Supp ψ ⊂ {ξ ∈ R : |ξ| ≤ 4 3 }, Supp ϕ ⊂ {ξ ∈ R : 3 4 ≤ |ξ| ≤ 8 3 } ψ(ξ) + q∈N ϕ(2 -q ξ) = 1 ∀ξ ∈ R, q∈Z ϕ(2 -q ξ) = 1 ∀ξ ∈ R\{0}.
Let a be a tempered distribution, â = F(a) its Fourier transform and F -1 denotes the inverse of F. We define the non-homogeneous dyadic blocks ∆ q and the homogeneous ones ∆q by setting:

∆ v q a :=    F -1 ϕ(2 -q |ξ 3 |â) for q ∈ N F -1 ψ(|ξ 3 |â) for q = -1 0 for q ≤ -2 ∆ h j a :=    F -1 ϕ(2 -j |ξ h |â) for j ∈ N F -1 ψ(|ξ h |â) for j = -1 0 for j ≤ -2 S v q := ∆ v q -∆ v q-1 ∀q ∈ Z, S h j := ∆ h j -∆ h j-1 ∀j ∈ Z ∆v q a := F -1 ϕ(2 -q |ξ 3 |â) ∀ q ∈ Z, ∆h j a := F -1 ϕ(2 -j |ξ h |â) ∀ j ∈ Z, Ṡv q := ∆v q -∆v q-1 ∀q ∈ Z, Ṡh j := ∆h j -∆h j-1 ∀j ∈ Z.
We then have a = m≥-1 ∆ m a = m∈Z ∆m a for both horizontal and vertical decompositions. Moreover, in all the situations, i.e. for ∆, S with the same index of direction (horizontal or vertical) and in both homogeneous and nonhomogeneous cases it holds:

∆ m ∆ m a = 0 if |m -m | ≥ 2 ∆ m S m -1 a∆ m a = 0 if |m -m | ≥ 5 ∆ m i∈{0,1,-1} m ∈Z (∆ m +i a∆ m a = ∆ m i∈{0,1,-1} m ≥m-N 0 (∆ m +i a∆ m a ,
where N 0 ∈ N can be chosen independently of a (we can in fact assume that

N 0 = 5).
In what follows, we will use the so-called Bony decomposition (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]):

ab = T a (b) + T b (a) + R(a, b), T a (b) := q∈Z S q-1 a∆ q b, R(a, b) := i∈{0,1,-1} q∈Z ∆ q+i a∆ q b.
Here again all the situations may be considered however particular cases must be precised by using the adequate notations. For instance if we consider the non-homogeneous version for the vertical variable, we have to add the exponent v in all the operators T a , T b , R, S q and ∆ q .

Our analysis will be made in the context of the non-homogeneous and anisotropic Sobolev and Besov spaces:

Definition 1. Let s, t be two real numbers and let p, q 1 , q 2 be in [1, +∞], we define the space (B t p,q 1 ) h (B s p,q 2 ) v as the space of tempered distributions u such that

u (B t p,q 1 ) h (B s p,q 2 )v := 2 kt 2 js ∆ h k ∆ v j u L p l q 1 k (Z;l q 2 j (Z))
< ∞

In the situation where q 1 = q 2 = q, we use the notation B t,s p,q := (B t p,q ) h (B s p,q ) v . If p = q = 2 then this last space is denoted by H t,s . If moreover t = 0 then we have:

u H 0,s ≈ j∈Z 2 2js ∆ v j u 2 L 2 1 2
Let f ∈ B 0,s p,2 , the following properties will be of constant use in the paper:

∀s ∈ R, ∃c q = c q (f ) : ∆ v q f L p ≤ c q 2 -sq f B 0,s p,2
, and q≥-1

c 2 q ≤ 1 (1) ∀s < 0, ∃c q = cq (f ) : S v q f L p ≤ cq 2 -sq f B 0,s p,2
, and

q≥-1 c2 q ≤ 1 (2)
Other properties of these spaces can be found in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for the usual isotropic version, and in [START_REF] Chemin | On the critical one component regularity for 3-D Navier-Stokes system[END_REF] for the anisotropic case. A very helpful tool related to the Bernstein lemma (see for instance lemma 2.1 in [START_REF] Hmidi | Low Mach number limit for the isentropic Euler system with axisymmetric initial data[END_REF]) is:

Lemma 1. Let B h (resp. B v ) be a ball of R 2 h (resp. R v ) and C h (resp. C v ) a ring of R 2 h (resp. R v )
. Let also a be a tempered distribution and â its Fourier transform. Then for

1 ≤ p 2 ≤ p 1 ≤ ∞ and 1 ≤ q 2 ≤ q 1 ≤ ∞ we have: Supp â ⊂ 2 k B h =⇒ ∂ α x h a L p 1 h (L q 1 v ) 2 k |α|+2 1 p 2 -1 p 1 a L p 2 h (L q 1 v ) Supp â ⊂ 2 l B v =⇒ ∂ β x 3 a L p 1 h (L q 1 v ) 2 l β+ 1 q 2 -1 q 1 a L p 1 h (L q 2 v ) Supp â ⊂ 2 k C h =⇒ a L p 1 h (L q 1 v ) 2 -kN sup |α|=N ∂ α x h a L p 1 h (L q 1 v ) Supp â ⊂ 2 l C v =⇒ a L p 1 h (L q 1 v ) 2 -lN ∂ N x 3 a L p 1 h (L q 1 v )
We will also need some product rules in (non-homogeneous) Sobolev spaces:

Lemma 2. Let σ, σ , s, s 0 ∈ R verifying σ, σ < 1, σ + σ > 0, s 0 > 1/2, s ≤ s 0 and s + s 0 ≥ 0 then there exists a constant C = C(σ, σ , s, s 0 ) such that: ab H σ+σ -1,s ≤ C a H σ,s b H σ ,s 0 , ∀a, b ∈ S Proof Remark first that because ab H σ+σ -1,s = ab H s v H σ+σ -1 h
, we have only to prove that:

H s (R) × H s 0 (R) ⊂ H s (R). (3) 
Indeed, by using (3) together with the usual product rules with respect to the horizontal variables, the desired result follows (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). Note also that when s 0 > s > 1 2 , the inclusion (3) is trivial since in this case the space H s is an algebra and clearly H s 0 → H s . It remains then only to prove (3) in the situation s 0 > 1 2 ≥ s and s + s 0 ≥ 0. In order to do this, we use the Bony decomposition in the vertical variable:

ab = T v a b + T v b a + R v (a, b).
For the first term, let us consider the two cases: s < 1 2 and s = 1 2 . The case s < 1 2 : By using the embedding

H s (R) → B s-1 2
∞,2 , together with (2) we obtain for any q ≥ -1:

∆ v q (T v a b) L 2 (R) S v q-1 a L ∞ (R) ∆ v q b (L 2 R) c 2 q 2 -q(s-1 2 ) 2 -qs 0 a B s-1 2 ∞,2 (R) b H s 0 (R) c 2 q max{1, 2 s 0 -1 2 }2 -qs a H s (R) b H s 0 (R) c 2 q 2 -qs a H s (R) b H s 0 (R) . It follows that T v a b H s (R) a H s (R) b H s 0 (R) (4) 
The case s = 1 2 . We use the following estimate:

S v q-1 a L ∞ (R) ≤ -1≤j≤q 2 j 2 ∆ v j a L 2 (R) √ q a H 1 2 (R)
, in order to obtain:

∆ v q (T v a b) L 2 (R) S v q-1 a L ∞ (R) ∆ v q b L 2 (R) c q √ q2 -q(s 0 -1 2 ) 2 -q 2 a H 1 2 (R) b H s 0 (R)
Seen that ∀ε > 0, there exists C ε > 0 such that for all q ∈ R + :

√ q2 -qε ≤ C ε , we infer that:

T v a b H 1 2 (R) a H 1 2 (R) b H s 0 (R)
and ( 4) follows for all s ≤ 1 2 < s 0 . Moreover, by using the embedding H s 0 (R) → L ∞ (R) together with the estimate:

∆ v q (T v b a) L 2 (R) S v q-1 b L ∞ (R) ∆ v q a L 2 (R) b L ∞ (R) c q 2 -qs a H s (R) ,
we obtain:

T v b a H s (R) a H s (R) b H s 0 (R)
For the reminder term, if s + s 0 > 0, then applying lemma 1 together with (2) gives:

∆ v q (R(a, b)) L 2 (R) 2 q 2 j≥q-N 0 ∆ v j a L 2 (R) ∆v j b L 2 (R)
, where ∆v

q := i={-1,0,1} ∆ v q+i , 2 q 2 j≥q-N 0 c 2 j 2 -j(s+s 0 ) a H s (R) b H s 0 (R) .
Consequently, for any q ≥ -1 we get:

2 qs ∆ v q (R(a, b)) L 2 (R) 2 -q(s 0 -1 2 ) a H s (R) b H s 0 (R) j≥q-N 0 c 2 j 2 -(j-q)(s+s 0 ) c q 2 -q(s 0 -1 2 ) a H s (R) b H s 0 (R) . It is then easy to show that R(a, b) H s (R) a H s (R) b H s 0 (R)
. If s + s 0 = 0, then along the same lines we can prove that: R(a, b)

B -1 2 2,∞ (R) a H s (R) b H s 0 (R)
The last step consists to use the following inequality by taking a = -1 2 and ε = s 0 -1 2 :

f B a-ε 2,1 = k≥-1 2 k(a-ε) ∆ k f L 2 ≤ C(ε) f B a 2,∞ , ∀a ∈ R, ε > 0 (5)
We get:

R(a, b) H -s 0 (R) = R(a, b) H s (R) a H s (R) b H s 0 (R)
which ends the proof. 2

Another important result is the following commutator-type estimate:

Lemma 3. Let u, f be regular where u is a divergence free vector field in R 3 . We have:

∆ v q , S v j-1 u 3 (., x 3 ) f L 2 v H -1/2 h 2 -q S v j-1 ∇ h u(., x 3 ) L ∞ v L 2 h f L 2 v H 1/2 h

Proof

The proof is essentialy based on the fact that -∂ 3 u 3 = ∇ h • u h and the following usual commutator estimate used with respect to the vertical variable:

∆ j , a b L r 2 -j ∇a L p b L q , with 1 r = 1 p + 1 q (6)
For the proof of estimates of type (6) one may see for example [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], and for a detailed proof of lemma 3, one may see [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF].

2
Let us end this section by recalling the Osgood lemma (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]):

Lemma 4. Osgood lemma Let g be a measurable function from [t 0 , T ] to [0, a], γ a locally integrable function from [t 0 , T ] to R + and µ a continuous and non-decreasing function from [0, a] to R + . Assume that for some non-negative real number c, g satisfies:

g(t) ≤ c + t t 0 γ(τ )µ(g(τ ))dτ, a.e. t ∈ [t 0 , T ]
Then we have for a.a. t ∈ [t 0 , T ]:

c > 0 =⇒ -M (g(t)) + M (c) ≤ t t 0 γ(τ )dτ, where M (x) = a x dτ µ(τ ) c = 0 and a 0 dτ µ(τ ) = ∞ =⇒ g = 0

A priori estimates

In this section we establish the main a priori estimates required to prove the uniqueness in our theorems. Let f, g := f, g L 2 (R 3 ) be the usual L 2 -scalar product, and f, g α,β denotes the scalar product between f and g in H α,β (R 3 ). In order to simplify the redaction, we introduce the following notations:

L 1 := q≥-1 2 2q(s-1) ∆ v q (u h • ∇ h w), ∆ v q w , L 2 := q≥-1 2 2q(s-1) ∆ v q (u 3 ∂ 3 w), ∆ v q w L 3 := q≥-1 2 2q(s-1) ∆ v q (w h • ∇ h v), ∆ v q w , L 4 := q≥-1 2 2q(s-1) ∆ v q (w 3 ∂ 3 v), ∆ v q w L 5 := q≥-1 2 -2qs ∆ v q (u h • ∇ h θ), ∆ v q θ , L 6 := q≥-1 2 -2qs ∆ v q (u 3 ∂ 3 θ), ∆ v q θ L 7 := q≥-1 2 -2qs ∆ v q (w h • ∇ h η), ∆ v q θ , L 8 := q≥-1 2 -2qs ∆ v q (w 3 ∂ 3 η), ∆ v q θ L 9 := q≥-1 2 2q(s-1) ∆ v q θ, ∆ v q (w 3 )
We shall prove:

Proposition 1. Let s ∈]1/2, 1]. Then for u, v, w, ρ, η, θ verifying: u, v, ∇ h u, ∇ h v ∈ H 0,s , ρ, η, ∇ h ρ, ∇ h η ∈ H 0,1-s w, ∇ h w ∈ H 0,s-1 , θ, ∇ h θ ∈ H 0,-s ∇ • u = ∇ • v = ∇ • w = 0,
we have:

L 1 u 1/2,s ∇ h w 0,s-1 w 1/2,s-1 , L 2 ∇ h u 0,s w 2 1/2,s-1 L 3 ∇ h v 0,s w 2 1/2,s-1 , L 4 v 1/2,s w 0,s-1 + ∇ h w 0,s-1 w 1/2,s-1 L 5 u 1/2,s ∇ h θ 0,-s θ 1/2,-s , L 6 ∇ h u 0,s θ 2 1/2,-s L 7 ∇ h η 0,1-s w 1/2,s-1 θ 1/2,-s , L 8 η 1/2,1-s w 0,s-1 + ∇ h w 0,s-1 θ 1/2,-s L 9 θ 0,-s ( ∇ h w 0,s-1 + w 0,s-1 )
Proof in the following we denote by c q some constant c q := c q (u, v, w, θ, ρ, t) with q≥-1 c 2 q ≤ 1 which comes from the fact (1) or ( 2). This constant is allowed to differ from one line to another.

• L 1 estimate: Since s + (s -1) > 0, by using product lemma 2 between H 1 2 ,s and H 0,s-1 , we obtain:

L 1 = u h • ∇ h w, w 0,s-1 ≤ u h • ∇ h w -1/2,s-1 w 1/2,s-1 u 1/2,s ∇ h w 0,s-1 w 1/2,s-1 • L 2 estimate: We write L 2 = L (1) 2 + L (2) 2 + L (3) 
2 where:

L (1) 2 := q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q ∆ v j (u 3 )S v j-1 (∂ 3 w) , ∆ v q w L (2) 2 := q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q S v j-1 (u 3 )∆ v j (∂ 3 w) , ∆ v q w L (3) 2 := q≥-1 2 2q(s-1) i∈{0,-1,1} j≥q-N 0 ∆ v q ∆ v j+1 (u 3 )∆ v j (∂ 3 w) , ∆ v q w
Then by using the embbeding of H

1 2 (R 2 h ) in L 4 (R 2 h
), Bernstein lemma for the vertical variable together with statement (1), we obtain:

L (1) 2 w 1/2,s-1 q≥-1 c q 2 q(s-1) 2 q/2 |j-q|≤N 0 S v j-1 w L 4 h L 2 v ∆ v j ∇ h u L 2 w 1/2,s-1 w 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1/2) |j-q|≤N 0 c 2 j 2 j(1-s) 2 -sj w 1/2,s-1 w 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1/2) 2 q(1-s) 2 -qs w 1/2,s-1 w 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 -q(s-1/2) w 1/2,s-1 w 1/2,s-1 ∇ h u 0,s To estimate L (2) 
2 , we consider the decomposition used in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], by writing L

(2)

2 = A 1 + A 2 + A 3 with: A 1 := q≥-1 2 2q(s-1) S v q (u 3 )∆ v q (∂ 3 w), ∆ v q w A 2 := q≥-1 2 2q(s-1) |j-q|≤N 0 S v q -S v j-1 (u 3 )∆ v j (∂ 3 w), ∆ v q w A 3 := q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 w), ∆ v q w ,
where [∆ v q , S v j-1 (u 3 ) denotes the commutator between ∆ v q and S v j-1 (u 3 ).

After integration by parts we obtain:

A 1 = - 1 2 q≥-1 2 2q(s-1) S v q (∂ 3 u 3 )∆ v q (w), ∆ v q w = 1 2 q≥-1 2 2q(s-1) S v q (∇ h • u h )∆ v q (w), ∆ v q w w 1/2,s-1 q≥-1 c q 2 -q(s-1) ∆ v q w L 4 h L 2 v S v q (∇ h u) L 2 h L ∞ v w 2 1/2,s-1 ∇ h u 0,s
In order to estimate A 2 , we remark first that S v q -S v j-1 is spectraly supported away from 0, that is we can use lemma 1 to estimate A 2 just like L

(1) 2 . Indeed:

A 2 ≤ C w 1/2,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 S v q -S v j-1 ∂ 3 u 3 L 2 h L ∞ v ∆ v j w L 4 h L 2 v ≤ C w 1/2,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 S v q -S v j-1 ∇u h L 2 h L ∞ v ∆ v j w L 4 h L 2 v ≤ C w 2 1/2,s-1 ∇ h u 0,s |i|≤N 0 q≥-1 c q 2 q(s-1) c j+i 2 (q+i)(1-s) ≤ C w 2 1/2,s-1 ∇ h u 0,s
Finally for A 3 we use the commutator estimate proved in lemma 3 to obtain:

A 3 ≤ w 1/2,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 w) L 2 Rx 3 ;H -1/2 (R 2 )
≤ w 1/2,s-1 q≥-1 c q 2 q(s-1)

|j-q|≤N 0 S v j-1 ∇ h u(., x 3 ) L 2 h L ∞ v ∆ v j w 1/2,0 ≤ w 2 1/2,s-1 ∇ h u 0,s i∈{0,-1,1} q≥-1 c q c q+i ≤ w 2 1/2,s-1 ∇ h u 0,s
Ditto for the the last term in this part, using the fact that

∂ 3 u 3 = -∇ h • u h : L (3) 2 w 1/2,s-1 q≥-1 c q 2 q(s-1) 2 q/2 i∈{0,-1,1} j≥q-N 0 ∆ v j+i w L 4 h L 2 v ∆ v j ∇ h u L 2 w 1/2,s-1 w 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1/2) i∈{0,-1,1} j≥q-N 0 c j c j+i 2 j(1-s) 2 -sj w 2 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1/2) 2 q(1-2s) i∈{0,-1,1} j≥q-N 0 c j c j+i
where we used the fact that s ∈]1/2, 1] that is 1 -2s < 0. We obtain finally:

L (3) 2 w 2 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 -q(s-1/2) w 2 1/2,s-1 ∇ h u 0,s
Remark: In the case where s = 1 we don't have to deal with L 1 + L 2 which is equal to 0 because of the identity u • ∇w, w = 0

• L 3 estimate: By using product lemma 2 between H 0,s and H 1/2,s-1 we obtain:

L 3 = w h ∇ h v, w 0,s-1 ≤ w h ∇ h v -1/2,s-1 w 1/2,s-1 ∇ h v 0,s w 2 1/2,s-1 • L 4 estimate: We write L 4 = L (1) 4 + L (2) 
4 where:

L (1) 4 := q≥-1 2 2q(s-1) j≥q-N 0 ∆ v q (∆ v j w 3 S v j+2 (∂ 3 v)), ∆ v q w L (2) 4 := q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q (S v j-1 (w 3 )∆ v j ∂ 3 v), ∆ v q w
Hense, by using again lemma 2, we infer that:

L (1) 4 ≤ w 1/2,s-1 q≥-1 c q 2 q(s-1/2) j≥q-N 0 ∆ v j w 3 L 2 S v j+2 (∂ 3 v) L 4 h L 2 v
For s = 1, after certain calculations

S v j+2 (∂ 3 v) L 4 h L 2 v ≤ m≤j+1 2 m(1-s) 2 sm ∆ v m v L 4 h L 2 v ≤ m≤j+1 2 2m(1-s) 1/2 v 1/2,s 2 j(1-s) v 1/2,s
Thus, by using lemma 1 together with the previous estimate and the divergence free condition on w, we find:

L (1) 4 w 1/2,s-1 v 1/2,s q≥-1 c q 2 q(s-1/2) j≥q-N 0 2 -js ∆ v j ∇ h w L 2 w 1/2,s-1 v 1/2,s ∇ h w 0,s-1 q≥-1 c q 2 q(s-1/2) j≥q-N 0 c j 2 j(1-2s) w 1/2,s-1 v 1/2,s ∇ h w 0,s-1 q≥-1 c q 2 q(s-1/2) j≥q-N 0 2 2j(1-2s) 1/2 c j l 2 (N∪{-1}) w 1/2,s-1 v 1/2,s ∇ h w 0,s-1 q≥-1 c q 2 q(s-1/2) 2 q(1-2s) w 1/2,s-1 v 1/2,s ∇ h w 0,s-1 q≥-1 c q 2 q(1/2-s) w 1/2,s-1 v 1/2,s ∇ h w 0,s-1
For the second term we proceed as follows:

L (2) 4 w 1/2,s-1 q≥-1 c q 2 q(s-1) 2 q |j-q|≤N 0 2 j-q S v j-1 w 3 L 2 h L ∞ v ∆ v j v L 4 h L 2 v w 1/2,s-1 w 3 0,s |j|≤N 0 q≥-1 c q 2 q(s-1) 2 q ∆ v j+q v L 4 h L 2 v v 1/2,s w 1/2,s-1 w 3 0,s |i|≤N 0 q≥-1 c q c q+i v 1/2,s w 1/2,s-1 w 3 0,s
In order to close the estimates of L

(2)

4 we remark that, for any s ∈ [ 1 2 , 1], we have:

w 3 0,s ≤ w 3 0,s-1 + ∂ 3 w 3 0,s-1 ≤ w 3 0,s-1 + ∇ h w 0,s-1
In the case where s = 1, note that the estimate can be obtained easly, by using product rules and the previous inequality, as the following:

w 3 ∂ 3 v, w L 2 ≤ w 3 ∂ 3 v -1/2,0 w 1/2,0 w 3 0,1 ∂ 3 v 1/2,0 w 1/2,0 v 1/2,1 ( w L 2 + ∇ h w L 2 ) w 1/2,0 • L 5 estimate:
In order to estimate this term we proceed by duality by inferring firstly that:

L 5 ≤ u h ∇ h θ -1 2 ,-s θ 1 2 ,-s
Moreover, lemma 2 gives:

u h ∇ h θ -1 2 ,-s u h 1 2 ,s ∇ h θ 0,-s
It follows that:

L 5 u h 1 2 ,s ∇ h θ 0,-s θ 1 2 ,-s • L 6 estimate:
We use the Bony decomposition:

L 6 = L (1) 6 + L (2) 6 + L (3) 
6 , where:

L (1) 6 := q≥-1 2 2q(-s) |j-q|≤N 0 ∆ v q ∆ v j (u 3 )S v j-1 (∂ 3 θ) , ∆ v q θ L (2) 6 := q≥-1 2 2q(-s) |j-q|≤N 0 ∆ v q S v j-1 (u 3 )∆ v j (∂ 3 θ) , ∆ v q θ L (3) 6 := q≥-1 2 2q(-s) i∈{0,-1,1} j≥q-N 0 ∆ v q ∆ v j+1 (u 3 )∆ v j (∂ 3 θ) , ∆ v q θ
For the first term, we use the Bernstein lemma together with usual sobolev embbeding and the free divergence condition to obtain:

L (1) 6 ≤ C θ 1/2,-s q≥-1 c q 2 -qs 2 q/2 |j-q|≤N 0 S v j-1 θ L 4 h L 2 v ∆ v j ∇ h • u h L 2 θ 1/2,-s θ 1/2,s-1 ∇ h u 0,s q≥-1 c q 2 q(1/2-s) |j-q|≤N 0 c 2 j θ 2 1/2,-s ∇ h u 0,s
For L

(2)

6 we follow the same decomposition used for L

2 , so we write: L

6 = B 1 + B 2 + B 3 , where:

B 1 := q≥-1 2 -2qs S v q (u 3 )∆ v q (∂ 3 θ), ∆ v q θ B 2 := q≥-1 2 -2qs |j-q|≤N 0 S v q -S v j-1 (u 3 )∆ v j (∂ 3 θ), ∆ v q θ B 3 := q≥-1 2 -2qs |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 θ), ∆ v q θ
After integration by parts we obtain:

B 1 = 1 2 q≥-1 2 -2qs S v q (∂ 3 u 3 )∆ v q (θ), ∆ v q θ = 1 2 q≥-1 2 -2qs S v q (∇ h u h )∆ v q (θ), ∆ v q θ θ 1/2,-s q≥-1 c q 2 -qs ∆ v q θ L 4 h L 2 v S v q (∇ h u) L 2 h L ∞ v θ 2 1/2,s-1 ∇ h u 0,s
To estimate B 2 we remark first that S v q -S v j-1 is spectraly supported away from 0 that is we can use lemma 1 and estimate B 2 as A 2 , indeed:

B 2 ≤ C θ 1/2,-s q≥-1 c q 2 -qs |j-q|≤N 0 S v q -S v j-1 ∂ 3 u 3 L 2 h L ∞ v ∆ v j θ L 4 h L 2 v ≤ C θ 1/2,-s q≥-1 c q 2 -qs |j-q|≤N 0 S v q -S v j-1 ∇ h u h L 2 h L ∞ v ∆ v j θ L 4 h L 2 v ≤ C θ 2 1/2,-s ∇ h u 0,s |i|≤N 0 q≥-1 c q c q+i ≤ C θ 2
1/2,-s ∇ h u 0,s Finally for B 3 we use the commutator estimate proved in lemma 3 to obtain:

B 3 θ 1/2,-s q≥-1 c q 2 -qs |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 θ) L 2 Rx 3 ;H -1/2 (R 2 ) θ 1/2,-s q≥-1 c q 2 -qs |j-q|≤N 0 S v j-1 ∇ h u(., x 3 ) L 2 h L ∞ v ∆ v j θ 1/2,0 θ 2 1/2,-s ∇ h u 0,s i∈{0,-1,1} q≥-1 c q c q+i θ 2 1/2,-s ∇ h u 0,s
For L

(3) 6 , by using the same arguments we find:

L (3) 6 θ 1/2,-s q≥-1 c q 2 -qs 2 q/2 i∈{0,-1,1} j≥q-N 0 ∆ v j+i θ L 4 h L 2 v ∆ v j ∇ h • u h L 2 θ 1/2,-s θ 1/2,-s ∇ h u 0,s q≥-1 c q 2 -q(s-1/2) i∈{0,-1,1} j≥q-N 0 c j c j+i θ 2 1/2,-s ∇ h u 0,s • L 7 estimate:
This term can be estimated by using the following property based on product rules in dimension one together with inequality (5):

H s-1 (R) × H 1-s (R) ⊂ B -1 2 2,∞ (R) → H -s
Indeed, based on the Bony decomposition with respect to the vertical variable we write

L 7 = L (1) 7 + L (2) 7 + L (3)
7 , where:

L (1) 7 := q≥-1 2 -2qs |j-q|≤N 0 ∆ v q S v j-1 (w h )∆ v j (∇ h η) , ∆ v q θ L (2) 7 := q≥-1 2 -2qs |j-q|≤N 0 ∆ v q ∆ v j (w h )S v j-1 (∇ h η) , ∆ v q θ L (3) 7 := q≥-1 2 -2qs i∈{0,-1,1} j≥q-N 0 ∆ v q ∆ v j (w h )∆ v j+i (∇ h η) , ∆ v q θ
By using inequality (2), similar arguments give then:

L (1) 7 ≤ θ 1/2,-s q≥-1 c q 2 -q(s-1/2) |j-q|≤N 0 S v j-1 w L 4 h L 2 v ∆ v j (∇ h η) L 2 ≤ ∇ h η 0,1-s w 1/2,s-1 θ 1/2,-s q≥-1 c q 2 -q(s-1/2) |j-q|≤N 0 c 2 j ∇ h η 0,1-s w 1/2,s-1 θ 1/2,-s
For the second term we proceed as follows:

L (2) 7 ≤ θ 1/2,-s q≥-1 c q 2 -q(s-1/2) |j-q|≤N 0 2 1/2(j-q) ∆ v j w L 4 h L 2 v 2 j(s-1) 2 j(1-s-1/2) S v j-1 (∇ h η) L 2 h L ∞ v ≤ ∇ h η B 0,1-s-1/2 ∞,2 w 1/2,s-1 θ 1/2,-s q≥-1 c q 2 -q(s-1/2) |j-q|≤N 0 c 2 j ∇ h η 0,1-s w 1/2,s-1 θ 1/2,-s ,
where we used the embedding

H 0,1-s → B 0,1-s-1/2 ∞,2
and the fact that 1 -s -1/2 < 0. For the last term we proceed as follows:

L (3) 7 ≤ θ 1/2,-s q≥-1 c q 2 -q(s-1/2) i∈{0,-1,1} j≥q-N 0 ∆ v j w L 4 h L 2 v ∆ v j+i (∇ h η) L 2 ≤ ∇ h η 0,1-s w 1/2,s-1 θ 1/2,-s i∈{0,-1,1} q≥-1 c q 2 -q(s-1/2) j≥q-N 0 c j c j+i ∇ h η 0,1-s w 1/2,s-1 θ 1/2,-s • L 8 estimate: We write L 8 = L (1) 8 + L (2) 8 + L (3)
8 where:

L (1) 8 := q≥-1 2 -2qs |j-q|≤N 0 ∆ v q (∆ v j w 3 S v j-1 (∂ 3 η)), ∆ v q θ L (2) 8 := q≥-1 2 -2qs |j-q|≤N 0 ∆ v q (S v j-1 (w 3 )∆ v j ∂ 3 η), ∆ v q θ L (3) 8 := q≥-1 2 -2qs i∈{0,-1,1} j≥q-N 0 ∆ v q (∆ v j w 3 ∆ v j+i (∂ 3 η)), ∆ v q θ
Then for the first term, we have:

L (1) 8 ≤ θ 1/2,-s q≥-1 c q 2 -qs |j-q|≤N 0 ∆ v j w 3 L 2 S v j-1 (∂ 3 η) L 4 h L ∞ v
Now we use:

S v j-1 (∂ 3 η) L 4 h L ∞ v ≤ 2 j c j 2 -j(1-s-1/2) η H 1/2 h (B 1-s-1/2 ∞,2
)v

2 j c j 2 -j(1-s-1/2) η H 1/2,1-s
and:

∆ v j w 3 L 2 ≤ 2 -j c j 2 -j(s-1)
∇ h w H 0,s-1 Therefore we find:

L (1) 8 ≤ θ 1/2,-s ∇ h w H 0,s-1 η H 1/2,1-s q≥-1 c q 2 q(1/2-s) |j-q|≤N 0 c 2 j 2 1/2(j-q) θ 1/2,-s ∇ h w H 0,s-1 η H 1/2,1-s
Next, for the second term:

L (2) 8 ≤ θ 1/2,-s q≥-1 c q |j-q|≤N 0 2 -(q-j)s S v j-1 w 3 L 2 h L ∞ v 2 j(1-s) ∆ v j (η) L 4 h L 2 v ≤ θ 1/2,-s w 3 0,s η 1/2,1-s q≥-1 c q |j-q|≤N 0 c j ≤ θ 1/2,-s w 3 0,s η 1/2,1-s |j|≤N 0 q≥-1 c q c j+q θ 1/2,-s w 3 0,s-1 + ∇ h w 0,s-1 η 1/2,1-s For L (3) 
8 we have:

L (3) 8 ≤ θ 1/2,-s q≥-1 c q 2 -qs 2 q/2 i∈0,-1,1 j≥q-N 0 ∆ v j w 3 L 2 ∆ v j+i (∂ 3 η) L 4 h L 2 v ≤ θ 1/2,-s q≥-1 c q 2 q(1/2-s) i∈0,-1,1 j≥q-N 0 ∆ v j ∇ h w L 2 ∆ v j+i η L 4 h L 2 v ≤ θ 1/2,-s q≥-1 c q 2 q(1/2-s) i∈0,-1,1 j≥q-N 0 2 j(s-1) ∆ v j ∇ h w L 2 2 j(1-s) ∆ v j+i η L 4 h L 2 v θ 1/2,-s ∇ h w 0,s-1 η 1/2,1-s
Finally for the last term, we use the fact that s ≤ 1 which implies that 2s -1 ≤ 1, and that w is a free divergence vector field to infer that:

L 9 = 2 -2(s-1) S v 0 θ, S v 0 w 3 + q≥0 2 2q(s-1) ∆ v q θ, ∆ v q w 3 S v 0 θ L 2 S v 0 w L 2 + q≥0 2 -qs ∆ v q θ L 2 2 q(s-1) 2 q(2s-1) ∆ v q w 3 L 2 S v 0 θ L 2 S v 0 w L 2 + q≥0 2 -qs ∆ v q θ L 2 2 q(s-1) ∆ v q ∇ h • w h L 2 θ 0,-s ∇ h w 0,s-1 + w 0,s-1 2 
In the case where s = 1 2 we can take up again the reasoning in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], by estimating both equations in the same space H 0,-1 2 . Note also that the terms u • ∇u and u • ∇ρ can be treated along the same way. More precisely one may prove the following proposition:

Proposition 2. Let u, v, ρ and η be in space L ∞ T (H 0, 1 2 ) with ∇ h u, ∇ h v, ∇ h ρ, ∇ h η in L 2 T (H 0, 1 2
) and u, v two divergence free vector fields. Let w, θ be in

L ∞ T (H 0, 1 2 ) with ∇ h w and ∇ h θ in L ∞ T (H 0, 1 2 ) solution of:    ∂ t w + u • ∇w -∆ h w + ∇ = θe 3 -w • ∇v ∂ t θ + u • ∇θ -∆ h θ = -w • ∇η div(w) = 0 , and 
χ(t) := w(t) 2 0,-1 2 + θ(t) 2 0,- 1 2 
. For all 0 < t < T , if χ(t) ≤ e -2 , then we have:

d dt χ(t) ≤ Cf (t)χ(t) 1 -lnχ(t) ln 1 -lnχ(t) , (7) 
where f is a locally integrable function depending on the norms of u, v, w, ρ, η, θ in H 0, 1 2 ∩H 1, 1 2

Proof

As mentioned before, the proof is essentialy based on [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], indeed by following lemma 4.2 from [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] we infer that:

d dt w(t) 2 0,-1 2 ≤ Cf 1 (t) w(t) 2 0,-1 2 1 -ln w(t) 2 0,-1 2 ln 1 -ln w(t) 2 0,- 1 2 + Cχ(t) 
where:

f 1 = 1 + u 2 1, 1 2 + v 2 1, 1 2 + w 2 1, 1 2 × 1 + ∇ h u 2 1, 1 2 + ∇ h v 2 1, 1 2 + ∇ h w 2 1, 1 2 
Note that, for 0 < x << 1, the function x -→ x(1 -ln(x))ln(1 -ln(x)) is non-decreasing. Then, for χ(t) small enough, and following the same approach in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] we can prove that:

d dt w(t) 2 0,-1 2 ≤ Cf (t)χ(t) 1 -lnχ(t) ln 1 -lnχ(t) (8) 
d dt θ(t) 2 0,-1 2 ≤ Cf (t)χ(t) 1 -lnχ(t) ln 1 -lnχ(t) (9) 
consequently by summing together ( 8) and ( 9) we obtain [START_REF] Hmidi | Global well-posedness for the Euler-Boussinesq system with axisymmetric data[END_REF].

2
4 Proof of the Theorems

Proof of Theorem 1

Let (u, ρ, P ), (v, η, Π) be two solutions for system (N SB h ), and w := u -v, θ := ρ -η, := P -Π denotes the difference functions. Then (w, θ, ) satisfies

(Q)        ∂ t + u • ∇ w -∆ h w + ∇ = θe 3 -w • ∇v ∂ t + u • ∇ θ -∆ h θ = -w • ∇η ∇ • w = 0 w |t=0 = θ |t=0 = 0
• The case: s = 1/2 Recall first that by interpolation, we have:

w 1/2,s-1 w 1/2 0,s-1 ∇ h w 1/2 0,s-1 θ 1/2,-s θ 1/2 0,-s ∇ h θ 1/2 0,-s
An easy consequence of the Young inequality tells that for any non negative real numbers a, b, A, B, D with a + b = 2, there exists C > 0 such that:

A a B b D ≤ 1 100 B 2 + CA 2 D 2/a .
Hence by using these last inequalities in an appropriate way together with the estimates given in Proposition 1, it is not difficult to prove that:

9 i=1 L i ≤ 1 2 ∇ h w 2 0,s-1 + ∇ h θ 2 0,-s + f (t) w 2 0,s-1 + θ 2 0,-s , ( 10 
)
where f is a locally in time integrable function given by:

f (t) = C u 4 1/2,s + u 2 0,s + ∇ h v 2 0,s + v 4/3 1/2,s + ∇ h η 2 0,s + η 4 1/2,s + 1
On the other hand, by applying the operator ∆ v q to (Q), and by summing with respect to q ∈ N ∪ {-1}, then (10) leads to:

w(t) 2 0,s-1 + θ(t) 2 0,-s ≤ t 0 f (τ ) w(τ ) 2 0,s-1 + θ(τ ) 2 0,-s dτ
Finally, we can conclude by using Gronwall 's lemma.

• The case: s = 1/2

The uniqueness in this case can be deduced by applying the Osgood lemma to the estimate given in Proposition 2.

Proof of Theorem 2

The uniqueness result in Theorem 2 is a direct consequence of Theorem 1 when we take s = 1. We have then only to prove the existence of a global solution (u, ρ) for (N SB h ). The arguments given hereafter, based on the Friedrichs method, are very classical. (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Paicu | Fluides incompressible horizontalement visqueux[END_REF][START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF][START_REF] Danchin | Paicu Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] for more details)

For n ∈ N, we consider the following approximate system:

(N SB h ) n            ∂ t u n + E n (u n • ∇u n ) -∆ h u n + ∇P n = ρ n e 3 ∂ t ρ n + E n (u n • ∇ρ n ) -∆ h ρ n = 0 div(u n ) = 0 P n = E n k,j (-∆) -1 ∂ j ∂ k (u j n u k n ) (u n , ρ n ) |t=0 = (E n u 0 , E n ρ 0 ),
where E n denotes the cut-off operator defined on L 2 (R 3 ) by E n u := F -1 (1 B(0,n) û). It is then easy to see by using a fixed point argument that there exists some T n > 0 for which (N SB h ) n admits a unique solution (u n , ρ n ) ∈ C ∞ ([0, T n [, L 2,σ n ), where :

L 2,σ n := L 2,σ n × L 2 n (R 3 ) L 2,σ n := v ∈ L 2 (R 3 ) 3 : ∇ • v = 0 and Supp (v) ⊂ B(0, n) L 2 n (R 3 ) := ρ ∈ L 2 (R 3
) : Supp (ρ) ⊂ B(0, n) Moreover because u n and ρ n are regular, we can multiply the first equation in (N SB h ) n by u n and the second one by ρ n . Then, for t ∈ [0, T n [, after integrating the corresponding terms over [0, t[×R 3 , we obtain the classical uniform L 2 -energy bounds:

u n (t) 2 L 2 + 2 t 0 ∇ h u n (τ ) 2 L 2 dτ ≤ 2( u 0 2 L 2 + t 2 ρ 0 2 L 2 ) (11) ρ n (t) 2 L 2 + 2 t 0 ∇ h ρ n (τ ) 2 L 2 dτ ≤ ρ 0 2 L 2 (12) 
Hence (u n , ρ n ) is a global solution, that is for any 3 . Moreover, we may extract a subsequence, still denoted (u n , ρ n ), such that:

T > 0 : (u n , ρ n ) ∈ C ∞ ([0, T [, L 2,σ n ) and it satisfies (N SB h ) n on [0, T [×R
(u n , ρ n ) * (u, ρ) in L ∞ T L 2 ∩ L 2
T H 1,0 . However, in order to pass to the limit in the non-linear terms, we will need some strong convergence property. To this end we can use the proposition 3.2 established in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF]. We obtain:

u n (t) 2 H 1 + t 0 ∇ h u n (τ ) 2 H 1 dτ ≤ C 0 e C 0 t It follows that u n is uniformly bounded in L ∞ T H 1 ∩ L 2 T (H 1,1 ∩ H 2,0
). Assume temporarily that:

L ∞ T L 2 ∩ L 2 T H 1,0 ∩ L ∞ T H 0,1 ∩ L 2 T H 1,1 → L 4 T L 2 v (L 4 h ) ∩ L 4 T L ∞ v (L 4 h ) (13) 
we infer that:

• u n is bounded in L 4 T L 2 v (L 4 h ) ∩ L 4 T L ∞ v (L 4 h ) • ρ n is bounded in L ∞ T L 2 ∩ L 2 T H 1,0 → L 4 T L 2 v (L 4 h ) Hence ∇P n , div(u n ρ n ) and div(u n ⊗ u n ) are bounded in L 2 T H -1
, and this gives a bound for ∂ t u n and ∂ t ρ n in L 2 T H -1 . We can then use Aubin's theorem in order to extract a new subsequence (still denoted (u n , ρ n )) that strongly converges to (u, ρ) in L 2 T L 2 . Now, we can pass to the limit n → ∞ in all the terms in (N SB h ) n , and we show that (u, ρ) is a solution of (N SB h ).

For the sake of completeness, we shall justify [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF]. Let a ∈ S(R 3 ) and s > 1 2 (note that in inequality [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] s is equal to 1). By using the lemma 1, we obtain for some non-negative number N to be fixed later:

a L 4 h (L ∞ v ) ≤ k≥-1 j≥-1 ∆ h k ∆ v j a L 4 h (L ∞ v ) ≤ N ≥k≥-1 j≥-1 2 k 2 2 j( 1 2 -s) 2 js ∆ h k ∆ v j a L 2 + k≥N +1 j≥-1 2 -k 2 2 j( 1 2 -s) 2 js ∇ h ∆ h k ∆ v j a L 2
Hence, because s > 1 2 and j ≥ -1, the Cauchy-Schwarz inequality gives:

a L 4 h (L ∞ v ) 2 N 2 a L 2 h (H s )v + 2 -N 2 ∇ h a L 2 h (H s )v Therefore, by choosing N such that 2 N = ∇ h a L 2 h (H s )v a L 2 h (H s )v
, we obtain:

a L 4 h (L ∞ v ) a 1 2 L 2 h (H s )v ∇ h a 1 2 L 2 h (H s )v
On the other hand, the Minkowski inequality ensures that L

4 h (L ∞ v ) → L ∞ v (L 4 h
). This is sufficient to conclude the proof of (13).

Appendix

In this additional section we prove a result of well posedeness for (N SB h ) under some smallness conditions on: T , the norm of u 0 in H 0,s (R 3 ) and the norm of ρ in L 2 (R 3 ). This result may not be optimal in this direction, but it gives the existence of a solution in a some new 3 situations where the Theorem 1 concerning the uniqueness can be applied:

Theorem 3. Let s ∈]1/2, 1] , δ ∈ [0,
s] and (u 0 , ρ 0 ) ∈ H 0,s × H 0,δ . We have:

• There exists C 0 > 0 such that if u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 0 then (N SB h ) has at least one solution (u, ρ) in X s,δ (T )
, where:

X s,δ (T ) := L ∞ T H 0,s ∩ L 2 T H 1,s × L ∞ T H 0,δ ∩ L 2 T H 1,δ • The solution is unique if δ ≥ 1 -s Remark 1.
In the case where s = 1 2 , one may prove a similar result by taking the initial data u 0 in L 2 h (B

1 2
2,1 ) v . See for instance [START_REF] Paicu | Fluides incompressible horizontalement visqueux[END_REF] where this is established for (N S h )

The proof of the existence part in theorem 3 requires the following lemma:

Lemma 5. Let s ∈]1/2, 1], δ ∈ [0, s]
, then for all regulars vector fields a, b with ∇ • a = 0, we have:

a • ∇b, b 0,δ b 1/2,δ a 1,s b 1/2,δ + a 1/2,s b 1,δ (14) 
ρ, a 3 0,s ≤

1 4 ρ L 2 a L 2 + ρ L 2 ∇ h a 0,s (15) 
Proof In order to prove [START_REF] Paicu | Fluides incompressible horizontalement visqueux[END_REF], we follow the same approach as in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], so we write:

a • ∇b, b 0,δ = a h • ∇ h b, b 0,δ + a 3 ∂ 3 b, b 0,δ (16) 
We remark next that lemma 2 gives H 1/2,s × H 0,δ -→ H -1/2,δ , which implies:

a h • ∇ h b, b 0,δ b 1/2,δ a h • ∇ h b -1/2,δ b 1/2,δ a 1/2,s b 1,δ 3 
We have already treated in Theorem 2 some particular situations with axisymmetric initial data.

It remains now only to estimate the second term in the right hand side of [START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF]. Indeed, Bony's decomposition tells that:

∆ v q (a 3 ∂ 3 b) = ∆ v q k≥q-N 0 S k+2 (∂ 3 b)∆ v k a 3 + |q-k|≤N 0 S k-1 a 3 ∆ v k b (17) 
Note then firstly that:

S k+2 (∂ 3 b) L 4 h L 2 v ≤ m≤k+1 2 m(1-δ) 2 δm ∆ v m b L 4 h L 2 v ≤ m≤k+1 2 2m(1-δ) 1/2 b 1/2,δ 2 k(1-δ) b 1/2,δ
Moreover, by using the fact that ∂ 3 a 3 = -∇ h • u h together with the lemma 1, we obtain:

∆ v k a 3 L 2 ≤ C2 -k ∆ v k ∇ h • u h L 2
This implies:

∆ v q k≥q-N 0 S k+2 (∂ 3 b)∆ v k a 3 , ∆ v q b ∆ v q b L 4 h L 2 v 2 q/2 k≥q-N 0 S k+2 (∂ 3 b) L 4 h L 2 v ∆ v k a 3 L 2 ∆ v q b L 4 h L 2 v 2 q/2 k≥q-N 0 2 -kδ b 1/2,δ ∆ v k ∇ h u L 2 b 1/2,δ u 1,s 2 -qδ c q b 1/2,δ 2 q/2 k≥q-N 0 2 -k(δ+s) c k b 2 1/2,δ u 1,s 2 -2qδ c q 2 q(1/2-s)
Hence, thanks to the assumption s > 1/2 we infer that:

k≥-1 S k+2 (∂ 3 b)∆ v k a 3 , b 0,δ b 2 1/2,δ u 1,s
In order to estimate the second term in the right hand side of (17), we use the decomposition proposed in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF]:

∆ v q |q-k|≤N 0 S k-1 a 3 ∆ v k b, ∆ v q b = S q (a 3 )∂ 3 ∆ v q b, ∆ v q b + |q-k|≤N 0 ∆ v q , S k-1 a 3 ∂ 3 ∆ v k b, ∆ v q b + |q-k|≤N 0 S q -S k-1 a 3 ∆ v k ∂ 3 b, ∆ v q b := J q 1 + J q 2 + J q 3 
By using an integration by parts, we obtain:

J q 1 = S q (a 3 )∂ 3 ∆ v q b, ∆ v q b = 1 2 S q (∂ 3 a 3 )∆ v q b, ∆ v q b
which shows that this term can be estimated in the same way as ∇ h a • b, b due to the divergence free condition. We get:

q≥-1

2 2qδ S q (a 3 )∂ 3 ∆ v q b, ∆ v q b a 1,s b 2 1/2,δ
Next from lemma 3, it easly follows:

q≥-1

2 2qδ J q 2 = q≥-1 2 2qδ |q-k|≤N 0 ∆ v q , S k-1 a 3 ∂ 3 ∆ v k b, ∆ v q b a 1,s q≥-1 2 2qδ ∆ v q b 1/2,0 a 1,s b 2 1/2,δ
Finally the term J q 3 can be estimated just like S k-1 a 3 ∆ v k b, ∆ v q b because the support of S q -S k-1 is included in an annulus in Fourier side. This ends the proof of [START_REF] Paicu | Fluides incompressible horizontalement visqueux[END_REF]. In order to prove [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], we use the fact that ∇ • a = 0 together with s -1 ≤ 0 to obtain: ρ, a 3 0,s = 2 -2s S 0 ρ, S 0 a 3 + q≥0

2 2qs ∆ v q ρ, ∆ v q a 3 ≤ 1 4 S 0 ρ L 2 S 0 a L 2 + q≥0 ∆ v q ρ L 2 2 q(s-1) 2 qs ∆ v q ∂ 3 a 3 L 2 ≤ 1 4 S 0 ρ L 2 S 0 a L 2 + q≥0 ∆ v q ρ L 2 2 qs ∆ v q ∇ h a L 2 ≤ 1 4 ρ L 2 a L 2 + ρ L 2 ∇ h a 0,s ,
This concludes the proof of lemma 5 2

Proof of Theorem 3

The uniqueness part of theorem 3 is clearly a direct consequence of Theorem 1. Hence it remains only to prove the existence part. This can be done in a similar way than explained in the proof of Theorem 2, and in particular the construction of the approximate sequence (u n , ρ n ) does not add any difficulty. However, the uniform bounds must now be obtained in some new adequate norms. For simplicity, in the following we will drop the index of the approximate sequence.

We apply ∆ v q in both equations for u and ρ from (N SB h ), then we multiply the first equation by ∆ v q u, the second one by ∆ v q ρ and we sum over q ≥ -1 to obtain: d 2dt u(t) 2 0,s + ∇ h u(t) 2 0,s ≤ u • ∇u, u 0,s + ρ, u 3 0,s

d 2dt ρ(t) 2 0,δ + ∇ h ρ(t) 2 0,δ ≤ u • ∇ρ, ρ 0,δ (18) 
We prove firstly an uniform bound for u by using the L 2 -energy estimate of ρ and u. Indeed, by taking a = b = u in lemma 5, then (18) gives:

d dt u 2 0,s + 2 ∇ h u 2 0,s ≤ ρ L 2 u L 2 + ∇ h u 2 0,s + ρ 2 L 2 + C u 0,s ∇ h u 2 0,s (20) 
If we assume that:

u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 0 ≤ 1 4C 2 (21) 
then, we have: u 0 0,s < C 0 .

Let us now asssume that there exists T max ∈]0, T [ satisfying:

T max := inf{t ∈ [0, T ] : u(t) 0,s = C 0 } It follows that ∀t ∈ [0, T max [: u(t) 0,s < C 0 < 1 2C . By using this last inequality in (20), and by integrating over [0, t[, we obtain for all t ∈ [0, T max [:

u(t) 2 0,s + 1 2 t 0 ∇ h u(τ ) 2 0,s dτ ≤ u 0 2 0,s + t 0 ρ(τ ) 2 L 2 + u(τ ) L 2 ρ(τ ) L 2 dτ
Hence, by using the L 2 energy estimate for ρ and u given by ( 11) and ( 12), we infer that: u(t) 2 0,s ≤ u 0 2 0,s + t ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + t 2 ∀t ∈ [0, T max [, then by using (21) and passing to the limit t -→ T max , we obtain:

C 2 0 ≤ u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 0 ,
which contradicts the existence of T max and gives for all t ∈ [0, T ]: u(t) 0,s < C 0 . Therefore we have proved an uniform bound of u in L ∞ T H 0,s . Plugging this bound into (20) gives a bound for u in L 2 T H 1,s . Note that by using an argument of interpolation, this also gives a bound of u in L 4

T H 1/2,s .

Next, we can estimate the right hand side of (19) by using lemma 5 with a = u and b = ρ. We obtain after some calculations:

d dt ρ(t) 2 0,δ + 2 ∇ h ρ(τ ) 2 0,δ dτ ≤ ∇ h ρ 2 0,δ + CA(t) ρ(t) 2 0,δ ,
where A(•) = ∇ h u(•) 2 0,s + u(•) 4 1/2,s ∈ L 1 T Finally, by applying Gronwall 's lemma we obtain the adequate bound for ρ.

Recall that this argument permits to prove the uniqueness of weak-solution for the classical Navier-Stokes problem in dimension two.

We should mention that the existence of solution in such scaling-invariant space is still an open problem even for the classical Navier-Stokes system.