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Abstract

We consider an optimal dividend and capital structure problem for a firm which

holds a certain amount of debt to which is associated a financial-ratio covenant between

the creditors and the firm. We study optimal policies under a bankruptcy framework

using a mixed reduced and structural approach in modelling default and liquidation

times. Once in default, the firm is given a grace period during which it may inject

more capital to correct the situation. The firm is liquidated if, by the end of the grace

period, assets do not exceed the debt.

Under this setup, we maximize the discounted amount of dividends distributed mi-

nus the capital injected up to the time of bankruptcy. It gives rise to a two-dimensional

singular control problem leading to a non-standard system of variational inequalities.

Beyond the usual viscosity characterization, we completely solve this problem and ob-

tain a description of the continuation, dividend and capital injection regions enabling

us to fully characterize the optimal policies. We conclude the paper with numerical

results and illustrations.
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1 Introduction

We consider an optimal dividend and capital structure problem for a firm which holds a

certain amount of debt to which is associated a financial-ratio covenant between the creditors

and the firm. To be more precise, we study dividend and issuance of equity policies under

a new bankruptcy framework.

The theory of capital structure is at the center of corporate finance problems. A firm’s

capital structure is an inherent feature of many mathematical models of credit risk and

optimal dividend and investment problems. Made popular by Merton [19], the structural

approach to credit risk consists in modelling the dynamics of a firm’s assets and debts,

and making assumptions about the default and liquidation mechanism. The Merton model

assumes a very simple debt design that consists of a single bond with a fixed maturity. The

firm defaults if its assets are lower than the face value of the debt at the time of maturity.

Black and Cox [2] extended this model by considering the debt structure which allows default

at any time before maturity. Under the above and simple definition of a firm’s default, the

objective of both Merton [19] and Black and Cox [2] is to study the firm’s credit risk, in

particular the pricing of its debt and its enterprise value.

It is under this simple capital structure framework that most optimal dividend and

investment problems have so far been investigated. For instance, Jeanblanc and Shiryaev

[11], Asmussen and Taksar [1], Choulli et al. [6], Choulli et al. [7], Sethi and Taksar [21],

Décamps and Villeneuve [9], Ly Vath et al. [17], Jin et al. [12], and Chevalier et al. [5]

assume that the firm goes bankrupt and ceases operations when its cash reserves (as a proxy

for the firm’s assets) hits zero. In other words, the level of debt held by a firm is assumed

to be zero.

Jeanblanc and Shiryaev [11] and Asmussen and Taksar [1] are among the first studies on

optimal dividend policy and consider a stochastic process which represents the cash reserves

of the firm. Since then, many studies on dividend policy have been carried solely or in com-

bination with other control problems such as investment policies. Choulli et al. [7] propose

a model in which a firm must decide between different production options with differing

expected returns, with restrictions on dividend rates. Décamps and Villeneuve [9] and Ly

Vath et al. [17] study the interactions between dividend policies and investment decisions

in a growth opportunity and under uncertainty whereas Chevalier et al. [5] considers an

optimal dividend and investment problem under liquidity constraints.

Chevalier et al. [4] consider a more complex debt structure in which the manager may

decide to incur more debt at the cost of higher interest rates. Once again, they assume

that the firm defaults and gets liquidated when the cash reserves fall below the current debt

level, which is, however, no longer assumed to be zero. Other studies focus on the combined

optimal dividend and issuance of equity problem, see for instance Lokka and Zervos [16], Z.

Jin et al. [14], Z. Jin and G. Yin [13], and Keppo and Peura [15].

As stated earlier, all the above discussed studies assume that when a firm’s assets value

reach its debt level, the firm goes bankrupt and gets liquidated. However, in practice, the
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liquidation of a firm is a more complex event. For instance, Makarov et al. [18], and Yildirim

[22] price defaultable bonds in a setup in which the liquidation mechanism assumes that the

firm’s assets must first cross a default threshold and then spend a cumulative amount of

time below that barrier in order for the bondholders to be allowed to step in and liquidate

the firm. This distinction between default time and liquidation time may be best illustrated

by the US bankruptcy code and its Chapters 11 and 7, see for instance Broadie et al. [3].

Indeed, firms may file for protection from liquidation under Chapter 11 and get a grace

period to restructure its debts and activities. Chapter 7, i.e. liquidation, is only triggered

when the company has not managed to get itself out of default during the allowed time.

In this paper, we are assuming a similar standard bankruptcy process which distinguishes

default and liquidation times in the study of our optimal dividend and issuance of equity

problem. We consider a firm that holds a certain amount of debt to which is associated a

financial-ratio covenant between the creditors and the firm. We assume that the firm may

get into default when it is under financial distress, i.e., when its debt-to-assets ratio is less

than one. Once in default, the firm is given a grace period during which it can inject more

capital to correct the situation. The firm is liquidated if, by the end of the grace period,

assets do not exceed the debt. Moreover, as part of the debt covenants, the firm can only

pay out dividends to stockholders when its debt-to-assets ratio is less than one. However,

in the modelling of default time, we do not consider the usual structural approach as in

Broadie et al [3], Makarov et al. [18], and Yildirim [22] which assume that default occurs

exactly at the time when an underlying process hits a bound, i.e. the very moment when

the firm goes under financial distress. In our study, we consider a reduced model for default

which occurs at the first jump of a counting process once an underlying process representing

the firm’s assets value is below a threshold D corresponding to the firm’s debt level. In

our case, default time is no longer predictable as required in most credit risk models. Our

liquidation time is still based on structural model and occurs when the firm’s assets value

hits zero or has not reached the upper threshold D before the end of the grace period.

Our objective is to study a dividend and issuance of equity problem under this new frame-

work using a mixed reduced and structural approach in modelling default and liquidation

times. To our knowledge, this approach is the first attempt to study optimal dividend and

issuance of equity while incorporating such complex capital structure constraints. In terms

of mathematical modelling, this gives rise to a two-dimensional singular control problem

leading to an atypical and non-standard system of variational inequalities. It is well-known

that two-dimensional non-degenerated singular control problems are a major challenge when

one expects to get beyond the usual viscosity characterization and obtain a full qualitative

description of the optimal policies. This is precisely the results we obtained, a complete

description of the continuation, dividend and capital injection regions enabling us to fully

describe the optimal policies. This complete qualitative description of different regions may

only be obtained by introducing an optimal stopping time on a related reflected diffusion

process. Solving this optimal stopping-time problem allows us to characterize the optimal

issuance of capital policy during the grace period.
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In the next section, we present the model and some basic properties. In Section 3,

we show that the value function is the unique continuous viscosity solution of a system

of variational inequalities. In Section 4, we describe the regions of the domain where it

is optimal to inject capital and payout dividends. We conclude the paper with numerical

illustrations in Section 5.

2 The model and first properties of the value function

The firm holds a fixed amount of debt D ≥ 0. Associated to this debt are covenants between

the creditors and the firm. We consider a debt covenant based on the firm’s debt to total

assets ratio. Under this debt covenant, the firm’s financial statement may be audited at any

time. If the financial ratio constraint is not satisfied, the firm is declared under default and

a grace period starts. Creditors then declare the firm bankruptcy at the end of the grace

period if the situation has not improved which means that the ratio constraint has not been

satisfied and the default still uncleared before the end of the grace period.

2.1 The model

Under the total assets ratio, the firm is in financial difficulty when the total value of its

asset at time t, denoted by Xt, is less than D, the value of the debt. The firm can increase

its capital at any time by issuing more equity, including during a grace period in order to

decrease its debt to asset ratio to less than 1. However, the firm is not allowed to borrow

more at this time to increase assets since this action would also increase the debt level. On

the other hand, the firm can pay out dividends when it is not in financial distress. The

cumulative sum that has been injected into the firm at time t is denoted by Kt, whereas the

total amount of dividends paid up to time t is Zt.

When the firm is in financial distress, it may go to default at any time. The probability that

a default occurs in the time interval [t, t+dt) is λdt, with λ > 0. In other words, the default

time is given by the first jump of a Poisson process N with intensity λ. The firm enters a

grace period if Xt < D at the default time. When the firm is under default, bankruptcy is

defined in terms of a grace period of δ units of time. In other words, the firm is declared

bankrupt when it has spent a continual period of time δ in financial distress from the last

default time or if the value of its assets hits zero (which can happen even if the firm is not

currently declared under default). As such, we introduce the default process defined as

dIt = 1l{Xt<D}(1− It)dNt − Itd1l{Xt≥D}. (2.1)

The default indicator equals 1 when the firm is under default, and 0 otherwise. The process
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X is assumed to satisfy the following stochastic differential equation:

dXt = µ(Xt)dt+ σ(Xt)dWt + (1− κIt)dKt − (1 + κ′)dZt, (2.2)

with κ0 ≤ κ1, κ
′ constants in (0, 1). The constants κ0, κ1 and κ′ respectively represent

proportional costs that must be paid to inject capital in favorable and unfavorable cases

and to payout dividends. The functions µ and σ defined on R are deterministic, Lipschitz

continuous, and satisfy the following linear growth assumption:

| µ(x) | + | σ(x) |≤ C(1+ | x |). (2.3)

We also define the duration Ξt that X has spent under D since the last time before t that

the firm went to default:

Ξt = Ξ01l{inf{s≤t:Is=0}>δ−Ξ0} + t− sup{s ≤ t : Is = 0}, (2.4)

with the convention sup ∅ = 0 and inf ∅ = +∞. The dynamic of Ξ is the following

dΞt = 1l{It=1}dt+ Ξt−dIt. (2.5)

The bankruptcy time is given by

T = inf{t ≥ 0 : Xt < 0 or Ξt > δ}. (2.6)

We define the state space (with a slight abuse of notation) as S = S0 ∪ S1, with

S0 = [0,+∞) and S1 = [0, δ]× [0, D]. (2.7)

The firm is in financial distress and under default (It = 1) when (Ξt, Xt) ∈ S1\({0} × [0, D)) .

Note that when (Ξt, Xt) ∈ {0} × [0, D) both It = 1 and It = 0 are possible.

Value functions of the optimization problem are then respectively defined by

v0(x) := sup
(Z,K)∈A

Ex,0
∫ T

0

e−ρs d(Zs −Ks), x ∈ S0, (2.8)

v1(ς, x) := sup
(Z,K)∈A

Eς,x,1
∫ T

0

e−ρs d(Zs −Ks), (ς, x) ∈ S1, (2.9)

when the firm is not under default (I = 0) and when it is under default (I = 1).

Here, ρ > 0 is a discount rate, Eς,x,i is the conditional expectation given that X0− = x,

Ξ0 = ς and I0− = i (ς is omitted when the firm is not under default), and

A = {(Z,K) ∈ I2
F : ∀t ≥ 0, Zt − Zt− ≤ (Xt− −D)+ and

∫ +∞

0

1l{It=1}dZt = 0}
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is the set of admissible dividend and capital injection policies. IF denotes the set of non

decreasing and F-predictable processes. We also use the notation

A0 = {K : (Z,K) ∈ A, Z ≡ 0}.

2.2 Upper bound for the value function

Throughout the paper, we make the following standing assumption:

sup
x≥0

(µ(x)− ρx) < +∞.

This condition will guarantee that the value of the firm is finite as in the next proposition.

Proposition 2.1. For any x ≥ 0, we set f(x) := x
1+κ′

+ 1
ρ

supx≥0(µ(x)− ρx), and we have

v0(x) ≤ f(x) on S0 and v1(ς, x) ≤ f(x) on S1.

Proof: We introduce an arbitrary control α = (Z,K) ∈ A. For m > 0, we set

θm = inf{t ≥ 0 : Ξt ≥ δ − 1

m
, or Xt ≤ 1/m}.

Notice that θm ↗ T a.s. when m goes to infinity. We apply Itô’s formula to (e−ρtf(Xt))t≥0

between 0 and θm :

e−ρθmf(Xθm) = f(X0) +

∫ θm

0

e−ρt(Lf − ρf)(Xt) dt−
∫ θm

0

e−ρtf ′(Xt)d(Zc
t −Kc

t )

+
∑

0≤t≤θm

e−ρt [f(Xt)− f(Xt−)] +

∫ θm

0

e−ρtσ(Xt)f
′(Xt)dBt.

where Lf(x) := σ(x)2

2
∂2f
∂x2

+ µ(x)∂f
∂x

, Zc and Kc are the continuous parts of Z and K.

As f(x) := x
1+κ′

+ C where C := 1
ρ

supx≥0(µ(x)− ρx), we have

e−ρθmf(Xθm) = f(X0) +
1

1 + κ′

∫ θm

0

e−ρt(µ(Xt)− ρXt − ρC) dt

− 1

1 + κ′

∫ θm

0

e−ρtd((1 + κ′)Zc
t − (1− κI0)Kc

t )

+
1

1 + κ′

∑
0≤t≤θm

e−ρt [Xt −Xt− ]

+
1

1 + κ′

∫ θm

0

e−ρtσ(Xt)dBt.
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As κ′, κ0, and κ1 > 0, by taking expectation in the above equation, we get

E
[
e−ρθmf(Xθm)

]
≤ f(X0)− E

[∫ θm

0

e−ρtd(Zt −Kt)

]
.

Recall that f(y) ≥ 0, by sending m to infinity, it follows from Fatou’s lemma that:

f(X0) ≥ E
[∫ T

0

e−ρtd(Zt −Kt) + e−ρTf(XT )

]
≥ E

[∫ T

0

e−ρtd(Zt −Kt)

]
(2.10)

As this is true for any initial state (I0,Ξ0, X0) and any arbitrary control (Z,K) ∈ A. This

concludes the proof.

�

2.3 Dynamic programming

We start this section with the introduction of a notation that will be used throughout the

paper.

Hitting times: For y ∈ [0, D], we define the hitting times

θy,− = inf{t ≥ 0 : Xt ≤ y} and θy,+ = inf{t ≥ 0 : Xt ≥ y}. (2.11)

In this setting, the dynamic programming principle (DPP) that we shall use is the following:

Dynamic Programming Principle (DPP):

Let τ = inf{t ≥ 0 : It = 1} be the first default time. For all stopping times ν and all x ∈ S0,

we have the following dynamic programming principle for v0:

v0(x) = sup(Z,K)∈A Ex,0
[ ∫ ν∧τ∧T

0
e−ρs d(Zs −Ks) +e−ρνv0(Xν)1l{ν<τ∧T} (2.12)

+e−ρτv1(0, Xτ )1l{τ≤ν∧T}

]
.

For all (ς, x) ∈ S1 and stopping times ν taking values in [0, δ − ς], we have the following

dynamic programming principle for v1:

v1(ς, x) = sup(Z,K)∈A Eς,x,1
[
−
∫ ν∧θD,+∧T

0
e−ρt dKt +e−ρνv1(Ξν , Xν)1l{ν<T∧θD,+} (2.13)

+e−ρθ
D,+

v0(XθD,+)1l{θD,+≤T∧ν}

]
.

Remark 2.1. Note that {θD,+ = T} = ∅ and v1(δ, x) = g(x), where we have set

g(x) := max(v0(D)− (D − x)/(1− κ1), 0), on [0, D]. (2.14)
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Indeed, for x ∈ [0, D], one could issue capital up to D or go to bankruptcy, so we obviously

have v1(δ, x) ≥ g(x). Moreover, equation (2.13) gives that

v1(δ, x) = max

(
sup
a≥0

[
− a+ v0 (D + (1− κ1)a)

]
− D − x

1− κ1

; 0

)
≤ max

(
sup
a≥0

[
− a+ v0(D) +

1− κ1

1− κ0

a
]
− D − x

1− κ1

; 0

)
= max

(
v0(D)− D − x

1− κ1

; 0

)
= g(x).

Under default, we guess that, when it is optimal to clear the default, capital has to be issued

up to D and not more. Indeed when default is cleared the cost of issuing new capital is then

lower. Consequently, we now prove that we can restrict the set of admissible strategies to

these strategies. The following Corollary of the DPP states that if default is cleared at time

t before Ξt = δ, we can assume that Xt = D.

Corollary 2.1. For all (ς, x) ∈ S1 and stopping times ν,

v1(ς, x) = ṽ1(ς, x) := sup
K∈A0

Eς,x,1
[
−
∫ (ν∧θD,+∧T )−

0

e−ρtdKt − e−ρν∆Kν1l{ν<T∧θD,+∧(δ−ς)}

+e−ρνv1(Ξν , Xν)1l{ν<T∧θD,+∧(δ−ς)} + e−ρνg(Xν−)1l{ν=(δ−ς)∧θD,+<T}

]
.

Note that, starting from (ς, x) ∈ S1, we have Ξν = ν + ς on {ν < T ∧ θD,+ ∧ (δ − ς)}.

Proof: On [0, D], we havev0(x) ≤ v0(D) + (x − D)/(1 − κ0) ≤ v0(D) + (x − D)/(1 − κ1).

Hence, by Equation 2.13, on S1, v1 is less or equal to ṽ1.

For any K ∈ A0, consider the strategy K̃ such that K̃s = Ks for all s < δ − ς, and

K̃s =


Kδ−ς − (X(δ−ς) −D)+/(1− κ1), if s = δ − ς,
KθD,+ − (XθD,+ −D)/(1− κ1), if s = θD,+,

Ks, otherwise.

Then, (Z, K̃) ∈ A and, if we denote by X̃ the process X controlled by K̃, T̃ its bankruptcy

time and θ̃D,+ its associated hitting time of D. Notice that we have θ̃D,+ = θD,+ and T̃ = T .

Therefore, we have
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v1(ς, x) ≥ E
[
−
∫ ν∧θ̃D,+∧T̃

0

e−ρtdK̃t + e−ρνv1(Ξν , X̃ν)1l{ν<T̃∧θ̃D,+} + e−ρθ̃
D,+

v0(X̃θ̃D,+)1l{θ̃D,+<T̃∧ν}

]
= E

[
−
∫ (ν∧θD,+∧T )−

0

e−ρtdKt − e−ρν(∆Kν − v1(Ξν , Xν))1l{ν<T∧θD,+∧(δ−ς)}

+e−ρ(θD,+∧(δ−ς))g(XθD,+∧(δ−ς))1l{θD,+∧(δ−ς)<T∧ν}

]
.

Therefore, v1(ς, x) ≥ ṽ1(ς, x). �

2.4 Analytical properties of the value functions

In this section, we study the limit of the value function on the domain boundaries, establish

some monotonicity results and prove that the value functions are continuous.

Proposition 2.2. The function v1 satisfies the following limits on the boundary of S1:

i) limh↓0 supx∈[0,D] |v1(δ − h, x)− v1(δ, x)| = 0, and v1(δ, x) = g(x), for all 0 ≤ x ≤ D,

ii) limh↓0 v1(ς,D − h) = v0(D) = v1(ς,D) for all 0 ≤ ς ≤ δ,

iii) limh↓0 v1(ς, h) exists for all 0 ≤ ς ≤ δ.

Proof: We first note that g(x) ≤ v1(ς, x) on S1. Indeed, if x > D−v0(D)(1−κ1), we consider

a strategy K such that ∆K0 = (D − x)/(1− κ1) and obtain

v1(ς, x) ≥ −∆K0 + v0(x+ (1− κ1)∆K0) = −(D − x)/(1− κ1) + v0(D) = g(x).

Otherwise, if x < D − v0(D)(1− κ1), g(x) = 0, and obviously v1(ς, x) ≥ g(x).

Let 0 < h < δ and 0 < ε < x. Define ν = h∧ θD,+∧ θε,−. From Corollary 2.1, it follows that

v1(δ − h, x) = sup
(Z,K)∈A

E
[
−
∫ ν−

0

e−ρtdKt − e−ρν(∆Kν − v1(Ξν , Xν))1l{ν=θε,−<h∧θD,+}

+e−ρθ
D,+

g(D)1l{θD,+≤h∧θε,−} + e−ρhg(Xh)1l{h<θD,+}

]
.

Hence, if we define the process X̃ := (D ∧Xt)t≥0 and set

ṽh(x) = sup
K∈A0

Eδ−h,x
[
e−ρν(−Kν + g(X̃ν) + v1(Ξθε,− , ε)1l{ν=θε,−<h∧θD,+})

]
,

we obviously have that v1(δ − h, x) ≤ ṽh(x). Also, it is clear that g(x) ≤ ṽh(x).

It only remains to show that ṽh(x) converges to g(x) uniformly in x, as h → 0. In order to

do so, first note that

g(X̃ν)−Kν ≤ g(x+

∫ ν

0

(µ(Xs)ds+ σ(Xs)dWs)).
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Consequently, it follows from Proposition (2.1) that there exists C > 0 such that

ṽh(x) ≤ sup
K∈A0

E
[
g(x+

∫ ν

0

(µ(Xs)ds+ σ(Xs)dWs)) + C1l{ν=θε,−<h}

]
≤ g(x) +

1

1− κ1

sup
K∈A0

E
∣∣∣ ∫ ν

0

(µ(Xs)ds+ σ(Xs)dWs)) + C1l{ν=θε,−<h}

∣∣∣.
It follows from the linear growth assumption (2.3) that sups |µ(Xs)|+ |σ(Xs)| is finite since

Xs < D for all s < ν. Sending h→ 0, we find

lim
h→0

sup
x∈[0,D]

|ṽh(x)− g(x)| = lim
h→0

sup
x∈[0,D]

sup
K∈A0

P(θε,− < h) = 0,

by standard SDE bounds. Concluding, the inequality

lim
h↓0

sup
x∈[0,D]

|v1(δ − h, x)− v1(δ, x)| ≤ lim
h↓0

sup
x∈[0,D]

|ṽh(x)− g(x)|

and the fact that g(x) = v1(δ, x) give the desired result.

We skip the proof of the second limit as it could be done similarly.

To prove that limx↓0 v1(ς, x) exists, note that for x ≤ y < D

v1(ς, x) ≥ sup
(Z,K)∈A :∆K0=(y−x)/(1−κ1)

Eς,x,1
(∫ T

0

e−ρs(dZs − dKs)

)
= −(y − x)/(1− κ1) + sup

(Z,K)

Eς,y,1
(∫ T

0

e−ρs(dZs − dKs)

)
= −(y − x)/(1− κ1) + v1(ς, y). (2.15)

Consequently, the function y → v1(ς, y − y
1−κ1 is non increasing on [0, D]. Especially, this

gives that v1(ς, 0+) exists. �

Proposition 2.3. For any x ∈ [0, D], the function v1(·, x) is non-increasing on [0, δ] and

for any ς ∈ [0, δ], the functions v0 and v1(ς, ·) are non-decreasing respectively on [0, D] and

R+.

Proof: For x ∈ R+, we denote by Xx the unique strong solution of equation (2.2) such that

Xx
0 = x. We also set T x = inf{t ≥ 0 : Xx

t < 0} and θD,+x := inf{t ≥ 0 : Xx
t ≥ D}

Monotonicity of v1(ς, ·). Let ς ∈ [0, δ], 0 ≤ x ≤ y ≤ D and notice that θD,+x ≥ θD,+y . If we
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set ν = inf{t ≥ 0 : Xx
t = Xy

t } ∧ θD,+y , from equation (2.13), we have

v1(ς, x) = sup
(Z,K)∈A

Eς,x,1
[
−
∫ ν∧Tx

0

e−ρt dKt + e−ρνv1(Ξν , X
x
ν )1l{ν<Tx}

]
≤ sup

(Z,K)∈A
Eς,x,1

[
−
∫ ν∧Tx

0

e−ρt dKt + e−ρνv1(Ξν , X
y
ν )1l{ν<Tx}

]
≤ v1(ς, y),

because ν ∧ T x ≤ ν ∧ T y and Xx
t = Xy

t on {t ≥ ν}.

Monotonicity of v0. It is clear that, as distribution of dividends is allowed for X greater

than D, we have v0(y) ≥ v0(x) + (y − x)/(1 + κ′) ≥ v0(x) for any D ≤ x ≤ y. Now, let

0 ≤ x ≤ y ≤ D and set again ν = inf{t ≥ 0 : Xx
t = Xy

t } ∧ θD,+y . From equation (2.12), the

prohibiting of dividend distribution below D and the monotonicity of v1(0, ·), we have

v0(x) = sup
(Z,K)∈A

Ex,0
[ ∫ ν∧τ∧Tx

0

e−ρs d(Zs −Ks) + e−ρνv0(Xx
ν )1l{ν<τ∧Tx}

+e−ρτv1(0, Xx
τ )1l{τ≤ν∧Tx}

]
.

≤ sup
K∈A0

Ex,0
[
−
∫ ν∧τ∧Tx

0

e−ρs dKs + e−ρνv0(Xy
ν )1l{ν<τ∧T}

+e−ρτv1(0, Xy
τ )1l{τ≤ν∧Tx}

]
.

≤ v0(y).

Monotonicity in duration. Let x ∈ [0, D] and 0 ≤ ς1 < ς2 < δ. Let ε > 0. By re-writing the

dynamic programming principle (Corollary 2.1), we know that there exists K∗ ∈ A0 such

that, if we set θ = θD,+ ∧ T, (associated to the pair (Ξ, X) started at Ξ0 = ς2 and X0 = x)

then we have

v1(ς2, x) ≤ Eς2,x,1
[(
−
∫ θ

0

e−ρtdK∗t + e−ρθ
D,+

v0(D)

)
1l{θ<δ−ς2}

]
(2.16)

+Eς2,x,1
[(
−
∫ (δ−ς2)−

0

e−ρtdK∗t + e−ρ(δ−ς2)g(Xδ−ς2)

)
1l{θ=δ−ς2}

]
+ ε.

If we apply the same strategy, up to time δ − ς2, to the pair (Ξ, X) starting from the

state (ς1, x) and then issue capital up to D at time δ − ς2, we obtain

v1(ς1, x) ≥ Eς2,x,1
[(
−
∫ θ

0

e−ρtdK∗t + e−ρθ
D,+

v0(D)

)
1l{θ<δ−ς2}

]
+Eς1,x,1

[(
−
∫ (δ−ς2)−

0

e−ρtdK∗t + e−ρ(δ−ς2)g(Xδ−ς2)

)
1l{θ=δ−ς2}

]
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which is equal to the right side of (2.16) (up to ε) because the coefficients µ and σ are

time-independent. Therefore, we get

v1(ς2, x)− v1(ς1, x) ≤ ε, for any ε > 0,

which concludes the proof. �

Proposition 2.4. The value function v1 is continuous on S1, and v0 is continuous on S0.

Proof: v0 is obviously continuous on S0 because, from Proposition 2.3 and equation 2.12, it

satisfies the following inequalities:

−(y − x)/(1− κ0) + v0(y) ≤ v0(x) ≤ v0(y), for all x ≤ y ∈ S0.

We turn to the continuity of v1. Once again, by monotonicity (see Proposition 2.3) and

inequality (2.15), v1(ς, ·) is continuous, uniformly in ς. So we only need to prove that for

each x ∈ (0, D), v1(·, x) is continuous on [0, δ]. The right-continuity of v1(·, x) at ς = δ

follows from Proposition 2.2.

Let x ∈ [0, D] and 0 ≤ ς1 < ς2 < δ. Let ε > 0. From Proposition (2.3), we have v1(ς2, x)−
v1(ς1, x) ≤ 0. By the dynamic programming principle (Corollary 2.1), we know that there

exists K∗ such that, if we set θ = θD,+∧T for the pair (Ξ, X) started at Ξ0 = ς2 and X0 = x,

then we have

v1(ς1, x) ≤ E
[(∫ θ

0

−e−ρtdK∗t + e−ρθ
D,+

v0(D)

)
1l{θ<δ−ς2}

]
+E
[(∫ (δ−ς2)−

0

−e−ρtdK∗t + e−ρ(δ−ς2)v1(δ − (ς2 − ς1), Xδ−ς2)

)
1l{θ=δ−ς2}

]
+ ε

From the dynamic programming principle again, we have

v1(ς2, x) ≥ E
[(∫ θ

0

−e−ρtdK∗t + e−ρθ
D,+

v0(D)

)
1l{θ<δ−ς2}

]
+E
[(∫ δ−

0

e−ρtdK∗t + e−ρ(δ−ς2)g(Xδ−ς2)

)
1l{θ=δ−ς2}

]
Therefore, we get

v1(ς2, x)− v1(ς1, x) ≥ E
[
e−ρ(δ−ς2) (g(Xδ−ς2)− v1(δ − (ς2 − ς1), Xδ−ς2)) 1l{θ=δ−ς2}

]
.

As in the proof of Proposition 2.2, we can prove that for ς1 going to ς2, supx∈[0,D] |g(x) −
v1(δ − (ς2 − ς1), x)| → 0, so that |v1(ς2, x)− v1(ς1, x)| converges to 0 as |ς2 − ς1| → 0. �



Optimal dividend and capital structure with debt covenants 13

3 Viscosity solution of variational inequalities

3.1 Variational inequalities

In the next section, the value functions vi are shown to satisfy, in the viscosity sense,

the following system of variational inequalities, associated to the Dynamic Programming

Principle presented in the previous section.

0 = min
(
ρv0 − Lv0 − J (v0, v1), 1l[0,D) + 1l[D,+∞)

[
v′0 −

1

1 + κ′

]
,

1

1− κ0

− v′0
)

on S̊0, (3.17)

0 = min
(
ρv1 − Lv1 − ∂v1

∂ς
, 1

1−κ1 −
∂v1
∂x

)
on S̊1, (3.18)

0 = min
(
v1,

1
1−κ1 −

∂v1
∂x

)
on [0, δ)× {0}, (3.19)

0 = min
(
v0(0), 1

1−κ0 − v
′
0(0)

)
(3.20)

where S̊ i is the interior of S i and we have set

Lv = µ(x)
∂v

∂x
+

1

2
σ2(x)

∂2v

∂x2
and J (v, w) = λ1l[0,D]

[
w(·, 0)− v

]
.

Recall that we have set

g(x) = max(v0(D)− (D − x)/(1− κ1), 0) on [0, D].

The value functions vi satisfy the following boundary conditions:

v1(ς,D) = v0(D) for ς ∈ (0, δ], (3.21)

v1(δ, x) = g(x) for x ∈ [0, D]. (3.22)

3.2 Viscosity property and comparison theorem

We start with proving that (v0, v1) is a viscosity solution to the previous system of variational

inequalities.

Proposition 3.5. The value function v := (v0, v1) is a viscosity solution of (3.17)-(3.22).

Proof: The proof of Proposition 3.5 is postponed in the Appendix.

We now turn the uniqueness property.
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Theorem 3.1 (Comparison Theorem). Let ui (i = 0, 1) be a nonnegative viscosity subsolu-

tion of 3.17-3.20, satisfying 3.21-3.22, and wi (i = 0, 1) a nonnegative viscosity supersolution

of 3.17-3.20, satisfying 3.21-3.22. Then, ui ≤ wi (i = 0, 1) on S.

Proof: The proof of Theorem 3.1 is postponed in the Appendix.

4 Optimal strategies description

In this section, we describe the following regions of the state space:

K0 := {z ∈ S0 : v′0(z+) =
1

1− κ0

}

K1
ς := {z ∈ [0, D] :

∂v1

∂x
(ς, z+) =

1

1− κ1

}, K1 =
⋃

ς∈[0,δ]

(
{ς} × K1

ς

)
D := {z ∈ [D,+∞) : v′0(z−) =

1

1 + κ′
}

C1 := S1 \ K1

C0 :=
(
K0 ∪ D

)c
for all ς ∈ [0, δ]. The set Ki represents the region where it is optimal to inject capital in

S i, and D is the region where it is optimal to payout dividends in S0. The set Ci is the

continuation region, where it is neither optimal to inject capital nor payout dividends.

In this section, we turn to the complete resolution of our problem, i.e. obtaining a complete

description of the continuation, dividend and capital injection regions enabling us to fully

describe the optimal policies. To do so, we shall consider the case in which µ and σ are

constant. This complete qualitative description of different regions may only be obtained

by introducing an optimal stopping time on a related reflected diffusion process. Solving

this optimal stopping-time problem allows us to characterize the optimal issuance of capital

policy during the grace period.

4.1 Optimal strategies during default

We first recall that as part of the debt covenants, the firm is not allowed to pay out dividends

when its debt-to-assets ratio is greater than one, which is the case when the firm is declared

in default.

We now begin by recalling the function g and introducing the following function h defined

on R+:

g(x) =

(
v0(D)− 1

1− κ1

(D − x)

)+

and h(x) :=
1

1− κ1

(
x+

µ

ρ

)
.
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We also define the following threshold:

x∗1 := (1− κ1)(h(D)− g(D)) = D +
µ

ρ
− (1− κ1)v0(D). (4.23)

Proposition 4.6. Assume that x∗1 ≤ 0 then we have v1(ς, x) = g(x) on S1 and K1 = S1.

Proof: The pair v1 = g and v0 is a viscosity solution of (3.18)-(3.22). �

Throughout the rest of this section we shall therefore assume that

x∗1 > 0 i.e. v0(D) < h(D) =
1

1− κ1

(
D +

µ

ρ

)
. (4.24)

In this case, h is an upper bound for v1:

Lemma 4.1. For all (ς, x) ∈ S1, we have v1(ς, x) ≤ h(x).

Proof: It is easy to check that the function h is a supersolution of (3.18)-(3.19) with (3.21)-

(3.22). �

Lemma 4.2. For all ς ∈ [0, δ], we define x∗1(ς) as the smallest solution of the equation

v1(ς, x) = g(x) =

(
v0(D)− D − x

1− κ1

)+

on [0, D]. (4.25)

We have the following results:

i) We have (x∗1(ς), D] ⊂ K1
ς and

x∗1(ς) = sup{x ∈ [0, D) :
∂v1

∂x
(ς, x+) <

1

1− κ1

}.

ii) For all ς ∈ [0, δ), x∗1(ς) ≥ min(x∗1, D).

iii) The function ς → x∗1(ς) is non increasing on [0, δ].

Remark 4.2. Lemma 4.2, points i) and ii) clearly state that when in default, at any given

time ς before δ, there exists a threshold x∗1(ς) for the assets value above which, it is optimal

to inject capital to move the firm’s assets value up to D and get out of default.

In Point iii), the threshold x∗1(ς) is proved to be non increasing in ς. Economically, it means

that the more time the firm has before the end of the grace period, the more patient it should

be. In other words, when it is still far from the end of the grace period δ, it is optimal to

wait until the firm’s assets value is close enough to D before injecting more capital to get

out of default.
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Proof: As, v1(ς,D) = v0(D), there is in fact a smallest solution x∗1(ς) to (4.25).

We first prove assertion i). As the function z → v1(ς, z) is increasing, for any y ∈ [x∗1(ς), D]

we have

g(y) ≤ v1(ς, y) = v1(ς, x∗1(ς)) +

∫ y

x∗1(ς)

∂v1

∂x
(ς, z) dz ≤ v1(ς, x∗1(ς)) +

y − x∗1(ς)

1− κ1

= g(y).

Hence, v1(ς, y) = g(y) on [x∗1(ς), D] and that proves assertion i).

Recall that x∗1 > 0. By contradiction, assume that there exists ς ∈ [0, δ), such that

x∗1(ς) < y∗
1

:= min(x∗1, D).

We notice that

v1(ς, y∗
1
) ≥ v0(D)−

D − y∗
1

1− κ1

≥ min(v0(D),
µ

ρ(1− κ1)
) > 0.

Therefore, we deduce from the monotonicity of v1 with respect to ς that there exists η > 0

such that

v1(ς, x) = g(x) > 0 on (ς, ς + η)× (y∗
1
− η, y∗

1
).

The above leads to a contradiction as, on (ς, ς + η)× (y∗
1
− η, y∗

1
), we obtain

0 ≤ −Lv1 −
∂v1

∂ς
=

ρ

1− κ1

(x− x∗1) < 0.

Consequently, we have shown that x∗1(ς) ≥ y∗
1

= min(x∗1, D).

Finally we prove that the function ς → x∗1(ς) is non increasing on [0, δ]. Let 0 ≤ ς0 < ς1 < δ

and define the following function on S1

V (ς, x) :=

{
v1(ς, x) if ς ≤ ς0 or x ≤ x∗1(ς0)

v0(D)− 1
1−κ1 (D − x) if ς > ς0 and x > x∗1(ς0)

(4.26)

We can check that V is a continuous solution of equations (3.18)-(3.22) on S̊1 so V = v1

and x∗1(ς0) ≤ x∗1(ς1). �

Remark 4.3. On one hand, we have shown that, for any ς ∈ [0, δ),

x∗1(ς) ≥ min (x∗1, D) .

On the other hand, it is easy to check that

x∗1(δ) = (D − (1− κ1)v0(D))+ < x∗1
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Hence we may have a jump in the optimal threshold ς → x∗1(ς) at time δ.

Remark 4.4. If D < x∗1 then x∗1(ς) = D for any ς ∈ [0, δ).

The following lemma is a direct consequence of the monotonicity of v(·, 0):

Lemma 4.3. There exists a threshold ς∗ ∈ [0, δ] such that

v1(ς, 0) > 0 for 0 ≤ ς < ς∗ and v1(ς, 0) = 0 for ς∗ ≤ ς < δ.

In order to give a complete description of K1, we will prove that the value function v1

corresponds to an optimal stopping problem.

Due to the previous lemma, we can define the following auxiliary optimal stopping problem.

For (ς, x) ∈ [0, δ)× [0, D], we first introduce a pair of processes (X∗, K∗) with the following

dynamic:

dX∗t := µdt+ σdWt + dK∗t , X∗0− = x, K∗0− = 0. (4.27)

where X∗t ≥ 0 for t ∈ [ς, ς∗] and K∗ is a non-decreasing process which satisfies∫ t

0

1l{X∗s=0}dK
∗
s = K∗t , for all 0 ≤ t ≤ (ς∗ − ς)+, and dK∗t = 0, for (ς∗ − ς)+ ≤ t ≤ δ − ς.

(4.28)

We now define the following optimal stopping problem:

w(ς, x) := sup
ν∈T0,δ−ς

E
[
e−ρν∧θg(X∗ν∧θ)−

1

1− κ1

∫ ν∧θ∧(ς∗−ς)+

0

e−ρsdK∗s

]
, (4.29)

where we have set θ := θ∗,D,+ ∧ θ∗,0,− with

θ∗,D,+ := inf{s ≥ 0 : X∗s ≥ D} and θ∗,0,− := inf{s ≥ ς∗ : X∗s ≤ 0}.

We now give the following theorem which allows to fully describe the capital issuance

region K1 when the firm is in default. The corresponding continuation region C1 may equally

be obtained.

Theorem 4.2. We have v1 = w and

K1 := [0, ς∗)× {0} ∪ {(ς, x) ∈ S1 : x ≥ x∗1(ς)} (4.30)

Remark 4.5. Theorem 4.2 states that the capital issuance region includes two disconnected

domains.

• The first domain which corresponds to K1
1 := {(ς, x) ∈ S1 : x ≥ x∗1(ς)} is as described

in Lemma 4.2 and Remark 4.2. When in that domain, it is optimal for the firm to

increase the capital by D − x∗1(ς), net of issuance cost.
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• The second domain is defined by K1
2 := [0, ς∗) × {0}. While in default and the firm’s

asset value goes to zero, if there is enough time, i.e. ς < ς∗, it is still optimal to

inject capital to keep the firm afloat, i.e. to keep the firm’s assets value just above zero

and avoid bankruptcy. The assets value process may evolve favorably and reach K1
1.

However, at ς ≥ ς∗, there is not enough to reach K1
1, it is therefore optimal to let the

firm go bankrupt.

Proof: We first prove that w ≤ v1. Let (ς, x) ∈ S̊1. We define the following process

Kt = K∗t∧τ∗ + (D − x∗1(ς + τ ∗))1l{t≥τ∗},

where we have set

τ ∗ := inf{t ≥ 0 : X∗t ≥ x∗1(ς + t)}.

We can check that K ∈ A0 and therefore, the dynamic programming principle leads to:

v1(ς, x) ≥ Eς,x,1
[
e−ρT∧θ

D,+

v1(T ∧ θD,+, X∗T∧θD,+)−
∫ T∧θD,+

0

e−ρsdKs

]
= w(ς, x).

In a second step, we prove that w ≥ v1. By construction, it is easy to see that w satisfies

(3.21)-(3.22). To prove w ≥ v1, we can therefore show that w is a supersolution of the HJB

equation (3.18)-(3.19). We first prove that

∂w

∂x
≤ 1

1− κ1

in the viscosity sense. Let (ς, x) ∈ [0, δ) × [0, D) and h > 0 such that x + h ≤ D. Let

ψ ∈ C1,2(S̊1) such that ψ1 ≤ w and ψ1(ς, x) = w(ς, x). We define the pair of processes

(X∗,h, K∗,h) with the following dynamic:

dX∗,ht := µdt+ σdWt + 1l{t≤ς∗}dK
∗,h
t , X∗,h0− = x+ h, K∗,h0− = 0.

where X∗,h ≥ 0 and K∗,h is a non-decreasing process which satisfies∫ t

0

1l{X∗,hs =0}dK
∗,h
s = K∗,ht , for all 0 ≤ t ≤ δ. (4.31)

From the uniqueness of solutions of the stochastic equation (4.31), we have X∗,h ≥ X∗. Let

θh := θ∗,D,+h ∧ θ∗,0,−h with

θ∗,D,+h := inf{s ≥ 0 : X∗,hs ≥ D} and θ∗,0,−h := inf{s ≥ ς∗ : X∗,hs ≤ 0}.

If we set θ0,−
h := inf{t ≥ 0 : x+ h+ µt+ σWt = 0}, we have

K∗,ht∧(ς∗−ς)+ = K∗t∧(ς∗−ς)+ −K∗t∧θ0,−h ∧(ς∗−ς)+



Optimal dividend and capital structure with debt covenants 19

for t ≤ δ − ς, and

X∗,ht −X∗t = h−K∗
t∧θ0,−h ∧(ς∗−ς)+

for t ≤ θ∗,0,−.

Let ε > 0. There exists νh ∈ T0,δ−ς such that:

w(ς, x+ h) ≤ E
[
e−ρθ

∗,0,−
w(X∗,hθ∗,0,−)1l{νh∧θh>θ∗,0,−} + e−ρν

h∧θhg(X∗,h
νh∧θh)1l{νh∧θh≤θ∗,0,−}

− 1

1− κ1

∫ νh∧θh∧θ∗,0,−∧(ς∗−ς)+

0

e−ρsdK∗,hs

]
+ ε.

Moreover, it follows from the definition of w, that

w(ς, x) ≥ E
[
e−ρν

h∧θhg(X∗νh∧θh)1l{νh∧θh≤θ∗,0,−} −
1

1− κ1

∫ νh∧θh∧θ∗,0,−∧(ς∗−ς)+

0

e−ρsdK∗s

]
.

Therefore, we get

w(ς, x+ h)− w(ς, x) ≤ E
[
e−ρθ

∗,0,−
v1(θ∗,0,−, X∗,hθ∗,0,−)1l{νh∧θh≥θ∗,0,−}

+e−ρν
h∧θh

(
g(X∗,h

νh∧θh)− g(X∗νh∧θh)
)

1l{νh∧θh≤θ∗,0,−}

]
+

1

1− κ1

E
[ ∫ νh∧θh∧θ∗,0,−∧(ς∗−ς)+

0

e−ρsdK∗s

]
+ ε, (4.32)

since v1 ≥ w. As, for all (y, y′) ∈ [0, D]2, g(y)− g(y′) ≤ (y − y′)/(1− κ1), we get

E
[
e−ρν

h∧θh(g(X∗,h
νh∧θh) − g(X∗νh∧θh))1l{νh∧θh≤θ∗,0,−}

]
≤ 1

1− κ1

E
[
e−ρν

h∧θh
(
X∗,h
νh∧θh −X

∗
νh∧θh

)
1l{νh∧θh≤θ∗,0,−}

]
≤ 1

1− κ1

E
[

(h−K∗τh) 1l{νh∧θh≤θ∗,0,−}

]
.

where we have set τh := νh ∧ θh ∧ θ∗,0,− ∧ θ0,−
h ∧ (ς∗− ς)+. Furthermore, from (2.15), we find

E
[
e−ρθ

∗,0,−
v1(θ∗,0,−, X∗,hθ∗,0,−)1l{νh∧θh≥θ∗,0,−}

]
≤ E

[h−Kτh

1− κ1

1l{νh∧θh≥θ∗,0,−}

]
(4.33)

Plugging this in inequality (4.32), using the fact that ψ ≤ w and letting ε go to 0, we obtain

:

ψ(ς, x+ h)− ψ(ς, x) ≤ 1

1− κ1

E
[
h−K∗τh +

∫ τh

0

e−ρsdK∗s

]
+ ε

≤ h

1− κ1

. (4.34)
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In particular,

min

(
w,

1

1− κ1

− ∂ψ

∂x

)
≥ 0 on [0, δ)× {0}

since w ≥ 0.

Now, we turn to the proof of w being a supersolution of (3.18). Let (ς, x) ∈ S̊1 and

ψ ∈ C1,2(S̊1) such that ψ ≤ w and ψ(ς, x) = w(ς, x). We already know that

∂ψ

∂x
(ς, x) ≤ 1

1− κ1

.

Assume that there exists η > 0 such that

ρψ(ς, x)− Lψ(ς, x) < −η. (4.35)

Since ψ ∈ C1,2(S̊1), we can assume that there exists ε > 0 (ε < min(x,D− x, ς, δ − ς)) such

that the above inequality is also satisfied for all (s, z) such that |z − x|2 + |s − ς| < ε. Let

θ = inf{t ≥ 0 : |X∗t − x|2 + |t− ς| ≥ ε}.

By Itô’s Formula,

ψ(ς, x) = Eς,x,1
[
e−ρθψ(ς + θ,X∗θ ) +

∫ θ

0

e−ρt(ρψ(ς + t,X∗t )− Lψ(ς + t,X∗t ))dt

−
∫ θ

0

e−ρtψ′(ς + t,X∗t )dK∗t

]
< Eς,x,1

[
e−ρθψ(ς + θ,X∗θ )− η

ρ
(1− e−ρθ)

]
.

≤ Eς,x,1
[
e−ρθw(ς + θ,X∗θ )− η

ρ
(1− e−ρθ)

]
From the DPP, we have

ψ(ς, x) = w(ς, x) ≥ Eς,x,1
[
e−ρθw(ς + θ,X∗θ )− 1

1− κ1

∫ θ

0

e−ρt dK∗t

]
.

= Eς,x,1
[
e−ρθw(ς + θ,X∗θ )

]
.

It leads to a contradiction since Ee−ρθ < 1. Therefore w is a supersolution of the HJB

equation (3.18)-(3.19), (3.21)-(3.22), and from the comparison Theorem (3.1) we know that

w ≥ v1. �

4.2 Optimal strategies before default

We first turn to the complete description of the dividend region, which is a given interval

D = [xd0,+∞).
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Lemma 4.4. Dividend region

There exists a threshold xd0 ≥ D such that D = [xd0,+∞). If v0(D) ≥ µ
(1+κ′)ρ

then xd0 = D

else xd0 is the unique solution in (D,+∞) of the following equation:

ρv0(xd0) =
µ

1 + κ′
.

Moreover, on (D,+∞), v0 is twice continuously differentiable.

Proof: First we assume that v0(D) < µ
(1+κ′)ρ

. As v0 is continuous and increasing on [0,+∞),

there exists xd0 > D such that

ρv0(xd0) =
µ

1 + κ′

Now we define the following function

V (t, x) :=

{
v0(x) if x ≤ xd0

1
1+κ′

(x− xd0) + v0(xd0) if x > xd0
(4.36)

We can easily prove that V is a viscosity solution of equations (3.17) and (3.20) then V = v0.

If v0(D) ≥ µ
(1+κ′)ρ

, we can show in the same way that v0(x) = v0(D) + 1
1+κ′

(x − D) for all

x ≥ D. Hence, D = [D,+∞).

We turn to the proof of concavity on (D,+∞) for the function v0. From equation (3.17),

we deduce that on (D, xd0):

1

2
σ2v′′0 ≤ ρv0 − µv′0

≤ ρv0 − µ
1

1 + κ′

≤ 0.

As v0 is linear on [xd0,+∞), v0 is concave on (D,+∞). �

Lemma 4.5. Capital issuance out of financial distress region

We have K0 ∩ (D,+∞) = ∅

Remark 4.6. The above Lemma 4.5 states that when the firm’s assets value is strictly

greater than D, it is not optimal to inject additional capital, which is coherent with the

results obtained by Lokka and Zervos [16] in the case when D = 0.

Proof: Assume, by contradiction, that K0 ∩ (D,+∞) 6= ∅. From the concavity of v0 on

(D,+∞), we deduce that there exists x0 > D such that (D, x0) ⊂ K0 ∩ (D,+∞). We then

have

v0(D) = v0(x)− 1

1− κ0

(x−D) on (D, x0).
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From equation (3.17), it follows that

0 ≤ ρv0(D) +
1

1− κ0

(ρ(x−D)− µ)

Moreover, it follows from Proposition 4.4 that v0(D) < µ
(1+κ′)ρ

else we should have v′0(x) =
1

1+κ′
on (D,+∞). Hence we obtain

0 ≤ − µ(κ′ + κ0)

(1 + κ′)(1− κ0)
+

ρ

1− κ0

(x−D).

It leads to a contradiction when letting x go to D.

�
We now turn to the description of the capital issuance region K0. We will separate several

cases depending on the value of x∗1.

Proposition 4.7. We consider the case x∗1 ≤ 0. then we have

K̊0 = (0, D) and v0(x) = g0(x) :=

(
v0(D)− D − x

1− κ0

)+

, for x ∈ [0, D]. (4.37)

Remark 4.7. In Proposition 4.6, when x∗1 ≤ 0, we have K1 = S1, i.e. K1
ς = (0, D)

∀ς ∈ [0, δ]. The above Proposition 4.7 states that when the firm’s value is below D but still

not in default, the optimal strategy is to straightaway inject capital and not take the risk of

being declared in default given the higher issuance cost when in default.

Proof: From Proposition 4.6, we know that if v0(D) ≥ h(D) then v1(t, x) = g(x) on S1.

It follows that the function g0 is solution of the HJB equation (3.17) and (3.20). From the

comparison Theorem 3.1, we deduce that v0 = g0 on [0, D] �

Proposition 4.8. We consider the case x∗1 > 0. We define x∗0 as the smallest solution of

the equation

v0(x) = g0(x) :=

(
v0(D)− D − x

1− κ0

)+

on (0, D]. (4.38)

We then have [x∗0, D) ⊂ K0 and x∗0 = sup{x ∈ [0, D] : v′0(x) < 1
1−κ0}.

Furthermore, if x∗1 > D + µ
ρ

(
κ1−κ0
1−κ0

)
, then we have x∗0 = D.

Proof:

We assume x∗1 > 0. Notice that we should have g0(x∗0) = v0(x∗0) > 0. For any y ∈ [x∗0, D] we

then have

g0(y) ≤ v0(y) ≤ v0(x∗0) +
y − x∗0
1− κ0

= v0(D)− D − y
1− κ0

≤ g0(y).



Optimal dividend and capital structure with debt covenants 23

Hence, v0(y) = v0(D)− D−y
1−κ0 on [x∗0, D] and that proves the result.

We now assume x∗1 > D + µ
ρ

(
κ1−κ0
1−κ0

)
, i.e. ρv0(D) < µ

1−κ0 .

We can easily show that x∗0 = D. Indeed, if there was an ε > 0 such that (D − ε,D) ⊂ K0,

we would have v0(x) = g0(x) and H(x) := ρv0(x) − Lv0(x) − J (v0(x), v1(0, x)) ≥ 0 on

(D− ε,D). However it would lead to a contradiction because H(D) = ρv0(D) < − µ
1−κ0 < 0

and H is continuous.

�

5 Numerical results

5.1 Numerical procedure

There are two main difficulties in numerically solving the system of variational inequalities

by finite difference methods. The first is due to the boundary conditions in S1. However, if

v(D) is known, we can use Theorem 4.2 to solve this part of the domain as a stopping time

problem with a reflected process at 0. The second difficulty is the coupling between regions

S0 and S1 through the value v(D). Consequently, the numerical procedure we propose

consists in a fixed point problem around v(D). Given v(D), each parts of the domain can be

solved independently. It then remains to check if the variational inequality is also satisfied

in x = D.

The procedure is as follows.

First step: For a > 0, let va1 be the solution of the following variational inequality on S1:

min

(
ρv − Lv − ∂v

∂ς
, ga − v

)
= 0 on S̊1, (5.39)

min

(
v,

1

1− κ1

− ∂v

∂x

)
= 0 on [0, δ)× {0}, (5.40)

v(δ, x) = ga(x) for x ∈ [0, D], (5.41)

where ga(x) := (a − D−x
1−κ1 )+. To solve this system numerically, we can use explicit finite

differences to solve the system by comparing at each point in time ς the solutions with the

boundary conditions va1(ς, 0) = 0 and
∂va1
∂x

(ς, 0) = 1
1−κ1 , and keep the largest solution of the

two at each point in time.

Notice that we have

For any b ≥ a, va1 ≤ vb1, on S1.

Indeed, for b ≥ a, it is easy to show that vb1 is a supersolution of the previous HJB equation

and so, greater than the solution va1 .

It follows from the Lipschitz property that:

For any b ≥ a, 0 ≤ vb1 − va1 ≤ b− a, on S1. (5.42)
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Second step: Compute the solution of the following variational inequality on [0, D):

min
(
ρv − Lv − J (v, va1),

1

1− κ0

− v′
)

= 0 on (0, D), (5.43)

min

(
v(0),

1

1− κ0

− v′(0)

)
= 0, (5.44)

v(D) = a. (5.45)

As before, this can be solved numerically by considering the boundary condition v(0) = 0

and v′(0) = 1
1−κ0 , and select the largest of the two. We denote by va0 the solution on [0, D).

Once again we have

For any b ≥ a, va0 ≤ vb0, on [0, D].

Indeed, for b ≥ a, it is easy to show that vb0 is a supersolution of the previous HJB equation

and so, greater than the solution va0 .

Now we can use the property (5.42) to prove that, for b ≥ a, va0 + b− a is a supersolution of

the HJB equation satisfied by vb0. We obtain that

For any b ≥ a, 0 ≤ vb0 − va0 ≤ b− a, on [0, D). (5.46)

Third step: Compute the solution of the following variational inequality on (D,∞):

min
(
ρv − Lv, v′ − 1

1 + κ′
,

1

1− κ0

− v′
)

= 0 on (D,∞), (5.47)

v(D) = a. (5.48)

We denote by va0 the solution on (D,∞). Once again we have

For any b ≥ a, va0 ≤ vb0, on S0.

Indeed, for b ≥ a, it is easy to show that vb0 is a supersolution of the previous HJB equation

and so, greater than the solution va0 .

Now we can use the property (5.42) to prove that, for b ≥ a, va0 + b− a is a supersolution of

the HJB equation satisfied by vb0. We therefore obtain that

For any b ≥ a, 0 ≤ vb0 − va0 ≤ b− a, on S0. (5.49)

Fourth step: Find the unique value of a that solves the equation va0(D) = a. We have just

proved that a → va0(D) − a is a Lipschitz and nonincreasing function. We obviously have

v0
0(D) ≥ 0. Now we want to determine lima→∞ v

a
0(D) − a. Let a ≥ max

(
µ
κ′ρ

; D
)

and, on

S0, define the function ψa by

ψa(x) :=
a

µ+ ρa
(ρx+ µ) .
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With a large enough, we can check that ρa
µ+ρa

∈ [ 1
1+κ′

, 1
1−κ0 ]. It follows that ψa is a superso-

lution of HJB equations (5.39)-(5.48) and then

va1(ς, x) ≤ ψa(x), on S1 and va0(x) ≤ ψa(x), on S0.

Hence, we get

va0(D)− a ≤ − ρa

µ+ ρa
(a−D) ≤ 0. (5.50)

We can conclude that there exist solutions to the equation va0(D) = a and that they belong

to [0, max
(

µ
κ′ρ

; D
)

]. According to the comparison result (see Theorem 3.1), there exists a

unique solution that can be found by dichotomy methods.

5.2 Numerical illustrations

We present in this section a number of numerical examples that illustrate the above theo-

retical results. Figure 1 gives an example of a region S1 in which there is no reflection at

x = 0 in S1, but the optimal capital injection happens before x = D. The effect of κ1 on

the capital region is illustrated in Figure 2 in which we see that larger values of κ1 make the

region smaller and more to the right.
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Figure 1: Optimal strategy in S1. Parameters are D = 2, δ = 0.5, κ0 = κ1 = κ′ = 0.1, λ =
5, µ = 0.05, ρ = 0.1 and σ = 1. The black area represents the region where it is optimal to
inject capital in S1, i.e. v1 = g.

On the other hand, Figure 3 shows the case where it is only optimal to reflect the process X

on the boundary x = 0 and ς ∈ [0, ς∗], as defined in Lemma 4.3. For this particular choice

of parameters, it is not optimal to inject capital for other values in S1. We notice that for

values of κ1 = 0.07 or less, the reflection of the process X is for all ς ∈ [0, δ].



Optimal dividend and capital structure with debt covenants 26

0

0.1

0.2

0.3

0.4

0.5

tim
e

0 0.5 1 1.5 2

x

Figure 2: Boundaries of the optimal strategy in S1. Parameters are D = 2, δ = 0.5, κ0 =
κ′ = 0.1, λ = 5, µ = 0.05, ρ = 0.1 and σ = 1. The values of the parameter κ1 varies from
0, 0.05, 0.1, 0.15, 0.2 to 0.25, from left to right in the figure.
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Figure 3: Value of ∂v1(ς,0)
∂x

for various values of κ1. Parameters are D = 0.2, δ = 0.3, κ0 =
0.1, κ′ = 0.01, λ = 5, µ = 0.05, ρ = 0.1 and σ = 1. The values of the parameter κ1 varies
from 0.07, 0.08, 0.09, 0.1 to 0.11, from bottom to top in the figure. Circles show the value ς∗

of Lemma 4.3. The largest value of the derivative is 1
1−κ1 for ς ∈ [0, ς∗].

Figure 4 shows how the value function v0 depends on the debt level D. The value function

at the point xd0 starting at which it is optimal to issue dividends is shown to equal µ
ρ(1+κ′)

,

which is independent of D (see Proposition 4.4).

Figures 5 and 6 show the derivative of the function v0 on S0 for varying values of D. For

D = 0.1, 0.2 or 0.3, (Fig. 5) it is optimal to inject capital only at x = 0. It is never optimal

to inject capital for the other values of D considered (Fig. 6). Furthermore, note that the

derivative of the function goes below the value 1
1+κ′

= 0.909 for some values of x less than

D, for D = 0.6, 0.8, 1 and 1.5. This is only possible because it is not permitted to distribute

dividends for those values of x < D. In other words, the constraint v′0(x) ≥ 1
1+κ′

does not

apply.
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Figure 4: Sensitivity analysis of the value function v0(x) in terms of D, taking values in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.5} (from left to right in the graph). Other parameters are
fixed to δ = 0.3, κ0 = κ1 = 0.25, κ′ = 0.1, λ = 1, µ = 0.07, ρ = 0.1 and σ = 0.3. Blue squares
represent the value function at x = D. Dashed line is at level µ

ρ(1+κ′)
, the value at which it

is optimal to pay dividends, independent of the value of D.

Figures 5 and 6 correspond to sensitivity analysis of the derivative of the value function v0 in

terms of D. Other parameters are fixed to δ = 0.3, κ0 = κ1 = 0.25, κ′ = 0.1, λ = 1, µ = 0.07,

ρ = 0.1 and σ = 0.3. Dashed lines are at levels 1
1−κ0 = 1.3333 and 1

1+κ′
= 0.909. Blue

squares represent the value of the derivative at x = D.
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Figure 5: D takes values in {0.1, 0.2, 0.3} from left to right.
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Figure 6: D takes values in {0.4, 0.5, 0.6, 0.8, 1, 1.5} from left to right.

Appendix A : Proof of Proposition 3.5

Proof: Equations 3.21 and 3.22 have been proved to be satisfied in Proposition 2.2.

The proof of the supersolution property is classical, so we omit it and focus on the subsolution

property.

Let (ς, x, y) ∈ S̊1 × S̊0. Let ψ0 ∈ C2(S̊0) and ψ1 ∈ C1,2(S̊1) such that ψ1(ς, x) = v1(ς, x),

ψ0(y) = v0(y) and ψi ≥ vi, i = 0, 1. We have to prove that (ψ0, ψ1) satisfies (3.17)-(3.20)

with = replaced by ≥ . Suppose that it is not true:

Case (1) Assume that the inequality coming from (3.17) is not true for some x > 0.

There exist η > 0 and 0 < ε < min(x, 1) such that for all y satisfying |x− y| < ε,

ρψ0(y)− Lψ0(y)− λ(v1(0, y)− ψ0(y)) > η and (1− κ0)ψ′0(y) < 1− η if y < D,

ρψ0(y)− Lψ0(y) > η, (1 + κ′)ψ′0(y) > 1 + η and (1− κ0)ψ′0(y) < 1− η otherwise.

Consider ε1 = x + ε and ε2 = x − ε (as positive constants), and set θ = inf{s ≥ t :

|Xx
s − x| > ε}. Let ξ = inf{s ≥ 0 : Is = 1}, and notice that |Xθ − x| = ε on {θ < ξ}, for any

(Z,K) ∈ A. Recall that dZt = 0 on {Xt < D}. Consequently, (1+κ′)ψ′0(Xt)dZt ≥ (1+η)dZt,

for all t ≥ 0. We can therefore show that

Ex,0
[∫ θ∧ξ

0

e−ρt(dZt − dKt) + e−ρθv0(Xθ)1{θ<ξ} + e−ρξv1(0, Xθ)1{ξ≤θ}

]
≤ Ex,0

[∫ θ∧ξ

0

e−ρt(dZt − dKt) + e−ρ(θ∧ξ)ψ0(Xθ∧ξ) +

∫ θ∧ξ

0

λe−ρt(ψ0(Xt)− v1(0, Xt))1{Xt<D}dt

]
≤ ψ0(x)− ηEx,0

[∫ θ∧ξ

0

e−ρtdt+

∫ θ∧ξ

0

e−ρt(dZt + dKt)

]
. (5.51)

By considering ϕ(y) = C((y−x)2−ε2), for some positive constant C < min( 1
2ε
, 1

(ρ+λ)ε2+2µ̄ε+σ̄2 ),
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we find that

Cε2 = Ex,0
[
e−ρθϕ(Xθ)1{θ≤ξ} − ϕ(x)

]
= Ex,0

[ ∫ θ∧ξ

0

e−ρt
(
−(ρ+ λ1{Xt<D})ϕ(Xt) + 2Cµ(Xt)(Xt − x) + Cσ2(Xt)

)
dt

+

∫ θ∧ξ

0

e−ρt2C(Xt − x) ((1− κ0)dKt − (1 + κ′)dZt)
]

≤ Ex,0
[∫ θ∧ξ

0

e−ρtdt+

∫ θ∧ξ

0

e−ρt(dZt + dKt)

]
.

By taking a supremum over (Z,K) ∈ A in (5.51) and applying the dynamic programming

principle (2.12), we find the contradiction:

v0(x) ≤ ψ0(x)− ηCε2 < ψ0(x) = v0(x).

Case (2): Assume that inequality associated to (3.18) is not satisfied.

There exists η > 0 such that

ρψ1(ς, x)− Lψ1(ς, x) > η, and (1− κ1)
∂ψ1

∂x
(ς, x) < 1− η. (5.52)

Since ψ1 ∈ C1,2(S̊1), we can assume that there exists ε > 0 (ε < min(x,D−x, ς, δ− ς)) such

that the above inequality is also satisfied for all (s, z) such that |x− z|2 + |s− ς| ≤ ε.

Consider ε1(s) = x+
√
ε− (s− ς) and ε2(s) = x−

√
ε− (s− ς), for s < ς+ε, ε1(s) = ε2(s) =

x otherwise. Let (Z,K) ∈ A. Then, if we set θ := inf{t ≥ 0 : |Xx
t −x|2 +Ξt−ς > ε}, we have

|Xθ − x|2 = ε− θ, by definition of A. Furthermore, θ < T ∧ θD,+ and |Xt − x|2 + Ξt − ς ≤ ε

for all t ≤ θ.

By Itô’s Formula,

ψ1(ς, x) = Eς,x,1
[
e−ρθψ1(Ξθ, Xθ) +

∫ θ

0

e−ρt(ρψ1(Ξt, Xt)− Lψ1(Ξt, Xt))dt

−
∫ θ

0

e−ρt(1− κ1)
∂ψ1

∂x
(Ξt, Xt)dK

c
t

−
∑

0≤t≤θ

e−ρt (ψ1(Ξt, Xt− + (1− κ1)∆Kt)− ψ1(Ξt, Xt−))
]
.

Due to (5.52), (1− κ1)∂ψ1

∂x
(Ξt, Xt) < 1− η and ψ1(Ξt, Xt− + (1− κ1)∆Kt)− ψ1(Ξt, Xt−) <

(1− η)∆Kt. Consequently,

ψ1(ς, x) ≥ Eς,x,1
[
−
∫ θ

0

e−ρtdKt + e−ρθψ1(Ξθ, Xθ)
]

+Eς,x,1
[ ∫ θ

0

e−ρt(ρψ1(Ξt, Xt)− Lψ1(Ξt, Xt))dt+ η

∫ θ

0

e−ρtdKt

]
.
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Combining the previous inequality with the fact that ψ1 ≥ v1 and (5.52), we get

v1(ς, x) ≥ Eς,x,1
[
−
∫ θ

0

e−ρtdKt + e−ρθv1(Ξθ, Xθ) + η

∫ θ

0

e−ρt (dt+ dKt)

]
. (5.53)

Let ϕ(s, z) = C((z−x)2−ε+(s−ς)), for some positive constant C < min( 1
2
√
ε
, 1
ρε+2µ̄

√
ε+σ̄2+1

)

in which

µ̄ = sup
x∈[0,D]

µ(x), σ̄ = sup
x∈[0,D]

σ(x).

By Itô’s formula,

Cε = Eς,x,1
[
e−ρθϕ(Ξθ, Xθ)− ϕ(ς, x)

]
≤ Eς,x,1

[∫ θ

0

e−ρt(−ρϕ(Ξt, Xt) + 2µ(Xt)C(Xt− − x) + Cσ2(Xt) + C)dt

]
+Eς,x,1

[
−
∫ θ

0

e−ρt2C(Xt− − x)(1− κ1)dKt

]
≤ Eς,x,1

[∫ θ

0

e−ρtdt+

∫ θ

0

e−ρtdKt

]
.

Taking a supremum over (Z,K) ∈ A in (5.53) and applying the dynamic programming

principle (2.13), we find the following contradiction:

v1(t, x) ≥ v1(t, x) + ηCε.

Case (3) Assume that inequality coming from (3.19) is not verified for some (ς, 0) ∈ [0, δ]×
{0} : there exists η and t > 0 such that for all ε > 0, 0 ≤ x ≤ ε, and ς ≤ s ≤ ς + t

v1(s, x) > η,
∂ψ1

∂x
(s, x) <

1

1− κ1

− η and ψ1(s, 0) < ψ1(ς, 0) + C(s− ς), (5.54)

due to the continuity of v1 and ∂ψ1

∂x
. Here C = supς≤s≤ς+t

∂ψ1(s,0)
∂s

. Assume further that

ε < min(D, v1(ς, 0)/η) and t < δ − ς.
We consider θ := inf{s ≥ 0 : Xs ≥ ε} and deduce from (5.54) and the dynamic program-

ming principle (2.13) that,

v1(ς, 0) = sup
(Z,K)∈A,Z≡0

Eς,0,1
[
− I1 + e−ρθv1(Ξθ, ε)1l{θ<T∧t} + e−ρtv1(Ξt, Xt)1{t≤θ∧T}

]
≤ sup

K∈A0

Eς,0,1
[
− I1 + e−ρθψ1(Ξθ, ε)1l{θ<T∧t} + A01{t≤θ∧T}

]
where A0 = sup0≤x≤ε v1(Ξt, x), a finite quantity, and I1 stands for

∫ θ∧T∧t
0

e−ρsdKs. We can
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therefore bound the value v1(ς, 0) above by

sup
K∈A0

Eς,0,1
[
− I1 + e−ρθ(ψ1(Ξθ, 0) + (

1

1− κ1

− η)ε)1l{θ<T∧t} + A01{t≤θ∧T}

]
≤ ψ1(ς, 0)− ηε+ sup

K∈A0

Eς,0,1
[
− I1 + e−ρθ(Cθ +

1

1− κ1

ε)1l{θ<T∧t} + A01{t≤θ∧T}

]
≤ v1(ς, 0)− ηε+ sup

K∈A0

Eς,0,1
[
− I1 + Cθ + e−ρθ

1

1− κ1

Xθ1l{θ<T∧t} + A01{t≤θ∧T}

]
≤ v1(ς, 0)− ηε+ sup

K∈A0

Eς,0,1
[
Cθ +

∫ θ∧T∧t

0

e−ρs
(
µ(Xs)− ρXs

1− κ1

)
ds+ A01{t≤θ∧T}

]
≤ v1(ς, 0)− ηε+ (C + C ′) sup

K∈A0

Eς,0,1[θ] + A0P(t ≤ θ)

≤ v1(ς, 0)− ηε+
ε2(C + C ′ + A0/t)

σ2
,

where C ′ = supx<D

(
µ(x)−ρx

1−κ1

)
<∞. We find a contradiction by taking ε strictly less than

ησ2

(C + C ′ + A0/t)
.

Case (4) Assume that the inequality coming from (3.20) is not verified : there exists η > 0

such that for all ε > 0

v0(x) > η and ψ′0(x) <
1

1− κ0

− η for all 0 ≤ x < ε, (5.55)

due to the continuity of v0 and ψ′0. Assume further that ε < min(D, v0(0)/η). As before,

consider θ := inf{s ≥ 0 : Xs ≥ ε}, ξ = inf{s ≥ 0 : Is = 1}, and notice that |Xθ − x| = ε

on {θ < ξ}, and Xt < D, for all t < θ. We also set I0 :=
∫ θ∧T∧ξ

0
e−ρtdKt and deduce from

(5.55) and the dynamic programming principle (2.13) that

v0(0) = sup
(Z,K)∈A,Z≡0

E0

[
− I0 + e−ρθv0(ε)1l{θ<T∧ξ} + e−ρξv1(0, Xξ)1{ξ≤θ∧T}

]
≤ sup

K∈A0

E0

[
− I0 + e−ρθψ0(ε)1l{θ<T∧ξ} + e−ρξv1(0, Xξ)1{ξ≤θ∧T}

]
≤ sup

K∈A0

E0

[
− I0 + e−ρθ(v0(0) + (

1

1− κ0

− η)ε)1l{θ<T∧ξ} + e−ρξv1(0, Xξ)1{ξ≤θ∧T}

]
≤ v0(0)− ηε+ sup

K∈A0

E0

[
− I1 + e−ρθ

1

1− κ0

Xθ1l{θ<T∧ξ} + e−ρξv1(0, Xξ)1{ξ≤θ∧T}

]
≤ v0(0)− ηε+ sup

K∈A0

E0

[ ∫ θ∧T∧ξ

0

e−ρt
(
µ(Xt)− ρXt

1− κ0

+ λv1(0, ε)

)
dt
]

≤ v0(0)− ηε+ C sup
K∈A0

E0[θ],
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for some C > 0.

Let K ∈ A0, X̌t =
∫ t

0
σ(Xs)dWs and θ̌ = inf{t ≥ 0 : X̌t ≥ ε}. Since X ≥ X̌, it is clear that

θ ≤ θ̌. Moreover,

ε2 = E
[
X̌θ̌

]2 ≥ σ2E
[
θ̌
]

where σ = infx<D σ(x) > 0. Combining this result with the above inequalities, we find that

v0(0) ≤ v0(0)− ηε+ C ε2

σ2 . By taking ε small enough, we find a contradiction.

�

Appendix B : Proof of Theorem 3.1

Let 0 < δ < min( κ′

1+κ′
, κ0

1−κ0 ,
κ1

1−κ1 ) and h(x) = A + x where A ≥ max(δ, 1
ρ
(δ + supx(µ(x) −

ρx))). Direct calculation shows that ρh−Lh ≥ δ, and if 0 < γ < 1, then wγi := γh+(1−γ)wi,

(i = 0, 1) is a strict viscosity supersolution of 3.17-3.20:

γδ ≤ min
(
ρwγ0 − Lw

γ
0 − J (wγ0 , w

γ
1 ), 1l[0,D) + 1l[D,+∞)

[
(wγ0 )′ − 1

1 + κ′

]
,

1

1− κ0

− (wγ0 )′
)

on S̊0, (5.56)

γδ ≤ min

(
ρwγ1 − Lw

γ
1 −

∂wγ1
∂ς

,
1

1− κ1

− ∂wγ1
∂x

)
on S̊1, (5.57)

γδ ≤ min

(
wγ1 ,

1

1− κ1

− ∂wγ1
∂x

)
on {0} × [0, δ], (5.58)

γδ ≤ min

(
wγ0 (0),

1

1− κ0

− (wγ0 )′(0)

)
, (5.59)

and uγi := −γh+ (1 + γ)ui, (i = 0, 1) is a strict viscosity subsolution of 3.17-3.20:

−γδ ≥ min
(
ρuγ0 − Lu

γ
0 − J (uγ0 , u

γ
1), 1l[0,D) + 1l[D,+∞)

[
(uγ0)′ − 1

1 + κ′

]
,

1

1− κ0

− (uγ0)′
)

on S̊0, (5.60)

−γδ ≥ min

(
ρuγ1 − Lu

γ
1 −

∂uγ1
∂ς

,
1

1− κ1

− ∂uγ1
∂x

)
on S̊1, (5.61)

−γδ ≥ min

(
uγ1 ,

1

1− κ1

− ∂uγ1
∂x

)
on {0} × [0, δ], (5.62)

−γδ ≥ min

(
uγ0(0),

1

1− κ0

− (uγ0)′(0)

)
. (5.63)

Assume that

M := sup
(t,x)∈S,i=0,1

uγi (t, x)− wγi (t, x) > 0.
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First, we note that

lim
x→∞

uγ0(x)− wγ0 (x) = −∞. (5.64)

This is due to the fact that w0 is a supersolution and u0 is a subsolution so that there exists

C > 0 such that w0(x) ≥ x
1+κ′

and u0(x) ≤ C + x
1+κ′

for x large enough. Hence we know

that M = uγi (t0, x0)− wγi (t0, x0) for some (t0, x0) ∈ S and some i = 0, 1.

(a) Suppose i = 0. For ε > 0, define Φε(x, y) = uγ0(x)− wγ0 (y)− φε(x, y) with

φε(x, y) =
1

4
|x− x0|4 +

1

2ε
|x− y|2 +

1

1− κ0

(x− y).

For each ε > 0, the function Φε attains its maximum value Mε at some point (xε, yε) ∈
S0 × S0. Classical results in comparison theory for viscosity solutions show that by taking

a subsequence, we can assume that the sequence (xε, yε) converges to (x0, x0) as ε→ 0, and

lim
ε→0

|xε − yε|
ε

= 0. (5.65)

Consequently, Mε → M as ε → 0, and Mε > 0 for ε small enough. By Theorem 3.2 of [8],

there exist ξε, ζε ∈ R such that

((xε − yε)/ε+ (xε − x0)3 +
1

1− κ0

, ξε) ∈ J2,+u0(xε), (5.66)

((xε − yε)/ε+
1

1− κ0

, ζε) ∈ J2,−wγ0 (yε), (5.67)

and (
ξε 0

0 ζε

)
≤ D2φε(xε, yε) + ε(D2φε(xε, yε))

2

which implies that

σ(xε)
2ξε − σ(yε)

2ζε ≤ 3
ε
(σ(xε)− σ(yε))

2 − 6σ(xε)σ(yε)(xε − x0)2

+9σ(xε)
2(xε − x0)2 + 9εσ(xε)

2(xε − x0)4

≤ C

ε
|xε − yε|2 + C(1 + x2

0)(|xε − x0|2 + |xε − x0|4).

If yε = 0, then by (5.59)

γδ ≤ min (wγ0 (yε),−(xε − yε)/ε) .

By sending ε to 0, we obtain a contradiction for ε small because of (5.65). If xε = 0, we find

−γδ ≥ min
(
uγ0(0),−(xε − yε)/ε− (xε − x0)3

)
.
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Therefore, when ε is small enough, uγ0(xε) ≤ −γδ. A contradiction arises from the fact that

wγ0 (yε) ≥ 0 but Mε = uγ0(xε) − wγ0 (yε) > 0. Consequently, x0 > 0 and xε, yε > 0 for ε large

enough.

By (5.60) and (5.66), we get

min
(
ρuγ0(xε)− µ(xε)pε −

1

2
σ(xε)

2ξε − J (uγ0(xε), u
γ
1(xε)),

1l[0,D) + 1l[D,+∞)(pε −
1

1 + κ′
),−(xε − yε)/ε− (xε − x0)3

)
≤ −γδ,

with pε = (xε − yε)/ε+ (xε − x0)3 + 1
1−κ0 . By sending ε to 0, we see that the only possibility

is

ρuγ0(xε)− µ(xε)pε −
1

2
σ(xε)

2ξε − J (uγ0(xε), u
γ
1(xε)) ≤ −γδ.

By (5.56) and (5.67), we also have

ρwγ0 (yε)− µ(yε)

(
(xε − yε)/ε+

1

1− κ0

)
− 1

2
σ(yε)

2ζε − J (wγ0 (yε), w
γ
1 (yε)) ≥ γδ.

Combining these last two inequalities, we get

ρ(wγ0 (yε)− uγ0(xε)) ≥ 2γδ + (µ(yε)− µ(xε))

(
(xε − yε)/ε+

1

1− κ0

)
− µ(xε)(xε − x0)3

+
1

2
σ(yε)

2ζε −
1

2
σ(xε)

2ξε + J (wγ0 (yε), w
γ
1 (yε))− J (uγ0(xε), u

γ
1(xε)).

The right side of this inequality converges to

2γδ + λ1l[0,D](w
γ
1 (x0, 0)− wγ0 (x0)− uγ1(x0, 0) + uγ0(x0))

which is bigger or equal to 2γδ since

uγ0(x0)− wγ0 (x0) = M ≥ uγ1(x0, 0)− wγ1 (x0, 0).

On the other hand, the left side converges to −ρM < 0, hence the contradiction.

(b) Suppose i = 1.

If t0 = δ or x0 = D, then

uγ1(t0, x0)− wγ1 (t0, x0) = (1− γ) max(u0(D)− (D − x0)/(1− κ1), 0)

−(1− γ) max(w0(D)− (D − x0)/(1− κ1), 0)− 2γh(x0)

≤ (1− γ) max(u0(D)− w0(D), 0)− 2γh(x0)

≤ max(uγ0(D)− wγ0 (D), 0).
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This is therefore equivalent to the case i = 0, x0 = D, which we have already treated.

We can therefore assume x0 < D and t0 < δ.

For ε > 0, define Φε(t, x, y) = uγ1(t, x)− wγ1 (t, y)− φε(t, x, y) with

φε(t, x, y) =
1

2
|t− t0|2 +

1

4
|x− x0|4 +

1

2ε
|x− y|2 +

1

1− κ1

(x− y).

For each ε > 0, the function Φε attains a maximum at (tε, xε, yε). By taking a subsequence,

we can assume that the sequence (tε, xε, yε) converges to (t0, x0, x0) as ε→ 0, and

lim
ε→0

|xε − yε|
ε

= 0.

For ε small enough, we can therefore assume xε, yε < D and tε < δ. By Theorem 8.3 of [8],

there exist bε, ξε, ζε ∈ R such that

(bε + 2(t− t0), (xε − yε)/ε+ (xε − x0)3 +
1

1− κ1

, ξε) ∈ J2,+u0(tε, xε),

(bε, (xε − yε)/ε+
1

1− κ1

, ζε) ∈ J2,−wγ0 (tε, yε),

and

σ(xε)
2ξε − σ(yε)

2ζε ≤
C

ε
|xε − yε|2 + C(1 + x2

0)(|xε − x0|2 + |xε − x0|4),

as before. Furthermore, we can show that xε, yε > 0 for ε small enough. Therefore,

min
(
ρuγ1(xε)− µ(xε)p

′
ε −

1

2
σ(xε)

2ξε − bε − 2(t− t0),−(xε − yε)/ε− (xε − x0)3
)
≤ −γδ,

with p′ε = (xε − yε)/ε+ (xε − x0)3 + 1
1−κ1 , and

ρwγ0 (yε)− µ(yε)

(
(xε − yε)/ε+

1

1− κ1

)
− 1

2
σ(yε)

2ζε − bε,−(xε − yε)/ε
)
≥ γδ.

As before, we find a contradiction by sending ε to 0.

�
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