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Abstract

We consider electromagnetic wave propagation
in domains constituted by thin coaxial cables
(made of a dielectric material which surrounds
a metallic inner-wire) and a small junction. The
goal is to trim down 3D Maxwell’s equations in
this complicated geometry to a quantum graph
(see [3]) in which, along each edge, one is re-
duced to compute the electrical potential and
current a by solving wave equations (the teleg-
rapher’s model) coupled by vertex conditions. In
this work, using the method of matched asymp-
totics, we propose improved Kirchhoff conditions
and we give a rigorous justification of such a
model reduction.

Keywords: Maxwell’s equations, telegrapher’s
equation, matched asymptotics, quantum graph.

1 The geometry

We consider a domain Ωδ, with δ > 0, which is
homothetic to a (unbounded) reference domain
namely

Ωδ = δ Ω1 (1)

as described in Figure 1 where Ω1 is the con-
nected union of (L + 1) semi-infinite cables Ω1

`

(` = 0...L) and a bounded junction J1 as illus-
trated by Figure 1. More precisely, each Ω` is
isomorphic to S` × R+, where S` is a non sim-
ply connected bounded domain of R2 with one
single hole. The ”small” parameter δ refers to
the thinness of the propagation domain. When
δ → 0, Ωδ converges to a graph G, union of L
half-lines D`. In the following, we denote x`3 ≥ 0
the abscissa along D` and x`T = (x`1, x

`
T ) associ-
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Figure 1: The refernce domain Ω1 (center) the
limit graph G (right) and a cross-section S` (left)

ated transverse coordinates.

Ωδ
` =

{
(δ x`T , x

`
3) | (x`T , x`3) ∈ Ω1

`

}
We are interested in the solution (Eδ, Hδ) of
lossy 3D-Maxwell’s equations in this domain, with
constant coefficients for simplicity, and perfectly
conducting boundary conditions along ∂Ωδ. More
precisely we wish to describe the behavior of this
solution for small δ from the solution of a 1D
”effective model” on the limit graph.

2 The reduced model

We describe below only the behavior of the elec-
tromagnetic fields in the (L+ 1) cables:

Eδ(x`T , x
`
3, t) ∼ V δ

` (x`3, t) ∇ϕ`
(xT
δ

)
Hδ(x`T , x

`
3, t) ∼ Iδ` (x`3, t) ∇ψ`

(xT
δ

) (2)
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where the harmonic potentials ϕ` and ψ` are de-
fined by elliptic problems in S` (see [1]). The
electrical potential V ` and current I` are solu-
tions of the telegrapher’s equation (∂` ≡ ∂/∂x`3):

(
C` ∂t +G`

)
Vδ
` + ∂` Iδ` = 0,(

L` ∂t +R`
)
Iδl + ∂` Vδ

` = 0,
on D` (3)

where C` > 0, G` ≥ 0 are explicity given in term
of ϕ`, the permittivity ε and the electric conduc-
tivity σe while L` > 0, R` ≥ 0 are explicity given
in terms of ψ`, the permeability µ and the mag-
netic conductivity σm. The system has to be
completed by vertex conditions.

At first order, these are the Kirchoff’s laws

V δ
` (0, t)− V δ

0 (0, t) = 0,
L∑
`=0

Iδ` (0, t) = 0. (4)

A better accuracy is obtained with second order
conditions, namely improved Kirchhoff laws

V δ
` (0, t)− V δ

0 (0, t) = δ

L∑
`′=1

Z`,`
′
Iδ`′(0, t),

L∑
`=1

Iδ` (0, t) + δ Y V δ
0 (0, t) = 0.

(5)

where the coefficient Y and the L × L matrix
Z =

(
Z`,`

′)
are defined from the material prop-

erties of the medium and from 3D potentials Φ
and {Ψ`, 1 ≤ ` ≤ L} defined in the reference
domain Ω1. These potentials are the solutions
of elliptic equations in Ω1 that are constrained
to satisfy a specific non homogeneous behavior
at infinity inside each cable Ω1 (and, concern-
ing the Ψ`’s, non homogeneous jump conditions
across L artificial cuts).

Note that the condition (4) only sees the struc-
ture of the limit graph while (5) also takes into
account (partly) the geometry of the junction.

3 The method of analysis

The derivation of (3) and (4) or (5) relies on
a preliminary asymptotic expansion of the solu-
tion. Since the problem is of multi-scale nature,
a uniform asymptotic expansion in the whole
domain is not possible. We use the method

of matched asymptotics, as in [2] for a simpler
scalar case, which consists in looking for the elec-
tric field as follows:

• Far from the origin, for x`3 > 0, we use the
ansatz

Eδ(x`T , x
`
3) =

∞∑
p=0

δpEp`

(xT
δ
, x`3

)
(6)

where the fields Ep` are defined in S`×R+.

• Close to the origin, we use the ansatz

Eδ(x) =
∞∑
p=0

δpEp
(x

δ

)
(7)

where the fields Ep are defined in Ω1.

Our models are obtained only by looking at p =
0, 1. Using (6) leads to the construction of equa-
tion (3) (see [1]). To obtain (4) and (5), we need
to express the fact that the two expansions (6)
and (7) must match.

In addition, it is possible to obtain error esti-
mates. More precisely, denoting (Eδapp, H

δ
app) the

right hand side of (2) with (V δ, Iδ) defined as the
solution of (3, 4) or (3, 5), one can show that,
in appropriate energy norms

‖Eδapp − Eδ‖ ≤ C δk ‖Eδ‖ (8)

where k = 1 for (3, 4) and k = 2 for (3, 5), mod-
ulo, in this second case, a post-treatment which
consists in adding a O(δ) longitudinal compo-
nent to the transverse electromanetic field de-
fines by the right hand side of (2).
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