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Abstract 
This paper proposes more sustainable alternatives for the synthesis of high thermal performances phenolic networks. 

Terephthalaldehyde (TPA), a non-toxic aromatic dialdehyde, was selected to replace formaldehyde. Phenol was in turns 

replaced with bio-based and non-toxic phenolic building blocks: resorcinol as model for tannins, guaiacol which is easily 

accessible from lignin and tyrosol from olive oil mill wastewaters. The prepolymerization was performed under mild 

conditions (ethanol, T ≤ 100 °C). The liquid prepolymers were characterized by NMR, IR, MALDI-ToF and rheology. The 

curing behavior of these formulations was assessed by DSC and IR spectroscopy. An advanced isoconversional analysis of 

the DSC data allowed the determination of crosslinking activation energies. Furthermore, a multiple-step mechanism of 

TPA crosslinking was proposed with strong evidences. The thermo-mechanical properties of cured networks were 

characterized using DMA, showing high crosslink densities and fairly elevated glass transition temperatures. Finally, it 

has been proven that these new thermosets display very high thermal performances under pyrolysis conditions (TGA).  

TOC 
New sustainable high-performance phenolic thermosets are synthesized from non-toxic and potentially biobased 

chemicals. We report understanding of curing mechanism and outstanding performances of networks. 
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Introduction 
Phenol-formaldehyde (PF) polymers were the first synthetic thermosetting plastics produced at industrial scale, 

in the early 20th century.1 More than one hundred years later, phenolic thermosets continue to be widely used with a 

production of more than 6 million tons per year worldwide.2 Phenolic thermosets are highly crosslinked networks, 

presenting very high thermal performances3, hardly overtaken by other organic polymers.4,5 Such high thermal 

performances are mainly due to their very high aromatic and crosslink densities.6 Their elevated degradation 

temperatures and high char yields make phenolic thermosets key materials for aerospace applications.7 



However, PF present several disadvantages that still need to be addressed. First, phenol and formaldehyde are 

hazardous substances, classified as carcinogenic, mutagenic and reprotoxic (CMR) substances by the European Chemical 

Agency (ECHA)8. Moreover, phenol and formaldehyde are oil-based building blocks which are subject to petroleum price 

volatility. Furthermore, PF are thermosetting polymers consisting in a three-dimensional network which make them 

insoluble and infusible, preventing any recycling strategy. Thus, efforts focus on finding alternative strategies to replace 

both phenol and formaldehyde, in order to develop more sustainable high thermal performance resins. The replacement 

of formaldehyde is the main challenge. For the sake of high performances, a potential substituent of formaldehyde must 

display a good reactivity and a low molecular weight to achieve very high crosslink and aromatic densities. Hence, 

phenolic networks with aliphatic aldehydes do not present the required thermal resistance.9 Previous authors replaced 

formaldehyde by various aliphatic aldehydes such as glyoxal10 and furfural.11,12 However, those bio-based building blocks 

are also classified CMR by the ECHA8.  

We have previously reported the replacement of formaldehyde by bio-based and non-toxic aromatic 

dialdehydes13, which were reacted with phenol in alkaline conditions (resoles). Among them, terephthalaldehyde (TPA) 

showed the best reactivity. The second aldehyde group in para position of the first one, acts as an electron-withdrawing 

group, consequently enhancing the reactivity of its counterpart. TPA can react four times with phenols (addition and 

condensation reactions on both aldehyde moieties), yielding highly crosslinked and aromatically dense structures. 

Furthermore, TPA is non-toxic and is considered as a potentially bio-based substance14, as it can be obtained via gas-

phase oxidation of biosourced para-xylene (key building block for production of polyethylene terephthalate).15,16 Para-

xylene can be obtained by catalytic pyrolysis or hydrocracking of lignin,17 successive processes using fermentation of 

feedstock by microorganisms,18 Diels-Alder reaction,19 and several other pathways.20 We have deeply studied the curing 

behavior of phenol-terephthalaldehyde resoles.21 Overall, we demonstrated that these new thermosets can effectively 

replace phenol-formaldehyde, exhibiting comparable curing behavior with higher thermal performances than PF. 

On the other hand, phenol still has to be replaced by non-toxic substances in resole formulations. Phenolic 

building blocks must present a high aromatic content and an enhanced reactivity with enough activated positions (i.e. 

nucleophilic) to achieve suitable crosslinked networks. Phenolic building blocks can be readily provided from biomass 

such as lignin, tannins and plant oils.22 Lignin is a natural polymer found in plant cell walls which stands as one significant 

source of bio-based phenolic compounds.22–25. The lignin is mainly produced from paper and pulp industry wastes, with a 

global production estimated at 50 million of tons per year.26 Lignin depolymerization strategies using green chemistry 

principles seems very promising to produce aromatic building blocks. Basically, three basic units compose the lignin: p-

hydroxyphenyl, guaiacyl and syringyl.27 Polymers, and especially phenolic networks, can be synthesized from either 

treated or depolymerized lignins, which are used either as additives or as crosslinkers.28–31 32,33 Moreover, guaiacol which 

can be extracted from lignin pyrolysis36,37 is a candidate of prime-choice for phenolic thermosets synthesis, presenting 

several advantages such as biocompatibility,35 aromatic structure with a low molecular mass and reactivity towards 

aldehyde with two reactive positions (para and meta).34 Previous studies report that guaiacol was successfully reacted 

with formaldehyde38,39 and involved in other polymers.34,40 Yet, to the best of our knowledge, no study has reported the 

reaction with aromatic dialdehydes. 

Moreover, phenolic structures can be also provided from tannins41 which are polyphenolic molecules found in all 

kinds of plant. There are two categories of tannins: hydrolysable and condensed tannins. Especially, condensed tannins 

have raised numerous interests as bio-based phenolic sources with their flavonoid units.41 Condensed tannins were 

often used directly as phenolic substituents, especially in wood adhesive applications.22,42 In addition, resorcinol was 

already widely used in phenolic formulations.43–45 Resorcinol is of great interest because of its enhanced reactivity (due 

to 2 ortho-para positions which are nucleophilic). The ortho-ortho position is expected to be less reactive than ortho-

para one due to the steric hindrance.46 Biosourced resorcinol can be obtained via different routes.47,48 Moreover, 

resorcinol displays a more balanced reactivity than phloroglucinol and pyrogallol (whose pot-lifes are expected to be 

very short in resole formulations). Additionally, resorcinol is less toxic than catechol and pyrogallol that are both 

suspected to be CMR substances8. Consequently, resorcinol was chosen as a bio-based model simulating condensed 

tannins in our formulations.  



Furthermore, non-toxic phenolic monomers can be readily found in plant oils. Among them, tyrosol has aroused 

our attention. It is one of the main antioxidants found in olive and argan oils.49 This natural phenol is used in cosmetics, 

pharmaceutical50 and food preservative51 applications. The olive oil production in European Union is over 2 million of 

tons per year and 8 m3 of olive mill wastewater is produced per ton of olive oil,52 resulting in a potential tyrosol 

production reaching up to hundreds of tons per year, in Europe.53 Hence ongoing research evaluates extraction 

strategies from olive mill wastewater.53,54 In addition, tyrosol is accessible from other renewable feedstocks, such as 

sugars via enzymatic reactions.55 Tyrosol presents a low molecular mass and has two reactive positions (ortho). It has 

been recently and successfully used as a flame-retardant precursor,56 thanks to its free radical scavenging properties. 

Thus, tyrosol stands as one bio-based phenol of prime-choice for high thermal performance resole synthesis. 

In the present investigation, we aim to demonstrate – as a proof-of-concept – that phenolic thermosets can be 

obtained from potentially bio-based and non-toxic building blocks, without any loss of thermal and mechanical 

properties. Resorcinol, guaiacol and tyrosol are reacted with terephthalaldehyde. Furthermore, quantitative data are 

provided on crosslinking kinetics, giving insights in reaction mechanisms, thermo-mechanical properties and thermal 

resistance. Finally these biobased phenolic thermosets and are compared to a commercial PF and phenol-TPA, as 

systems of reference (Scheme 1). Hence, this paper aims to give a balance between insights in mechanistic elucidations 

and key features for further developments of these new phenolic thermosets. 

 

Scheme 1: Reaction between terephthalaldehyde (TPA) and the different green phenols of this study. 

Experimental Section 

Materials 
The absolute ethanol was purchased from VWR. The phenol (P) was purchased from Alfa-Aesar. The terephthalaldehyde 

(TPA), the resorcinol (R) and tyrosol (T) were purchased from TCI Chemicals. The guaiacol (G), 2,4,6-trimethylphenol and 

the sodium hydroxide were purchased from Sigma-Aldrich. Aqueous NaOH (50 wt.%) solution was prepared using milli-Q 

(Millipore) water. Phenol-formaldehyde (PF) was a commercial liquid prepolymer resole, containing methanol and 

sodium hydroxide. Deuterated dimethylsulfoxide (DMSO-d6) was purchased from Eurisotop. All chemicals were 98-99% 

pure and used without further purification. Prepolymers were stored at -18 °C to prevent unwanted reactions. 

Prepolymer syntheses 

An excess of phenolic building block (i.e. P, R, G or T) and absolute ethanol (regarding final formulation: ≤ 20 wt.% for P 

and G, and ≤ 50 wt.% for R and T for solubility issues) were poured in a two-necked round-bottom flask equipped with a 

condenser, a magnetic stirrer and placed in a heated silicone oil bath (regulated at ± 0.1 °C), at 100 °C for P, G and T, and 

30 °C for R (lower temperature due to the elevated reactivity of R). Once the mixture was liquid and homogenous, TPA 

was added, the color passed from transparent to orange. After 5 min of homogenization, 0.04 equivalent of NaOH (50 

wt.% aqueous solution) were poured in the flask, the color became brownish. The reaction was kept until 95% 



conversion of the first aldehyde moiety of TPA, i.e. approximately 4 h for P, 1.75 h for R, 4 h for G and 14 h for T.  

Samples were regularly taken off to follow the reaction by 1H NMR. Afterward the mixture was quenched in an ice bath. 

In the end, the mixtures were homogeneous, moderately viscous and were dark-violet for P, light-orange for R, dark-

green for G and dark-orange for T. The pre-polymers were used as prepared and studied without any purification. 

Characterization techniques 
The prepolymer viscosities were measured at 25 °C on the AR-1000 rheometer (TA instrument). A 25 mm diameter and 

4° cone-plan geometry were used. The flow mode was used with a gradient from 700 to 10 s-1. The viscosity value is the 

average value over 10 points (Fig. S1 of the Supporting Information).  

1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AC 400 instrument, using 

deuterated dimethylsulfoxide-d6 as solvent. 

The matrix-assisted laser desorption/ionization time of flight mass (MALDI-ToF) spectrometry experiments were 

performed on a Bruker Rapiflex MALDI-ToF instrument. Measurements have been recorded in positive reflectron mode, 

using the following conditions: positive voltage polarity, with a pulsed ion extraction delay of 170 ns with 4000-6000 

shots per analysis. The matrix used was 2,5-dihydroxybenzoic acid. LiCl was used as a cationising agent. Matrix, samples 

and cationising agent were mixed with 10/1/1 proportions and dissolved in acetone with a 10 mg/mL concentration. 1µL 

of this solution was placed on the MALDI target and the target was allowed to dry in ambient conditions. A peptide 

mixture has been used for calibration. 

Attenuated total reflectance Fourier transform infrared absorption spectroscopy (ATR-FTIR) measurements were carried 

out on a Nicolet 6700 spectrometer from Thermo-Scientific, equipped with a mercury-cadmium-tellurium detector, in 

the middle infrared range with a resolution of 4 cm-1 and 32 scans were coadded to each spectrum. 

Differential scanning calorimetry (DSC) was used to study the resole curing processes. The apparatus was the DSC-3 F200 

Maia (Netzsch GmbH) equipped with an intra-cooler module. The atmosphere was dry nitrogen at a flow rate of 50 

mL⋅min-1. The temperature sensor was freshly calibrated with biphenyl, indium, bismuth and CsCl standards at 10 

°C⋅min-1. High-pressure stainless-steel pans and lids (100 MPa, sealed at 3 N⋅cm) were used to prevent unwanted signal 

from volatile evaporation. The prepolymer samples were inserted with a syringe into the pan and weighed on a 0.01 mg 

precise analytical balance. No leak was recorded, as the pans were weighed again after analysis. To carry out the kinetics 

study, the heating rates were selected around the calibration:  = 5, 7.5, 10, 12.5 and 15 °C⋅min-1.  

Dynamic mechanical analysis (DMA) was carried out on a DMA 25 apparatus (Metravib, Acoem) in tensile mode, under 

controlled atmosphere (pulsed air). The imposed dynamic displacement was 50 µm, which corresponds to less than 0.2% 

strain (within linear domain), without any static auto-tension. The cyclic solicitation was imposed at 1 Hz. The samples 

dimensions were ca. 35.0 × 10.0 × 3.0 mm3 . The samples were fully cured with the slow curing program and were 

probed from RT to 250 °C at 5 °C⋅min-1. 

Thermogravimetric analysis (TGA) was performed on a TGA-3 libra (Netzsch). Between 10 and 12 mg of monolithic 

samples were weighed in open alumina pans. The atmosphere was dried nitrogen at 40 mL/min. The heating rates were 

5 °C⋅min-1 to follow the curing and 10 °C⋅min-1  to monitor the thermal performances of cured resins (fast curing 

program), from RT to 900 °C, followed by an isothermal step of 1 h, at 900 °C, to be sure that the char residues were 

stable. 

Results and Discussion 

Prepolymer characterization 
The oligomer structures obtained after prepolymerization were firstly elucidated using NMR (Fig. S2-S7). 

Similarly to phenol-formaldehyde addition reaction, the addition (i.e. electrophilic aromatic substitution) between 

phenol and TPA yielded alcohol moieties. However, in the case of TPA-based resoles, secondary alcohols are created 



(methylenol bridges between two aromatic rings), as evidenced by NMR spectra. Based on literature data of model 

compounds,57,58 we were also able to discriminate the ortho and para (less deshielded) substituted positions in phenol-

TPA. The same amount of ortho and para substituted positions was found. Furthermore, triphenylmethane were 

detected as the results of the condensation of methylenol with phenol (TPA-phenol formulation), in accordance with a 

recent study59. For the other bio-based phenols, such precise attribution was more challenging and required comparison 

to model molecules.   

Additionally, MALDI-ToF allowed to determine the distribution of oligomer masses (Fig. S8), in accordance with 

the literature.60 Overall, the oligomers have low molecular weights (Mw < 2,000 g⋅mol-1). Tyrosol-TPA is the formulation 

that exhibits the lowest molecular weights, Mw ranging from ca. 400 to 700 g⋅mol-1, whereas the most reactive 

resorcinol-TPA shows the highest Mw values (up to ca. 1,900 g⋅mol-1). The mass difference between the oligomers can 

readily provide insights into the polymerization mechanisms. Based on these data, oligomer structures are proposed in 

Tables S1-S4. Basically, three repeating mass differences are noticed: (i) addition involving TPA, (ii) addition of the 

phenol onto a dangling aldehyde moiety of oligomer and (iii) the condensation of the phenol onto the methylenol group, 

with release of water. For all formulations, it is noteworthy that most of the reactions involving the addition of a 

phenolic ring on the oligomers are condensation reactions. Therefore the second aldehyde is found to remain mostly 

unreacted (in agreement with NMR and IR spectroscopies). 

Crosslinking mechanisms  
Resoles are thermally curable polymers which do not need further addition of curing agent for crosslinking. DSC 

was performed to investigate the curing behavior of the synthesized resoles. Exothermic peaks, typical of thermoset 

crosslinking reactions, are shown in the non-isothermal thermograms (Fig. 1). One single peak is observed for PF, which 

is mainly assigned to the polycondensation reaction of phenol with methylol groups. In contrast, multiple reactions are 

observed for TPA resoles (2 for phenol, resorcinol and guaiacol and 3 for tyrosol). The shift from one reaction to another 

occurs at the same crosslinking degree regardless of the heating rates – as shown in the kinetic profiles in Fig. S9. 

Therefore, the multiple reactions are considered consecutive rather than competitive. 

The total enthalpy of crosslinking values, ΔHTotal are reported in Table S5. The total enthalpy values span over a 

wide range, from 47 to 359 J⋅g-1. PF curing is the highest exothermic process. To compare the total enthalpies, average 

values are corrected considering the ethanol content within formulations (≤ 20 wt.% for phenol- and guaiacol- and ≤ 50 

wt.% for resorcinol- and tyrosol-TPA, unknown for PF). The corrected values are comparable for phenol-, resorcinol- and 

guaiacol-TPA (around 240 J⋅g-1 which represents ca. 45 kJ per eq. phenol).  

The reactivity of the formulations can be ranged by comparison of the peak maxima of exothermic signals. PF 

and phenol-TPA first reactions occur at similar temperatures, 167 and 163 °C, respectively. Remarkably, the 

condensation of methylenol into phenol-TPA occurs at temperature similar to the condensation of methylol in PF. The 

most reactive formulation is resorcinol-TPA (first peak maximum at 107 °C), which contrasts with the lowest reactive 

formulations guaiacol- and tyrosol-TPA (first peak maxima of 186 and 181 °C, respectively). For resorcinol, the presence 

of one second phenoxide moiety (which is being deprotonated and acting as a +M electron-donor) activates the 

aromatic ring at the same position as the first phenoxide. With this synergetic effect, the reactivity of resorcinol is found 

to be seriously enhanced. For guaiacol, the methoxy in ortho position of phenoxide, acts as well as +M electron-donor 

but it activates meta positions of this phenol which differs from ortho/para activating phenoxide. Hence, methoxy group 

occupies one reactive ortho position on the ring and creates steric hindrance. Thus, the reactivity of guaiacol is found to 

be reduced compared to phenol. Similarly, for tyrosol, the dangling ethanol moiety in para position of phenol occupies 

one potential reactive position and creates steric hindrance. In fact, the reactivity of tyrosol has been reduced. 



 

Fig. 1: DSC thermograms recorded during the pre-polymers curing, at 5 K⋅min
-1

. 

To elucidate the undergoing mechanisms during nonisothermal curing, phenol-TPA reaction was monitored by 

DSC at 5 °C⋅min-1 until certain crosslinking degrees and rapidly quenched (Fig. S10A). The partially cured samples were 

analyzed by IR and NMR spectroscopies. Fig. 2 compares the spectroscopic signals of aldehydes (IR band at 1683 cm-1, 

νC=O, Fig. S10B) and methylenols (1H NMR, para at 5.7 ppm and ortho at 6.1 ppm) to the reaction rate recorded in DSC 

at 5 °C⋅min-1. The spectroscopic results evidence that no aldehyde is involved during the first DSC reaction between 

phenol and TPA, and that methylenols reacted. Moreover, curing monitoring by TGA at 5 °C⋅min-1 shows weight losses 

that are concomitant with the first DSC enthalpy peak (Fig. S10C). These weight losses are ascribed to water release. 

Therefore, the first reaction is assigned to the condensation of phenol onto methylenol in phenol-TPA (reaction I in 

Scheme 2). Even though hydroxyl is a poor leaving group, previous studies showed that methide quinones are 

intermediates in condensation reactions. 57,58,61–66 The intermediates proposed in scheme 3 would be stabilized by many 

resonance forms, on both sides of the carbocation. Both TPA and phenoxide groups are involved in such resonance 

forms and the methide quinone intermediate should be formed on the phenoxide side. IR spectroscopy evidences that 

the aldehyde content decreases during the second reaction recorded in DSC. In addition, no weight loss is recorded 

within the same temperature range during curing (Fig. S10C), i.e. no condensation reaction occurs. Thus, the second 

reaction should involve the addition of phenolic free positions onto the second TPA aldehyde (reaction II in Scheme 2). 

Once most of the methylenol groups are reacted, the second aldehyde of TPA – being not anymore involved in 

resonance forms – will react with free phenol positions (consecutive reactions, shift from reaction I to II). Hence the 

condensation of the second methylenol group would not occur (not observed in DSC for phenol-, resorcinol- and 

guaiacol-TPA) because of (i) a lack of reactive phenolic position and (ii) a lack of resonance forms which would stabilize 

intermediates in reaction I (Schemes 2-3). By extension, similar mechanisms for resorcinol-, guaiacol- and tyrosol-TPA 

are expected due to comparable trends recorded in DSC curing. Moreover, for tyrosol the total enthalpy of reaction is 

very low compared to other phenols, indicating that fewer phenolic positions have reacted. Thus, the third reaction can 

be ascribed to the condensation of the second methylenol probably because of sufficient remaining reactive phenolic 

positions. It is verified that this enthalpy is not related to degradation: this exothermic peak vanishes after autoclave 

curing (two-steps isothermal program 100-200 °C, cf. Supporting Information).  



 

Fig. 2 Relative intensities (I = 1 for α =0) of the band of aldehyde (IR) and methylenol (NMR), and reaction rate vs. 

crosslinking degree during DSC curing at 5 °C/min, with Gaussian functions deconvolution.  

 

Scheme 2: Postulated polymerization mechanism between TPA and phenols. 

 

Scheme 3: Possible intermediate compounds in condensation reaction I  between deprotonated phenol and TPA and resonance form 
examples. 

Crosslinking Kinetics  
The kinetic analysis gives further insights into the curing behavior of these formulations. A model-free kinetic 

method was performed on multiple heating rates integral DSC data (Fig. S9), using the advanced isoconversional method 

of Vyazovkin67. Basically, this kinetic analysis relies on the elucidation of the activation energy (rate constants described 

by Arrhenius equations). Theoretical and computation details of the implemented method are well-known68 and are 



therefore reported in the Supporting Information. The fundamental hypothesis of isoconversional methods states that 

the temperature program does not affect the reaction mechanisms. This assumption is easily verified from multiple 

linear heating rates data, with (i) a constant reaction enthalpy (Table S5), (ii) parallel kinetic profiles (Fig. S9) and (iii) 

shifts from one reaction to another occurring at the same conversion, independently on the heating rates (e.g. 

consecutive reactions). From DSC data, all formulations satisfy the isoconversional principle. However, tyrosol-TPA 

crosslinking kinetics – which exhibited low DSC signals resulting in crossing traces – will not be presented, here. 

Activation energy is displayed as a function of the crosslinking degree in Fig. 3. For all formulations, the 

activation energy spans over a wide range of values, from ca. 50 to 95 kJ⋅mol-1. These scattered values are in agreement 

with literature data on previous phenolic networks.69–73 The activation energy of PF curing process rises from ca. 70 to 80 

kJ⋅mol-1 with the crosslinking degree. For other formulations, the activation energy curves display more complex trends. 

The activation energy decreases with the crosslinking degree for phenol-TPA, whereas it tends to increase for resorcinol- 

and guaiacol-TPA. The slight increase for PF is assigned to an increasing energy barrier due to viscosity increase 

throughout the curing process. Moreover, no change in reaction mechanisms is suggested for this formulation. On the 

other hand, the activation energies vary more sharply for other formulations. This is ascribed to the shift of reaction 

pathways. Hence, isoconversional analysis is able to discriminate the apparent activation energies of the two 

consecutive reactions, namely E1 and E2 (Table 1), sufficiently far from the shift zone from one reaction to another. The 

activation energy of the reaction I, E1, varies significantly from one formulation to another. Energy E1 of phenol-TPA – 

which corresponds to the condensation of phenol onto methylenol groups – is remarkably similar to the activation 

energy of 78 kJ⋅mol-1 for phenol condensation on methylol for PF. Thus, the condensation mechanisms between phenol 

and TPA can be considered similar to those of phenol and formaldehyde. In contrast, the +M electron-donor 

substituents on resorcinol and guaiacol (phenoxide and methoxy, respectively) tend to lower the activation energy, E1 = 

55 and 64 kJ⋅mol-1, respectively. Hence, the more donor is the substituent, the lower is the activation energy. Indeed, 

the phenolic substituents – generating extra resonance forms – would stabilize the methide quinone intermediates 

(Scheme 3), which tends to lower the activation energy barrier. Further theoretical studies would be of a precious help 

in order to support these observations. The activation energy of the reaction II, E2, for resorcinol is the lowest (near 62 

kJ⋅mol-1). Again, this is explained by the enhanced reactivity of fully deprotonated resorcinol. On the other hand, the 

activation energy of aldehyde addition onto guaiacol is 91 kJ⋅mol-1, which is ca. 20 kJ⋅mol-1 higher than the addition onto 

phenol. The guaiacol phenolic positions may need to overcome a higher barrier than other phenols to diffuse to the TPA, 

because guaiacol has one less reactive position than phenol and the methoxy substituent may cause steric hindrance. In 

thermosetting curing, the diffusion contributions are particularly important toward the end of the curing process, during 

which the viscosity increases considerably74. Thus, a non-negligible contribution of the diffusion tends to increase the 

values of the apparent activation energy75, as was observed for the last stages of curing of the guaiacol-TPA resins. 

 

Fig. 3: Apparent activation energy throughout the crosslinking process. 



Hence, the curing analysis provided a better understanding of the mechanism underway during TPA based 

resoles crosslinking. Furthermore, the kinetics analysis is of precious help in the design of industrially applicable curing 

schemes. For instance, a two-step curing has been designed from multiple isothermal kinetic predictions (Fig. S11A). 

One slow pre-curing stage was performed out-of-autoclave at 100 °C, for 3 days, in order to get rid of the volatiles. Then, 

the samples were cured in autoclave at 200 °C, for 8 hours, under a pressure of 10 bar (nitrogen atmosphere), to achieve 

complete crosslinking. DSC analyses of the cured samples showed no residual enthalpy for all formulations. After final 

curing, the solid contents were satisfactory, and all samples were completely insoluble (Fig. S11C). The cured samples 

were under the form of hard brown-black monoliths, without any macro-porosity (Fig. S11B). 

Thermo-mechanical behaviors 
Dynamic mechanical analysis (DMA) was performed on the fully cured resoles (cf. Supporting Information for 

curing schemes and sample photography). The DMA traces near the glass transitions of resoles are displayed in Fig. 4. 

Both inflexion of Young’s storage modulus, E’, and damping peak are typical of glass transition of thermosetting 

networks. The materials devitrify, i.e. they pass from the glassy to the rubbery state, which corresponds to the 

cooperative relaxation of the polymer network.76,77 The storage modulus values at the glassy plateau, E’glass, relate to the 

rigidity of materials (Table 1). No strong variation is recorded, and the rigidities of the TPA-based resoles (ranging from 

1.2 to 3.0 GPa) are comparable to the value of the commercial PF resole of this study and to literature values of phenolic 

networks.78,79 The value of the height of the rubbery plateau, E’r, is related to the crosslink density, as described by the 

rubber elasticity theory of Flory.80 Tyrosol-TPA presents a value of rubber plateau similar to PF (E’r ∼ 50 MPa), which 

suggests that tyrosol-TPA is less densely crosslinked than its other TPA-based counterparts. This result is in accordance 

with the curing study, which recorded very low enthalpy of crosslinking in tyrosol-TPA. Among the studied resoles, 

phenol, resorcinol- and guaiacol-TPA exhibit a very dense crosslinking, with values of E’r ranging from 320 to 700 MPa. 

These values are very high compared to previous values of PF78,79 and other bio-based materials81,82 and are comparable 

to the very good results59 obtained by Zhao and Abu-Omar.  

The values of the glass transition temperatures are readily estimated from the temperatures of the α-transitions, 

at maximum of damping peak (Tα). DMA allows determining glass transition temperatures of the resoles, whereas DSC 

fails to measure it (no sharp heat capacity changes were recorded). Phenol-, resorcinol- and guaiacol-TPA resoles have 

similar Tα of 160-164 °C. Interestingly, the +M electron-donor substituent (such as phenoxide and methoxy) has no 

impact on the glass transition temperature or the crosslink density. Although these values are lower than PF ones (196 

°C), they are still fairly elevated and thus well suited for high performance applications. Tyrosol-TPA resoles present a 

closer Tα value (184 °C) than PF. The tyrosol-TPA Tα value is higher than that of other synthesized resoles. This may be 

attributed to the dangling ethanol moiety of tyrosol units that can be involved in hydrogen bonding. Thus, the glass 

transition temperature value of tyrosol-TPA spans over a wider temperature range, which may be the consequence of 

exchangeable hydrogen bondings. 



 

Fig. 4: DMA traces of the cured materials: storage modulus and loss tangent. 

Thermal performances 
The thermal performances under pyrolysis were evaluated using TGA. The experimental procedure is given in 

the Supporting Information. Superimposed TGA thermograms are displayed in Fig. 5A. Sigmoidal curves are observed, 

typical of resole pyrolysis.72 Each observed slope break relates a shift from one degradation mechanism to another. The 

temperatures of phenomena are better determined from peaks on differential curves (Fig. 5B). The first slight weight 

loss (∼ 5 wt.%, for T < 300 °C) observed for PF, resorcinol- and tyrosol-TPA is attributed to volatile evaporation.83,84 The 

latter 2 comprise a larger amount of ethanol than the other formulations. The second weight loss occurring only for TPA 

resoles (about 10 wt.%, T < 450 °C) can be attributed to the oxidation of remaining methylenol groups and/or 

decarbonylation of dangling TPA aldehyde moiety. The crosslinks degradation occurs between 400 and 500 °C (about 10 

wt.%). Hence, this weight loss involves oxidation of methylene bridges for PF and oxidation of triphenylmethane moiety 

for TPA resoles (occurring at higher temperature). The last weight loss (∼ 10-15 wt.%,  500 < T < 600 °C) is assigned to 

ring dehydrogenation forming the amorphous residual char.83,84 The char residues are stable (curves level-off before 900 

°C). The temperatures at 10 wt.% of degradation and char yields are very high for all formulations (Table 1). Tyrosol-TPA 

shows the lowest thermal stability, which is expected according to its lower crosslink density. Resorcinol- and guaiacol-

TPA present similar thermal characteristic than commercial PF. Phenol-TPA formulation reaches the best performances. 

For future development of these biobased resoles, the stoichiometry should be optimized in order to achieve maximum 

thermal performances. Moreover, such thermal performances for biobased materials have been very rarely reported 

beforehand. The excellent thermal stability of these biobased networks is mainly due to high aromatic and crosslink 

densities. These very promising results show that they can seriously compete commercial formulation of PF resoles. 

 



 

Fig.  5: (A) TGA thermograms of fully cured resoles, recorded at 10 K⋅min-1 under nitrogen atmosphere. (B) derivative curves 
highlighting changes in degradation mechanisms, with according assignments: (↑) volatile evaporation, (‡) oxidation of methylenol 

group. 

Table 1. Crosslinking activation energies, glass transition temperature, rigidity, rubbery plateau, temperature at 10 wt.% degradation 

and char yields at 900 °C under pyrolysis. 

Formulation 
E1 

(kJ⋅mol
-1

) 
E2 

(kJ⋅mol
-1

) 
Tα (°C)

a 
Rigidity, 

      
  

(GPa)
b 

Rubbery 

plateau, 

  
 (GPa)

c 

Td10% 

(°C) 

Char 

yields 

(wt.%) 

Phenol-
formaldehyde 

78 - 196 3.0 0.05 393 62 ± 1 

Phenol-TPA 78 72 160 1.7 0.32 485 71 ± 1 

Resorcinol-TPA 55 62 161 2.0 0.32 394 61 ± 1 

Guaiacol-TPA 64 91 164 1.7 0.70 345 59 ± 1 

Tyrosol-TPA - - 184 1.2 0.04 290 57 ± 1 
a Temperature of the α-transition taken at the maximum of tan(δ),  
b height of the storage glassy plateau, at 50 °C,  
c height of the storage rubbery plateau, at Tα + 50 °C. 

Conclusions 
The main issue of thermally stable phenolic resins remain the high toxicity of precursors. In this paper, we 

demonstrated that non-toxic biobased building blocks could allow to overcome this issue. Terephthalaldehyde (TPA) was 

proven to be an aldehyde of prime choice to replace formaldehyde in resole formulation. Besides, several bio-based 



phenols (resorcinol, guaiacol and tyrosol) were successfully reacted with TPA. Solid materials and composites, as well as 

foams, can be readily formed under mild conditions and without any addition of further additives. This study provided 

interesting information on the reaction mechanisms of these new bio-based resoles, and especially on crosslinking 

mechanisms and kinetics, which were poorly known. With the generated data, one can design optimized curing schemes 

adapted to industrial processes. Interestingly we demonstrated that the resorcinol-TPA is a cold curable thermoset. In 

addition, we showed that very interesting chemical and physical properties were achieved with very few process and 

synthesis optimizations, and without any addition of network modifier. The networks displayed fairly high glass 

transition temperatures. More interestingly, dynamic mechanical analyses highlighted the extremely high crosslink 

density (for phenol-, resorcinol- and guaiacol-TPA). This suggests a possible enhanced resistance to solvent permeation, 

for example. From these findings, one can imagine that these more sustainable resoles could replace current high-

performance resins. Furthermore, we proved that the synthetized biobased resoles can compete the phenol-

formaldehyde resoles in terms of thermal performances. High degradation temperatures and high char yields make 

them serious candidates for composite manufacturing in aerospace, such as ablative materials. Further investigations 

are ongoing to clarify the degradation mechanisms and flame retardance properties. Finally, the good availability of the 

building blocks and the processing simplicity, together with the outstanding properties of these biobased phenolic 

resins, are very encouraging in the course of replacing hazardous phenol and formaldehyde in high performances resole 

formulations currently used in mass production. 
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