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Abstract

In this paper we present a study on the Equitable Sensor Location Problem

and we focus on the stochastic version of the problem where the surveying

capacity of some sensors is measured as probability of intrusions detection.

The Equitable Sensor Location Problem, which is an extension of the Eq-

uitable Facility Location Problem, considers installing surveying facilities as

cameras/sensors in order to monitor and protect some important locations.

Each location can be simultaneously protected by multiple facilities. Clearly

this problem falls into the category of Maximal Coverage Location Prob-

lem and we focus on the equitable variant. The objective of the Equitable

Sensor Location Problem is to provide equitable protection to all locations

when the number of sensors that can be placed is limited. We study the re-

silient and ambiguous versions of this problem. The resilient sensor location

problem considers the case when some sensors are assumed to fail partially

Email addresses: mcs.marcio@gmail.com (Marcios Costa Santos),
h2luss@gmail.com (Hannan Luss), dritan.nace@hds.utc.fr (Dritan Nace),
michael.poss@lirmm.fr (Michael Poss)

Preprint submitted to DAM February 15, 2019



or completely. The ambiguous version studies the case when the surveying

probabilities are uncertain and represented by independent Bernouilli ran-

dom variables with the corresponding ambiguity set containing the Bernouilli

probability distributions. For each problem we consider two popular fairness

measures which are the lexicographic optimal and proportionally fair solu-

tions and provide an integer linear formulation together with the solution

methodology. Numerical results for each studied problem are provided at

the end of the paper.

Keywords: equity, equitable resource allocation, stochastic set covering,

robust combinatorial optimization, NP-hardness

1. Introduction

We consider the problem of installing facilities at strategic locations in or-

der to monitor and protect numerous important locations. Each location can

be simultaneously protected by multiple facilities. Concrete examples include

airports where various locations, such as terminals, baggage areas, control

towers, gates, runways, among others, must be protected. Other examples

include shopping malls and entertainment parks (e.g., Disney World) where

large numbers of people assemble at many locations, and strategic complexes

such as hospitals, power plants, and military installations. Clearly this prob-

lem falls into the category of Maximal Coverage Location Problem. Covering

problems are among the most studied combinatorial optimization problems.

The Maximal Covering Location Problem (MCLP) was introduced in [10]

and is NP-hard [13]. Facility location problems are intensively studied in

the literature, see for instance [3, 9, 14, 16, 17, 20] and the references therein.
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In our study the objective is to provide (i) equitable protection to all loca-

tions when the number of sensors that can be placed is limited (ii) robust

protection under possibly full or partial failures of sensors. The Equitable

Sensor Location Problem [14, 17, 18] is an extension of the Equitable Facility

Location Problem, see Ogryczak [25]. The latter considers placing facilities,

such as police stations or emergency rooms, so as to provide equitable service

to all neighborhoods, where people in each of the neighborhoods are served

by the closest facility. Versions of this problem are proposed in Neidhardt,

Luss, and Krishnan [24], and in Luss [[17] Section 7.2.2], while some other

related works on fairness are given in [4, 5, 6, 32].

In this study we explore models with two different objective functions

often used to model optimization problems with fairness criteria: (i) Lexi-

cographic maximin (or minimax) optimization and (ii) Proportional fairness

optimization. These criteria are among the most popular ones from the

fairness studies and cover a large spectrum of applications. The contribu-

tion of this work stands in providing a full study on the different variants

of the probabilistic equitable sensor location problem with the above two

fairness criteria (other criteria like these using Gini coefficients and Lorenz

curve orderings are beyond the scope of this study [1]). The contribution is

twofold: (i) modeling and solving the probabilistic equitable sensor location

problem and the resilient variant; (ii) modeling and solving the ambiguous

equitable sensor location problem. Note that the resilient variant of the eq-

uitable sensor location stands for the case when sensors are subject to partial

or complete failures while the ambiguous equitable sensor location problem

considers the case with uncertain probabilities. Throughout this study we
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use surveying capacity of sensors measured as probability of intrusions de-

tection and assume that they are independent. This assumption enables us

to obtain tractable computational methods as it will be shown in Sections 3

and 4. The paper is organized as follows. Section 2 gives preliminaries on

equity and proportional fairness to be used in the rest of the paper. Section 3

studies the basic equitable sensor location problem and proposes an integer

linear program. A similar integer linear program is proposed to compute

the proportionally fair solution in linear time. Next, the section presents a

similar model for the equitable resilient sensor location problem, assuming

that sensors may fail. Section 4 is devoted to the ambiguous sensor loca-

tion problem, where probabilities are assumed to vary in a finite set. We

prove that the the proportional fairness version of the ambiguous problem is

NP-hard in the strong sense and present mixed-integer linear programming

formulations. Section 5 presents numerical results. The numerical results

show the value of the resilient and ambiguous solutions when compared to

the deterministic ones.

2. Preliminaries

This section is devoted to preliminaries on equity and proportional fair-

ness together with a result that will be useful in writing down the linear

integer model for the basic sensor location problem. Next, we deduce the

mathematical formulation of the problem and discuss solution methods for

both equitable and proportionally fair variants.

Let us start by introducing formally the notion of equity as discussed in

this paper. The equity notion is closely related to lexicographic optimization
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as remarked in numerous studies such as [7, 15, 17, 23, 26, 30, 31]. We recall

some definitions on lexicographic ordering, useful for a better understanding

of the study. A vector γ is lexicographically greater (resp. lower) than γ′ if

there exists s ∈ {1, ..., n} such that γp = γ′p, for all p ∈ {1, ..., s − 1} and

γs > γ′s (resp. γs < γ′s). A vector γ is lexicographically maximal (resp.

minimal) in X if for every vector γ′ ∈ X, γ is lexicographically greater (resp.

lower) than or equal to γ′.

Let −→γ (resp. ←−γ ) be the vector γ with its indices reordered so that the

components are in non-decreasing (resp. non-increasing) order. A feasible

vector is defined as leximin maximal [30] as follows: A vector γ ∈ X is leximin

maximal if for every vector γ′ ∈ X, −→γ is lexicographically greater than or

equal to
−→
γ′ . Similarly, one can define leximax minimality as follows: a vector

γ ∈ X is leximax minimal if for every vector γ′ ∈ X, ←−γ is lexicographically

lower than or equal to
←−
γ′ .

Let us look now at the solution methodology. We define Γ ⊂ Rm as the

set of vectors γ for which the following set is non-empty:

{fi(x) ≥ γi; i ∈ 1, ...,m, x ≥ 0, x ∈ Rn}. (1)

We say that γ is feasible if γ ∈ Γ. Let us focus on the feasible vectors

γ that are leximin maximal. Computing a leximin maximal vector for the

system of inequalities (1) when fi(x) are linear is relatively easy as shown by

the method in [22] or by the methods in [[17], Section 3.4] and in references

therein. Then, one can compute a leximin maximal vector among the feasible

vectors by solving a sequence of at most m linear programs. At iteration i

one computes the highest value that can take the ith smaller component of
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the solution vector.

Similar results can be drawn for the following system of functions:

{fi(x) ≤ γi; i ∈ 1, ...,m, x ≥ 0, x ∈ Rn}, (2)

where we look for a feasible vector γ which is leximax minimal.

Note that all the above is closely tied to the Pareto optimality concept

and some work has been done to transpose these concepts to the stochastic,

chance-constrained context under the name of p-efficient point (see [29, 32]).

The above results are shown for the systems where x ∈ Rn. Nevertheless,

the problem may be solved optimally for the discrete case (i.e., x ∈ Zn+) by

using the methods presented in [[17] Sections 7.2.3 and 7.3.2] and references

therein. An effective iterative method based on OWA (Ordered Weighted

Average) criteria initially proposed in [34] and further developed in [27] can

also be used.

Let us consider some strictly increasing function φ and the system com-

posed of functions φ ◦ fi. Recall that the operator ◦ stands for the function

composition operator. It can be shown that the following result holds.

Proposition 1. Let φ be a strictly increasing function in R. A vector γ

feasible for (1) is leximin maximal if and only if the vector (φ(γ1), . . . , φ(γm))

is leximin maximal for the corresponding system composed of functions {φ ◦

fi, i ∈M}.

Proof. The proof follows easily by contradiction. Namely, suppose that γ is

leximin maximal for (1) and that (φ(γ1), . . . , φ(γm)) (denoted φ(γ) for short)

is not leximin maximal for the corresponding system. Hence, there exists a
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vector η 6= φ(γ) that is leximin maximal for the system corresponding to φ◦f .

Therefore, φ−1(η) 6= γ is leximin maximal for (1), yielding the contradiction.

The reverse is shown similarly.

The above result was first used in [22] and next in [21] when dealing with

some specific routing problems ensuring load balancing in telecommunication

networks. It is straightforward to see that this result can be extended to

x ∈ Zn+.

3. The stochastic equitable sensor location problem

3.1 Problem description

The Equitable Sensor Location Problem can be represented by a bipartite

graph G(N,M,A) with a set of nodes N = {1, . . . , n} representing candidate

sensor locations, a set of nodes M = {1, . . . ,m} representing locations that

should be protected and a set A of directed links. A link from node i ∈ N

to node j ∈M implies that a sensor at i monitors node j. If there is no link

from node i to node j, then a sensor at i does not monitor j. We assume

that we have K sensors available to be placed in the candidate locations

in order to protect the selective locations. Consider the bipartite graph in

Figure 1a. Suppose that sensors are located at nodes 1 and 5, as represented

in Figure 1b. Then, locations 2, 3 and 5 are monitored by both sensors and

location 4 is monitored only by the sensor at node 5. If sensors are located at

nodes 1 and 4, locations 3 and 5 are protected by both sensors, and locations

2 and 4 are protected by a single sensor.

We consider in this paper a probabilistic version of the problem, where

the effective monitoring of node j by node i is represented by random vari-
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(a) Graph representation of the
equitable sensor location problem

(b) Graph representation of the
solution obtained by choosing the

vertices 1 and 5

Figure 1: Graphical representation of the basic problem.

able aij. Specifically, aij is a Bernoulli random variable that takes value 1

with a given probability pij. Hence, pij represents the probability that a

sensor at node i detects an intruder at node j under normal operating con-

ditions. We further assume that the random variables {aij, i ∈ N, j ∈ M}

are independent and the models developed in this study require this condi-

tion. Assuming independence enables us to greatly simplify the calculations.

While the assumption may not always hold, it can be satisfied by certain

types of sensors in some particular cases. For example, sensors that use vi-

sualization (such as cameras) would fit such cases. A sensor in i may be

partially or fully blocked from seeing some locations while others are unaf-

fected. Notice that the case of pij = 0 is represented by the lack of link from i

to j in the graph representation. Also, if all detection probabilities are equal

to one, the problem reduces to the Equitable Facility Location Problem since

each sensitive location is fully protected by a single monitoring sensor. In
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contrast to the present study which assumes independence between the ran-

dom variables, Beraldi and Ruszczynski [5, 6] and Saxena et al. [32] do not

make any independence assumption.

3.2 Mathematical formulation

Let binary optimization variable xi represent whether or not a sensor is

placed in the candidate location i and qj(x) denote the probability that an

intruder is not detected at node j. We obtain

qj(x) = P

(∑
i∈N

aijxi < 1

)
= P (aijxi < 1,∀i ∈ N) (aij is binary)

=
∏
i∈N

P (aijxi < 1) (independence)

=
∏
i∈N

(1− pijxi)

=
∏
i∈N

(1− pij)xi (xi is binary.)

As said before, we consider two distinct objective functions in this section,

the lexicographic one and the proportional one. Let us first focus on the

lexicographic case. With respect to the qj(x) criterion, system (2) can be

written as: {
qj(x) ≤ γj, j ∈M,

∑
i∈N

xi = K, x ∈ {0, 1}n
}
, (3)

where one looks for a feasible leximax minimal vector γ. The above problem

seems hard at first sight since the criteria qj(x) is clearly non-linear. This is
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where Proposition 1 comes into play. We can use the logarithmic function as

function φ, which combined with the fact that x is a binary solution vector,

allows to linearize the functions involved:

log(qj(x)) = log

(∏
i∈N

(1− pij)xi
)

=
∑
i∈N

(log(1− pij))xi,

and system (3) becomes

{∑
i∈N

(log(1− pij))xi ≤ γj, j ∈M,
∑
i∈N

xi = K, x ∈ {0, 1}n
}
.

Therefore, computing the leximax minimal vector can be done using the

approaches shown in [[17] Sections 7.2.3 and 7.3.2] and references therein, or

[27].

Let us now turn to the problem of minimizing the proportional fairness,

which is formally defined as

∑
j∈M

log(qj(x)). (4)

In view of (4) above, solving the proportional fair sensor location problem

amounts to solve

min
∑
j∈M

∑
i∈N

(log(1− pij))xi

s.t.
∑
i∈N

xi = K

xi ∈ {0, 1},∀i ∈ N.
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Clearly, the above problem is tractable as it can be solved in O(|N ||M | +

|N | log |N |) by ordering the n coefficients {
∑
j∈M

log(1−pij), i ∈ N} in increas-

ing order and choosing the K first elements.

3.3 The resilient sensor location problem

This subsection is devoted to the resilient sensor location problem. We

consider the problem when some failures can occur and the system needs to

be properly dimensioned in order to cover all possible failure’s states.

Figure 1 presents the problem when all four sensors are operating and all

links connecting nodes in N to nodes in M are operational. However some

of these links may fail. For example all links emanating from node 1 in set N

may fail (which is equivalent to a failure of the sensor in node 1). Figure 2

presents the scenario where the sensor at node 1 failed (the dashed links do

not provide protection anymore). Under this scenario each of the locations

2, 3, 4, and 5 is now protected by a single sensor. If a partial failure of the

sensor at node 1 occurs, some or all of the outgoing links from node 1 are not

able to provide nominal protection. Their surveying capacity may be altered

or lost. We deal with all these cases.

Let us introduce first some additional notation. Let S be the set of

possible failure states, each state s is represented by a matrix αsij which gives

the failure ratio for state s. We assume αsij takes any value in [0, 1] such

that αsi,j = 0 represents the total failure of covering location j from sensor

i; αsij = 1 means that this surveying capacity is not affected at all in state

s while the remaining values represent partial degradation of the surveying

from sensor i.

We denote with qsj (x) the value of qj(x) over state s ∈ S. Specifically,
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(a) Graphical representation of the
solution obtained by choosing the

vertices 1 and 5

(b) Graphical representation when all
outgoing links from node 1 failed

Figure 2: Graphical representation of the resilient sensor location problem.

we express qsj (x) by using αsijxi instead of xi. Let S be the set of possible

failure states, each of which is described by the table αs. In this context, we

need to find a solution (a placement of the sensors) such that each location

ensures equitable protection level in all the possible states contained in S.

As in Section 3.2, we may deduce similar transformations:

qsj (x) =
∏
i∈N

(1− pijαsijxi) =
∏
i∈N

(1− pijαsij)xi (xi is binary.)

Proceeding as before we obtain the following set which is similar to system

(3): {
qsj (x) ≤ γj, j ∈M, s ∈ S,

∑
i∈N

xi = K, x ∈ {0, 1}n
}
. (5)

The above system can be handled similarly as system (3). Specifically,

we can use Proposition 1 and the logarithmic function to linearize the sys-

12



tem. Next, computing the leximax minimal vector can be done using the

approaches shown in [[17] Sections 7.2.3 and 7.3.2] and references therein, or

[27]. The respective proportional fair problem is formulated below:

min
∑
j∈M

∑
s∈S

(log(1− pijαsi,j))xi

s.t.
∑
i∈N

xi = K

x ∈ {0, 1}n.

which can be solved in O(|M ||N ||S|+ |N | log |N |) using a sort algorithm.

4. The ambiguous sensor location problem

In this section, we consider an ambiguous variant of the probabilistic sen-

sor location problem, where probabilities pij are uncertain. This assumption

makes sense in practice as the probabilities describe the normal operating

conditions of the sensors. These are, however, likely to be affected by many

sources of uncertainty, most of which are hard to predict accurately. Con-

sider, for instance the location of surveillance cameras in an airport to secure

points of interest. It may happen that some object is placed temporarily be-

tween the vision-field of the camera and the point of interest, thus reducing

the probability of detecting an intruder in the point of interest.

This is modeled by introducing an ambiguity set that contains the pos-

sible probability distributions. Specifically, we are given nominal values and

deviations for the probabilities, respectively denoted by p and p̂, and we
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assume that p can be any discrete probability measure in the ambiguity set

P := {p ∈ Rn×m
+ | pij = pij − p̂ijξ

j
i , ξ

j ∈ Ξj},

where set Ξj ⊂ {0, 1}n is any 0− 1 set. As often in robust optimization, one

could equivalently consider 0−1 polytopes (polytopes having binary extreme

points) because the functions involved in the robust constraints can be made

linear in ξ. Notice that, since p is a probability measure, we must define p

and p̂ such that 0 ≤ pij ≤ 1 for each i ∈ N, j ∈M and p ∈ P , which amounts

to impose that 0 ≤ p̂ij ≤ pij ≤ 1 for each i ∈ N and j ∈M .

In the ambiguous setting, we replace the probability qj(x) that an intruder

is not detected at node j by the worst-case probability that an intruder is not

detected at node j, denoted qj(x). Recalling from Section 3 that the effective

monitoring of node j by node i is represented by the set of independent

Bernouilli random variables aij, we can define qj(x) formally as

qj(x) = max
p∈P

P

(∑
i∈N

aijxi < 1

)
= max

p∈P

∏
i∈N

(1− pijxi).

Ambiguity sets have already been used in the context of ambiguous prob-

abilistic constraints [12] and distributionally robust optimization [11], see

also [33]. The main difference of our approach with these frameworks is

that we stick here to ambiguity sets that contain only Bernouilli probability

distributions, while the aforementioned works consider sets of continuous dis-

tributions that satisfy, for instance, moment-based constraints or statistical

distance metrics (e.g., phi-divergences, Wasserstein distance) [19].
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4.1 Linearizing the probability

We show in this section how the worst-case probability can be handled

by using classical techniques of robust optimization. Given ξj ∈ Ξj
Γ =

{ξj|
∑

i∈N ξ
j
i ≤ Γ} for some Γ ≤ n and each j ∈ M , we denote in the

following qξj (x) as the value of qj(x) associated to probability distribution

given by pij = pij − p̂ijξ
j
i for each i ∈ N, j ∈M , namely,

qξj (x) =
∏
i∈N

(1− (pij − p̂ijξ
j
i )xi).

Hence by definition, qξj (x) and qj(x) are linked through

qj(x) = max
ξ∈Ξj

qξj (x). (6)

Using basic properties of logarithmic functions, we can rewrite log(qξj (x)) as

a linear function of ξ:

log(qξj (x)) = log

(∏
i∈N

(1− (pij − p̂ijξ
j
i )xi)

)
(7)

=
∑
i∈N

log(1− (pij − p̂ijξ
j
i )xi) (8)

=
∑
i∈N

log(1− pijxi) +
∑
i∈N

log

(
1 +

p̂ij
1− pij

ξji xi

)
(9)

=
∑
i∈N

log(1− pij)xi +
∑
i∈N

log

(
1 +

p̂ij
1− pij

)
ξji xi, (10)

where (8) comes from the fact that the logarithmic function of a product

reduces to the sum of respective logarithmic functions, (9) is obtained by

developping the logarithmic of a summation formula and since xi is binary.
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Finally, (10) follows from the fact that xi and ξji are binary. To simplify

notations, we introduce αij = log(1− pij) and α̂ij = log(1 +
p̂ij

1−pij
), yielding

log(qξj (x)) =
∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi. (11)

4.2 Proportional fairness

Similarly to (4), the proportional fairness considers the logarithm of the

worst-case probabilities qj(x). We obtain for each j ∈M that

log(qj(x)) = log

(
max
ξ∈Ξj

qξj (x)

)
(12)

= max
ξ∈Ξj

log(qξj (x)) (13)

= max
ξj∈Ξj

(∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi

)
, (14)

where (12) follows from (6), (13) holds because the logarithm is a monotone

increasing function, and (14) follows from (11). The resulting sensor location

problem is a classical min max robust optimization problem:

min
x

(∑
j∈M

max
ξj∈Ξj

(∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi

))
(15)

s.t.
∑
i∈N

xi = K (16)

xi ∈ {0, 1},∀i ∈ N. (17)

We prove below that the above problem is NP-Hard if the sets Ξj are

arbitrary. Specifically, assuming that |M | = 1 we show that the proportional
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ambiguous sensor location problem is NP-hard in the weak sense when |Ξ| =

2 (where Ξ is the ambiguity set) while the problem is NP-hard in the strong

sense when the cardinality of Ξ is part of the input. These results are in line

with the complexity results obtained for the robust counterparts of classical

polynomially solvable combinatorial optimization problems, see the survey

of [2].

To verify the first claim we present in AppendixA a polynomial reduction

from the partition problem, defined as follows. Given a set L = {a1, . . . , a|L|}

of |L| integers, one wants to find a subset S of L of cardinality |L|/2 such

that
∑

l∈S al =
∑

l∈S\L al.

Theorem 1. The partition problem polynomially reduces to the decision ver-

sion of the proportional ambiguous sensor location problem where |Ξ| = 2.

The second claim is obtained through a reduction from the decision ver-

sion of the stable set problem, presented in AppendixB. Given a simple graph

G = (V,E), where V is the set of vertices and E is the set of edges, a sta-

ble set S ⊆ V is a set of vertices such that for all u, v ∈ S we have that

(u, v) /∈ E. Hence, the decision version of the stable set problem can be

stated as follows: given a graph G and an integer `, one wants to determine

if there is a stable set of cardinality at least `.

Theorem 2. The decision version of the stable set problem polynomially

reduces to the decision version of the proportional ambiguous sensor location

problem.

Corollary 1. The proportional ambiguous sensor location problem is NP-

hard in the weak sense when |Ξ| = 2 and in the strong when the cardinality
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of Ξ is part of the input.

In view of the above complexity results, we address the problem through

mixed-integer linear programming. Hence, assume that each set Ξj corre-

sponds to the set of extreme points of a polytope having a compact for-

mulation. Said differently, Ξj = ext({Ajξ ≤ bj, ξ ≥ 0}), where the matrix

Aj ∈ Rk×n and the vector bj ∈ Rk characterize the polytope. A well-known

example of such sets is the budgeted uncertainty set from [8]:

conv(Ξj
Γ) :=

{
0 ≤ ξji ≤ 1, i ∈ N, j ∈M,

∑
i∈N

ξji ≤ Γ

}
.

Then, we use classical techniques to reformulate problem (15)–(17) as a MILP

by dualizing the inner maximization problems. Defining K = {1, . . . , k}, we

obtain

max
ξj∈Ξj

(∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi

)
=
∑
i∈N

αijxi + max
ξj∈Ξj

∑
i∈N

α̂ijξ
j
i xi

=
∑
i∈N

αijxi + max
ξj∈conv(Ξj)

∑
i∈N

α̂ijξ
j
i xi

=
∑
i∈N

αijxi +


min
u≥0

∑
l∈K

bjlul

s.t.
∑
l∈K

Ajliul ≥ α̂ijxi, i ∈ N

=


min
u≥0

∑
i∈N

αijxi +
∑
l∈K

bjlul

s.t.
∑
l∈K

Ajliul ≥ α̂ijxi, i ∈ N
. (18)

Therefore, the problem of minimizing the proportional fairness amounts to
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solving the following MILP in optimization vectors x and u:

min
∑
j∈M

∑
i∈N

αijxi +
∑
j∈M

∑
l∈K

bjlul

s.t.
∑
i∈N

xi = K

∑
l∈K

Ajliul ≥ α̂ijxi, i ∈ N

xi ∈ {0, 1},∀i ∈ N

u ≥ 0.

When A contains non-negative coefficients, an alternative approach pro-

posed in [8] and extended in [28] relies on solving a sequence of deterministic

problems. Specifically, let us denote by A′ the submatrix obtained from A by

not considering the upper bounds on ξ and let k′ be the number of lines of

A′ (for instance, k′ = 1 for the budgeted uncertainty set Ξj
Γ). The iterative

algorithm proposed in [8, 28] solves the above min max robust optimization

problem by solving O((k′m)k
′m(nm)k

′m) problems minimizing the propor-

tional fairness with known probabilities. In particular, the min max robust

problem is polynomially solvable if k′ and m are constant.

4.3 Max-min fairness

In the ambiguous setting, the probability qj is replaced by the worst-case

probability qj. Hence, the system (3) becomes

{
qj(x) ≤ γj, j ∈M,

∑
i∈N

xi = K, x ∈ {0, 1}n
}
,
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where one looks for a feasible leximax minimal vector γ. Notice that, com-

bining (14) with (18), we obtain immediately the following relation

log(qj(x)) =


min
u≥0

∑
i∈N

αijxi +
∑
l∈K

bjlul

s.t.
∑
l∈K

Ajliul ≥ α̂ijxi, i ∈ N
. (19)

Using again Proposition 1, and replacing log(qj(x)) by the rhs of (19),the

problem amounts to finding the leximax minimal vector γ feasible for system

 min∑
l∈K

A
j
li
ul≥α̂ijxi, i∈N

u≥0

∑
i∈N

αijxi +
∑
l∈K

bjlul ≤ γj, j ∈M,
∑
i∈N

xi = K, x ∈ {0, 1}n

 ,

(20)

Then, one readily verifies that, given γ, x is feasible for each constraint

min∑
l∈K

A
j
li
ul≥α̂ijxi, i∈N

u≥0

(∑
i∈N

αijxi +
∑
l∈K

bjlul

)
≤ γj

if and only if there exists a vector u ≥ 0 that satisfies
∑
l∈K

Ajliul ≥ α̂ijxi for

each i ∈ N such that x satisfies

∑
i∈N

αijxi +
∑
l∈K

bjlul ≤ γj
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for each j ∈M . Hence, we can replace system (20) with the following one

{∑
i∈N

αijxi +
∑
l∈K

bjlul ≤ γj, j ∈M,

∑
i∈N

xi = K, x ∈ {0, 1}n,
∑
l∈K

Ajliul ≥ α̂ijxi, i ∈ N, u ≥ 0

}
. (21)

We can finally find a leximax minimal vector γ feasible for system (21) using

the algorithm proposed in [[17], Sections 7.2.3 and 7.3.2] and in the references

therein.

5. Numerical results

In this section, we report on the computational experiments obtained by

applying the above models for different variants of the proportional equitable

sensor location problems, namely Proportional Fair, Proportional Fair Re-

silient and Proportional Fair Ambiguous. All experiments have been carried

out on an Intel(R) Core(TM) i7 CPU M60, 2.6Hz 4GB Ram machine and all

formulations and algorithms were coded in C++, compiled with a GNU G++

4.5 compiler and IBM CPLEX 12.3. In the rest of the section, we present the

benchmark used in our computations as well as different numerical tests with

respect to the proportionally fair sensor location problem and the resilient

one towards the total and partial failure cases. We end this section with a

few numerical results on the ambiguous equitable sensor location problem

and conclude with some discussion of the obtained results.
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5.1 Benchmark generation

To the best of our knowledge, there are no probabilistic instances defined

for the sensor (facility) location problem. We therefore tested our algorithm

on a set of instances generated randomly. We have built 10 instances per sce-

nario (N,M), where we consider 3 different values for N (the set of candidate

locations), 10, 20 and 30; and three other values for the sensitive locations

to be protected respectively 30, 40 and 50. We consider a quadratic grid of

100× 100 as the space where both sensors and points of interest are placed

randomly. We have generalized the problem studied and added the cost of

sensors as part of parameters. Hence, we have considered two possible cost

values (30 and 50) which are assigned randomly to each candidate location.

We assume that we have for each instance a number A of high quality

sensors that are produced using a new and yet less mature technology. For

the instances where N = 10 we have 3 of such sensors, for the instances where

N = 20 we have 4 and in the instances where N = 30 we have 5. This will be

important for analyzing the resilient solution and will be discussed in more

details ahead. Finally, the surveillance probabilities assigned to a candidate

sensor for a sensitive location are expressed as the function of its generation

and the distance between both locations. Specifically, the probability that a

sensor i ≥ A protects a location j is valuated as (1− d(i,j)√
2∗100

. 1
40

) and for i < A

is evaluated as (1 − d(i,j)√
2∗100

. 1
20

). Hence, the closer a sensor is to a location,

the higher is the probability of protection for that location by that sensor.

Similarly, the more expensive the sensor is, the better is the protection it

provides.

Following above, we have generated 10 instances for each scenario (10, 30),
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(10, 40), and (10, 50). Next, for scenarios (20, 30), (20, 40), (20, 50) we have

taken the first set of instances and added 10 new locations to each of them.

The same routine is used to generate (30, 30), (30, 40), (30, 50) using instances

for (20, 30), (20, 40), (20, 50).

5.2 Proportionally fair sensor location problem

We analyze the quality regarding mean surveillance probability and stan-

dard deviation dispersion of the solutions obtained by the model presented

for the proportionally fair sensor location problem. Indeed, a proportionally

fair solution intends to reach a compromise between two objectives: the max-

min fairness which seeks to reduce inequality among the protected locations

versus the overall sum of protecting levels.

|N | |M | Protection Variance
10 30 88.35% 4.69
10 40 94.99% 4.22
10 50 89.17% 5.25
20 30 89.11% 3.70
20 40 95.22% 3.84
20 50 89.95% 3.85
30 30 89.08% 4.84
30 40 95.22% 3.84
30 50 90.17% 3.53

(a) Choosing 5 sensors

|N | |M | Protection Variance
10 30 93.14% 3.88
10 40 97.57% 2.27
10 50 94.81% 2.80
20 30 95.10% 2.28
20 40 97.67% 2.41
20 50 95.30% 2.44
30 30 95.17% 2.38
30 40 97.78% 2.16
30 50 95.56% 2.18

(b) choosing 7 sensors

Table 1: Results for the proportionally fair sensor location problem. We report the mean
surveillance value as well as the variance.

Table 1 presents the results for the proportionally fair sensor location

problem where M (resp. N) gives the set of locations to be protected (resp.
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candidate sensor locations). We present the mean and the variance of the

surveillance probability according to the number of installed sensors. Notice

that, as expected, the surveillance probability is higher as the number of

available sensors rises and the obtained solutions have very low variances.

Notice that choosing more sensors allows us not only to improve the protec-

tion but also to decrease the variance, meaning that discrepancy between the

protection levels in the different places are decreasing, turning the solution

fairer.

5.3 Resilient sensor location problem

Concerning the resilient sensor location problem and scenarios of total

failure we tested the same instances presented before under a set of scenarios

that represents all the possibilities of failure (total, or partial) of 1, 2 or 3

sensors over the A sensors from the new technology. When a sensor fails

totally, its surveillance in any location is zero. When a sensor fails partially,

we assume that its surveillance in any location is reduced by 50%.

Intuitively, this represents the fact that these sensors provide a larger

surveillance probability, but they are unstable. This is the case in many real

instances, for example, we can imagine that the three first sensors are “new”

or “untested” sensors, they provide better surveillance than the sensors we

already have, but they are not fully reliable.

Tables 2-8, present the results for the resilient sensor location problem.

We have tested two different sets of failing scenarios, in the first we consider a

total failure of the high-tech sensors and in the second we consider a partial

failure of the same sensors, (i.e., the surveying capacity of such sensors is

reduced by 50%). This produces two sets of solutions, the first related to the
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|N | |M | Prop. Fair Prop. Fair Res
Prot Var Prot Var

10 30 88.35% 4.69 80.72% 5.59
10 40 94.99% 4.22 94.70% 3.94
10 50 89.17% 5.25 85.45% 5.68
20 30 89.11% 3.70 87.19% 6.82
20 40 95.22% 3.84 94.93% 4.32
20 50 89.95% 3.85 88.10% 5.00
30 30 89.08% 4.85 88.10% 4.69
30 40 95.22% 3.84 94.55% 5.11
30 50 90.17% 3.53 88.86% 3.98

(a) Choosing 5 sensors

|N | |M | Prop. Fair Prop. Fair Res
Prot Var Prot Var

10 30 93.14% 3.88 90.32% 4.22
10 40 97.57% 2.27 97.05% 2.10
10 50 94.81% 2.80 93.25% 2.66
20 30 95.10% 2.28 93.92% 3.63
20 40 97.67% 2.41 97.64% 2.38
20 50 95.30% 2.44 93.98% 3.48
30 30 95.17% 2.38 94.37% 3.73
30 40 97.78% 2.16 97.63% 2.45
30 50 95.56% 2.18 94.84% 2.50

(b) Choosing 7 sensors

Table 2: Results for the resilient sensor location problem. We report the mean
surveillance value as well as the variance for the scenario without failures.

Total Failure Partial Failure
|N | |M | Prop. Fair Prop. Fair Res Prop. Fair Prop. Fair Res

Prot Var Prot Var Prot Var Prot Var
10 30 82.71% 5.38 80.72% 5.59 86.51% 5.25 82.72% 5.07
10 40 93.04% 4.73 94.70% 3.94 93.68% 4.37 94.70% 3.94
10 50 84.16% 5.47 85.45% 5.68 86.51% 5.36 85.95% 5.47
20 30 83.63% 4.84 87.19% 6.82 85.78% 4.27 87.19% 6.82
20 40 95.22% 3.84 94.93% 4.32 95.22% 3.84 94.93% 4.32
20 50 84.83% 4.53 88.10% 5.00 86.73% 4.16 88.10% 5.00
30 30 83.69% 6.13 88.10% 4.69 86.67% 5.43 88.10% 4.69
30 40 95.22% 3.84 94.55% 5.11 95.22% 3.84 94.55% 5.11
30 50 85.01% 4.60 88.86% 3.98 88.19% 4.11 88.86% 3.98

Table 3: Results for the resilient sensor location problem when choosing 5 sensors. We
report the mean surveillance value as well as the variance for the worst-case among the

three scenarios where one sensor in {1, 2, 3} fails completely or partially.

scenarios with complete failure and the second related to the scenarios with

partial failure.

In Table 2 we present the mean and the variance of the surveillance prob-
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Total Failure Partial Failure
|N | |M | Prop. Fair Prop. Fair Res Prop. Fair Prop. Fair Res

Prot Var Prot Var Prot Var Prot Var
10 30 89.95% 4.66 90.32% 4.22 91.98% 4.26 89.32% 3.97
10 40 96.63% 2.61 97.05% 2.10 97.43% 2.32 97.05% 2.10
10 50 92.46% 2.99 93.25% 2.66 93.48% 2.84 93.25% 2.66
20 30 92.41% 4.03 93.92% 3.63 93.31% 3.68 93.92% 3.63
20 40 96.87% 2.62 97.64% 2.38 96.97% 2.52 97.64% 2.38
20 50 93.04% 2.89 93.98% 3.48 93.95% 2.67 93.98% 3.48
30 40 97.78% 2.16 97.63% 2.45 97.78% 2.16 97.63% 2.45
30 30 92.79% 3.24 94.37% 3.73 93.87% 2.94 94.37% 3.73
30 50 93.32% 2.80 94.84% 2.50 94.22% 2.46 94.84% 2.50

Table 4: Results for the resilient sensor location problem when choosing 7 sensors. We
report the mean surveillance value as well as the variance for the worst-case among the

three scenarios where one sensor in {1, 2, 3} fails completely or partially.

Total Failure Partial Failure
|N | |M | Prop. Fair Prop. Fair Res Prop. Fair Prop. Fair Res

Prot Var Prot Var Prot Var Prot Var
10 30 71.33% 6.70 80.72% 5.59 81.65% 6.12 82.72% 5.07
10 40 88.92% 7.27 94.70% 3.94 91.12% 5.29 94.70% 3.94
10 50 84.16% 5.47 85.45% 5.68 84.16% 5.42 85.95% 5.47
20 30 72.64% 7.03 87.19% 6.82 78.14% 6.13 87.19% 6.82
20 40 92.31% 6.17 94.93% 4.32 93.73% 5.83 94.93% 4.32
20 50 84.83% 4.53 88.10% 5.00 85.87% 4.23 88.10% 5.00
30 30 72.96% 8.54 88.10% 4.69 81.15% 6.02 88.10% 4.69
30 40 92.31% 6.17 94.55% 5.11 93.86% 4.59 94.55% 5.11
30 50 85.01% 4.60 88.86% 3.98 86.81% 4.35 88.86% 3.98

Table 5: Results for the resilient sensor location problem when choosing 5 sensors. We
report the mean surveillance value as well as the variance for the worst-case among the

scenarios where two sensor in {1, 2, 3} fails completely or partially.

ability according to the number of installed sensors for the scenario without

any sensor failing. Notice that the solution obtained by solving the pro-

portionally fair resilient model (called resilient solution) and the solution
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Total Failure Partial Failure
|N | |M | Prop. Fair Prop. Fair Res Prop. Fair Prop. Fair Res

Prot Var Prot Var Prot Var Prot Var
10 30 83.58% 6.04 84.14% 5.50 87.57% 4.94 89.32% 3.97
10 40 94.70% 3.94 97.05% 2.10 95.80% 3.64 97.05% 2.10
10 50 89.34% 3.91 93.25% 2.66 91.38% 3.21 93.25% 2.66
20 30 87.19% 6.82 93.92% 3.63 90.89% 3.82 93.92% 3.63
20 40 94.93% 4.32 97.64% 2.38 95.91% 3.12 97.64% 2.38
20 50 93.04% 2.89 93.98% 3.48 93.04% 2.96 93.98% 3.48
30 30 88.10% 4.69 94.37% 3.73 90.85% 3.89 94.37% 3.73
30 40 96.41% 3.57 97.63% 2.45 96.81% 3.18 97.63% 2.45
30 50 93.32% 2.80 94.84% 2.50 93.72% 2.75 94.84% 2.50

Table 6: Results for the resilient sensor location problem when choosing 7 sensors. We
report the mean surveillance value as well as the variance for the worst-case among the

scenarios where two sensor in {1, 2, 3} fails completely or partially.

Total Failure Partial Failure
|N | |M | Prop. Fair Prop. Fair Res Prop. Fair Prop. Fair Res

Prot Var Prot Var Prot Var Prot Var
10 30 57.30% 6.76 80.72% 5.59 67.26% 6.16 82.72% 5.07
10 40 61.82% 6.31 81.98% 5.03 81.12% 5.87 81.98% 5.03
10 50 72.36% 10.96 85.45% 5.68 76.16% 8.06 85.95% 5.47
20 30 72.64% 7.03 87.19% 6.82 74.18% 6.53 87.19% 6.82
20 40 75.44% 5.46 83.86% 4.35 85.08% 5.26 83.86% 4.35
20 50 74.14% 7.36 88.10% 5.00 81.94% 6.37 88.10% 5.00
30 30 72.96% 8.54 88.10% 4.69 76.46% 7.51 88.10% 4.69
30 40 75.44% 5.46 83.68% 5.61 86.44% 4.74 83.68% 5.61
30 50 74.86% 5.87 88.86% 3.98 81.46% 5.16 88.86% 3.98

Table 7: Results for the resilient sensor location problem when choosing 5 sensors. We
report the mean surveillance value as well as the variance for the scenarios where the

sensors numbered as 1,2 and 3 fail completely or partially.

obtained by solving the proportional fair model (called also equitable solu-

tion) are quite close to each other regarding the means and variances, the

equitable solutions being slightly better.
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Total Failure Partial Failure
|N | |M | Prop. Fair Prop. Fair Res Prop. Fair Prop. Fair Res

Prot Var Prot Var Prot Var Prot Var
10 30 76.09% 5.59 84.14% 5.50 82.56% 5.25 89.32% 3.97
10 40 81.98% 5.03 89.52% 3.94 87.18% 4.83 93.52% 3.04
10 50 81.55% 7.39 88.48% 4.49 89.45% 6.87 91.71% 4.22
20 30 87.19% 6.82 93.92% 3.63 88.79% 6.13 93.92% 3.63
20 40 83.86% 4.35 92.58% 3.11 93.86% 3.85 95.57% 2.91
20 50 88.10% 5.00 93.98% 3.48 91.87% 4.65 93.98% 3.48
30 30 88.10% 4.69 94.37% 3.73 88.18% 4.29 94.37% 3.73
30 40 89.30% 4.06 92.90% 2.95 92.32% 3.15 94.45% 2.65
30 50 88.86% 3.98 94.84% 2.50 91.16% 3.75 94.84% 2.50

Table 8: Results for the resilient sensor location problem when choosing 7 sensors. We
report the mean surveillance value as well as the variance for the scenarios where the

sensors numbered as 1,2 and 3 fail completely or partially.

In all the remaining tables we compare the equitable solution with the

resilient solution separately for total and partial failures. For example, in

Table 3 we compare the behaviors of the equitable and resilient solutions

for the scenarios where one “high-tech” sensor fails completely or partially,

given that we must choose 5 sensors. In the first part of the table, labeled

with total failure, we compare the mean surveillance and the variance of the

equitable solution with the mean surveillance and variance of the resilient

solution obtained under the total failure assumption. In the second part, we

report similar comparisons as above but with the resilient solution obtained

under the partial failure assumption. We run these solutions on scenarios

in accordance with these assumptions, meaning that in the first part of the

table we consider only scenarios with total failure and the second part, only

scenarios with partial failure.

In Table 4 we compare the behaviors of the equitable and resilient so-
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lutions for the scenarios where one “high-tech” sensor fails completely or

partially, given that we must choose 7 sensors. Notice that the surveillance

levels are very close, with some advantage to the resilient solution for both

cases. In Tables 5 and 6 we present the comparison for the scenarios where

two “high-tech” sensors fail totally or partially, again the resilient solution

performs better. This is more perceivable when looking at the total failures

case. Such behavior is found also in the case where we have three “high-tech”

sensors failing represented in Tables 7 and 8.

To conclude, concerning the case of total failure of the sensors, notice that,

as expected, the surveillance probability of the resilient solution is higher

than the equitable solution in the scenarios with sensors failing completely.

Notice also that, even in the scenario without failing sensors, the resilient

solution provides a mean surveillance probability that is quite good, while in

failure cases it gives systematically solutions notably better compared to the

equitable solution.

5.4 Ambiguous sensor location problem

Here we adopt the budgeted uncertainty polytope described before. We

consider for the sensors numbered from 1 to |A| a deviation that is equal

to the surveillance probability, meaning that these sensors can, in a way,

become totally nonoperational; for the sensors numbered from |A|+ 1 to N

we consider a deviation of 25%. We set the value 5 for the parameter Γs (the

maximum number of probabilistic deviations for each sensor s), for all the

sensors, except for the first three sensors we have Γs1 = Γs2 = Γs3 = 30. We

computed the Proportional Fair Ambiguous solution for the latter case and

compared its behavior with that of the standard Proportional Fair solution
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for two different scenarios. The first set of scenarios is built as follows:

for each instance we set the probability values at their nominal value (i.e.,

no deviations are taken into account). For the second scenario we set the

surveillance probabilities of each sensor s to their worst value for the lowest

Γs of them while keep at their nominal value for the rest of probabilities. As

we did before, we report the mean probability surveillance values and the

standard deviations for both solutions, the basic proportionally fair solution

and the proportionally fair ambiguous solution.

Notice that for both scenarios the proportionally fair solution and the

ambiguous solution have mean surveillance probabilities close to each other,

with a slight advantage to the ambiguous solution in the second scenario. An

interesting result is that the variance is lower in the ambiguous solution for

all tested cases of the second scenario, which shows the robustness of such

solutions.

6. Concluding remarks

In this paper we have provided a study on different variants of the stochas-

tic sensor location problem, namely the probabilistic equitable sensor loca-

tion problem, the resilient variant and the ambiguous one. For each of them

we have considered two popular fairness criteria that are lexicographic and

proportional fairness and report solution methodology and a full complexity

study. Obviously, one can examine these models with other objective func-

tions that exhibit different notions of fairness. We show that the proportional

fairness version of the ambiguous problem is NP-hard in the strong sense

while for the conventional and resilient cases it is polynomial.
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|N | |M | Prop. Fair Prop. Fair Amb
Prot Var Prot Var

10 30 88.35% 4.69 80.72% 5.59
10 40 94.99% 4.22 95.45% 3.12
10 50 89.17% 5.25 89.59% 3.81
20 30 89.11% 3.70 87.19% 6.82
30 30 89.08% 4.85 88.10% 4.69
20 40 95.22% 3.84 94.19% 5.21
30 40 95.22% 3.84 93.69% 6.32
20 50 89.95% 3.85 87.73% 5.68
30 50 90.17% 3.53 89.97% 3.88

(a) Choosing 5 sensors

|N | |M | Prop. Fair Prop. Fair Amb
Prot Var Prot Var

10 30 93.14% 3.88 92.06% 3.72
10 40 97.57% 2.27 97.57% 2.27
10 50 94.81% 2.80 94.81% 2.80
20 30 95.10% 2.28 93.92% 3.63
20 40 97.67% 2.41 97.64% 2.38
20 50 95.30% 2.44 94.94% 2.30
30 30 95.17% 2.38 94.37% 3.73
30 40 97.78% 2.16 97.63% 2.45
30 50 95.56% 2.18 95.39% 2.31

(b) Choosing 7 sensors

Table 9: Results for the ambiguous sensor location problem, first scenario

Regarding the computational experiments, we must mention that the

elapsed time to solve the instances goes in line with the complexity of the

respective problems, that is from seconds in the proportional fairness applied

to conventional and resilient cases, to minutes in the case of the ambiguous

approach. Nevertheless, no instance took more than the time limit of 10

minutes to be solved. Although we are able to handle for the same amount
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|N | |M | Prop. Fair Prop. Fair Amb
Prot Var Prot Var

10 30 77.78% 26.736 78.44% 5.93
10 40 92.05% 9.293 94.58% 3.56
10 50 86.36% 12.502 88.79% 4.71
20 30 79.59% 27.248 85.36% 7.59
20 40 91.91% 10.651 93.33% 5.76
20 50 87.95% 8.578 87.20% 6.05
30 30 79.78% 27.521 86.51% 5.67
30 40 92.05% 10.652 92.91% 6.62
30 50 87.64% 10.919 89.39% 4.82

(a) Choosing 5 sensors

|N | |M | Prop. Fair Prop. Fair Amb
Prot Var Prot Var

10 30 82.68% 28.28 90.12% 4.09
10 40 94.68% 9.16 97.01% 2.60
10 50 92.48% 8.87 94.02% 3.17
20 30 84.94% 28.90 92.58% 4.11
20 40 95.10% 8.51 97.22% 2.65
20 50 93.32% 8.81 94.62% 2.73
30 30 85.35% 29.04 92.99% 4.65
30 40 95.01% 9.29 97.25% 2.59
30 50 94.00% 6.58 95.05% 2.94

(b) Choosing 7 sensors

Table 10: Results for the ambiguous sensor location problem, second scenario

of time instances with N and M increased separately, increasing both has

proven to lead to scalability issues quickly, for example, we might solve in

10 minutes a problem with M = 10 and N = 100 but a problem with

M = 55 and N = 55 takes considerably more computation time. This may

be expected as the size grows exponentially for such instances. A possible

research direction is to analyze and propose methods that use parallelism
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to solve the models. Notice that the models are highly decomposable hence

parallelism should decrease the computation time and improve scalability.

Although the models in this paper focus on protection provided to multi-

ple locations, variants of these models can be developed for other application

areas. One example may consider the placement of base stations that pro-

vide service to mobile phones in cellular wireless networks, where the service

experienced by a phone in a given location may depend on the location of

multiple base stations. Another example may consider placement of gen-

erators that provide electrical power but are subject to failures. Moreover

the links connecting a demand location to the supplying generators are also

subject to failures. The service provided to each locations may then depend

on the location of the generators and on the network topology that connects

supply nodes to demand locations.
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AppendixA. Proof of Theorem 1

Consider an instance of the partition problem given by set L, and let us

define for each i ∈ N

ai = min

(
ai,

2

|L|
∑
k∈N

ak − ai

)
and ai = max

(
ai,

2

|L|
∑
k∈N

ak − ai

)
.

We first construct an instance of problem (15)–(17) that corresponds to

the given instance of the partition problem, and show later how to construct

the corresponding instance of the proportional ambiguous sensor location

problem. Consider |M | = 1, |N | = |L|, K = |L|/2, ᾱi = ai and α̂i = ai − ai
for every i ∈ N . Finally, we define Ξ as {ξ1, ξ2} where ξ1 and ξ2 are defined

for each i ∈ N by

ξ1
i =

ai − ai
ai − ai

and ξ2
i =

2
|L|
∑

k ak − ai − ai
ai − ai

.

With these definitions, we see that ᾱi+α̂iξ
1
i = ai and ᾱi+α̂iξ

2
i = 2

|L|
∑

k∈N ak−

ai.

Let x be any vector feasible for problem (15)–(17) and let S ⊂ N be the

set of indices where xi = 1. Then,

max
ξ∈Ξ

∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi = max

(∑
i∈S

ai,
∑
k∈N

ak −
∑
i∈S

ai

)
(A.1)

= max

∑
i∈S

ai,
∑
i∈N\S

ai

 . (A.2)

Hence, the instance of the partition problem is a yes instance if and only if
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the optimal solution cost of problem (15)–(17) is less than or equal to
∑
i∈N ai

2
.

We construct next an equivalent instance for the proportional ambiguous

sensor location problem. First, notice that, due to constraints (16), we can

add a constant M to all components of α without affecting the optimal

solution of the problem. Then, we define

pi = 1− eαi+M (A.3)

p̂i = (eα̂i − 1)(1− pi) (A.4)

for each i ∈ N , where

αi = log(1− pi) (A.5)

α̂i = log(1 +
p̂i

1− pi
). (A.6)

One readily verifies that choosing

M = −max
k∈N

ᾱk + α̂k

yields values of pi and p̂i that satisfy 0 ≤ p̂i ≤ pi ≤ 1 for each i ∈ N .

Moreover, the input pi and p̂i can be expressed by a number of digits that is

polynomial in the number of digits of the original input.

AppendixB. Proof of Theorem 2

Consider an instance for the stable set problem, given by the graph G =

(V,E) and the integer `. We construct an instance for the proportional

ambiguous sensor location problem as follows: |M | = 1, |N | = |V |, K = `,
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p̄i = 1 − eθ and p̂i = (eψ − 1)eθ for each i ∈ N where θ and ψ are real

numbers chosen such that 0 ≤ p̂i ≤ pi ≤ 1 for each i ∈ N . Using the

previous reformulation and definitions (A.5) and (A.6), we obtain an instance

of problem (15)–(17) defined by ᾱi = θ and α̂i = ψ for every i ∈ N . In

order to define Ξ, let us consider ch(e) the characteristic vector of an edge

e = (uv) ∈ E, meaning ch(e) ∈ {0, 1}|V | and chi(e) = 1 if and only if i = u

or i = v. Then, we consider the finite uncertainty set Ξ = ∪e∈Ech(e).

Next, we show that there is a stable set of cardinality at least ` in the

graph G if and only if the optimal solution cost of the proportional ambiguous

sensor location problem associated is smaller than or equals to `θ + ψ. Now

we look at the two possible cases:

There exists a stable set of cardinality ` : Let S ⊆ V be a stable set

of cardinality at least `. Consider the solution vector x for the propor-

tional ambiguous sensor location problem defined as xi = 1 if and only

if i ∈ S. Notice that

max
ξ∈Ξ

(∑
i∈N

θxi +
∑
i∈N

ψξixi

)
=
∑
i∈N

θxi + max
e∈E

∑
i∈V

ψchi(e)xi ≤ `θ + ψ

There exists no stable set of cardinality ` : By contradiction, suppose

that

max
ξ∈Ξ

(∑
i∈N

θx∗i +
∑
i∈N

ψξix
∗
i

)
≤ `θ + ψ

for a solution x∗ and we do not have a stable set of cardinality at least
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`. As x∗ is a binary vector we have that

max
ξ∈Ξ

(∑
i∈N

θx∗i +
∑
i∈N

ψξix
∗
i

)
=
∑
i∈N

θx∗i + max
ξ∈Ξ

∑
i∈N

ψξix
∗
i

= `θ + ψmax
ξ∈Ξ

∑
i∈N

ξix
∗
i

≤ `θ + ψ,

which means that ∑
i∈V

chi(e)x
∗
i ≤ 1

for every e ∈ E. Hence S∗ = {i ∈ V |x∗i = 1} is a stable set of G with

cardinality at least `.
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