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 to the parallel framework. The results obtained show that the proposed approach is able to handle large-scale problems with a linear acceleration performing at the same level as GMCA and maintaining an automatic choice of parameters.

I. LARGE-SCALE BLIND SOURCE SEPARATION

Given m row observations of size t stacked in a matrix Y assumed to follow a linear model Y = AS + N, the objective of BSS [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF] is to estimate the matrices A (size m × n) and S (size n × t) up to a mere permutation and scaling indeterminacy. In this model, A mixes the n row sources in S, the observations being entached by some unknwown noise N (size m × t). We will assume that n ≤ m. While ill-posed, this problem can be regularized assuming the sparsity of S [START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF]. The estimation will then turn into the minization of:

Â, Ŝ = arg min A,S 1 2 Y -AS 2 F + Λ S 1 +i X: X k 2 =1, ∀k (A) , (1) 
with • F the Frobenius norm, Λ the regularization parameters and iC(•) the indicator function of the set C. The first term is a data fidelity one, the second enforces the sparsity and the last avoids degenerated solutions with A 2 F → 0 by enforcing unit columns. To tackle Eq. ( 1), the GMCA [START_REF] Bobin | Sparsity and morphological diversity in blind source separation[END_REF] algorithm has known a tremendous success due to an automatic decreasing parameter strategy making it robust. However, in this work we will assume that the data Y are large-scale in the sense that t can have huge values (e.g. up to 10 9 samples), which make the treatement of Y as a whole intractable. In this context, using GMCA or most other algorithms is prohibitive.

II. PROPOSED METHOD

This difficulty motivates the construction of J subproblems (j) of the type Yj = ASj + Nj where j denotes a subset of tj columns of the corresponding matrices. We use disjoints sets with j |tj| = t. A natural idea is then the extension of GMCA to work in parallel on the tractable smaller subproblems to minimize Eq. [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF]. While this approach is reminiscent to mini-batch approaches in machine learning [START_REF] Mairal | Online Learning for Matrix Factorization and Sparse Coding[END_REF], it however raises two issues in the context solving BSS through GMCA: i) each subproblem (j) yields a full estimate Â(j) of A. Is it possible to aggregate them to get a better final estimate?; ii) is it possible to extend the automatic parameter choice of GMCA (that made its success) to a parallel implementation? A naive approach would be to independantly solve each subproblem (j) and aggregate the different final results. However, since GMCA is an iterative algorithm, aggregating the estimations Â(j) of the while do not converge do for j = 1, ... , J do 5:

S(k+1) j ← Â(k) RCM † Yj (LS estimation) 6: Ŝ(k+1) j ← S Λ (k) S(k+1) j (Prox. op. of Λ (k) • 1 ) 7: Â(k+1) (j) ← Y j Ŝ(k+1) j † (LS estimation) 8: â(k+1) i, (j) ← â(k+1) i, (j) â(k+1) i, (j) 2 , ∀i ∈ {1, ..., n} (Prox. op. of i C (•)) 9: W (k+1) RCM i,j = si, (k+1) j 2 2 /σ Y i j ( Â(k) ) † 2 F
, ∀i, j.

10: Correct permutations in
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11:

Â(k+1) RCM ← RCM( Â(k+1) (1) 
, . . . , Â(k+1)

(J) , W (k+1) 
RCM ) (Aggregation) 12:

k ← k + 1 13: return Â(k) RCM , Ŝ(k) Fig. 1. DGMCA. the operator (•) † is the pseudo-inverse, S λ (•)
is the soft-thresholding operator with the threshold λ, a i denotes the i column of A and the subscript (j) denotes the estimation of the j subproblem.

different subproblems (j) during the iterations should reduce the error propagation, thus improving the results over the naive approach. More specifically, our DGMCA algorithm performs the agreggation through the weighted RCM [START_REF] Afsari | Riemannian Lp center of mass: Existence, uniqueness, and convexity[END_REF] of the different columns â(k+1) i, (j) of the estimations Â(k+1)

(j)
yielded by the different (j) subproblems at iteration k + 1, which enables to take into account the geometry of the problem and the fact that each column must respect the unit norm constraint. Its calculation is done following a gradient descend where its convergence is assured by [START_REF] Asfari | On The Convergence of Gradient Descent for Finding the Riemannian Center of Mass[END_REF]. Roughly speaking, the RCM can be understood as a weighted angular mean on the hypersphere. To robustify this process, we further propose to compute the weights based on an estimation of the Signal-to-Noise Ratio (SNR) of the corresponding estimated sources si, (k+1)

j
to penalize noisy estimations (cf. Algorithm 1). Concerning question ii), the parameter choice of GMCA needs to access the whole distribution of the sources at each iteration, which is intractable in the large-scale regime. We propose a new strategy using a parametrized exponential decay which adapts to the signal statistics by using the maximum value of the estimated sources also making it parallelizable. The threshold decay is regulated by the parameter αi and can be adjusted in the first iterations by fitting a generalized Gaussian to the sources.

III. EMPIRICAL RESULTS AND CONCLUSIONS

Numerical experiments can be found in Fig. 2 and3. In brief, our method paves the way for distributed approaches of BSS problems with automatic parameter tunning. It not only allows to handles large datasets but it enables a linear acceleration. Furthermore, it does not lower the separation quality compared to GMCA outperforming methods like the optimized ODL [START_REF] Mairal | Online Learning for Matrix Factorization and Sparse Coding[END_REF]. Learning [START_REF] Mairal | Online Learning for Matrix Factorization and Sparse Coding[END_REF]), and the DGMCA and its variants. Note that the parameters of the ODL algorithm have been optimized for this experiment by an exhaustive search. The x-axis corresponds to the size t j of each subproblem (j), which is set for all j to be t j = t/J. The y-axis represents the separation quality, measured by a mixing matrix criterion [START_REF] Bobin | Sparsity and adaptivity for the blind separation of partially correlated sources[END_REF] defined as -10 log P Â † A -I 1 , where A is the ground truth and P accounts for the correction of the permutations. To generate the experiments, the source matrix was randomly sampled from a Generalized Gaussian distribution with several profile parameters β between 0.35 and 1.4, having n = 10 sources, t = 10000 samples and m = 20 observations. The noise matrix N was set to have a SNR of 15dB. The matrix A is random and with a condition number fixed to 10. The experiment is repeated 3 times and the mean of the results is being plotted. Four parallelized algorithms are compared: the presented DGMCA, the DGMCA naive method consisting of solving the J subproblems independently until convergence and performing the aggregation at the end, the DGMCA Euclidean method where the RCM is substituted with an Euclidean mean for the aggregation, and the ODL with its hyperparameters optimized. The results of the different algorithms are benchmarked with the GMCA using the entire observation matrix (which is only possible due to the relatively small t that we chose for the sake of the comparison).

The DGMCA outperforms the other parallelized methods maintaining a similar performance compared to the GMCA. It is worth to remark that the performance is limited by the size of the mini-batch and not by the total size t which can be increased thus making the number of mini-batches increase. The separation quality is indeed only reduced for extremely small t j , which was expected due to the lack of statistics for the algorithm to work. The DGMCA naive is not plotted for the two smallest t j as some mini-batches only contained noise, which caused the algorithm not to converge for the threshold level used (as the subproblems are solved independently until convergence).

In addition, the huge gap between DGMCA and its naive version confirms the usefulness of using an aggregation process during the iterations. Furthermore, using the RCM as aggregation and therefore taking into account the geometry of the problem enables better results than with an Euclidian mean. In the context of reproducible research, the code is available online at: https://github.com/tobias-liaudat/DGMCA. Computation time gain Fig. 3. Computational time gain between the parallelized DGMCA and the GMCA algorithms against the data reduction ratio which is calculated as the problem total size, t, divided by the size of the mini-batch, t/t j = J. Each point on the figure represents the mean over 10 problems. The experiment was run using a C++ parallelized version of the DGMCA algorithm and the maximum number of mini-batches used is 40 as it is the number of cores the computer cluster used had. The setup of the experience is similar to the one in Fig 1, with a β parameter of 0.5, having n = 5 sources, t = 10000 samples and a SN R of 40dB. The linear trend of the time gain was predicted by the complexity analysis of the algorithms, and now confirmed by the numerical experiment.
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 2 Fig.2. Performance comparison of the GMCA, the ODL (Online Dictionary Learning[START_REF] Mairal | Online Learning for Matrix Factorization and Sparse Coding[END_REF]), and the DGMCA and its variants. Note that the parameters of the ODL algorithm have been optimized for this experiment by an exhaustive search. The x-axis corresponds to the size t j of each subproblem (j), which is set for all j to be t j = t/J. The y-axis represents the separation quality, measured by a mixing matrix criterion[START_REF] Bobin | Sparsity and adaptivity for the blind separation of partially correlated sources[END_REF] defined as -10 log P Â † A -I 1 , where A is the ground truth and P accounts for the correction of the permutations. To generate the experiments, the source matrix was randomly sampled from a Generalized Gaussian distribution with several profile parameters β between 0.35 and 1.4, having n = 10 sources, t = 10000 samples and m = 20 observations. The noise matrix N was set to have a SNR of 15dB. The matrix A is random and with a condition number fixed to 10. The experiment is repeated 3 times and the mean of the results is being plotted. Four parallelized algorithms are compared: the presented DGMCA, the DGMCA naive method consisting of solving the J subproblems independently until convergence and performing the aggregation at the end, the DGMCA Euclidean method where the RCM is substituted with an Euclidean mean for the aggregation, and the ODL with its hyperparameters optimized. The results of the different algorithms are benchmarked with the GMCA using the entire observation matrix (which is only possible due to the relatively small t that we chose for the sake of the comparison). The DGMCA outperforms the other parallelized methods maintaining a similar performance compared to the GMCA. It is worth to remark that the performance is limited by the size of the mini-batch and not by the total size t which can be increased thus making the number of mini-batches increase. The separation quality is indeed only reduced for extremely small t j , which was expected due to the lack of statistics for the algorithm to work. The DGMCA naive is not plotted for the two smallest t j as some mini-batches only contained noise, which caused the algorithm not to converge for the threshold level used (as the subproblems are solved independently until convergence). In addition, the huge gap between DGMCA and its naive version confirms the usefulness of using an aggregation process during the iterations. Furthermore, using the RCM as aggregation and therefore taking into account the geometry of the problem enables better results than with an Euclidian mean. In the context of reproducible research, the code is available online at: https://github.com/tobias-liaudat/DGMCA.
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