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GEOMETRIC REALIZATIONS OF TAMARI INTERVAL LATTICES
VIA CUBIC COORDINATES

CAMILLE COMBE
ABSTRACT. We introduce cubic coordinates, which are integer words encoding intervals inthe Tamari lattices. Cubic coordinates are in bijection with interval-posets, themselves knownto be in bijection with Tamari intervals. We show that in each degree the set of cubic coordi-nates forms a lattice, isomorphic to the lattice of Tamari intervals. Geometric realizations arenaturally obtained by placing cubic coordinates in space, highlighting some of their proper-ties. We consider the cellular structure of these realizations. Finally, we show that the posetof cubic coordinates is shellable.
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INTRODUCTIONThe Tamari lattices are partial orders having extremely rich combinatorial and algebraicproperties. These partial orders are defined on the set of binary trees and rely on therotation operation [Tam62]. We are interested in the intervals of these lattices, meaning
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2 CAMILLE COMBE
the pairs of comparable binary trees. Tamari intervals of size n also form a lattice. Thenumber of these objects is given by a formula that was proved by Chapoton [Cha06]:2(4n + 1)!(n + 1)!(3n + 2)! . (0.0.1)

Strongly linked with associahedra, Tamari lattices have been recently generalized inmany ways [BPR12,PRV17]. In this process, the number of intervals of these generalizedlattices have also been enumerated through beautiful formulas [BMFPR12,FPR17]. Manybijections between Tamari intervals of size n and other combinatorial objects are known.For instance, a bijection with planar triangulations is presented by Bernardi and Bonichonin [BB09]. It has been proved by Châtel and Pons that Tamari intervals are in bijectionwith interval-posets of the same size [CP15].We provide in this paper a new bijection with Tamari intervals, which is inspired byinterval-posets. More precisely, we first build two words of size n from the Tamari dia-grams [Pal86] of a binary tree. If they satisfy a certain property of compatibility, we builda Tamari interval diagram from these two words. We show that Tamari interval diagramsand interval-posets are in bijection. Then we propose a new encoding of Tamari inter-vals, by building (n − 1)-tuples of numbers from Tamari interval diagrams. We call thesetuples cubic coordinates. This new encoding has two obvious virtues: it is very compactand it gives a way of comparing in a simple manner two Tamari intervals, through a fastalgorithm. On the other hand, some properties of Tamari intervals translate nicely in thesetting of cubic coordinates. For instance, synchronized Tamari intervals [FPR17] becomecubic coordinates with no zero entry. Besides, cubic coordinates provide naturally a geo-metric realization of the lattice of Tamari intervals, by seeing them as space coordinates.Indeed, all cubic coordinates of size n can be placed in the space Rn−1. By drawing theircover relations, we obtain an oriented graph. This gives us a realization of cubic coordi-nate lattices, which we call cubic realization. This realization leads us to many questions,in particular about the cells it contains. We characterize these cells in a combinatorial way,and we deduce a formula to compute a volume of the cubic realization in the geometricalsense. Another direction, more topological, involves the shellability of partial order. Weshow, drawing inspiration from the work of Björner and Wachs [BW96, BW97], that thecubic coordinates poset is EL-shellable, and as a consequence its associated complex isshellable.This article is organized in three sections. The first section is dedicated to recalls ofclassical notions of combinatorics, and sets out the conventions used. Because of its keyrole in this work, the bijection between Tamari intervals and interval-posets is also recalledin this section. In the second section, we define the Tamari interval diagrams and showthat their in bijection, size by size, with interval-posets. We define the cubic coordinatesshow that their sets are in bijection with the set of Tamari interval diagrams. Using the twobijections of the two previous parts, and after having provided the set of cubic coordinateswith a partial order, we show that there is a poset isomorphism between the poset ofcubic coordinates and the poset of Tamari intervals. As pointed out above, the poset ofthe cubic coordinates can then be realized geometrically. This cubic realization and the



GEOMETRIC REALIZATIONS OF TAMARI INTERVAL LATTICES VIA CUBIC COORDINATES 3
cells that compose it are the object of the third section. For each cell, we then associate asynchronous cubic coordinate. By relying upon this particular cubic coordinate, we givea formula to compute the volume of the cubic realization. Finally, we extend the result ofBjörner and Wachs on the Tamari posets to the Tamari interval posets, by showing thatthe cubic coordinate posets are EL-shellable.This article isa complete version of [Com19]. All the proofs are given and several newresults are presented, such as the result of the EL-shellability of cubic coordinate posets.
General notations and conventions. Throughout this article, for all words u, we denoteby ui the i-th letter of u. For any integers i and j , [i, j] denotes the set {i, i+ 1, . . . , j}. Forany integer i, [i] denotes the set [1, i]. All sets considered in this article are finite.

1. TAMARI INTERVALS AND GENERAL PROPERTIESIn this first section we provide some basic notions of combinatorics and the conventionsused afterwards. For this, we recall the definitions of posets, lattices, binary trees, Tamariintervals and interval-posets. Also, we recall the bijection given in [CP15].
1.1. Posets. A partially ordered set, commonly called poset, is a pair (P,4P ) where Pis a set and 4P is a partial order on P.A lattice is a poset (L,4L) satisfying, for all x, y ∈ L, the two following conditions(i) the supremum ∨L(x, y) := min4L{z ∈ L : x 4L z et y 4L z} exists;(ii) the infimum ∧L(x, y) := max4L{z ∈ L : z 4L x et z 4L y} exists.The poset of intervals of a poset (P,4P) is the poset (I(P),4I(P)) on the set I(P) :=
{(x, y) ∈ P2 : x 4P y} with the partial order 4I(P) defined by

(x, y) 4I(P) (x′, y ′) if and only if x 4P x′ and y 4P y ′ (1.1.1)
for all (x, y), (x′, y ′) ∈ I(P). Let us recall the following result.
Lemma 1.1.1. If (L,4L) is a lattice then (I(L),4I(L)) is a lattice.

Proof. Let (x, y), (x′, y ′) ∈ I(L). To show that (∨L(x, x′),∨L(y, y ′)) is a lattice it must beverified that ∨L(x, x′) 4L ∨L(y, y ′). By definition of the supremum one has y 4L ∨L(y, y ′)and y ′ 4L ∨L(y, y ′). Furthermore x 4L y and x′ 4L y ′. Then x 4L ∨L(y, y ′) and
x′ 4L ∨L(y, y ′). In addition, ∨L(x, x′) is the minimal element ofL satisfying x 4L ∨L(x, x′)and x′ 4L ∨L(x, x′). Thus ∨L(x, x′) 4L ∨L(y, y ′).From the equation (1.1.1), one has
∨I(L) ((x, y), (x′, y ′))= min4I(L){(x′′, y ′′) ∈ I(L) : (x, y) 4I(L) (x′′, y ′′) and (x′, y ′) 4I(L) (x′′, y ′′)}= min4I(L){(x′′, y ′′) ∈ I(L) : x 4L x′′ and y 4L y ′′ and x′ 4L x′′ and y ′ 4L y ′′}= (∨L(x, x′),∨L(y, y ′)) .

(1.1.2)

The case of the infimum ∧I(L) ((x, y), (x′, y ′)) = (∧L(x, x′),∧L(y, y ′)) is symmetrical. �
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Let x, y ∈ L such that x 4L y. The element y covers x for the partial order 4L if andonly if for all z ∈ L such that x 4L z 4L y either z = x or z = y. If y covers x then itis a covering relation for the partial order 4L . In the same way for (x, y), (x′, y ′) ∈ I(L)such that (x, y) 4I(L) (x′, y ′), a covering relation for the partial order 4I(L) is defined.

1.2. Binary trees. In all this work, we call binary tree a planar, complete, and rootedbinary tree. Recall that a binary tree T is either a leaf or an internal node attachedthrough two edges to two binary trees called respectively left subtree and right subtreeof T . One denotes by Ta(n) the set of binary trees with n internal nodes. In the following,we use the usual conventions and notions of binary trees [Sta12]: root, child, descendant,
subtree, etc. We draw the binary trees with the root at the top and the leaves at thebottom.Let T ∈ Ta(n). Each internal node of T is numbered recursively, starting with the leftsubtree, then the root, and ending with the right subtree. An example is given in Figure 1.This numbering then establishes a total order on the internal nodes of a binary tree called
infix order. Afterwards, this numbering is used to refer to the internal nodes. The pathfollowing this numbering is called infix traversal.The canopy of T is the word of size n − 1 on the alphabet {0, 1} built by assigningto each leaf of T a letter as follows. Any leaf oriented to the left (resp. right) is labeledby 0 (resp. 1). The canopy of T is the word obtained by reading from left to right thelabels thus established, forgetting the first and the last one. For instance, the binary treein Figure 1 has for canopy the word 0110100.

1
2

3
4

5
6

7
8

FIGURE 1. A binary tree of size 8 and the numbering of its nodes followingthe infix order.
Now let us recall a fundamental operation in binary trees, the right rotation. Let k and

l be the indices in infix order of two nodes of a binary tree T , such that the node k isleft child of the node l. Right rotation locally changes the tree T so that l becomes theright child of k (see Figure 2). Equivalently this means that ((A,B), C) becomes (A, (B,C))where A,B and C are the subtrees shown in Figure 2.
1.3. Tamari intervals and interval-posets. Let n > 0 and S, T ∈ Ta(n). We set S 4� Tif and only if T can be obtained by successively applying one or more right rotations
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FIGURE 2. Right rotation of edge (k, l) in T (left), where A,B, and C are anysubtrees.
in S. The set Ta(n) endowed by the partial order 4� is a lattice, known as Tamari
lattice [Tam62].A Tamari interval is formed by a pair of binary trees [S, T] such that S 4� T and
S, T ∈ Ta(n). The size of a Tamari interval is the size of the binary trees involved. Theset of Tamari intervals of size n is denoted by I(Ta)(n). The poset of Tamari intervalsis the set of Tamari intervals endowed with the following partial order 4��. Let n > 0and [S, T], [S′, T ′] ∈ I(Ta)(n), we set [S, T] 4�� [S′, T ′] if and only if S 4� S′ and T 4� T ′.According to Lemma 1.1.1, the poset so defined is a lattice. Moreover [S′, T ′] covers [S, T]if and only if(1) either S′ is obtained by a single right rotation of an edge in S and T ′ = T ;(2) or T ′ is obtained by a single right rotation of an edge in T and S′ = S.The set of interval-posets is known to be in bijection with the set of Tamari inter-vals [CP15]. Let us recall the definition of these objects and a part of the bijection in thebroad outline which will be useful to us thereafter.Let n > 0 and Xn := {x1, . . . , xn} be a set of n symbols numbered from 1 to n. An
interval-poset P = (Xn,�) of size n is a partiel order � on the set Xn such that(i) if i < k and xk � xi then for all xj such that i < j < k, one has xj � xi;(ii) if i < k and xi � xk then for all xj such that i < j < k, one has xj � xk.The set of interval-posets of size n is denoted by IP(n).The two conditions (i) and (ii) of interval-posets are referred to as interval-poset prop-
erties. For any i < j , the relations xj � xi are known as decreasing relations and therelations xi � xj are known as increasing relations. The elements of Xn are called ver-tices. Contrary to the definition given in [CP15] where the vertices are the set {1, . . . , n},we use in this article {x1, . . . , xn} to simplify the distinction between the vertices and theirpositions. Thereafter the set Xn will be confused with the interval-poset P.Another difference with some of the articles dealing with the interval-posets is the wayin which they are graphically represented. For any i < j , if xj � xi and there is no xkvertex such that xk � xi and j < k, then we draw an arrow with source xj and goal xifrom below as shown in the example in Figure 3. Symmetrically, if xj � xk and j < kand if there is no xi such that xi � xk and i < j , then we draw an arrow with source xjand goal xk from above. We refer to this oriented graph with two types of arrows as
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the minimalist representation. The closure for the interval-poset properties is given byadding the decreasing relations xj�xi for any relation xk�xi and by adding the increasingrelations xj �xk for any relation xi �xk , for any i < j < k. By taking the reflective closureand the closure for the interval-poset properties, an interval-poset is obtained from such arepresentation. The interest of the minimalist representation is later justified, in particularby Theorem 2.1.2. It is important to represent the decreasing relations and the increasingrelations independently.

x1 x2 x3 x4 x5 x6 x7 x8

(A) Minimalist representation.

x1 x2 x3 x4 x5 x6 x7 x8

(B) Hasse diagram.

x1 x2 x3 x4 x5 x6 x7 x8

(C) Diagram with all apparent (except reflexive) relations.
FIGURE 3. Different representations of an interval-poset of size 8.

In [CP15] a bijection ρ is built between the set of Tamari intervals and the set IP(n).We recall here the passage from an interval-poset to a Tamari interval. Let n > 0 and[S, T] ∈ I(Ta)(n) and P ∈ IP(n). The bijection ρ relates on the one hand the restriction of
P to its decreasing relations with the binary tree S, and on the other hand the restrictionof P to its increasing relations with the binary tree T .Thus the restriction of P to its decreasing (resp. increasing) relations has a decreasing(resp. increasing) forest as Hasse diagram, where if xj �xi with i < j (resp. j < i), then thenode j is a descendant of the node i. Otherwise, it is placed to the right (resp. left) of thenode i. To form the binary tree S (resp. T), then read the decreasing (resp. increasing)forest for the prefix transversal from right to left (resp. from left to right). If a node j is adescendant of a node i in the decreasing (resp. increasing) forest, then the node j becomesa right (resp. left) descendant of the node i in S (resp. T). Otherwise, it becomes the left(resp. right) descendant of the node i. The numbering of the binary trees thus obtainedis exactly the infix order. Figure 4 gives an example of construction by the bijection ρ ofa Tamari interval from an interval-poset of size 5.
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x1 x2 x3 x4 x5

(A) Interval-poset of size 5.

1
2 3

4
5

1
2 3

4 5
(B) Decreasing (left) and increasing(right) forests

1

2
3

4
5

(C) Left binary tree.

1

2
3

4
5

(D) Right binary tree.
FIGURE 4. Construction of a Tamari interval from an interval-poset by ρ.

Let n > 0 and P,P′ ∈ IP(n) and [S, T] := ρ(P), [S′, T ′] := ρ(P′). Let (?) (resp. (�)) thefollowing condition: P′ is obtained by adding (resp. removing) only decreasing (resp.increasing) relations of goal a vertex xk in P, such that if only one of these decreasing(resp. increasing) relations is removed (resp. added), then either P is obtained or theobject obtained is not an interval-poset.
Lemma 1.3.1. The interval-posets P and P′ satisfy (?) (resp. (�)) for the vertex xk (resp.
xl) if and only if S′ (resp. T ′) is obtained by a unique right rotation of the edge (k, l) in
S (resp. T) and T ′ = T (resp. S′ = S).In other words [S′, T ′] covers [S, T] if and only if P and P′ satisfy either (?) or (�).
Proof. Suppose P and P′ satisfy (?) for the vertex xk. Therefore, P′ has more decreasingrelations of goal xk than the vertex xk in P. Suppose the vertices xl and xk are notrelated in P and are related in P′, with k < l. Then, by the interval-poset property (i),for any vertex of index k′ such that k < k′ < l, xk′ � xk. Moreover, if we remove onlyone of these decreasing relations, we obtain either P or an object that is no longer aninterval-poset. This means that the number of descending relations added in P′ is minimal,or equivalently, that the vertex xl is closest to the vertex xk such that xl and xk are notrelated in P and k < l. This case is depicted in Figure 6. By the bijection ρ, the addingof these decreasing relations of goal xk in P leads to the decreasing forest induced by S′represented by Figure 5b. A unique right rotation is then made between the trees S and
S′ (see Figure 5a). Furthermore, since the increasing relations are unchanged between Pand P′, the increasing forests induced by T and T ′ are the same, and thus T ′ = T .
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l

A B

k C

k

A l

CB

r. rot.

(A) Binary trees S and S′ (resp. T and T ′).

A k

B

l

C

A

C

B

k

l

(B) Decreasing forests induced by
S and S′.

l

k B

C

A

k

A B

l C

(C) Increasing forests induced by
T and T ′.

FIGURE 5. Right rotation of the edge (k, l) in the binary tree S (resp. T),where A,B and C are subtrees.
A︷ ︸︸ ︷

. . . xk−1 xk
B︷ ︸︸ ︷

xk+1 . . . xl−1 xl
C︷ ︸︸ ︷

xl+1 . . .

FIGURE 6. Interval-poset of the decreasing forest before (without dottedline) and after (with dotted line) the right rotation of the edge (k, l), where
A, B and C may be empty.

. . . xk−1︸ ︷︷ ︸
A

xk xk+1 . . . xl−1︸ ︷︷ ︸
B

xl xl+1 . . .︸ ︷︷ ︸
C

FIGURE 7. Interval-poset of the increasing forest before (with dotted lines)and after (without dotted lines) the right rotation of the edge (k, l), where
A, B and C may be empty.
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Reciprocally, suppose that S′ is obtained by a unique right rotation of the edge (k, l) in Sand that T ′ = T . The case is depicted by Figure 5a, and the two decreasing forests inducedby S and S′ are depicted by Figure 5b. By the bijection ρ, we then obtain the interval-poset whose restriction to decreasing relations is shown by Figure 6. Since T ′ = T , theincreasing relations of the interval-posets associated with [S, T] and [S′, T ′] are the same.Finally, P is obtained by adding only decreasing relations of goal xk in P. Furthermore, ifonly one of these relations is removed, then either P is obtained, or the object obtainedis not an interval-poset. This means that P and P′ satisfy (?).Symmetrically, we show that P and P′ satisfy (�) for xl if and only if T ′ is obtained bya unique right rotation of the edge (k, l) in T and S′ = S. Figure 5c and Figure 7 depictsthis case. �

2. CUBIC COORDINATES AND TAMARI INTERVALSThe aim of this section is to build the poset of the cubic coordinates, then to establish theposet isomorphism between this poset and the poset of the Tamari intervals. To achievethis goal, we first define the Tamari interval diagrams based on the interval-posets. Thecubic coordinates are then obtained from the Tamari interval diagrams.
2.1. Tamari interval diagrams. In this part, we recall the definition of Tamari diagrams [Pal86].By checking a certain compatibility condition, we build the Tamari interval diagrams. Af-terwards, we show that there is a bijection between the set of Tamari interval diagramsand the set of interval-posets of the same size.Recall the definition of a Tamari diagram, as formulated in [BW97]. For any n > 0,a Tamari diagram is a word u of length n on the alphabet N which satisfies the twofollowing conditions(i) 0 6 ui 6 n − i for all i ∈ [n];(ii) ui+j 6 ui − j for all i ∈ [n] and j ∈ [0, ui].The size of a Tamari diagram is its number of letters. For instance, the fourteen Tamaridiagrams of size 4 are

0000, 0010, 0100, 0200, 0210, 1000, 1010, 2000, 2100, 3000, 3010, 3100, 3200, 3210.
Let n > 0. The set of Tamari diagrams of size n is in bijection with the binary trees with

n nodes. Indeed, one builds from a Tamari diagram u of size n a binary tree S recursivelyas follows. If n = 0, S is defined as the leaf. Otherwise, let i be the smallest position in
u such that ui is the maximum allowed value, namely n − i. Then A := u1 . . . ui−1 and
B := ui+1 . . . un are also Tamari diagrams. One forms S by grafting the binary treesobtained recursively by this process applied on A and on B to a new node. Reciprocally,for each internal node of index i of the tree S, labeled with an infix transversal, the valueof the i-th letter of the corresponding Tamari diagram is given by the number of internalnodes in the right subtree of the node i. The complete demonstration is given in [Pal86].In the literature, Tamari diagrams are also known as bracket vectors, objects inspiredby the right paranthesage introduced in [HT72] by Huang and Tamari.
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Our aim is to encode a pair of binary trees of n nodes by two words of size n. In orderto do that, we need to introduce dual Tamari diagrams. The first binary tree of the pair isencoded by its Tamari diagram and the second is encoded by its dual Tamari diagram.For any n > 0, a dual Tamari diagram is a word v of length n on the alphabet N whichsatisfies the two following conditions(i) 0 6 vi 6 i − 1 for all i ∈ [n];(ii) vi−j 6 vi − j for all i ∈ [n] et j ∈ [0, vi].The size of a dual Tamari diagram is its number of letters. A word v = v1 . . . vn is a dualTamari diagram if and only if vn . . . v1 is a Tamari diagram.The construction of the binary tree T is also recursive, except that it is the maximumposition i in the dual Tamari diagram whose value is the highest allowed on that sectionof the word that should be chosen first. Similarly for the reciprocal, the procedure isidentical, except that the value of the i-th letter in the dual Tamari diagram is given by thenumber of internal nodes in the left subtree of the node i in the tree T .Note that the conditions for Tamari diagrams and dual Tamari diagrams imply that thelast letter of a Tamari diagram is always equal to 0 and the first letter of a dual Tamaridiagram is always equal to 0.The graphical representation of a Tamari diagram of size n by needles and their diag-onals provided in [Gir11] is a simple way to check the conditions of a Tamari diagram.Each letter in the Tamari diagram is represented by a needle whose height is equal tothe value of the letter. At the top of each needle of position i and height h, a diagonal ofslope −1 is drawn, which intersects the horizontal axis at the point i + h (see Figure 8).The condition (ii) is then translated by the fact that no needle must cross a diagonal. Thecondition (i) is satisfied if, for any needle at position i, the abscissa point i + h of theintersection with the diagonal is less than or equal to n.Similarly, a graphical representation can be given for the dual Tamari diagram of size

n. For each needle of position i and height h, a diagonal of slope 1 is drawn between thetop of this needle and the abscissa point i − h. The condition (ii) is satisfied if no needlecrosses a diagonal. The condition (i) is satisfied if for any needle at position i, the abscissapoint i − h of the intersection with the diagonal is greater than or equal to 1.Let n > 0 and u be a Tamari diagram, and v be a dual Tamari diagram, both of size
n. The u and v diagrams are compatible if for all 1 6 i < j 6 n such that ui > j − ithen vj < j − i. If u and v are compatible, then the pair (u, v) is called Tamari interval
diagram. The set of Tamari interval diagrams of size n is denoted by TID(n).In other words, a Tamari diagram u of size n and a dual Tamari diagram v of size nare compatible if for any needle of position i and height vi 6= 0 in v (resp. ui 6= 0 in u),there is no needle of position j and height greater than or equal to i− j in u (resp. j − i in
v) with i−vi 6 j 6 i−1 (resp. i+1 6 j 6 i+ui) and i ∈ [n]. For example, the two diagramsin Figure 8 are compatible. Figure 9 gives two other examples of two incompatible andtwo compatible diagrams. Thereafter, if u and v are compatible, we can also say that uand v satisfy the compatibility condition.
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(A) 9021043100. (B) 0010040002.
FIGURE 8. A Tamari diagram (left) and a dual Tamari diagram (right) of size 10.

(A) 00400000 and 00003000. (B) 04000000 and 00000030.
FIGURE 9. Two incompatible diagrams (left) and two compatible diagrams (right).

A graphical representation of the Tamari interval diagram is also possible, as shownin Figure 9. Figure 10 gives this representation for the two diagrams seen in Figure 8,where we have simply considered the symmetry relative to the abscissa axis of the Tamaridiagram, and placed it under its dual. Thus, Tamari diagram u is drawn below (in blue)and his dual v is drawn above (in red). With such a representation, it is then easy to verifythat u and v are compatible. Indeed, any needle of u that is below the diagonal linking thetop of the needle in position j in v to the abscissa point j−vj , has a diagonal that intersectsthe abscissa axis strictly before the position j . Symmetrically, any needles of v that areunder a diagonal linking the top of the needle in position i in u to the abscissa point i+ui ,has a diagonal that intersects the abscissa axis strictly before the position i.One consequence of the compatibility condition is that each needle of non-zero heightin the dual Tamari diagram v is always preceded by a needle of u of zero height. Sym-metrically, each non-zero height needle in the Tamari diagram u is always followed by aneedle of v of zero height. In other words, for any i ∈ [n], ui and vi+1 can both be zero,but cannot both be non-zero.
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(A) (9021043100, 0010040002).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

(B) Interval-poset.

FIGURE 10. Tamari interval diagram of size 10 and its associated interval-poset.
Let n > 0 and χ be the map sending a Tamari interval diagram (u, v) of size n to therelation ({x1, . . . , xn},�) (2.1.1)

where xi+l � xi for all i ∈ [n] and 0 6 l 6 ui , and xi−k � xi for all i ∈ [n] and 0 6 k 6 vi.
Proposition 2.1.1. For any n > 0, the map χ has values in IP(n).
Proof. Let (u, v) ∈ TID(n) and P := χ(u, v). First, we show that � is a partial order, thenthat interval-poset properties are satisfied.(1) By definition of χ one has xi+l � xi and xi−k � xi with 0 6 l 6 ui and 0 6 k 6 vifor all xi ∈ P. Specifically, xi � xi. This shows that P is reflexive.(2) Let xi , xj and xk be vertices of P with i < j < k.(a) Suppose that xj � xi and that xk � xj . Then xj � xi implies that there is aninteger 0 6 i′ 6 ui such that j = i + i′. Therefore, by the condition (ii) ofa Tamari diagram, uj = ui+i′ 6 ui − i′. Likewise, xk � xj implies that thereis an integer 0 6 j ′ 6 vj such that k = j + j ′. Still by the same condition,one has uk = uj+j ′ 6 uj − j ′. By using these two inequalities, we obtain that

ui > uk + i′ + j ′. Since i′ + j ′ = k − i, then we have ui > k − i, which impliesby definition of χ that xk � xi in P.(b) Suppose that xj �xi and that xi�xk. Therefore, xj �xk because xi�xk impliesthat for each vertex between xi and xk is in relation with xk.(c) Suppose that xi � xj and that xj � xk. Then xi � xj implies that there is aninteger 0 6 i′ 6 vi such that i = j − i′. By the condition (ii) of a dual Tamaridiagram, vi = vj−i′ 6 vj − i′. Likewise, xj � xk implies that there is an integer0 6 j ′ 6 vj such that j = k − j ′. By the same condition (ii), vj = vk−j ′ 6 vk − j ′.
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By these two inequalities, one has vk > vi + i′+ j ′. Since i′+ j ′ = k− i, one has
vk > k − i, which implies by definition of χ that xi � xk in P.(d) Suppose that xj �xk and that xk �xi. Then xj �xi because xk �xi implies thatall vertex between xi and xk is in relation with xi.This shows that P is transitive. Note that it is impossible to have the case xi � xkand xk � xj since P is the image of a Tamari interval diagram. Getting this casewould contradict the fact that u and v are compatible. Similarly, the case xi � xjand xk � xi is impossible.(3) Let i < j and xi , xj be vertices of P. Suppose that xj � xi and that xi � xj . Bydefinition of χ, xj � xi if and only if ui > j − i. Likewise, xi � xj if and only if

vj > j − i. However, since u and v are compatible, this case is impossible. Thisshows that P is antisymmetric.(4) The definition of χ implies directly that P satisfied the interval-poset properties,namely that for all xi , xj and xk vertices of P with i < j < k, if xk � xi then xj � xi ,and if xi � xk then xj � xk.Finally, P is an interval-poset. �

Theorem 2.1.2. For any n > 0, the map χ : TID(n)Ï IP(n) is bijective.

Proof. Let P ∈ IP(n) and let (u, v) ∈ Nn × Nn be a pair of words, such that for all i ∈ [n],
ui := #{xj ∈ P : xj � xi and i < j}; (2.1.2)
vj := #{xi ∈ P : xi � xj and i < j}. (2.1.3)

Let us show that this pair of words (u, v) is a Tamari interval diagram and that its imageby χ gives P.(1) Since P is an interval-poset, there are at most n − i vertices of P in decreasingrelation to xi and at most i − 1 vertices of P in increasing relation to xi for all
i ∈ [n]. Therefore, the condition (i) of a Tamari diagram and (i) of a dual Tamaridiagram are satisfied.(2) Let xi and xi+j be vertices of P such that i ∈ [n] and j ∈ [0, ui]. The fact that
ui > j means according to the equation (2.1.2) that there are at least j vertices indecreasing relation to the vertex xi , that is xi+j �xi. Thus by transitivity of interval-posets, one has that for any i+ j 6 k 6 n, if xk�xi+j then xk�xi. Thus ui+j+ j 6 ui ,which satisfies the condition (ii) of a Tamari diagram.Symmetrically, the condition (ii) of a dual Tamari diagram is checked by consider-ing xi and xi−j vertices of P such that i ∈ [n] and j ∈ [0, vi].(3) Let 1 6 i < j 6 n such that ui > j− i. Suppose that vj > j− i. The relation ui > j− imeans that there are j−i vertices of P in decreasing relation to xi , meaning xj�xi.Likewise, the relation vj > j − i means that xi � xj . Both of these implications leadto a contradiction with the antisymmetric nature of interval-posets. Necessarily, wehave vj < j − i, namely u and v are compatible.The pair (u, v) is a Tamari interval diagram of size n. Finally, it is clear that χ(u, v) = Pby construction. The map χ is therefore surjective.
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Let (u, v) and (u′, v ′) be two Tamari interval diagrams of size n, such that (u, v) 6= (u′, v ′)and such that χ(u, v) := P and χ(u′, v ′) := P′. So there is at least one letter of (u, v) and(u′, v ′) such that ui 6= u′i or vi 6= v ′i , for i ∈ [n]. Therefore the number of vertices of P inrelation to the vertex xi associated with the component ui and vi by χ is different fromthe number of vertices of P′ in relation to the vertex x′i associated with the component u′iand v ′i by χ, that is P 6= P′. This shows that the map χ is injective. �

The minimalist representation of the interval-posets defined in Section 1 allows a directconstruction of the corresponding Tamari interval diagram. Indeed, let us consider theminimalist representation of an interval-poset P of size n. For any relation xj � xi (resp.
xi � xj ) drawn, with 1 6 i < j 6 n, we set ui := j − i (resp. vj := j − i). This forms a pair ofwords (u, v) which is the inverse image of P by χ.An example is given by Figure 10, where a Tamari interval diagram and its interval-poset which is its image by χ are shown.
2.2. Construction of cubic coordinates. We describe in this part the set of cubic coordi-nates, and we show that there is a bijection between this set and the set of Tamari intervaldiagrams. We end this part with some properties of the cubic coordinates.Let n > 0 and (u, v) be a Tamari interval diagram of size n. We build a (n − 1)-tuple(u1−v2, u2−v3, . . . , un−1−vn) from the letters of (u, v), by subtracting vi+1 from ui for any
i ∈ [n]. The resulting (n − 1)-tuples can be characterized using Tamari interval diagramdefinition.Let n > 0 and c be a (n− 1)-tuple of components with value in Z. The (n− 1)-tuple c isa cubic coordinate if the pair (u, v), where u is the word defined by un := 0 and for any
i ∈ [n − 1] by

ui := max(ci, 0), (2.2.1)and v is the word defined by v1 := 0 and for any 2 6 i 6 n by
vi := |min(ci−1, 0)|, (2.2.2)is a Tamari interval diagram. The size of a cubic coordinate is its number of componentsplus one. The set of cubic coordinates of size n is denoted by CC(n).For instance, the cubic coordinate of the Tamari interval diagram in Figure 10 is(9,−1, 2, 1,−4, 4, 3, 1,−2).Let us denote by φ the map which sends a cubic coordinate c to a Tamari intervaldiagram (u, v).

Theorem 2.2.1. For any n > 0, the map φ : CC(n)Ï TID(n) is bijective.

Proof. Let c and c′ be two cubic coordinates of size n such that c 6= c′. Then there is acomponent ci such that ci 6= c′i , with i ∈ [n − 1]. By the map φ, one has then ui 6= u′i or
vi+1 6= v ′i+1, namely (u, v) 6= (u′, v ′). Which shows that the map φ is injective.Let (u, v) ∈ TID(n). Let c := (u1 − v2, u2 − v3, . . . , un−1 − vn), the (n − 1)-tuple whosecomponents are given by the difference between ui and vi+1 for any i ∈ [n − 1]. Now if
ui 6= 0 then vi+1 = 0 for any i ∈ [n − 1]. Therefore φ(c) = (u, v), where (u, v) is indeed
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a Tamari interval diagram by hypothesis. By definition of a cubic coordinate, one canconclude that c ∈ CC(n). Which shows that the map φ is surjective. �

Therefore, by the map φ it is possible to build a cubic coordinate from its Tamariinterval diagram and reciprocally. Graphically, by simply shift the dual Tamari diagramto the left of one position and collect the height of the needles from left to right, puttinga positive sign for the needles of the Tamari diagram and a negative sign for its dual, andforgetting the last needle of zero height. Reconstruct the needles of the Tamari diagramand its dual from the components of the cubic coordinate in the same way, and then shiftthe Tamari dual diagram to the right of one position.Using the map χ we can then directly give the cubic coordinate of an interval-poset.In the same way that we shift the dual Tamari diagram one position to the left, we shiftall the increasing relations of the interval-poset to the left of one vertex. Then, for eachvertex xi , we count the number of elements in increasing or decreasing relation of goal
xi , out of reflexive relation, for all i ∈ [n − 1]. These numbers become the componentsof positive sign if it is a decreasing relation, negative otherwise, of the cubic coordinate.As the increasing relations have been shifted, the number associated with the vertex xnis always zero. This vertex is therefore forgotten for the cubic coordinate. In the sameway, with each component of a cubic coordinate, we rebuild the increasing and decreasingrelations on n − 1 vertices, then we shift the increasing relations to the right, in order toform the vertex xn.
Lemma 2.2.2. Let n > 0 and c ∈ CC(n) such that there is a component ci 6= 0, for
i ∈ [n − 1]. Let c′ the (n − 1)-tuple such that c′i = 0 and c′j = cj for any j 6= i, with
j ∈ [n − 1]. Then c′ is a cubic coordinate.

Proof. Let (u′, v ′) := φ(c′) and (u′i, v ′i+1) be the pair of letters corresponding to c′i by themap φ. Since c′i = 0 then (u′i, v ′i+1) = (0, 0). In order to show that c′ is a cubic coordinate,we have to show that (u′, v ′) is a Tamari interval diagram. This is equivalent to satisfyingthe conditions of a Tamari diagram, a dual Tamari diagram, and compatibility. Replacein (ii) of a Tamari diagram ui with 0. The condition ui+j 6 ui − j for any i ∈ [n] and
j ∈ [0, ui] becomes 0 6 0 because j equals 0. Similarly, if we replace in (ii) of a dual Tamaridiagram vi by 0 then the condition vi−j 6 vi − j for any i ∈ [n] and j ∈ [0, vi] becomes0 6 0 for the same reason. Finally, we have to satisfy the condition of compatibility: forall 1 6 i < j 6 n, if ui 6 j − i then vj < j − i. This condition is always true for ui = 0 orfor vj = 0 because j − i > 0. Therefore, the (n − 1)-tuple c′ is a cubic coordinate. �

Depending on the case, either the definition of cubic coordinates or the definition ofTamari interval diagrams is used, as it is done for the proof of Lemma 2.2.2. For example,the following results are stated for Tamari interval diagrams.Let n > 0. A Tamari interval diagram (u, v) of size n is synchronized if either ui 6= 0or vi+1 6= 0 for any i ∈ [n − 1].Likewise a cubic coordinate c of size n is synchronized if ci 6= 0 for any i ∈ [n−1]. Theset of synchronized cubic coordinates of size n is denoted by CCs(n).
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Recall that a Tamari interval [S, T] is synchronized if and only if the binary trees S and

T have the same canopy [FPR17]. The definition of the canopy is recalled in Section 1.
Proposition 2.2.3. Let n > 0 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v) is
synchronized if and only if ρ(χ(u, v)) is a synchronized Tamari interval.

Proof. Suppose that (u, v) is not synchronized, then there is an index i ∈ [n − 1] suchthat ui = 0 and vi+1 = 0. Let P := χ(u, v) be the interval-poset associated to (u, v), and[S, T] := ρ(χ(u, v)).The letter ui is equal to 0 if and only if there is no descending relation of goal xi in P,namely if and only if the node i has no right child in the tree S (see Section 1 and [CP15]).Furthermore, since i cannot be equal to n, the node i cannot be the rightmost node in S.Therefore, it is a left child of the node i+ 1. Then the right subtree of the node i is a leaforiented to the right.Symmetrically, vi+1 = 0 if and only if there is no increasing relation of goal xi+1 in P,namely if and only if the node i + 1 has no left child in the tree T . Since i + 1 is alwaysdifferent from 1, the node i+1 cannot be the leftmost node in T , so the node i+1 must bea right child of the node i. Therefore, the right subtree of the node i has a leaf orientedto the left as left subtree.Finally, there is at least one letter of index i in the canopy of the tree S different fromthe canopy of the tree T , for the same index. However, two binary trees S and T are notsynchronized if there is at least one letter of index i in the canopy of the tree S that isdifferent from the letter of index i in the canopy of T . Therefore, the binary trees S and
T are not synchronized if and only if (u, v) is not synchronized. �

Recall that an interval-poset P of size n > 3 is new if(1) there is no decreasing relation of source xn;(2) there is no increasing relation of source x1;(3) there is no relation xi+1 � xj+1 and xj � xi with i < j .The definition of a new interval-poset is given in [Rog19].For any n > 3, a Tamari interval diagram (u, v) of size n is new if the following condi-tions are satisfied(i) 0 6 ui 6 n − i − 1 for all i ∈ [n − 1];(ii) 0 6 vj 6 j − 2 for all j ∈ [2, n];(iii) uk < l − k − 1 or vl < l − k − 1 for all k, l ∈ [n] such that k + 1 < l.
Proposition 2.2.4. Let n > 3 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v) is
new if and only if χ(u, v) is a new interval-poset.

Proof. Let us show that P := χ(u, v) is not new if and only if (u, v) is not new.(1) Suppose there is xn�xi with i ∈ [n−1]. By Theorem 2.1.2, one has ui = #{xj ∈ P :
xj � xi and i < j}. Therefore for χ−1(P) one has ui = n− i. Which is the negationof (i) of a new Tamari interval diagram.
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(2) Suppose there is x1 � xj with j ∈ [2, n]. Then for χ−1(P) one has vj = j − 1 because

vj = #{xi ∈ P : xi � xj and i < j}. Which is the negation of (ii) of a new Tamariinterval diagram.(3) Suppose there is one relation xi+1 � xj+1 and xj � xi with i < j . For χ−1(P), itimplies on the one hand vj+1 > j − i and on the other hand ui > j − i. Specifically,by setting l := j + 1 and k := i one has k+ 1 < l. Which is the negation of (iii) of anew Tamari interval diagram.
�In [Rog19] it is shown that a Tamari interval is new if and only if the associated interval-poset is new. With Proposition 2.2.4 we get the following result.

Proposition 2.2.5. Let n > 3 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v) is
new if and only if ρ(χ(u, v)) is a new Tamari interval.

Proposition 2.2.6. Let n > 3 and (u, v) ∈ TID(n). If (u, v) is synchronized then (u, v) is
not new.

Proof. If (u, v) is new, then ui < n − i for i ∈ [n − 1], and vj < j − 1 for j ∈ [2, n]. Inparticular, un−1 = 0 and v2 = 0. Which implies, since (u, v) is synchronized, that u1 6= 0and vn 6= 0. Furthermore, (u, v) is new if the condition (iii) of a Tamari interval diagramis satisfied. Specifically, for any k ∈ [n − 2], either uk < 1 or vk+2 < 1. Note (∗) thiscondition. Assuming that u1 6= 0 one has either u2 6= 0 or v3 6= 0. By (∗) the second choiceis impossible, so u2 6= 0. By the same reasoning, for every k ∈ [n − 2], uk 6= 0. However,also by assumption vn 6= 0. So one has un−2 6= 0 and vn 6= 0 which is a contradictionwith (∗). �2.3. Cubic coordinate lattices. Here, we endow the set of cubic coordinates with an orderrelation. Then we show that there is an isomorphism between this poset and the poset ofTamari intervals. The two bijections constructed in the first two parts of Section 2 allowus to establish this poset isomorphism.Let n > 0 and c, c′ ∈ CC(n). We set that c 4 c′ if and only if ci 6 c′i for all i ∈ [n − 1].Endowed with 4, the set CC(n) is a poset called the cubic coordinate poset.Let [S, T], [S′, T ′] ∈ I(Ta)(n). For the next results, let us denote c := ψ([S, T]), c′ :=
ψ([S′, T ′]) and (u, v) := φ(c), (u′, v ′) := φ(c′), and P := χ(u, v), P′ := χ(u′, v ′).
Lemma 2.3.1. If [S′, T ′] covers [S, T] then there is a unique different component ci
between c and c′ such that ci < c′i and there is no cubic coordinate c′′ different from c
and c′ such that c 4 c′′ 4 c′.

Proof. In Section 1 we saw with Lemma 1.3.1 that [S′, T ′] covers [S, T] if and only if P and
P′ satisfy either (?) or (�). Recall that (?) (resp. (�)) is the following condition: P′ is obtainedby adding (resp. removing) only decreasing (resp. increasing) relations of goal a vertex
xi of P, such that if only one of these decreasing (resp. increasing) relations is removed(resp. added), then either P is obtained or the object obtained is not an interval-poset.Let us assume that P and P′ satisfy either (?) or (�) for the vertex xi. Two cases arepossible.
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(1) Suppose that P and P′ satisfy (?), then since only decreasing relations are addedin P′ relative to P, only u′ is modified in (u′, v ′) relative to (u, v). Furthermore,since P′ is obtained by adding decreasing relations of goal xi in P, then only theletter u′i in u′ is increased relative to u. Moreover, since the number of descendingrelations added in P is minimal, there cannot be Tamari interval diagram between(u, v) and (u′, v ′), and thus no cubic coordinate between c and c′. In the end, theimage by φ−1 of (u′, v ′) is the cubic coordinate c′ with c′i = u′i and c′j = cj for any

j 6= i.(2) Suppose that P and P′ satisfy (�), then since only increasing relations are removedin P′ relative to P, only v ′ is changed in (u′, v ′) relative to (u, v). Furthermore, since
P′ is obtained by removing increasing relations of goal xi in P, then only the letter
v ′i in v ′ is decreased relative to v. Adding the fact that the number of increasingrelations removed in P is minimal, then only the component c′i−1 = −v ′i of c′ hasincreased relative to c.In both cases, the implication is true. �Note that if there is a unique different component ci between c and c′ such that ci < c′iand there is no cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′, then inparticular c′ covers c′. Thus, Lemma 2.3.1 has the consequence that if [S′, T ′] covers [S, T]then c′ covers c.Let us go back to the composition of bijections φ−1 ◦ χ−1. This composition associatesto a pair of comparable binary trees [S, T] a pair of words (u, v) such that u encodes thebinary tree S and v encodes the binary tree T . Indeed, by this composition u (resp. v) isobtained by counting in S (resp. T) the number of left (resp. right) descendant of eachinternal node for the infix order. Now, if [S, T] 4�� [S′, T ′], then the interval [S, T ′] is aTamari interval because we always have S 4� S′ 4� T ′. This implies that the pair (u, v ′)is always a compatible pair of words. A direct consequence is the following lemma.

Lemma 2.3.2. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ then there is a cubic coordinate c′′
such that u′′ = u and v ′′ = v ′.For any c, c′ ∈ CC(n), letD− (c, c′) := {d : cd 6= c′d and c′d 6 0} , (2.3.1)and D+ (c, c′) := {d : cd 6= c′d and cd > 0} . (2.3.2)Now consider the case where c and c′ share either their Tamari diagrams or theirassociated dual Tamari diagrams, then we have the two following lemmas.
Lemma 2.3.3. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ such that u = u′ and D− (c, c′) 6= ∅
then there is a cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′.

Proof. Let c′′ be a (n − 1)-tuple such that this image (u′′, v ′′) by φ is defined as follows:
u′′ = u and for v ′′ we set v ′′i = v ′i and v ′′j = vj for any i ∈ [s] and j ∈ [s + 1, n] with
s ∈ D− (c, c′). Since u′′ = u, the word u′′ is a Tamari diagram. Furthermore, since c and
c′ are cubic coordinates, u and v are compatible and u′ and v ′ are compatible. Therefore,
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the only thing to check is that v ′′ is a dual Tamari diagram. The condition (i) is naturallysatisfied. Since c 6 c′, the condition (ii) is satisfied because vk > v ′k for all k ∈ [n]. The(n − 1)-tuple c′′ is a cubic coordinate. �

Lemma 2.3.4. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ such that v = v ′ and D+ (c, c′) 6= ∅
then there is a cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′.

Proof. The proof is similar to the demonstration of Lemma 2.3.3 by choosing for theimage (u′′, v ′′) of c′′ to set v ′′ = v and u′′i = u′i and u′′j = uj for any i ∈ [r] and j ∈ [r + 1, n]with r ∈ D+ (c, c′). �

Lemma 2.3.5. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ then there is a chain(
c = c(0), c(1), . . . , c(s−1), c(s) = c′

) (2.3.3)
with s the number of different components between c and c′, such that between c(k−1)
and c(k) only one component is different for any k ∈ [s].
Proof. Suppose that c 4 c′, it means that for all i ∈ [n − 1] one has ci 6 c′i. LetD− (c, c′) := {d1, d2, . . . , dr} (2.3.4)and D+ (c, c′) := {dr+1, dr+2, . . . , ds}, (2.3.5)with dk−1 < dk for all k ∈ [s]. According to Lemma 2.3.2 there is a cubic coordinate c(r)such that u(r) = u and v(r) = v ′. Since between c and c(r) the positive components are thesame, we can build from Lemma 2.3.3 a chain(

c = c(0), c(1), . . . , c(r−1), c(r)) (2.3.6)
where c(k) is obtained by replacing successively in c all the components cd1 , cd2 , . . . , cdk bythe components c(r)

d1 , c(r)
d2 , . . . , c(r)

dk , for all k ∈ [r]. Thus, we build a chain between c and c(r)by changing only one component from left to right between each c(k−1) and c(k) for all
k ∈ [r].Note that the letters in the dual Tamari diagrams associated with c(r) and c′ are thesame, and the letters in the Tamari diagrams associated with c(r) and c are the same. Inother words, D+ (c, c′) = D+ (c(r), c′). Therefore, we build from Lemma 2.3.4 a chain(

c(r), c(r+1), . . . , c(s−1), c(s) = c′
) (2.3.7)

where c(k) is obtained by replacing successively in c(r) all the components cdr+1 , cdr+2 , . . . , cdkby the components c′dr+1 , c′dr+2 , . . . , c′dk , for all k ∈ [r + 1, s]. As before, we then obtain achain between c(r) and c′ by changing only one component from left to right betweeneach c(k−1) and c(k) for all k ∈ [r + 1, s]. �

Let ψ := φ−1◦χ−1◦ρ−1 be the map from the Tamari interval poset to the cubic coordinateposet (CC(n),4).
Theorem 2.3.6. For any n > 0, the map ψ is a poset isomorphism.
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Proof. The map ψ is an isomorphism of posets if ψ and its inverse preserves the partialorder. As these relations are transitive, Lemma 2.3.1 gives the direct implication. Supposethat c 4 c′. According to Lemma 2.3.5 there is always a chain between c and c′ such thatthe components are independently increasing one by one. So we can see what happenswhen we change only one component ci by c′i at any step between c and c′.Obviously, if ci = c′i then ui = u′i and vi+1 = v ′i+1 and no changes are made betweenthe corresponding binary tree pairs. Suppose that ci < c′i , then two cases are possible.(1) Suppose that c′i is positive and ci is positive or null. The image by φ of c and

c′ differ for the letter ui , namely c′i = u′i and ci = ui , and vi+1 = v ′i+1 = 0. Thedifference of a letter ui between (u, v) and (u′, v ′) is directly translated by the map
χ: the interval-poset P′ has more decreasing relations of goal xi than the vertex xiin P. By the map ρ, it means that to go from the tree S to the tree S′ at least oneright rotation of the edge (i, j) is made, where j is the father of the node i in S.(2) Symmetrically, assume that c′i is negative or null, then c′i = −v ′i+1, ci = −vi+1 and
ui = u′i = 0. By the map χ, the interval-poset P′ has less decreasing relations ofgoal xi+1 than the vertex xi+1 in P. This implies by ρ that to pass from the tree Tto the tree T ′ at least one right rotation of the edge (k, i + 1) is made, where k isthe right child of the node i + 1 in T .In both cases c 4 c′ implies that to get [S′, T ′] only right rotations in the tree S and inthe tree T can be made. Therefore [S, T] 4�� [S′, T ′].The map ψ is an isomorphism of posets. �Let us denote by l the covering relation of the poset (CC(n),4).

Proposition 2.3.7. Let n > 0 and c, c′ ∈ CC(n). The cubic coordinate c′ covers c if and
only if there is a unique different component ci between c and c′ such that ci < c′i.

Proof. It is a consequence of Theorem 2.3.6 and Lemma 2.3.1. �The following diagram provides a summary of the applications used in Section 2. Recallthat ψ = φ−1 ◦ χ−1 ◦ ρ−1, therefore this diagram of poset isomorphisms is commutative.
TID(n) IP(n)

CC(n) I(Ta)(n)

χ

φ

ψ

ρ (2.3.8)

A consequence of the poset isomorphism ψ is that the order dimension [MP90,Tro02]of the poset of Tamari intervals is at most n − 1.
3. CUBIC REALIZATIONS AND GEOMETRIC PROPERTIESIn this section, we give a very natural geometrical realization for the lattices of cubiccoordinates. After defining the cells of this realization, we give some properties related tothem. Finally, we show that the lattice of the cubic coordinates is EL-shellable.
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3.1. Cubic realizations and cells. Theorem 2.3.6 provides a simpler translation of theorder relation between two Tamari intervals. We provide the geometrical realization in-duced by this order relation which is natural for cubic coordinates. In a combinatorialway we study the cells formed by this realization.For any Tamari interval, we place in space Rn−1 its corresponding cubic coordinate.The geometrical realization of the poset (CC(n),4) is then constructed as follows. Twocubic coordinates c and c′ are connected by an arrow oriented from c to c′ if and only if
c′ covers c. This geometrical realization is called cubic realization.

(1̄, 2̄)

(0, 1̄) (1̄, 0)
(1̄, 1)

(1, 0)

(0, 2̄)

(0, 0)
(0, 1)

(2, 0)

(1, 2̄)
(1, 1̄)

(2, 1)

(2, 1̄)

FIGURE 11. Cubic realization of (CC(3),4).
Figure 11 is the cubic realisation of (CC(3),4), where the elements of CC(3) are thevertices and the arrows are the covering relations oriented to the covering elements.Figure 12 is the cubic realization of (CC(4),4). In these drawings the negative sign com-ponents are denoted with a bar.In algebraic topology, to define the tensor products of A∞-algebras, we use a cell com-plex called the diagonal of the associahedron. This complex has notably been studied byLoday [Lod11], by Saneblidze and Umble [SU04] or by Markl and Shnider [MS06]. Morerecently, there is a description of this object in the article [MTTV19]. The realization of thiscomplex seems to be identical to the cubic realization, with some continuous deformationmade.In Figure 11 and Figure 12, we notice that a "cellular" organization appears. Thanksto the cubic coordinates, a combinatorial definition of these cells is provided. The aimis to have a better understanding of the realization of the cubic coordinate posets, as ageometrical object.
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Let n > 0 and c ∈ CC(n). Suppose there is c′ ∈ CC(n) such that c′i > ci and c′j = cj forall j 6= i with i, j ∈ [n − 1]. The minimal increasing map of ↑i is defined by

↑i (c) := (c1, . . . , ci−1, ↑ ci, ci+1, . . . , cn−1), (3.1.1)such that c l ↑i (c) and ci <↑ ci 6 c′i. This map ↑i allows us to select one coveringcubic coordinate of c in particular. In the following, it is said that ↑i (c) is the minimal
increasing of c for the component ci.Let n > 0 and c ∈ CC(n), and (u, v) := φ(c). If ↑ ci is positive then the letter ui increasesand becomes equal to ↑ ci and vi+1 is equal to 0. Then, we set ↑ ui :=↑ ci. If ↑ ci is negativeor null then vi+1 decreases and becomes equal to | ↑ ci| and ui is equal to 0. Then, we set
↓ vi+1 :=↑ ci.
Lemma 3.1.1. Let n > 0 and c ∈ CC(n), and i ∈ [n − 1] such that ↑i (c) is well-defined.
Then,

(i) if ci < 0 then ↑ ci 6 0;
(ii) if ci > 0 then ↑ ci > 0.

Proof. Let us show the first implication, the second being obvious because the minimalincreasing map always strictly increases a component. Let ci < 0. Suppose by the absurdthat ↑ ci > 0. Let us then note c′ the (n − 1)-tuple such that c′i = 0 and c′j = cj for any
j 6= i, with j ∈ [n− 1]. By Lemma 2.2.2 c′ is a cubic coordinate. Clearly, c 4 c′ 4↑i (c), withthe three distinct elements. Which is impossible by definition of the minimal increasingmap. �

Let n > 0 and c ∈ CC(n). The cubic coordinate c is a minimal-cellular if for any
i ∈ [n− 1], ↑i (c) is well-defined. In other words, a cubic coordinate of size n is a minimal-cellular if it has n − 1 covers.
Lemma 3.1.2. Let n > 0 and c be a minimal-cellular of size n and i ∈ [n − 1]. If

c′ =↑i+1 (↑i+2 (. . . (↑n−1 (c)) . . . )), (3.1.2)
is well-defined then ↑i (c′) is well-defined.

Proof. Suppose that (3.1.2) is satisfied for i+1. Let us show that ↑i (c′) is also well-defined.Then two cases are possible for ci.Suppose that ci < 0. In this case, consider c′′ the (n − 1)-tuple obtained from c′ byreplacing the ci component by 0. This (n−1)-tuple c′′ is a cubic coordinate by Lemma 2.2.2.Since ci < 0 one has c′ 4 c′′. If c′′ is a cover for c′ then c′′ =↑i (c′). Otherwise, it is alwayspossible to find another cubic coordinate c′′′ between c′ and c′′ such that c′′ =↑i (c′). Inboth cases, ↑i (c′) is well-defined.Suppose that ci > 0. Let (u, v) := φ(c), then ci = ui. The minimal increasing of c′ for uican lead to three different cases due to the two conditions of a Tamari diagram and thecompatibility condition.(1) If there is an index j such that 1 6 i < j 6 n and ↓ vj > j − i then vj > j − i because
↓ vj < vj . By the compatibility condition that implies ui < j − i. Moreover, since c
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is assumed minimal-cellular, ui < j − i − 1, so that ui can be increased in c. Thisinequality remains true for c′.(2) If there is an index h such that 1 6 i − h 6 uh then ui 6 uh − i + h by thecondition (ii) of a Tamari diagram. This remains true in c′ because componentswith index smaller than i remain unchanged between c and c′. Furthermore, since
c is minimal-cellular then ui < uh − i + h. This property remains true for c′.(3) If there is an index k such that 1 6 i < k 6 n then by (i) of a Tamari diagram,
↑ uk 6 n − k.Let us build a (n − 1)-tuple c′′ different from c′ only for component ci and let us seewhat choices are available for ui.(a) Suppose there is a j satisfying (1) and there is no h satisfying (2) in c′. In this case,we set ui := j − i − 1. The compatibility condition is satisfied because ui < j − i.Furthermore, since c′ is assumed to be well-defined, all conditions in a Tamaridiagram and a dual Tamari diagram are satisfied for c′′. Our candidate c′′ istherefore a cubic coordinate.(b) Suppose there is a h satisfying (2) and there is no j satisfying (1) in c′. Then weset ui := uh − i+ h. The condition (ii) of a Tamari diagram is thus satisfied for ui.Also, by the condition (i) of a Tamari diagram, uh 6 n−h which implies ui 6 n− i.Finally, the compatibility condition is also satisfied because it was assumed thatthere was no j satisfying (1). The tuple c′′ is thus a cubic coordinate.(c) Suppose there is a j and a h satisfying (1) and (2) in c′. In this case, we set
ui := min{uh − i+h, j − i− 1}. The tuple c′′ is then a cubic coordinate by the twoprevious cases.(d) Otherwise, we set ui := n − i. The tuple c′′ is a cubic coordinate.In all four cases, the existence of a k satisfying (3) has no influence. Indeed, in (a) ↑ ukis increased by ↓ vj and is thus lower than ui = j − i − 1 in c′′. In (b) ↑ uk is increased by

uh and is thus lower than ui = uh − i + h in c′′. In (c) ↑ uk is increased by either ↓ vj or
uh. Finally in (d) since ↑ uk 6 n − k and n − k < n − i one has ↑ uk < n − i.In any case, for ui fixed in c′′, either there is a ↑ ui such that 0 <↑ ui < ui and ↑i (c′) iswell-defined, otherwise ↑i (c′) = c′′. �

Let n > 0 and c be a minimal-cellular of size n and c′ a cubic coordinate of size n. Thecubic coordinate c′ is the corresponding maximal-cellular of c if
c′ =↑1 (↑2 (. . . (↑n−1 (c)) . . . )). (3.1.3)For instance c = (0,−1, 1,−1,−5, 0, 1,−1,−3) is minimal-cellular, and its correspondingmaximal-cellular is c′ = (1, 0, 2, 0,−4, 3, 2, 0,−2). By Lemma 3.1.2 such an element doesexist. Note that performing the minimal increasing of c in a different order does notalways result in the corresponding maximun-cellular. This observation can already bemade on the two pentagons of Figure 11.Let n > 0 and cm be a minimal-cellular of size n and cM be its corresponding maximal-cellular. The pair (cm, cM ) is called cell, and is denoted by 〈cm, cM〉. The size of the cell isthe size of cm.
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A consequence of Lemma 3.1.1 is that for any cell 〈cm, cM〉 of size n, for all i ∈ [n− 1],(i) if cmi < 0 then cMi 6 0;(ii) if cmi > 0 then cMi > 0.

Theorem 3.1.3. Let n > 0 and 〈cm, cM〉 be a cell of size n, and c be a (n− 1)-tuple such
that all component ci is equal either to cmi or to cMi , for all i ∈ [n− 1]. Then c is a cubic
coordinate.

Proof. If all the components of c are equal to those of cm (resp. to those of cM ), then cis a cubic coordinate. Suppose this is not the case, meaning that c has components of cmand cM .Let us note (umi , vmi+1) (resp. (uMi , vMi+1)) the pair of letters corresponding to cmi (resp.
cMi ) and (ui, vi+1) the one corresponding to ci for any i ∈ [n − 1]. By hypothesis on cmand cM the letter ui which is equal to umi or uMi satisfies 0 6 ui 6 n − i for any i ∈ [n].Similarly, the letter vi which is equal to vmi or vMi satisfies 0 6 vi 6 i − 1 for any i ∈ [n].Let us show that c satisfies the condition (ii) of a Tamari diagram, the condition (ii) of adual Tamari diagram and the compatibility condition.(1) Let us show that for any choice of letters ui and ui+j with i ∈ [n] and j ∈ [0, ui] onehas ui+j 6 ui − j .

? If ui and ui+j are equal respectively to umi and to umi+j (resp. to uMi and to uMi+j )then the condition (ii) of a Tamari diagram is satisfies because cm (resp. cM )is a cubic coordinate.
? Suppose that ui = uMi and ui+j = umi+j . By definition of cM one has umi+j < uMi+j .However uMi+j 6 uMi − j because cM is a cubic coordinate. Therefore thecondition (ii) of a Tamari diagram is satisfied.
? Suppose that ui = umi and ui+j = uMi+j . Let c′ =↑i+j (↑i+j+1 (. . . (↑n−1 (cm)) . . . )).According to Lemma 3.1.2 c′ is a cubic coordinate such that c′i = umi and
c′i+j = uMi+j . Since the condition (ii) of a Tamari diagram is satisfied for c′, itmust also be satisfied for c.(2) The condition (ii) of a dual Tamari diagram is satisfied with the same argumentsgiven for the three previous cases, applied to the dual Tamari diagram v.(3) Rather than showing the compatibility condition as it is stated, let us show thecontrapositive. That is, for every 1 6 i < j 6 n such that vj > j − i, let us show that

ui < j − i.
? Clearly, if ui and vj are equal to umi and vmj (resp. to uMi and vMj ) then thecompatibility condition is satisfied.
? Suppose that ui = umi and vj = vMj . If vMj > j− i then for cm one has vmj > j− ibecause vMj < vmj . Since cm is a cubic coordinate, this implies that umi < j − i.
? Suppose that ui = uMi and vj = vmj . If vmj > j − i then for all k ∈ [i, j − 1],
umk < j−k because cm is a cubic coordinate and then satisfies the compatibilitycondition. Moreover since cm is minimal-cellular each component can beminimally increased independently of the others, thus umk < j−k−1 for all k ∈[i, j−1]. For the same reason ui+h < ui−h for all h ∈ [0, ui]. These two reasonsimply that if one builds the cubic coordinate c′ =↑i (↑i+1 (. . . (↑n−1 (cm)) . . . ))
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then by definition of the minimal increasing map one has c′i = u′i < j − i,because at worst, the minimal increasing map sends umi to j − i− 1. However,by definition of cM one has uMi = u′i , that is uMi < j − i. Therefore thecompatibility condition between uM and vmj is satisfied for c.Thus, for all choices of letters of u and v one has that c is a cubic coordinate. �One of the direct consequences of Theorem 3.1.3 is that for every cell 〈cm, cM〉, at least2n−1 cubic coordinates belong to this cell. This theorem also implies that the maximal-cellular covers n − 1 cubic coordinates in (CC(n),4).

3.2. Cells properties. We now have a definition of cells. In addition, we know that eachcell contains at least 2n−1 elements. In this part, we show that it is possible to associatebijectively each cell to a synchronized cubic coordinate. Finally, we deduce a formula tocompute the volume of the cubic realization.Let n > 0 and 〈cm, cM〉 be a cell of size n and γ be the map defined by
γ(cmi , cMi ) := {cmi if cmi < 0,

cMi if cmi > 0, (3.2.1)
for all i ∈ [n − 1]. Note that the components returned by the map γ are never zero. Letdenote by (umi , vmi+1) (resp. (uMi , vMi+1)) the pair of letters corresponding to cmi (resp. cMi )by the map φ, for any i ∈ [n − 1]. Then the map γ becomes

γ(cmi , cMi ) := {−vmi+1 if cmi < 0,
uMi if cmi > 0. (3.2.2)

Let Γ be the map defined byΓ(〈cm, cM〉) := (γ(cm1 , cM1 ), γ(cm2 , cM2 ), . . . , γ(cmn−1, cMn−1)). (3.2.3)For instance, the cell 〈(0,−1, 1,−1,−5, 0, 1,−1,−3), (1, 0, 2, 0,−4, 3, 2, 0,−2)〉 is sent by Γto (1,−1, 2,−1,−5, 3, 2,−1,−3).
Theorem 3.2.1. For any n > 0, the map Γ is a bijection from the set of cells of size n
to CCs(n).
Proof. The components of Γ(〈cm, cM〉) belong to either cm or cM . In both cases, it is a non-zero component. According to Theorem 3.1.3, Γ(〈cm, cM〉) is therefore a cubic coordinateof size n. Moreover, this cubic coordinate is synchronized because none of its componentsis null.Let 〈cm, cM〉 and 〈em, eM〉 be two cells of size n such that Γ(〈cm, cM〉) = Γ(〈em, eM〉).Let us note (umi , vmi+1) (resp. (uMi , vMi+1)) the pair of letters corresponding to cmi (resp. cMi )and (xmi , ymi+1) (resp.(xMi , yMi+1)) the pair of letters corresponding to emi (resp. eMi ) by themap φ, for all i ∈ [n − 1].Γ is injective if cmi = emi (resp. cMi = eMi ) for any i ∈ [n−1]. Suppose that Γ(〈cm, cM〉) =Γ(〈em, eM〉) is equivalent to stating that for all i ∈ [n−1], γ(cmi , cMi ) = γ(emi , eMi ). Two casesare then to be considered, either γ(cmi , cMi ) = uMi or γ(cmi , cMi ) = −vmi+1. By definition ofthe map γ, no other case is possible.
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(0, 0, 0)

(3, 2, 1)

(0, 2, 1)
(3, 0, 1)

(3, 2, 0)

(1̄, 2̄, 3̄)

(1̄, 0, 3̄)

(1̄, 2̄, 0)

FIGURE 12. Cubic realization of (CC(4),4).
(1) Suppose that γ(cmi , cMi ) = uMi with i ∈ [n − 1].

? In this case, γ(emi , eMi ) = xMi and uMi = xMi . Moreover, since uMi 6= 0 (resp.
xMi 6= 0), then necessarily vMi+1 = 0 (resp. yMi+1 = 0). Therefore cMi = eMi .

? Let us show that cmi = emi . The fact that uMi > 0 (resp. xMi > 0) implies byLemma 2.2.2 that 0 6 umi < uMi and vmi+1 = 0 (resp. 0 6 xmi < xMi and ymi+1 = 0).
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Thus one has vmi+1 = ymi+1. So it remains to be shown that umi = xmi . Supposeby the absurd that umi < xmi . By definition of the minimal increasing map, onehas xmi < xMi . This implies, in addition to the hypothesis that xMi = uMi , that
umi < xmi < uMi . Let c =↑i+1 (. . . (↑n−1 (cm)) . . . ) and e =↑i+1 (. . . (↑n−1 (em)) . . . ).By Lemma 3.1.2 c and e are both cubic coordinate. By construction cj = umj(resp. ej = xmj ) for all j ∈ [i] and ck = cMk (resp. ek = eMk ) for all k ∈ [i+1, n−1].Now let c′ be a tuple such that c′i = xmi and c′j = cj for all j 6= i. Let us showthat c′ is a cubic coordinate. Let (u, v) and (u′, v ′) be the two pairs of wordscorresponding respectively to c and c′. Since only one positive letter changesbetween c and c′, the words v and v ′ are the same. Furthermore, since c is acubic coordinate, the word v is in particular a dual Tamari diagram. Therefore
v ′ is also a dual Tamari diagram. On the other hand, for any k ∈ [i+ 1, n− 1]one has u′k = uMk by definition of a maximal-cellular. However, by hypothesis
uMk = xMk . Since the cubic coordinate e is in particular a Tamari diagram, thefact that u′k = xMk for any k ∈ [i + 1, n − 1] means that u′ is also a Tamaridiagram. Finally, since ↑i (c) is a cubic coordinate by Lemma 3.1.2, it satisfiesin particular the compatibility condition, with ↑ ci = uMi by definition of amaximal-cellular. This condition remains satisfied if the letter uMi is decreasedto the letter xmi . Therefore, c′ satisfies the compatibility condition and is acubic coordinate. We have built a cubic coordinate c′ distinct from c and ↑i (c)such that c 4 c′ 4↑i (c), which is impossible according to the definition of theminimal increasing map.(2) Suppose that γ(cmi , cMi ) = −vmi+1. In this case γ(emi , eMi ) = −ymi+1 and vmi+1 = ymi+1.By rephrasing the arguments of the case (1) for the dual, we show that cmi = emiand cMi = eMi .This shows that the map Γ is injective.Now let us show that the cardinal of the set of cells of size n is equal to the cardinalof CC(n). Recall that the set of cells of size n is exactly the set of minimal-cellular of size

n. Moreover, it is also the set of cubic coordinates which are covered by exactly n − 1elements in (CC(n),4). Furthermore, by the poset isomorphism ψ we know that theseelements are the Tamari intervals having n− 1 elements covering in the poset of Tamariintervals. In [Cha18] Chapoton shows that the set of these Tamari intervals has the samecardinal as the set of synchronized Tamari intervals (see Theorem 2.1 and Theorem 2.3from [Cha18]). Finally, Proposition 2.2.3 allows us to conclude that the cardinal of CCs(n)and the cardinal of the set of cells of size n are equal. Thus, the map Γ is bijective. �

Thereafter, we also use the opposite cubic coordinate of the synchronized cubic coor-dinate. It is given by the map γ̄ defined by
γ̄(cmi , cMi ) := {cMi if cmi < 0,

cmi if cmi > 0, (3.2.4)
for all i ∈ [n − 1]. Then Γ̄ is defined byΓ̄(〈cm, cM〉) := (γ̄(cm1 , cM1 ), γ̄(cm2 , cM2 ), . . . , γ̄(cmn−1, cMn−1)). (3.2.5)
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By Theorem 3.1.3, Γ̄(〈cm, cM〉) is a cubic coordinate belonging to 〈cm, cM〉, called oppo-

site cubic coordinate. For the synchronized cubic coordinate c associated with 〈cm, cM〉by Γ, note cop the opposite cubic coordinate. All the components of cop are different fromthose of c, and these differences are maximal. For any synchronized cubic coordinate c,such a cubic coordinate cop always exists and is unique.Note that the map Γ only returns the positive components of cM and the negativecomponents of cm. Conversely, the map Γ̄ returns the positive components of cm andthe negative components of cM . We already know that the latter combination is alwayspossible for any comparable cubic coordinates according to Lemma 2.3.2. On the otherhand this is not the case for the first mentioned combination.Now let us take a closer look at the geometry of the cubic realization. We alreadyknow that there are at least 2n−1 cubic coordinates forming an outline of each cell. Thefollowing notions will allow us to say more.Let n > 0 and ε ∈ {−1, 1}n−1, and c ∈ CC(n). A region of c is the set
Rε(c) := {(x1, . . . , xn−1) ∈ Rn−1 : xi < ci if εi = −1, xi > ci otherwise}. (3.2.6)

The cubic coordinate c is external if there is ε ∈ {−1, 1}n−1 such that CC(n) ∩Rε(c) = ∅.The region Rε(c) is then empty. Otherwise c is internal.
Proposition 3.2.2. Let n > 0 and c ∈ CC(n). If c is internal then φ(c) is a new Tamari
interval diagram.

Proof. Instead, let us show that if φ(c) is not new, then c is external. Let us note (ui, vi+1)the pair of letters corresponding to ci by the map φ for i ∈ [n − 1].Tamari interval diagram φ(c) is not new if there is(1) either i ∈ [n − 1] such that ui = n − i;(2) or j ∈ [2, n] such that vj = j − 1;(3) or k, l ∈ [n] such that uk = l − k − 1 and vl = l − k − 1 with k + 1 < l.Suppose there is i satisfying (1) then there cannot be a cubic coordinate c′ such that c′i > cibecause by definition of a Tamari diagram c′i 6 n − i. Similarly, if we assume that thereis j satisfying (2) then there cannot be a cubic coordinate c′ such that c′j−1 < cj−1 becauseby definition of a dual Tamari diagram, c′j−1 > 1 − j . If (3) is satisfied, then there cannotbe a cubic coordinate c′ such that c′k > ck and c′l−1 < cl−1. Indeed, if the letters uk and vlare increased in c then the compatibility condition is contradicted, so the result cannot bea cubic coordinate. Since in each case at least one region is empty, c is external. �

Proposition 3.2.3. Let n > 0 and c ∈ CCs(n). Then c is external.

Proof. By Proposition 2.2.6 we know that if c is synchronized then φ(c) is not new. Now,we just saw from Proposition 3.2.2 that if φ(c) is not new, then c is external. �

Proposition 3.2.4. Let n > 0 and 〈cm, cM〉 be a cell of size n. Then there is no cubic
coordinate c such that cmi < ci < cMi for all i ∈ [n − 1].
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Proof. Suppose there is such a cubic coordinate c. By Lemma 3.1.1 we know that if cmi < 0then cMi > 0 and if cmi > 0 then cMi > 0. However, since cmi < ci < cMi then ci is differentfrom 0. In the end, if such a cubic coordinate c exists, it would be synchronized. But then,there would be a cubic coordinate both synchronized and internal by hypothesis. This isimpossible according to Proposition 3.2.3. �

We showed with Theorem 3.1.3 that each cell contains at least 2n−1 cubic coordinates.These cubic coordinates are linked by arrows representing the coverage relationships.With Proposition 3.2.4, we can then conclude that each cell is a hypercube of dimension
n − 1 in cubic realization, having only vertices on its border.Let n > 0 and 〈cm, cM〉 be a cell of size n. The volume of this cell satisfies

V (〈cm, cM〉) = n−1∏
i=1 (cMi − cmi ). (3.2.7)

Note c0 the cubic coordinate such that c0
i = 0 for any i ∈ [n − 1]. To compute thevolume of a cell 〈cm, cM〉 from the synchronized cubic coordinate associated by Γ, wemust first compute the volume of the hypercube formed by c0 and this synchronizedcubic coordinate. Let us summarize the data we have so far.By Lemma 3.1.1, any cell is included in a region of the c0 cubic coordinate. This meansthat no cell can intersect hyperplanes passing through the origin c0.According to Lemma 2.2.2, for any cubic coordinate, replacing any component by 0gives a cubic coordinate. In other words, for any cubic coordinate c, there are n−1 cubiccoordinates related to c which are its projections on the hyperplanes of the origin. We canthen generate a hypercube with the cubic coordinate c0 and any other cubic coordinate

c. The hypercube thus formed, denoted by H(c), then depends on c and is of dimensionless than or equal to n − 1 and can be non-empty, in the sense that it can contain otherhypercubes of the same dimension.By the map Γ the components of the synchronized cubic coordinate of cell 〈cm, cM〉are the greatest in absolute value between cm and cM . Therefore, in the cell 〈cm, cM〉 itis the furthest cubic coordinate from c0. Thus the hypercube generated by c0 and thesyncronized cubic coordinate contains the cell 〈cm, cM〉. This hypercube is therefore ofdimension n − 1.Let n > 0 and c ∈ CCs(n). Let us note V(c) the extended synchronized volume of cdefined by
V(c) := n−1∏

i=1 |ci|. (3.2.8)
The extended synchronized volume computes the volume of the hypercube formed by c0and the synchronized cubic coordinate c associated with 〈cm, cM〉.Let x ∈ Rn−1 and 〈cm, cM〉 be a cell of size n. The element x belongs to 〈cm, cM〉 if
cmi 6 xi 6 cMi for all i ∈ [n − 1].Let us endow the set CCs(n) with the partial order 4s such that for c, c′ ∈ CCs(n) onehas c′ 4s c if and only if c′i and ci are of the same sign and |c′i| 6 |ci| for any i ∈ [n − 1].
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Lemma 3.2.5. Let n > 0 and 〈cm, cM〉 be a cell of size n, and c be the synchronized
cubic coordinate associated with it by Γ, and x ∈ H(c). If x /∈ 〈cm, cM〉 then there is
c′ ∈ CCs(n) different of c such that c′ 4s c and x ∈ H(c′).
Proof. Let cop be the opposite cubic coordinate of c. Since x /∈ 〈cm, cM〉 and x ∈ H(c),then necessarily cop 6= c0. For the same reasons, there is an index i such that |xi| < |copi |where copi 6= 0. Let us build ∇ic the (n − 1)-tuple such that ∇ici = copi and ∇icj = cj forall j 6= i. According to Theorem 3.1.3, ∇ic is a cubic coordinate and belongs to the cell
〈cm, cM〉. Also,∇ic is a synchronized cubic coordinate which satisfies∇ic 4s c and whichis different from c. We can then associate to ∇ic a cell, which is strictly included in H(c).Then x belongs to the hypercube associated with ∇ic. �

Proposition 3.2.6. Let n > 0 and c ∈ CCs(n). Then

H(c) = ∐
c′4sc

Γ−1(c′). (3.2.9)
Proof. The inclusion of H(c) in ∐

c′4sc Γ−1(c′) is a consequence of Lemma 3.2.5. Thereciprocal inclusion is obvious. �

Let n > 0 and c ∈ CCs(n), and let V̄(c) be the synchronized volume of c defined by
V̄(c) := V(c)−∑

c′4sc
c′ 6=c
V̄(c′). (3.2.10)

The equation (3.2.10) is a Möbius inversion [Sta12].
Proposition 3.2.7. Let n > 0 and 〈cm, cM〉 be a cell of size n, be the synchronized cubic
coordinate associated with it by Γ. Then

V (〈cm, cM〉) = V̄(c). (3.2.11)
Proof. Since the volume ofH(c) is given by V(c), the equality (3.2.11) is a consequence ofProposition 3.2.6 and the equation (3.2.10). �

3.3. EL-shellability. To each finite poset P, it is possible to relate a simplicial complex∆(P) whose k-faces correspond to the k-length chains in P. The properties of the sim-plicial complex ∆(P) such as purity, shellability, or homotopy type are strongly linked tothe poset P. In [BW96] and [BW97], Björner and Wachs generalize the method of label-ing the covering relations of graded posets to the case of ungraded posets. In particular,they show in [BW97] that Tamari poset is EL-shellable, and thus the associated simplicialcomplex is shellable. We show in this section that this is also the case for the poset ofcubic coordinates.Let (P,4P) be a poset and (Λ,4Λ) be a poset, and λ : lP → Λ be a map. For anysaturated chain (x(1), . . . , x(k)) of P, by a slight abuse of notation, we set
λ
(
x(1), . . . , x(k)) := (λ (x(1), x(2)) , . . . , λ (x(k−1), x(k))) . (3.3.1)

We say that a saturated chain of P is λ-increasing (resp. λ-weakly decreasing) if its imageby λ is an increasing (resp. weakly decreasing) word relative to the partial order 4Λ. We
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say also that a saturated chain (

x(1), . . . , x(k)) of P is λ-smaller than a saturated chain(
y(1), . . . , y(k)) of P if the image by λ of (x(1), . . . , x(k)) is smaller than the image by λ of(
y(1), . . . , y(k)) for the lexicographic order induced by 4Λ. The map λ is an EL-labeling of
P if there exist such a poset Λ and a map λ such that for any x, y ∈ P satisfying x 4P y,there is exactly one λ-increasing saturated chain from x to y which is minimal among allsaturated chains from x to y for the order on saturated chains just described. The poset
P is EL-shellable [BW96,BW97] if P is bounded and admits an EL-labeling.The EL-shellability of a poset P implies several topological and order theoretical prop-erties of the associated order complex ∆(P) built from P. Recall that the elements of thissimplicial complex are all the chains of P. For instance, one of the consequences for Pfor having at most one λ-weakly decreasing chain between any pair of its elements is thatthe Möbius function of P takes values in {−1, 0, 1}. In a equivalent way, the simplicialcomplex associated with each open interval of P is either contractile or has the homotopytype of a sphere [BW97].For the sequel, we set Λ as the poset Z3 wherein elements are ordered lexicographically.Let (c, c′) ∈ l such that ci < c′i for i ∈ [n − 1] and let λ : lÏ Z3 be the map defined by

λ(c, c′) := (ε, i, ci), (3.3.2)
where ε := {−1 if ci < 0,1 else.
Theorem 3.3.1. For any n > 0, the map λ is an EL-labeling of CC(n). Moreover, there
is at most one λ-weakly decreasing chain between any pair of elements of CC(n).
Proof. Let c, c′ ∈ CC(n) such that c 4 c′. By Lemma 2.3.5, there is a chain(

c = c(0), c(1), . . . , c(s−1), c(s) = c′
) (3.3.3)

with s the number of different components between c and c′, such that between c(k−1) and
c(k) only one component is different for any k ∈ [s].Recall that the chain (3.3.3) is obtained by considering

D− (c, c′) := {d : cd 6= c′d and c′d 6 0} = {d1, d2, . . . , dr} (3.3.4)
and D+ (c, c′) := {d : cd 6= c′d and cd > 0} = {dr+1, dr+2, . . . , ds}, (3.3.5)with dk−1 < dk for all k ∈ [s]. the chain (3.3.3) is then the concatenation of two chains, thefirst one between c and c(r) (

c = c(0), c(1), . . . , c(r−1), c(r)) (3.3.6)
where c(k) is obtained by replacing successively in c all the components cd1 , cd2 , . . . , cdk bythe components c(r)

d1 , c(r)
d2 , . . . , c(r)

dk , for all k ∈ [r], and the second chain between c(r) and c′(
c(r), c(r+1), . . . , c(s−1), c(s) = c′

) (3.3.7)
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where c(k) is obtained by replacing successively in c(r) all the components cdr+1 , cdr+2 , . . . , cdkby the components c′dr+1 , c′dr+2 , . . . , c′dk , for all k ∈ [r + 1, s], with the observation thatD+ (c, c′) = D+ (c(r), c′).Since in this chain only one component differs between two cubic coordinates c(k−1)and c(k) for all k ∈ [s], the saturated chain can be constructed by considering all thecubic coordinates between them. Besides, since the chain between c and c′ is obtainedby changing only one component from left to right between each cubic coordinates, thenthis saturated chain is λ-increasing for the lexicographic order induced by (3.3.2). Let usnote this chain µ.Moreover, any other choice of saturated chain between c and c′ implies choosing, at acertain step k, a greater label for the lexicographical order than the label (ε, k, ck) of µ,and then having to choose the label (ε, k, c′′k) afterwards. Thus, the saturated chain µ isunique and is λ-smaller.If there is a saturated chain λ-weakly decreasing between c and c′, then it is obtainedby first replacing successively in c the components cds , cds−1 , . . . , cdk by the components
c′ds , c

′
ds−1 , . . . , c′dk for any k ∈ [r + 1, s], with D+ (c, c′) := {dr+1, dr+2, . . . , ds}. Then, by re-placing successively in the cubic coordinate thus obtained the components cdr , cdr−1 , . . . , cdkby c(r)
dr , c

(r)
dr−1 , . . . , c(r)

dk for any k ∈ [r], with D− (c, c′) := {d1, d2, . . . , dr}. To summarize, if asaturated chain λ-weakly decreasing exist between c and c′, it is built by first changing thedifferent and positive components between c and c′ from right to left, and then changingthe different and negative components between c and c′ from right to left. For the samereason that any saturated λ-increasing chain is unique for any interval, if it exists, the
λ-weakly decreasing chain is also unique. �For instance, in Figure 11, the λ-increasing saturated chain between (−1,−2) and (2, 1)is the chain ((−1,−2), (0,−2), (0,−1), (0, 0), (1, 0), (2, 0), (2, 1)) , (3.3.8)and
λ ((−1,−2), . . . , (2, 1)) = ((−1, 1,−1), (−1, 2,−2), (−1, 2,−1), (1, 1, 0), (1, 1, 1), (1, 2, 0)) . (3.3.9)
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