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HARDY FIELDS, THE INTERMEDIATE VALUE PROPERTY,

AND ω-FREENESS

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

Abstract. We discuss the conjecture that every maximal Hardy field has the

Intermediate Value Property for differential polynomials, and its equivalence
to the statement that all maximal Hardy field are elementarily equivalent to

the differential field of transseries. As a modest but essential step towards

establishing the conjecture we show that every maximal Hardy field is ω-free.

Introduction

Du Bois Reymond’s “orders of infinity” were put on a firm basis by Hardy [8] and
Hausdorff [9], leading to the notion of a Hardy field (Bourbaki [6]). A Hardy field is
a field H of germs at +∞ of differentiable real-valued functions on intervals (a,+∞)
such that the germ of the derivative of any differentiable function whose germ is
in H is also in H. (See Section 2 for more precision.) A Hardy field is naturally a
differential field, and is an ordered field with the germ of f being > 0 if and only
if f(t) > 0, eventually.

If H is a Hardy field, then so is H(R) (obtained by adjoining the germs of the
constant functions) and for any h ∈ H, the germ eh generates a Hardy field H(eh)
over H, and so does any differentiable germ with derivative h [13]. Each Hardy
field H has a unique Hardy field extension that is algebraic over H and real
closed [12]. The ultimate extension result of this kind would be the following:

Conjecture. Let H be a Hardy field, P (Y ) ∈ H{Y } a differential polynomial
and f < g in H such that P (f) < 0 < P (g). Then there is an element φ in a Hardy
field extension of H such that f < φ < g and P (φ) = 0.

In [7] this is proved for P of order 1. In [11] it is shown that there do exist Hardy
fields with the intermediate value property for all differential polynomials. Every
Hardy field extends to a maximal Hardy field, by Zorn, and so the Conjecture above
is equivalent to maximal Hardy fields having the intermediate value property for
differential polynomials. By the results mentioned earlier, maximal Hardy fields
contain R as a subfield and are Liouville closed in the sense of [2]. At the end
of Section 1 we show that for Liouville closed Hardy fields containing R the in-
termediate value property is equivalent to the conjunction of two other properties,
ω-freeness and newtonianity. These two notions are central in [2] in a more gen-
eral setting. Roughly speaking, ω-freeness controls the solvability of second-order
homogeneous linear differential equations in suitable extensions, and newtonianity
is a very strong version of differential-henselianity. (We did not consider the inter-
mediate value property in [2] and mention it here mainly for expository reasons: it
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is easier to grasp than the more subtle and more fundamental notions of ω-freeness
and newtonianity.)

The main result in these seminar notes is that any Hardy field has an ω-free
Hardy field extension: Theorem 3.1. We do not present it here, but we also have
a detailed outline for showing that any ω-free Hardy field extends to a newtonian
ω-free Hardy field. At this stage (March 2019) that proof is not yet finished. If
we finish the proof, it would follow that every maximal Hardy field is an ω-free
newtonian Liouville closed H-field with small derivation, in the terminology of [2].
Now the elementary theory T nl

small of ω-free newtonian Liouville closed H-fields
with small derivation is complete, by [2, Corollary 16.6.3]. Thus finishing the proof
alluded to would give that any two maximal Hardy fields are indistinguishable as
to their elementary properties, that is, any two maximal Hardy fields would be
elementarily equivalent as ordered differential fields.

The present seminar notes prove some results announced in our exposition [3].
There we also discuss another fundamental conjecture and partial results towards
it, namely that the underlying ordered set of any maximal Hardy field is η1. Our
plan for proving it does depend on first establishing the conjecture that maximal
Hardy fields are newtonian. The two conjectures together imply: all maximal
Hardy fields are isomorphic as ordered differential fields, assuming the continuum
hypothesis (CH); for more on this, see [3].

Let us add here a remark about maximal Hardy fields that is more set-theoretic in
nature. Every Hardy field is contained in the ring C of germs at +∞ of continuous
real-valued functions on half-lines (a,+∞), and so there at most 2c many Hardy
fields, where c = 2ℵ0 is the cardinality of the continuum; note that c is also the
cardinality of C. It is worth mentioning that the two conjectures above imply
that there are in fact 2c many different maximal Hardy fields: In an email to one
of the authors, Ilijas Farah showed that there are 2c many maximal Hausdorff
fields, Hausdorff fields being the subfields of the ring C (without differentiability
assumptions as in the case of Hardy fields). Farah’s proof can easily be modified
to give the same conclusion about the number of maximal Hardy fields assuming
these conjectures.

Throughout we use the algebraic and valuation-theoretic tools from [2]. We need
in addition analytic facts about real and complex solutions of linear differential
equations; these facts and various generalities about Hardy fields are in Section 2.

The second-named author gave a talk about the above material in the Séminaire
de structures algébriques ordonnées in honor of Paulo Ribenboim’s 90th birthday.
We dedicate this paper to Paulo in gratitude for his fundamental contributions to
the theory of valuations, which is indispensable in our work.

Notations and terminology. Throughout, m, n range over N = {0, 1, 2, . . . }.
Given an additively written abelian group A we let A 6= := A \ {0}. Rings are
commutative with identity 1, and for a ring R we let R× be the multiplicative
group of units (consisting of the a ∈ R such that ab = 1 for some b ∈ R). A
differential ring will be a ring R containing (an isomorphic copy of) Q as a subring
and equipped with a derivation ∂ : R→ R; note that then CR :=

{
a ∈ R : ∂(a) = 0

}
is a subring of R, called the ring of constants of R, and that Q ⊆ CR. If R is a
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field, then so is CR. An ordered differential field is an ordered field equipped with
a derivation; such an ordered differential field is in particular a differential ring.

Let R be a differential ring and a ∈ R. When its derivation ∂ is clear from the
context we denote ∂(a), ∂

2(a), . . . , ∂n(a), . . . by a′, a′′, . . . , a(n), . . . , and if a ∈ R×,
then a† denotes a′/a, so (ab)† = a† + b† for a, b ∈ R×. In Sections 1 and 3 we
need to consider the function ω = ωR : R→ R given by ω(z) = −2z′ − z2, and the
function σ = σR : R× → R given by σ(y) = ω(z) + y2 for z := −y†.

We have the differential ring R{Y } = R[Y, Y ′, Y ′′, . . . ] of differential polynomials
in an indeterminate Y . We say that P = P (Y ) ∈ R{Y } has order at most r ∈ N
if P ∈ R[Y, Y ′, . . . , Y (r)]; in this case P =

∑
i PiY

i, as in [2, Section 4.2], with i

ranging over tuples (i0, . . . , ir) ∈ N1+r, Y i := Y i0(Y ′)i1 · · · (Y (r))ir , coefficients Pi

in R, and Pi 6= 0 for only finitely many i. For P ∈ R{Y } and a ∈ R we let
P×a(Y ) := P (aY ). For φ ∈ R× we let Rφ be the compositional conjugate of R by φ:
the differential ring with the same underlying ring as R but with derivation φ−1∂

instead of ∂. We have an R-algebra isomorphism P 7→ Pφ : R{Y } → Rφ{Y } such
that Pφ(y) = P (y) for all y ∈ R; see [2, Section 5.7].

For a field K we have K× = K 6=, and a (Krull) valuation on K is a surjective
map v : K× → Γ onto an ordered abelian group Γ (additively written) satisfying
the usual laws, and extended to v : K → Γ∞ := Γ ∪ {∞} by v(0) = ∞, where the
ordering on Γ is extended to a total ordering on Γ∞ by γ < ∞ for all γ ∈ Γ. A
valued field K is a field (also denoted by K) together with a valuation ring O of
that field, and the corresponding valuation v : K× → Γ on the underlying field is
such that O = {a ∈ K : va > 0} as explained in [2, Section 3.1].

Let K be a valued field with valuation ring OK and valuation v : K× → ΓK .
Then OK is a local ring with maximal ideal OK = {a ∈ K : va > 0} and residue
field res(K) = OK/OK . If res(K) has characteristic zero, then K is said to be of
equicharacteristic zero. When the ambient valued field K is clear from the context,
then we denote ΓK , OK , OK , by Γ, O, O, respectively, and for a, b ∈ K we set

a � b :⇔ va = vb, a 4 b :⇔ va > vb, a ≺ b :⇔ va > vb,

a < b :⇔ b 4 a, a � b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.
It is easy to check that if a ∼ b, then a, b 6= 0, and that ∼ is an equivalence relation
on K×. We use pc-sequence to abbreviate pseudocauchy sequence, and aρ  a
indicates that the pc-sequence (aρ) pseudoconverges to a; see [2, Sections 2.2, 3.2].
As in [2], a valued differential field is a valued field K of equicharacteristic zero that
is also equipped with a derivation ∂ : K → K, and an ordered valued differential
field is a valued differential field K equipped with an ordering on K making K an
ordered field.

1. H-Fields and IVP

We recall from [2, Introduction] that an H-field is an ordered differential field K
with constant field C such that:

(H1) ∂(a) > 0 for all a ∈ K with a > C;
(H2) O = C + O, where O is the convex hull of C in the ordered field K, and O

is the maximal ideal of the valuation ring O.

Let K be an H-field, and let O and O be as in (H2). Thus K is a valued field
with valuation ring O. The residue morphism O → res(K) = O/O restricts to an
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isomorphism C
∼=−→ res(K). The valuation topology on K equals its order topology

if C 6= K. We consider K as an L-structure, where

L := { 0, 1, +, −, ×, ∂, <, 4 }
is the language of ordered valued differential fields. The symbols 0, 1, +, −, ×, ∂, <
are interpreted as usual in K, and 4 encodes the valuation: for a, b ∈ K,

a 4 b ⇐⇒ a ∈ Ob.
An H-field K is said to be Liouville closed if it is real closed and for all a ∈ K
there exists b ∈ K with a = b′ and also b ∈ K× with a = b†.

Remarks on IVP. Ordered valued differential subfields of H-fields are called
pre-H-fields, and are characterized in [2, Section 10.5]. Below we assume some
familiarity with the H-asymptotic couple (Γ, ψ) of a pre-H-field K, as explained
in [2], and properties of K based on those of (Γ, ψ), such as K having asymptotic
integration and K having a gap [2, Sections 9.1, 9.2].

Let K be a pre-H-field. We say that K has IVP (the Intermediate Value Prop-
erty) if for all P (Y ) ∈ K{Y } and f < g in K with P (f) < 0 < P (g) there
is a φ ∈ K such that f < φ < g and P (φ) = 0. Restricting this to P of or-
der 6 r, where r ∈ N, gives the notion of r-IVP. Thus K having 0-IVP is equivalent
to K being real closed as an ordered field. In particular, if K has 0-IVP, then
the H-asymptotic couple (Γ, ψ) of K is divisible. From [2, Section 2.4] recall our
convention that K> = {a ∈ K : a > 0}, and similarly with < replacing >.

Lemma 1.1. Suppose Γ 6= {0} and K has 1-IVP. Then ∂K = K, (K>)† = (K<)†

is a convex subgroup of K, Ψ :=
{
ψ(γ) : γ ∈ Γ6=

}
has no largest element, and Ψ is

convex in Γ.

Proof. We have y′ = 0 for y = 0, and y′ takes arbitrarily large positive values in K
as y ranges over K>O = {a ∈ K : a > O}, since by [2, Lemma 9.2.6] the set (Γ<)′

is coinitial in Γ. Hence y′ takes all positive values on K>, and therefore also all
negative values on K<. Thus ∂K = K. Next, let a, b ∈ K>, and suppose s ∈ K lies
strictly between a† and b†. Then s = y† for some y ∈ K> strictly between a and b;
this follows by noting that for y = a and y = b the signs of sy − y′ are opposite.

Let β ∈ Ψ and take a ∈ K with v(a′) = β. Then a � 1, since a 4 1 would give
v(a′) > Ψ. Hence for α = va < 0 we have α + α† = β, so α† > β. Thus Ψ has no
largest element. Therefore the set Ψ is convex in Γ. �

Thus the ordered differential field Tlog of logarithmic transseries, [2, Appendix A],
does not have 1-IVP, although it is a newtonian ω-free H-field.

Does IVP imply that K is an H-field? No: take an ℵ0-saturated elementary
extension of T and let ∆ be as in [2, Example 10.1.7]. Then the ∆-coarsening of K
is a pre-H-field with IVP and nontrivial value group, and has a gap, but it is not
an H-field. On the other hand:

Lemma 1.2. Suppose K has 1-IVP and has no gap. Then K is an H-field.

Proof. In [2, Section 11.8] we defined

I(K) := {y ∈ K : y 4 f ′ for some f ∈ O}.
Since K has no gap, we have

∂O ⊆ I(K) = {y ∈ K : y 4 f ′ for some f ∈ O}.
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Also Γ 6= {0}, and so (Γ, ψ) has asymptotic integration by Lemma 1.1. We show
that K is an H-field by proving I(K) = ∂O, so let g ∈ I(K), g < 0. Since (Γ>)′ has
no least element we can take positive f ∈ O such that f ′ � g. Since f ′ < 0, this
gives f ′ < g. Since (Γ>)′ is cofinal in Γ we can also take positive h ∈ O such that
h′ ≺ g, which in view of h′ < 0 gives g < h′. Thus f ′ < g < h′, and so 1-IVP yields
a ∈ O with g = a′. �

We refer to Sections 11.6 and 14.2 of [2] for the definitions of λ-freeness and r-
newtonianity (r ∈ N). From the introduction we recall that ω(z) := −2z′ − z2.

Lemma 1.3. Suppose K is an H-field, Γ 6= {0}, and K has 1-IVP. Then K is
λ-free and 1-newtonian, and the subset ω(K) of K is downward closed.

Proof. First we note that K has (asymptotic) integration, by Lemma 1.1. Assume
towards a contradiction that K is not λ-free. We can arrange that K has small
derivation, and thus K has an element x � 1 with x′ = 1, and so x > C. This leads
to a pc-sequence (λρ) and an element s ∈ K such that λρ  −s with λρ ∼ x−1 for
all ρ. Hence s ∼ −x−1, and s creates a gap over K by [2, Lemma 11.5.14]. Now
note that for P := Y ′ + sY we have P (0) = 0 and P (x2) = 2x + sx2 ∼ x, so by
1-IVP we have P (y) = 1 for some y ∈ K, contradicting [2, Lemma 11.5.12].

Let P ∈ K{Y } of order at most 1 have Newton degree 1; we have to show that P
has a zero in O. We know that K is λ-free, so by [2, Proposition 13.3.6] we can pass
to an elementary extension, compositionally conjugate, and divide by an element
of K× to arrange that K has small derivation and P = D+R where D = cY +d or
D = cY ′ with c, d ∈ C, c 6= 0, and where R ≺[ 1. Then R(a) ≺[ 1 for all a ∈ O. If
D = cY + d, then we can take a, b ∈ C with D(a) < 0 and D(b) > 0, which in view
of R(a) ≺ D(a) and R(b) ≺ D(b) gives P (a) < 0 and P (b) > 0, and so P has a zero
strictly between a and b, and thus a zero in O. Next, suppose D = cY ′. Then we
take t ∈ O 6= with v(t†) = v(t), that is, t′ � t2, so

P (t) = ct′ +R(t), P (−t) = −ct′ +R(−t), R(t), R(−t) ≺ t′.

Hence P (t) and P (−t) have opposite signs, so P has a zero strictly between t
and −t, and thus P has a zero in O.

From ω(z) = −z2 − 2z′ we see that ω(z) → −∞ as z → +∞ and as z → −∞
in K, so ω(K) is downward closed by 1-IVP. �

For results involving 2-IVP we need a minor variant of [2, Lemma 11.8.31]. Here
Γ(K) = {a† : a ∈ K \ O} as in [2, Section 11.8], and the superscripts ↑, ↓ indicate
upward, respectively downward, closure, as in [2, Section 2.1].

Lemma 1.4. Let K be an H-field with asymptotic integration. Then

K> = I(K)> ∪ Γ(K)↑, σ
(
K> \ Γ(K)↑

)
⊆ ω(K)↓.

Proof. If a ∈ K, a > I(K), then a > b† for some b ∈ K�1, and thus a ∈ Γ(K)↑.
The inclusion involving σ now follows as in the proof of [2, Lemma 11.8.13]. �

The concept of ω-freeness is introduced in [2, Section 11.7].

Lemma 1.5. Suppose K is an H-field, Γ 6= {0}, and K has 2-IVP. Then K is
2-newtonian, the operator ∂

2 − a splits over K[i] for all a ∈ K, and K is ω-free.
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Proof. Let P ∈ K{Y } of order at most 2 have Newton degree 1; we have to show
that P has a zero in O. Lemma 1.3 tells us that K is λ-free, and in view of [2,
Corollary 13.3.7] and 2-IVP this allows us to repeat the argument in the proof of
that lemma for differential polynomials of order at most 1 so that it applies to
our P of order at most 2. Thus K is 2-newtonian.

By [2, Section 5.2] it remains to show that K = ω(K) ∪ σ(K×). In view
of Lemma 1.1 we can arrange by compositional conjugation that a† = −1 for
some a ≺ 1 in K>. Below we fix such a. Let f ∈ K; our job is to show that
f ∈ ω(K) ∪ σ(K×). Since ω(0) = 0, we do have f ∈ ω(K) if f 6 0, by Lemma 1.3.
So assume f > 0; we show that then f ∈ σ(K>). Now for y ∈ K>, f = σ(y) is
equivalent (by multiplying with y2) to P (y) = 0, where

P (Y ) := 2Y Y ′′ − 3(Y ′)2 + Y 4 − fY 2 ∈ K{Y }.

See also [2, Section 13.7]. We have P (0) = 0 and P (y)→ +∞ as y → +∞ (because
of the term y4). In view of 2-IVP it will suffice to show that for some y > 0 in K
we have P (y) < 0. Now with y ∈ K> and z := −y† we have

P (y) = y2
(
σ(y)− f

)
= y2

(
ω(z) + y2 − f

)
,

hence

P (a) = a2
(
ω(1) + a2 − f

)
= a2(−1 + a2 − f) < 0.

As to ω-freeness, this now follows from Lemma 1.4 and [2, Corollary 11.8.30]. �

It follows that Liouville closed H-fields having 2-IVP are Schwarz closed as defined
in [2, Section 11.8]. (There existH-fields with a non-trivial derivation that have IVP
but are not Liouville closed; see [1, Section 14].)

Corollary 1.6. Suppose K is an H-field, Γ 6= {0}, and K has IVP. Then K is
ω-free and newtonian.

Proof. Showing that every P ∈ K{Y } of Newton degree 1 has a zero in O is done
just as in the proof of Lemma 1.3. �

Corollary 1.7. Let K be a Liouville closed H-field. Then

K has IVP ⇐⇒ K is ω-free and newtonian.

Proof. The forward direction is part of Corollary 1.6. For the backward direction
we appeal to the main results from the book [10] to the effect that Tg, the ordered
differential field of grid-based transseries (cf. [2, Appendix A]), is a newtonian
Liouville closed H-field with small derivation, and has IVP. In particular, it is a
model of the theory T nl

small, which we mentioned in the introduction. This theory
is complete by [2, Corollary 16.6.3], so every model of it has IVP. If K is ω-free
and newtonian but its derivation is not small, then it nevertheless has IVP: some
compositional conjugate Kφ with φ ∈ K> has small derivation and is Liouville
closed, ω-free and newtonian. �

2. Preliminaries on Hardy Fields

We begin with some results from Boshernitzan [5] on ordered fields of germs of
continuous functions. Next we prove some easy facts about extending ordered
fields inside an ambient partially ordered ring, as needed later.
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Germs of continuous functions. As in [2, Section 9.1] we let G be the ring of
germs at +∞ of real-valued functions whose domain is a subset of R containing
an interval (a,+∞), a ∈ R; the domain may vary and the ring operations are
defined as usual. If g ∈ G is the germ of a real-valued function on a subset of R
containing an interval (a,+∞), a ∈ R, then we simplify notation by letting g also
denote this function if the resulting ambiguity is harmless. With this convention,
given a property P of real numbers and g ∈ G we say that P

(
g(t)

)
holds eventually

if P
(
g(t)

)
holds for all sufficiently large real t. We identify each real number r with

the germ at +∞ of the function R→ R that takes the constant value r. This makes
the field R into a subring of G. We call a germ g ∈ G continuous if it is the germ
of a continuous function (a,+∞) → R for some a ∈ R, and we let C ⊇ R be the
subring of G consisting of the continuous germs g ∈ C. We let x denote the germ
at +∞ of the identity function on R.

Asymptotic relations on C. Note that the multiplicative group C× of C consists
of the f ∈ C such that f(t) 6= 0, eventually. Thus for f ∈ C×, either f(t) > 0,
eventually, or f(t) < 0, eventually. Although C is not a valued field, it will be
convenient to equip C with the asymptotic relations 4, ≺, ∼ (which are defined on
any valued field) as follows: for f, g ∈ C,

f 4 g :⇐⇒ there exists c ∈ R> such that eventually |f(t)| 6 c|g(t)|,
f ≺ g :⇐⇒ g ∈ C× and lim

t→∞
f(t)/g(t) = 0,

f ∼ g :⇐⇒ g ∈ C× and lim
t→∞

f(t)/g(t) = 1

⇐⇒ f − g ≺ g.

Thus 4 is a transitive and reflexive binary relation on C, and ∼ is an equivalence
relation on C×. Moreover, for f, g, h ∈ C we have

f ≺ g ⇒ f 4 g, f 4 g ≺ h ⇒ f ≺ h, f ≺ g 4 h ⇒ f ≺ h.

Note that ≺ is a transitive binary relation on C. For f, g ∈ C we also set

f � g : ⇔ f 4 g and g 4 f, f < g : ⇔ g 4 f, f � g : ⇔ g ≺ f,

so � is an equivalence relation on C.

Subfields of C. Let K be a subfield of C, that is, a subring of C that happens to
be a field. (In the introduction we called such K a Hausdorff field .) Then K itself
has the subfield K ∩ R. Every nonzero f ∈ K has a multiplicative inverse in K,
so eventually f(t) 6= 0, hence either eventually f(t) < 0 or eventually f(t) > 0 (by
eventual continuity of f). We make K an ordered field by declaring

f > 0 :⇐⇒ f(t) > 0, eventually.

We now have [5, Propositions 3.4 and 3.6]:

Lemma 2.1. Let Krc consist of the y ∈ C with P (y) = 0 for some P (Y ) ∈ K[Y ]6=.
Then Krc is the unique real closed subfield of C that extends K and is algebraic
over K. In particular, Krc is a real closure of the ordered field K.

In [5] this lemma assumes K ⊇ R, but this is not really needed in the proof. The
ordered field K has a convex subring

O =
{
f ∈ K : |f | 6 n for some n

}
,
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which is a valuation ring of K, and we consider K accordingly as a valued ordered
field. Restricting 4, ≺, ∼ from the previous subsection to K gives exactly the
asymptotic relations 4, ≺, ∼ on K that it comes equipped with as a valued field.

Composition and compositional inversion. Let g ∈ C be eventually strictly
increasing with limt→+∞ g(t) = +∞. Then its compositional inverse ginv ∈ C is
given by ginv

(
g(t)

)
= t, eventually, and the composition operation

f 7→ f ◦ g : C → C, (f ◦ g)(t) := f
(
g(t)

)
eventually,

is an automorphism of the ring C that is the identity on the subring R, with in-
verse f 7→ f ◦ ginv. In particular, g ◦ ginv = ginv ◦ g = x, and f 7→ f ◦ g maps each
subfield K of C isomorphically (as an ordered field) onto the subfield K ◦ g of C.
Note that if the subfield K of C contains x, then K ◦ g contains g.

Extending ordered fields inside an ambient partially ordered ring. Let R
be a commutative ring with 1 6= 0, equipped with a translation-invariant partial
ordering 6 such that r2 > 0 for all r ∈ R, and rs > 0 for all r, s ∈ R with r, s > 0.
It follows that for a, b, r ∈ R we have: if a 6 b and r > 0, then ar 6 br; if a is a
unit and a > 0, then a−1 = a · (a−1)2 > 0; if a, b are units, and 0 < a 6 b, then
0 < b−1 6 a−1. Relevant cases: R = G and R = C, with partial ordering given by

f 6 g : ⇐⇒ f(t) 6 g(t), eventually.

Call a subset K of R totally ordered if the partial ordering of R induces a total
ordering on K. An ordered subfield of R is a subfield K of R that is totally ordered
as a subset of R; note that then K equipped with the induced partial ordering is
indeed an ordered field, in the usual sense of that term. (Thus any subfield of C
with the above partial ordering is an ordered subfield of C.)

We identify Z with its image in R via the unique ring embedding Z → R, and
this makes Z with its usual ordering into an ordered subring of R.

Lemma 2.2. Assume D is a totally ordered subring of R and every nonzero element
of D is a unit of R. Then D generates an ordered subfield FracD of R.

Proof. It is clear that D generates a subfield FracD of R. For a ∈ D, a > 0, we
have a−1 > 0. It follows that FracD is totally ordered. �

Thus if every n > 1 is a unit of R, then we may identify Q with its image in R via
the unique ring embedding Q→ R, making Q into an ordered subfield of R.

Lemma 2.3. Suppose K is an ordered subfield of R, all g ∈ R with g > K are
units of R, and K < f ∈ R. Then we have an ordered subfield K(f) of R.

Proof. For P (Y ) ∈ K[Y ] \K of degree d > 1 with leading coefficient a > 0 we have
P (f) = afd(1 + ε) with −1/n < ε < 1/n for all n > 1, in particular, P (f) > K is
a unit of R. It remains to appeal to Lemma 2.2. �

Lemma 2.4. Assume K is a real closed ordered subfield of R. Let A be a nonempty
downward closed subset of K such that A has no largest element and B := K \ A
is nonempty and has no least element. Let f ∈ R be such that A < f < B. Then
the subring K[f ] has the following properties:

(i) K[f ] is a domain;
(ii) K[f ] is totally ordered;

(iii) K is cofinal in K[f ];
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(iv) for all g ∈ K[f ] \K and a ∈ K, if a < g, then a < b < g for some b ∈ K,
and if g < a, then g < b < a for some b ∈ K.

Proof. Let P ∈ K[Y ]\K; to obtain (i) and (ii) it suffices to show that then P (f) < 0
or P (f) > 0. We have

P (Y ) = cQ(Y )(Y − a1) · · · (Y − an)

where c ∈ K 6=, Q(Y ) is a product of monic quadratic irreducibles in K[Y ], and
a1, . . . , an ∈ K. This gives δ ∈ K> such that Q(r) > δ for all r ∈ R. Assume c > 0.
(The case c < 0 is handled similarly.) We can arrange that m 6 n is such that
ai ∈ A for 1 6 i 6 m and aj ∈ B for m < j 6 n. Take ε > 0 in K such that
ai + ε 6 f for 1 6 i 6 m and f 6 aj − ε for m < j 6 n. Then

P (f) = cQ(f)(f − a1) · · · (f − am)(f − am+1) · · · (f − an),

and (f−a1) · · · (f−am) > εm. If n−m is even, then (f−am+1) · · · (f−an) > εn−m,
so P (f) > aδεn > 0. If n −m is odd, then (f − am+1) · · · (f − an) 6 −εn−m, so
P (f) 6 −aδεn < 0. These estimates also yield (iii) and (iv). �

Lemma 2.5. With K, A, f as in Lemma 2.4, suppose all g ∈ R with g > 1 are
units of R. Then we have an ordered subfield K(f) of R such that (iii) and (iv) of
Lemma 2.4 go through for K(f) in place of K[f ].

Proof. Note that if g ∈ R and g > δ ∈ K>, then gδ−1 > 1, so g is a unit of R and
0 < g−1 6 δ−1. For Q ∈ K[Y ] 6= with Q(f) > 0 we can take δ ∈ K> such that
Q(f) > δ, and thus Q(f) is a unit of R and 0 < Q(f)−1 6 δ−1. Thus we have an
ordered subfield K(f) of R by Lemma 2.2, and the rest now follows easily. �

Adjoining pseudolimits and increasing the value group. Let K be a real
closed subfield of C, and view K as an ordered valued field as before. Let (aρ) be
a strictly increasing divergent pc-sequence in K. Set

A := {a ∈ K : a < aρ for some ρ}, B := {b ∈ K : b > aρ for all ρ},
so A is nonempty and downward closed without a largest element. Moreover,
B = K \A is nonempty and has no least element, since a least element of B would
be a limit and thus a pseudolimit of (aρ). Let f ∈ C satisfy A < f < B. Then we
have an ordered subfield K(f) of C, and:

Lemma 2.6. K(f) is an immediate valued field extension of K with aρ  f .

Proof. We can assume that v(aτ − aσ) > v(aσ − aρ) for all indices τ > σ > ρ. Set
dρ := as(ρ) − aρ (s(ρ) := successor of ρ). Then aρ + 2dρ ∈ B for all indices ρ; see
the discussion preceding [2, Lemma 2.4.2]. It then follows from that lemma that
aρ  f . Now (aρ) is a divergent pc-sequence in the henselian valued field K, so it is
of transcendental type over K, and thus K(f) is an immediate extension of K. �

Lemma 2.7. Suppose K is a subfield of C with divisible value group Γ = v(K×).
Let P be a nonempty upward closed subset of Γ, and let f ∈ C be such that a < f
for all a ∈ K> with va ∈ P , and f < b for all b ∈ K> with vb < P . Then f
generates a subfield K(f) of C, with P > vf > Q, Q := Γ \ P .

Proof. For any positive a ∈ Krc there is b ∈ K> with a � b and a < b, and also an
element b ∈ K> with a � b and a > b. Thus we can replace K by Krc and arrange
in this way that K is real closed. Set

A := {a ∈ K : a 6 0 or va ∈ P}, B := K \A.
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Then we are in the situation of Lemma 2.4 for R = C, so by that lemma and
Lemma 2.5 we have an ordered subfield K(f) of C. Clearly then P > vf > Q. �

Notational conventions on functions and germs. Let r range over N ∪ {∞},
and let U be a nonempty open subset of R. Then Cr(U) denotes the R-algebra
of r-times continuously differentiable functions U → R, with the usual pointwise
defined algebra operations. (We use “C” instead of “C” since C will often denote
the constant field of a differential field.) For r = 0 this is the R-algebra C(U) of
continuous real-valued functions on U , so

C(U) = C0(U) ⊇ C1(U) ⊇ C2(U) ⊇ · · · ⊇ C∞(U).

For r > 1 we have the derivation f 7→ f ′ : Cr(U) → Cr−1(U) (with ∞− 1 := ∞).
This makes C∞(U) a differential ring, with its subalgebra Cω(U) of real-analytic
functions U → R as a differential subring. The algebra operations on the algebras
below are also defined pointwise.

Let a range over R. Then Cra denotes the R-algebra of functions [a,+∞) → R
that extend to a function in Cr(U) for some open U ⊇ [a,+∞). Thus C0a is the
R-algebra of real-valued continuous functions on [a,+∞), and

C0a ⊇ C1a ⊇ C2a ⊇ · · · ⊇ C∞a .
We also have the subalgebra Cωa of C∞a , consisting of the functions [a,+∞)→ R that
extend to a real-analytic function U → R for some open U ⊇ [a,+∞). For r > 1 we
have the derivation f 7→ f ′ : Cra → Cr−1a . This makes C∞a a differential ring with Cωa
as a differential subring.

For each of the algebras A above we also consider its complexification A[i] which
consists by definition of the C-valued functions f = g+hi with g, h ∈ A, so g = Re f
and h = Im f for such f . We consider A[i] as a C-algebra with respect to the natural
pointwise defined algebra operations. We identify each complex number with the
corresponding constant function to make C a subfield of A[i] and R a subfield of A.
(This justifies the notation A[i].) For r > 1 we extend g 7→ g′ : Cra → Cr−1a to the
derivation

g + hi 7→ g′ + h′i : Cra[i]→ Cr−1a [i] (g, h ∈ Cra[i]),

which for r =∞ makes C∞a a differential subring of C∞a [i]. We also use the map

f 7→ f† := f ′/f : C1a[i]× =
(
C1a[i]

)× → C0a[i],

with
(fg)† = f† + g† for f, g ∈ C1a[i]×,

in particular the fact that f ∈ C1a[i]× and f† ∈ C0a[i] are related by

f(t) = f(a) exp

[∫ t

a

f†(s) ds

]
(t > a).

Let Cr be the partially ordered subring of C consisting of the germs at +∞ of the
functions in

⋃
a Cra; thus C0 = C consists of the germs at +∞ of the continuous real

valued functions on intervals [a,+∞), a ∈ R. Note that Cr with its partial ordering
satisfies the conditions on R from the previous subsection. Also, every g > 1 in Cr
is a unit of Cr, so Lemmas 2.3 and 2.5 apply to ordered subfields of Cr. We have

C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ C∞,
and we set C<∞ :=

⋂
r Cr. Thus C<∞ is naturally a differential ring with R as its

ring of constants. Note that C<∞ has C∞ as a differential subring. The differential
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ring C∞ has in turn the differential subring Cω, whose elements are the germs at +∞
of the functions in

⋃
a Cωa .

Second-order differential equations. Let f ∈ C0a, that is, f : [a,∞) → R is
continuous. We consider the differential equation

Y ′′ + fY = 0.

The solutions y ∈ C2a form an R-linear subspace Sol(f) of C2a. The solutions y ∈ C2a[i]
are the y1 + y2i with y1, y2 ∈ Sol(f) and form a C-linear subspace SolC(f) of C2a[i].
For any complex numbers c, d there is a unique solution y ∈ C2a[i] with y(a) = c
and y′(a) = d, and the map that assigns to (c, d) ∈ C2 this unique solution is
an isomorphism C2 → SolC(f) of C-linear spaces; it restricts to an R-linear bijec-
tion R2 → Sol(f). Induction on r ∈ N shows: f ∈ Cra ⇒ Sol(f) ⊆ Cr+2

a . Thus
f ∈ C∞a ⇒ Sol(f) ⊆ C∞a . It is also well-known that f ∈ Cωa ⇒ Sol(f) ⊆ Cωa .
From [4, Chapter 2, Lemma 1] we recall:

Lemma 2.8 (Gronwall’s Lemma). Let the constant C ∈ R> and the functions
v, y ∈ C0a be such that v(t), y(t) > 0 for all t > a and

y(t) 6 C +

∫ t

a

v(s)y(s) ds for all t > a.

Then

y(t) 6 C exp

[∫ t

a

v(s) ds

]
for all t > a.

In the rest of this subsection we assume that a > 1 and that c ∈ R> is such that
|f(t)| 6 c/t2 for all t > a. Under this hypothesis, the lemma above yields the
following bound on the growth of the solutions y ∈ Sol(f); the proof we give is
similar to that of [4, Chapter 6, Theorem 5].

Proposition 2.9. Let y ∈ Sol(f). Then there is C ∈ R> such that |y(t)| 6 Ctc+1

and |y′(t)| 6 Ctc for all t > a.

Proof. Let t range over [a,+∞). Integrating y′′ = −fy twice between a and t, we
obtain constants c1, c2 such that for all t,

y(t) = c1 + c2t−
∫ t

a

∫ t1

a

f(t2)y(t2) dt2 dt1 = c1 + c2t−
∫ t

a

(t− s)f(s)y(s) ds

and hence, with C := |c1|+ |c2|,

|y(t)| 6 Ct+ t

∫ t

a

|f(s)| · |y(s)| ds,

so
|y(t)|
t

6 C +

∫ t

a

s|f(s)| · |y(s)|
s

ds.

Hence by the lemma above,

|y(t)|
t

6 C exp

[∫ t

a

s|f(s)| ds
]
6 C exp

[∫ t

1

c/s ds

]
= Ctc

and thus |y(t)| 6 Ctc+1. Now

y′(t) = c2 −
∫ t

a

f(s)y(s) ds
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and thus

|y′(t)| 6 |c2|+
∫ t

a

|f(s)y(s)| ds 6 C+Cc

∫ t

1

sc−1 ds = C+Cc

[
tc

c
− 1

c

]
= Ctc.

�

Let y1, y2 ∈ Sol(f) be R-linearly independent. The Wronskian w := y1y
′
2 − y′1y2

satisfies w′ = 0 (Abel’s identity), so w ∈ R×. It follows that y1 and y2 cannot be
simultaneously very small:

Lemma 2.10. There is a positive constant d such that

max
(
|y1(t)|, |y2(t)|

)
> dt−c for all t > a.

Proof. Proposition 2.9 yields C ∈ R> such that |y′i(t)| 6 Ctc for i = 1, 2 and
all t > a. Hence |w| 6 2 max

(
|y1(t)|, |y2(t)|

)
Ctc for t > a, so

max
(
|y1(t)|, |y2(t)|

)
>
|w|
2C

t−c (t > a). �

Corollary 2.11. Set y := y1 + y2i and z := y†. Then for some D ∈ R>,

|z(t)| 6 Dt2c for all t > a.

Proof. Take C as in the proof of Lemma 2.10, and d as in that lemma. Then

|z(t)| =
|y′1(t) + y′2(t)i|
|y1(t) + y2(t)i|

6
|y′1(t)|+ |y′2(t)|

max
(
|y1(t)|, |y2(t)|

) 6 (
2C

d

)
t2c

for t > a. �

Changing variables. Let now K be a differential field, f ∈ K, and consider the
differential polynomial P (Y ) := 4Y ′′ + fY . (The factor 4 is to simplify certain
expressions, in conformity with [2, Section 9.2].) Which “changes of variable”
preserve the general form of P? Here is an answer:

Lemma 2.12. For g ∈ K× and φ := g−2 we have

g3Pφ×g(Y ) = 4Y ′′ + g3P (g)Y.

Proof. Let g, φ ∈ K×. Then

P×g(Y ) = 4gY ′′ + 8g′Y ′ + (4g′′ + fg)Y = 4gY ′′ + 8g′Y ′ + P (g)Y, so

Pφ×g(Y ) = 4g(φ2Y ′′ + φ′Y ′) + 8g′φY ′ + P (g)Y

= 4gφ2Y ′′ + (4gφ′ + 8g′φ)Y ′ + P (g)Y.

Now 4gφ′+8g′φ = 0 is equivalent to φ† = −2g†, which holds for φ = g−2. For this φ

we get Pφ×g(Y ) = g−3
(
4Y ′′ + g3P (g)Y

)
, that is, g3Pφ×g(Y ) = 4Y ′′ + g3P (g)Y . �

Hardy fields. A Hardy field is a subfield of C<∞ that is closed under the derivation
of C<∞. A Hardy field H is considered as an ordered valued differential field in the
obvious way, and has R ∩H as its field of constants. Hardy fields are pre-H-fields,
and H-fields if they contain R. Here are some well-known extension results:

Proposition 2.13. Any Hardy field H has the following Hardy field extensions:

(i) H(R), the subfield of C<∞ generated by H and R;
(ii) Hrc, the real closure of H as defined in Lemma 2.1;
(iii) H(ef ) for any f ∈ H;
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(iv) H(f) for any f ∈ C1 with f ′ ∈ H;
(v) H(log f) for any f ∈ H>.

If H is contained in C∞, then so are the Hardy fields in (i), (ii), (iii), (iv), (v);
likewise with Cω instead of C∞.

Note that (v) is a special case of (iv), since (log f)′ = f ′/f ∈ H for f ∈ H>.
Another special case of (iv) is that H(x) is a Hardy field. A consequence of the
Proposition is that any Hardy field H has a smallest real closed Hardy field exten-
sion H∗ with R ⊆ H∗ such that for all f ∈ H∗ we have ef ∈ H∗ and g′ = f for
some g ∈ H∗. Note that then H∗ is Liouville closed as defined in [2, Section 10.6].

We also have the following more general extension result from Rosenlicht [13],
attributed there to M. Singer:

Proposition 2.14. Let H be a Hardy field and p(Y ), q(Y ) ∈ H[Y ]. Suppose f ∈ C1
is a solution of the differential equation y′q(y) = p(y) and q(f) is a unit of C1.
Then f generates a Hardy field H(f) over H.

Compositional inversion and compositional conjugation in Hardy fields.
Let H be a Hardy field, and let g ∈ C1 be such that g > R and g′ ∈ H. Then we
have a Hardy field H(g), and the compositional inverse ginv ∈ C1 of g satisfies

ginv > R, (ginv)′ = (1/g′) ◦ ginv ∈ H ◦ ginv

and yields an ordered field isomorphism

h 7→ h ◦ ginv : H → H ◦ ginv

such that for all h ∈ H,

(h ◦ ginv)′ = (h′ ◦ ginv) · (ginv)′ = (h′/g′) ◦ ginv ∈ H ◦ ginv.
Thus H ◦ ginv is again a Hardy field, and for φ = g′ this yields an isomorphism

h 7→ h ◦ ginv : Hφ → H ◦ ginv

of pre-H-fields. If H ⊆ C∞ and g ∈ C∞, then H ◦ ginv ⊆ C∞; likewise with Cω
instead of C∞. For later use, a C∞-Hardy field is a Hardy field H ⊆ C∞, and a
Cω-Hardy field (also called an analytic Hardy field) is a Hardy field H ⊆ Cω.

3. Extending Hardy Fields to ω-free Hardy Fields

In this section we assume familiarity with [2, Sections 5.2, 11.5–11.8]. Here we
summarize some of this material, and then use this to prove Theorem 3.1 below.
In the Notations and terminology at the end of the introduction we defined for any
differential ring R functions ω : R→ R and σ : R× → R. We define likewise

ω : C1a → C0a, σ : (C1a)× → C0a
by

ω(z) = −2z′ − z2 and σ(y) = ω(z) + y2 for z := −y†.
To clarify this role of ω and σ in connection with second-order linear differential
equations, let f ∈ C0a and consider the differential equation

4Y ′′ + fY = 0.

Suppose y ∈ C2a is a non-oscillating solution, that is, a solution with y(t) 6= 0
for all sufficiently large t, say for all t > b, where b > a. Then z ∈ C1b given
by z(t) = 2y′(t)/y(t) satisfies the first-order differential equation −2z′ − z2 = f
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on [b,∞). Thus if the germ of f at +∞ belongs to a Hardy field H, then by
Proposition 2.14 the germ of z at +∞ (also denoted by z) generates a Hardy
field H(z) with ω(z) = f , which in turn yields a Hardy field H(z, y) with y now
denoting its germ at +∞ so that y ∈ (C<∞)× and 2y† = z in C<∞. Thus y1 := y
lies in a Hardy field extension of H. The germ y2 of the function [b,+∞) → R
given by t 7→ y(t)

∫ t
b

1
y(s)2 ds also satisfies 4y′′2 + fy2 = 0, and y1, y2 are R-linearly

independent [4, Chapter 6, Lemma 3]. By Proposition 2.13(iv), y2 lies in a Hardy
field extension of H〈y1〉 = H(y, z); see also [13, Theorem 2, Corollary 2].

There might not exist a non-oscillating solution y, but we do have R-linearly
independent solutions y1, y2 ∈ C2a. We saw before that w := y1y

′
2 − y′1y2 ∈ R×. Set

y := y1 + y2i. Then 4y′′ + fy = 0 and y(t) 6= 0 for all t > a, and for z ∈ C1a[i] given
by z(t) = 2y′(t)/y(t) we have −2z′ − z2 = f . Now

z =
2y′1 + 2iy′2
y1 + iy2

=
2y′1y1 + 2y′2y2 − 2i(y′1y2 − y1y′2)

y21 + y22
=

2(y′1y1 + y′2y2) + 2iw

y21 + y22
,

so Re(z) =
2(y′1y1 + y′2y2)

y21 + y22
∈ C1a, Im(z) =

2w

y21 + y22
∈ C2a.

Thus Im(z) ∈ (C2a)× and Im(z)† = −Re(z) and σ
(

Im(z)
)

= ω(z) = f in C1a.
Replacing y1 by −y1 changes w to −w; in this way we can arrange that w > 0.

The property of ω-freeness. Let H ⊇ R be a Liouville closed Hardy field. Note
that then x ∈ H and log f ∈ H for all f ∈ H>. To express the property of ω-
freeness for H we introduce the “iterated logarithms” `ρ; more precisely, transfinite
recursion yields a sequence (`ρ) in H>R indexed by the ordinals ρ less than some
infinite limit ordinal κ as follows: `0 = x, and `ρ+1 := log `ρ; if λ is an infinite limit
ordinal such that all `ρ with ρ < λ have already been chosen, then we pick `λ to be
any element in H>R such that `λ ≺ `ρ for all ρ < λ, if there is such an `λ, while if
there is no such `λ, we put κ := λ. From (`ρ) we obtain the sequences (γρ) in H>

and (λρ) in H as follows:

γρ := `†ρ, λρ := −γ
†
ρ = −`†ρ† := −(`†ρ

†).

Then λρ+1 = λρ + γρ+1 and we have

γ0 = `−10 , γ1 = (`0`1)−1, γ2 = (`0`1`2)−1,

λ0 = `−10 , λ1 = `−10 + (`0`1)−1, λ2 = `−10 + (`0`1)−1 + (`0`1`2)−1,

and so on. Indeed, v(γρ) is strictly increasing as a function of ρ and is cofinal
in ΨH =

{
v(f†) : f ∈ H, 0 6= f 6� 1

}
; we refer to [2, Section 11.5] for this and

some of what follows. Also, (λρ) is a strictly increasing pc-sequence which is cofinal
in Λ(H); see [2, Section 11.8] for the definition of the set Λ(H) ⊆ H, which is
downward closed since H is Liouville closed. The latter also gives that H is λ-free
as defined in [2, Section 11.6], equivalently, (λρ) has no pseudolimit in H. The
function ω : H → H is strictly increasing on Λ(H) and setting ωρ := ω(λρ) we
obtain a strictly increasing pc-sequence (ωρ) which is cofinal in ω

(
Λ(H)

)
= ω(H):

ω0 = `−20 , ω1 = `−20 + (`0`1)−2, ω2 = `−20 + (`0`1)−2 + (`0`1`2)−2,

and so on; see [2, Sections 11.7, 11.8] for this and some of what follows. NowH being
ω-free is equivalent to (ωρ) having no pseudolimit inH. By [2, Corollary 11.8.30] the
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pseudolimits of (ωρ) in H are exactly the ω ∈ H such that ω(H) < ω < σ
(
Γ(H)

)
.

Here the upward closed subset Γ(H) of H is given by

Γ(H) =
{
a† : a ∈ H, a � 1

}
= {a ∈ H : a > γρ for some ρ},

and σ is strictly increasing on Γ(H). Thus H is not ω-free if and only if there exists
an ω ∈ H such that ω(H) < ω < σ

(
Γ(H)

)
.

We are now ready to prove the following:

Theorem 3.1. Every Hardy field has an ω-free Hardy field extension.

Proof. It is enough to show that every maximal Hardy field is ω-free. That reduces
to showing that every non-ω-free Liouville closed Hardy field containing R has a
proper Hardy field extension. So assume H ⊇ R is a Liouville closed Hardy field
and H is not ω-free. We shall construct a proper Hardy field extension of H. We
have ω ∈ H such that

ω(H) < ω < σ
(
Γ(H)

)
.

Take a ∈ R such that ω is the germ of a function in C2a, this function also to be
denoted by ω. With ω in the role of f in the discussion preceding the statement of
the theorem, we have R-linearly independent solutions y1, y2 ∈ C2a of the differential
equation 4Y ′′ + ωY = 0 whose germs at +∞ (also denoted by y1 and y2) lie
in C<∞. Then the complex solution y = y1 + y2i is a unit of C2a[i], and so we have
z := 2y† ∈ C1a[i]. The germs of y and z at +∞ are also denoted by y and z and
lie in C<∞[i]. We shall prove that the elements Re(z) and Im(z) of C<∞ generate
a Hardy field extension K = H

(
Re(z), Im(z)

)
of H with ω = σ

(
Im(z)

)
∈ σ(K×).

We can assume that w := y1y
′
2 − y′1y2 ∈ R>, so Im(z)(t) > 0 for all t > a.

We have ωρ  ω, with ω−ωρ ∼ γ2ρ+1 by [2, Lemma 11.7.1]. We set gρ := γ
−1/2
ρ ,

so 2g†ρ = λρ = −γ†ρ. For h ∈ H× we also have ω(2h†) = −4h′′/h, hence P :=
4Y ′′ + ωY ∈ H{Y } gives

P (gρ) = gρ(ω− ωρ) ∼ gργ
2
ρ+1,

and so with an eye towards using Lemma 2.12:

g3ρP (gρ) ∼ g4ργ
2
ρ+1 ∼ γ

2
ρ+1/γ

2
ρ � 1/`2ρ+1.

Thus with g := gρ = γ
−1/2
ρ , φ = g−2 = γρ we have Aρ ∈ R> such that

(3.1) g3Pφ×g(Y ) = 4Y ′′ + g3P (g)Y, |g3P (g)(t)| 6 Aρ/`ρ+1(t)2, eventually.

From P (y) = 0 we get Pφ×g(y/g) = 0, that is, y/g ∈ C<∞[i]φ is a solution of

4Y ′′ + g3P (g)Y = 0, with g3P (g) ∈ H ⊆ C<∞. Now `′ρ+1 = `†ρ = φ, so the end of

the previous section yields the isomorphism Hφ → H ◦ `invρ+1 of H-fields, where `invρ+1

is the compositional inverse of `ρ+1. Under this isomorphism the equation 4Y ′′ +
g3P (g)Y = 0 corresponds to the equation

4Y ′′ + fρY = 0, fρ := g3P (g) ◦ `invρ+1 ∈ H ◦ `invρ+1 ⊆ C<∞.

The equation 4Y ′′ + fρY = 0 has the “real” solutions

yi,ρ := (yi/g) ◦ `invρ+1 ∈ C<∞ ◦ `invρ+1 = C<∞ (i = 1, 2),

and the “complex” solution

yρ := y1,ρ + y2,ρi = (y/g) ◦ `invρ+1,
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which is a unit of the ring C<∞[i]. We set zρ := 2y†ρ ∈ C<∞[i]. The bound in (3.1)
gives

|fρ(t)| 6 Aρ/t
2, eventually,

which by Corollary 2.11 yields positive constants Bρ, cρ such that

|zρ(t)| 6 Bρt
cρ , eventually.

Using (`invρ+1)′ = (1/`′ρ+1) ◦ `invρ+1 we obtain

zρ = 2
(
(y/g)† ◦`invρ+1

)
· (`invρ+1)′ = 2

(
(y/g)†/`′ρ+1

)
◦`invρ+1 =

(
(z−2g†)/`′ρ+1

)
◦`invρ+1.

In combination with the eventual bound on |zρ(t)| this yields∣∣∣∣∣z(t)− 2g†(t)

`′ρ+1(t)

∣∣∣∣∣ 6 Bρ `ρ+1(t)cρ eventually, hence

|z(t)− λρ(t)| 6 Bρ `ρ+1(t)cρ `′ρ+1(t) = Bρ `ρ+1(t)cρ γρ(t), eventually, so

z(t) = λρ(t) +Rρ(t), |Rρ(t)| 6 Bρ `ρ+1(t)cρ γρ(t), eventually.

We now use this last estimate with ρ+ 1 instead of ρ, together with

λρ+1 = λρ + γρ+1, `ρ+1γρ+1 = γρ.

This yields

z(t) = λρ(t) + γρ+1(t) +Rρ+1(t) eventually, with

|Rρ+1(t)| 6 Bρ+1 `ρ+2(t)cρ+1 γρ+1(t)

= Bρ+1

(
`ρ+2(t)cρ+1/`ρ+1(t)

)
γρ(t) eventually,

so z(t) = λρ(t) + o
(
γρ(t)

)
as t→∞, and thus

Re(z)(t) = λρ(t) + o
(
γρ(t)

)
, Im(z)(t) = o

(
γρ(t)

)
, as t→∞.

Recall that (λρ) is a strictly increasing divergent pc-sequence (λρ) in H which is
cofinal in Λ(H). By the above, λ := Re(z) ∈ C<∞ satisfies Λ(H) < λ < ∆(H).
This yields an ordered subfield H(λ) of C<∞, which by Lemma 2.6 is an immediate
valued field extension of H with λρ  λ.

Pick functions in C0a whose germs at +∞ are the elements `ρ, γρ, λρ of H; we
denote these functions also by `ρ, λρ, γρ. From `†ρ = γρ and γ†ρ = −λρ in H we
obtain constants cρ, dρ ∈ R> such that for all t > a,

`ρ(t) = cρ exp

[∫ t

a

γ(s) ds

]
, γρ(t) = dρ exp

[
−
∫ t

a

λρ(s) ds

]
.

Set γ := Im(z), so γ† = −λ, and both γ and λ are already given as elements of C0a.
Since γ(t) > 0 for all t > a we have a constant d ∈ R> such that for all t > a,

γ(t) = d exp

[
−
∫ t

a

λ(s) ds

]
.

The above estimate for λ = Re(z) gives

λρ(t) < λ(t) < λρ(t) + γρ(t), eventually,

so we have constants aρ, bρ ∈ R such that∫ t

a

λρ(s) ds < aρ +

∫ t

a

λ(s) ds < bρ +

∫ t

a

λρ(s) ds+

∫ t

a

γρ(s) ds, eventually,
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which by applying exp(−∗) yields

1

dρ
γρ(t) >

1

eaρ d
γ(t) >

cρ
ebρ dρ

γρ(t)/`ρ(t), eventually.

Here the positive constant factors don’t matter, since the valuation of γρ is strictly
increasing and that of γρ/`ρ = (1/`ρ)

′ is strictly decreasing with ρ. Thus for all ρ
we have γρ > γ > (1/`ρ)

′, in C<∞. In view of Lemma 2.7 applied to H(λ), γ

in the role of K, f this yields an ordered subfield H(λ, γ) of C<∞. Moreover, γ is
transcendental over H(λ) with γ† = −λ, and γ satisfies the second-order differential
equation 2yy′′− 3(y′)2 + y4−ωy2 = 0 over H (obtained from the relation σ(γ) = ω

by multiplication with γ2). It follows that H(λ, γ) is closed under the derivation
of C<∞, and hence H(λ, γ) = H〈λ〉 is a Hardy field. �

The proof also shows that every C∞-Hardy field has an ω-free C∞-Hardy field
extension, and the same with Cω instead of C∞.
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