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Abstract—Blind Source Separation (BSS) [1] is widely used to analyze
multichannel data stemming from origins as wide as astrophysics to
medicine. However, existent methods do not efficiently handle very large
datasets. In this work, we propose a new method coined DGMCA
(Distributed Generalized Morphological Component Analysis) in which
the original BSS problem is decomposed into subproblems that can be
tackled in parallel, alleviating the large-scale issue. We propose to use
the RCM (Riemannian Center of Mass – [6][7]) to aggregate during the
iterative process the estimations yielded by the different subproblems.
The approach is made robust both by a clever choice of the weights of
the RCM and the adaptation of the heuristic parameter choice proposed
in [4] to the parallel framework. The results obtained show that the
proposed approach is able to handle large-scale problems with a linear
acceleration performing at the same level as GMCA and maintaining an
automatic choice of parameters.

I. LARGE-SCALE BLIND SOURCE SEPARATION

Given m row observations of size t stacked in a matrix Y assumed
to follow a linear model Y = AS + N, the objective of BSS [1]
is to estimate the matrices A (size m × n) and S (size n × t) up
to a mere permutation and scaling indeterminacy. In this model, A
mixes the n row sources in S, the observations being entached by
some unknwown noise N (size m× t). We will assume that n ≤ m.
While ill-posed, this problem can be regularized assuming the sparsity
of S [2]. The estimation will then turn into the minization of:

Â, Ŝ = arg min
A,S

1

2
‖Y −AS‖2F+‖Λ� S‖1+iX:‖Xk‖2=1, ∀k(A) ,

(1)
with ‖·‖F the Frobenius norm, Λ the regularization parameters and
iC(·) the indicator function of the set C. The first term is a data fidelity
one, the second enforces the sparsity and the last avoids degenerated
solutions with ‖A‖2F → 0 by enforcing unit columns.
To tackle Eq. (1), the GMCA [4] algorithm has known a tremendous
success due to an automatic decreasing parameter strategy making it
robust. However, in this work we will assume that the data Y are
large-scale in the sense that t can have huge values (e.g. up to 109

samples), which make the treatement of Y as a whole intractable. In
this context, using GMCA or most other algorithms is prohibitive.

II. PROPOSED METHOD

This difficulty motivates the construction of J subproblems (j) of
the type Yj = ASj +Nj where j denotes a subset of tj columns of
the corresponding matrices. We use disjoints sets with

∑
j |tj | = t.

A natural idea is then the extension of GMCA to work in parallel
on the tractable smaller subproblems to minimize Eq. (1). While this
approach is reminiscent to mini-batch approaches in machine learning
[9], it however raises two issues in the context solving BSS through
GMCA: i) each subproblem (j) yields a full estimate Â(j) of A. Is
it possible to aggregate them to get a better final estimate?; ii) is it
possible to extend the automatic parameter choice of GMCA (that
made its success) to a parallel implementation?
A naive approach would be to independantly solve each subproblem
(j) and aggregate the different final results. However, since GMCA
is an iterative algorithm, aggregating the estimations Â(j) of the

1: procedure DGMCA(Y, parameters)
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Fig. 1. DGMCA. the operator (·)† is the pseudo-inverse, Sλ(·) is the
soft-thresholding operator with the threshold λ, ai denotes the i column
of A and the subscript (j) denotes the estimation of the j subproblem.

different subproblems (j) during the iterations should reduce the
error propagation, thus improving the results over the naive approach.
More specifically, our DGMCA algorithm performs the agreggation
through the weighted RCM [6] of the different columns â

(k+1)

i, (j) of
the estimations Â

(k+1)

(j) yielded by the different (j) subproblems at
iteration k + 1, which enables to take into account the geometry
of the problem and the fact that each column must respect the
unit norm constraint. Its calculation is done following a gradient
descend where its convergence is assured by [7]. Roughly speaking,
the RCM can be understood as a weighted angular mean on the
hypersphere. To robustify this process, we further propose to compute
the weights based on an estimation of the Signal-to-Noise Ratio (SNR)
of the corresponding estimated sources s̃

i, (k+1)
j to penalize noisy

estimations (cf. Algorithm 1).
Concerning question ii), the parameter choice of GMCA needs to

access the whole distribution of the sources at each iteration, which is
intractable in the large-scale regime. We propose a new strategy using
a parametrized exponential decay which adapts to the signal statistics
by using the maximum value of the estimated sources also making
it parallelizable. The threshold decay is regulated by the parameter
αi and can be adjusted in the first iterations by fitting a generalized
Gaussian to the sources.

III. EMPIRICAL RESULTS AND CONCLUSIONS

Numerical experiments can be found in Fig.2 and 3. In brief, our
method paves the way for distributed approaches of BSS problems
with automatic parameter tunning. It not only allows to handles large
datasets but it enables a linear acceleration. Furthermore, it does
not lower the separation quality compared to GMCA outperforming
methods like the optimized ODL [9].
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Fig. 2. Performance comparison of the GMCA, the ODL (Online Dictionary
Learning [9]), and the DGMCA and its variants. Note that the parameters
of the ODL algorithm have been optimized for this experiment by an
exhaustive search. The x-axis corresponds to the size tj of each subproblem
(j), which is set for all j to be tj = t/J . The y-axis represents the
separation quality, measured by a mixing matrix criterion [5] defined as
−10 log‖PÂ†A?− I‖`1 , where A? is the ground truth and P accounts for
the correction of the permutations. To generate the experiments, the source
matrix was randomly sampled from a Generalized Gaussian distribution with
several profile parameters β between 0.35 and 1.4, having n = 10 sources,
t = 10000 samples and m = 20 observations. The noise matrix N was set to
have a SNR of 15dB. The matrix A is random and with a condition number
fixed to 10. The experiment is repeated 3 times and the mean of the results
is being plotted.
Four parallelized algorithms are compared: the presented DGMCA, the
DGMCA naive method consisting of solving the J subproblems independently
until convergence and performing the aggregation at the end, the DGMCA
Euclidean method where the RCM is substituted with an Euclidean mean for
the aggregation, and the ODL with its hyperparameters optimized. The results
of the different algorithms are benchmarked with the GMCA using the entire
observation matrix (which is only possible due to the relatively small t that
we chose for the sake of the comparison).
The DGMCA outperforms the other parallelized methods maintaining a
similar performance compared to the GMCA. It is worth to remark that the
performance is limited by the size of the mini-batch and not by the total size
t which can be increased thus making the number of mini-batches increase.
The separation quality is indeed only reduced for extremely small tj , which
was expected due to the lack of statistics for the algorithm to work. The
DGMCA naive is not plotted for the two smallest tj as some mini-batches only
contained noise, which caused the algorithm not to converge for the threshold
level used (as the subproblems are solved independently until convergence).
In addition, the huge gap between DGMCA and its naive version confirms the
usefulness of using an aggregation process during the iterations. Furthermore,
using the RCM as aggregation and therefore taking into account the geometry
of the problem enables better results than with an Euclidian mean. In the
context of reproducible research, the code is available online at:
https://github.com/tobias-liaudat/DGMCA.
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Fig. 3. Computational time gain between the parallelized DGMCA and the
GMCA algorithms against the data reduction ratio which is calculated as the
problem total size, t, divided by the size of the mini-batch, t/tj = J . Each
point on the figure represents the mean over 10 problems. The experiment
was run using a C++ parallelized version of the DGMCA algorithm and the
maximum number of mini-batches used is 40 as it is the number of cores the
computer cluster used had. The setup of the experience is similar to the one in
Fig 1, with a β parameter of 0.5, having n = 5 sources, t = 10000 samples
and a SNR of 40dB. The linear trend of the time gain was predicted by the
complexity analysis of the algorithms, and now confirmed by the numerical
experiment.
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