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STATIONARY SOLUTIONS TO
COAGULATION-FRAGMENTATION EQUATIONS

PHILIPPE LAURENÇOT

Abstract. Existence of stationary solutions to the coagulation-fragmentation equation is shown
when the coagulation kernel K and the overall fragmentation rate a are given by K(x, y) = xαyβ +
xβxα and a(x) = xγ , respectively, with 0 ≤ α ≤ β ≤ 1, α+ β ∈ [0, 1), and γ > 0. The proof requires
two steps: a dynamical approach is first used to construct stationary solutions under the additional
assumption that the coagulation kernel and the overall fragmentation rate are bounded from below
by a positive constant. The general case is then handled by a compactness argument.

1. Introduction

The coagulation-fragmentation equation is a mean-field model describing the time evolution of
the size distribution function f of a system of particles increasing their size by pairwise merging or
reducing it by splitting, no matter being loss during these processes. Denoting the coagulation kernel,
the overall fragmentation rate, and the daughter distribution function by K, a, and b, respectively,
the coagulation-fragmentation equation reads

∂tf = Cf + Ff , (t, x) ∈ (0,∞)2 , (1.1a)

f(0) = f in , x ∈ (0,∞) , (1.1b)

where the coagulation term Cf is given by

Cf(x) := 1

2

∫ x

0

K(y, x− y)f(x− y)f(y) dy −
∫ ∞

0

K(x, y)f(x)f(y) dy , x > 0 , (1.1c)

and the fragmentation term Ff by

Ff(x) := −a(x)f(x) +

∫ ∞

x

a(y)b(x, y)f(y) dy , x > 0 . (1.1d)

The first term in (1.1c) accounts for the formation of particles of size x > 0 as a consequence of
the merging of two smaller particles with respective sizes y ∈ (0, x) and x − y. The second term in
(1.1c) and the first term in (1.1d) describe the depletion of particles of size x > 0 due to coalescence
with other particles and fragmentation, respectively. Finally, the breakup of a particle of size y > x
produces fragments of various sizes ranging in (0, y), including fragments of size x according to the
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distribution b(x, y) as indicated by the second term in (1.1d). We further assume that there is no
loss of matter during the breakage process, which amounts to require that b satisfies

∫ y

0

xb(x, y) dx = y , y > 0 , and b(x, y) = 0 , x > y > 0 . (1.2)

Since there is also no loss of matter during coalescence, the total mass of the system is expected to
be invariant throughout time evolution; that is,

∫ ∞

0

xf(t, x) dx =

∫ ∞

0

xf(0, x) dx , t ≥ 0 . (1.3)

Though this property may fail to be true when, either the coagulation is too strong compared to the
fragmentation, a phenomenon known as gelation, or the overall fragmentation rate a is unbounded
as x → 0, a phenomenon known as shattering, both are excluded in the forthcoming analysis and we
refer to [10, 11, 16, 17, 21, 22] and [3, 13, 23], respectively, for detailed information on these issues.
Our interest in this paper is rather related to the possible balance between coagulation and frag-

mentation, which are competing mechanisms. Indeed, the latter increases the number of particles
and reduces the mean size of particles, while the former acts in the opposite direction. It is then of
interest to figure out the outcome of this competition and, in particular, whether it could lead to
stationary solutions. This is the issue we aim at investigating herein.
The first example of coagulation-fragmentation equation featuring steady state solutions is the

case of constant coefficients [1]

∂tf(t, x) =

∫ x

0

[f(t, x− y)f(t, y)− A0f(t, x)] dy

− 2

∫ ∞

0

[f(t, x)f(t, y)− A0f(t, x+ y)] dy , (t, x) ∈ (0,∞)2 ,

(1.4)

which is obtained with the choice

K(x, y) = 2 , a(x) = A0x , b(x, y) =
2

y
, 0 < x < y , (1.5)

in (1.1). For any z > 0, the function Qz defined by Qz(x) := A0e
x ln z, x > 0, is a stationary solution

to (1.4) and Qz has finite total mass if and only if z ∈ (0, 1). The example (1.5) is actually a
particular case of coagulation and fragmentation coefficients satisfying the so-called detailed balance
condition: there are a non-negative symmetric function F defined on (0,∞)2 and a non-negative
function Q defined on (0,∞) such that

a(x) =
1

2

∫ x

0

F (x∗, x− x∗) dx∗ , a(y)b(x, y) = F (x, y − x) , 0 < x < y , (1.6a)

K(x, y)Q(x)Q(y) = F (x, y)Q(x+ y) , (x, y) ∈ (0,∞)2 . (1.6b)
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Note that we recover (1.5) from (1.6) by setting F ≡ 2A0 and Q ≡ A0. Thanks to (1.6), the equation
(1.1) reads

∂tf(t, x) =
1

2

∫ x

0

[K(x− y, y)f(t, x− y)f(t, y)− F (y, x− y)f(t, x)] dy

−
∫ ∞

0

[K(x, y)f(t, x)f(t, y)− F (x, y)f(t, x+ y)] dy , (t, x) ∈ (0,∞)2 ,

(1.7)

and Qz : x 7→ Q(x)ex ln z is a stationary solution to (1.7) for all z ∈ (0,∞). Whether Qz has finite
total mass then depends on both the value of z and the integrability properties of Q. We refer
to [5, 6, 18, 20] for a more detailed account on the various situations that may happen.
Coagulation and fragmentation coefficients satisfying the detailed balance condition (1.6) are how-

ever far from being generic and different approaches have to be designed to investigate the existence
of stationary solutions to (1.1) when (1.6) fails to hold. When the coagulation and fragmentation
coefficients are given by

K(x, y) = k0 + k1(x+ y) , a(x) = A0x , b(x, y) =
2

y
, 0 < x < y , (1.8)

the existence of a stationary solution to (1.1) having total mass ̺ > 0 is proved in [9] for all ̺ > 0,
the proof relying on a fixed point argument performed on the stationary version of (1.1a). It uses
in an essential way the specific form of the coefficients and does not seem to extend to handle more
general cases. Uniqueness and local stability of steady states are also established in [9]. In the same
vein but with a completely different approach, a complete description of stationary solutions to (1.1)
is obtained in [7, Theorem 5.1 & Remark 5.2] when

K(x, y) = k0(xy)
λ/2 , a(x) = A0x

λ/2 , b(x, y) =
2

y
, 0 < x < y , (1.9)

for some λ ∈ [0, 2], k0 > 0, and A0 > 0. Two steps are needed to obtain this result: first, when
λ = 0, k0 = 2, and A0 = 1, given an integrable stationary solution f to (1.1), its Bernstein transform

U(s) :=

∫ ∞

0

(

1− e−sx
)

f(x) dx , s ≥ 0 ,

solves the integro-differential equation

U(s)2 + U(s) =
2

s

∫ s

0

U(r) dr , s > 0 , U(0) = 0 . (1.10)

This equation turns out to have an explicit solution U⋆ which is the Bernstein transform of a non-
negative function f⋆ ∈ L1((0,∞), (1 + x)dx) satisfying

∫ ∞

0

f⋆(x) dx =

∫ ∞

0

xf⋆(x) dx = 1 , (1.11)
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and any solution U to (1.10) is a dilation of U⋆; that is, there is µ > 0 such that U(s) = U⋆(µs) for
s ≥ 0. Moreover,

f⋆(x) ∼
x→0

x−2/3

Γ(1/3)
and f⋆(x) ∼

x→∞

9

8

x−3/2

Γ(1/2)
e−4x/27 . (1.12)

In particular, f⋆ features an integrable singularity as x → 0. To handle the case λ > 0 in (1.9), it
suffices to note that, if f is a stationary solution to (1.1) corresponding to coagulation and fragmen-
tation rates given by (1.8) for some λ ∈ [0, 2], k0 > 0, and A0 > 0, then x 7→ k0x

λ/2f(x)/2A0 is
a stationary solution to (1.1) corresponding to coagulation and fragmentation rates given by (1.8)
with λ = 0, k0 = 2, and A0 = 1. Consequently, there is µ > 0 such that

f(x) =
2A0µ

k0
x−λ/2f⋆(µx) , x ∈ (0,∞) . (1.13)

It readily follows from (1.12) and (1.13) that f also features a singularity as x → 0 which is not
integrable if λ > 2/3. However, the total mass of f is finite for all λ ∈ [0, 2]. Stability of stationary
solutions is also investigated in [7] when λ = 0, k0 = 2, and A0 = 1.
The just described results only deal with very specific coagulation and fragmentation coefficients,

and the approaches used in both cases exploit their particular structure. They are thus rather unlikely
to extend to a wider setting. As far as we know, the only result handling a fairly general class of
coagulation and fragmentation coefficients is to be found in [12], the coagulation and fragmentation
coefficients being given by

K(x, y) = x−αyβ + xβy−α , (x, y) ∈ (0,∞)2 , (1.14a)

and

a(x) = a0x
γ , b(x, y) =

1

y
B

(

x

y

)

, 0 < x < y , (1.14b)

where
(α, β) ∈ [0, 1]2 , β − α ∈ [0, 1) , γ ≥ 0 , a0 > 0 , (1.14c)

and
B is a non-negative function in L1((0, 1), (z + z−2α)dz) . (1.14d)

Assuming further that (β, γ) 6= (1, 0) and (α, γ) 6= (0, 0), the existence of a non-negative stationary
solution to (1.1) with total mass ̺ is shown in [12, Theorem 4.1] for all ̺ > 0. Furthermore,
this stationary solution belongs to L1((0,∞), xmdx) for all m ≥ −2α and, under the additional
assumption that B ∈ L∞(0, 1), it belongs to Lp(0,∞) for all p ∈ [1,∞). The approach developed
to prove this result is of a completely different nature and actually relies on a dynamical approach.
Roughly speaking, the basic idea is to find a suitable functional setting in which the initial value
problem (1.1) is well-posed, along with a closed and convex set Z which is compact for the associated
topology and is positively invariant for the dynamical system associated to (1.1) (in the sense that
f(t) ∈ Z for all t > 0 as soon as f(0) ∈ Z). If a fixed point theorem is available in this functional
setting, then a classical argument guarantees the existence of at least one stationary solution, see
[2, Theorem 16.5], [15, Proof of Theorem 5.2], and [12, Theorem 1.2], for instance. Though this
method merely gives the existence of a steady state solution without any information on uniqueness
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or stability, it is far more flexible than the previous ones and we shall partially employ it in the
forthcoming analysis. Let us mention that it is also the cornerstone of the construction of mass-
conserving self-similar solutions to the coagulation equation [12, 14, 25].
According to the previous description, no result on the existence of steady state solutions seems

to be available for the classical coagulation kernel

K(x, y) = K0

(

xαyβ + xβyα
)

, (x, y) ∈ (0,∞)2 , (1.15a)

with
0 ≤ α ≤ β ≤ 1 , λ := α + β ∈ [0, 1) , (1.15b)

and the purpose of this paper is to fill this gap for a rather large class of fragmentation coefficients.
More precisely, we assume that there are

γ > 0 , a0 > 0 , p0 > 1 , (1.16a)

and a non-negative function

B ∈ L1((0, 1), zdz) ∩ Lp0(0, 1) ,

∫ 1

0

zB(z) dz = 1 , (1.16b)

such that

a(x) = a0x
γ , b(x, y) =

1

y
B

(

x

y

)

, 0 < x < y . (1.16c)

Note that the class of coagulation kernels (1.15) includes the sum kernels corresponding to α = 0
and β = λ ∈ [0, 1) and the product kernels corresponding to α = β = λ/2 ∈ [0, 1/2). The constraint
on B in (1.16b) stems from the conservation of matter (1.2) during fragmentation events. Examples
of daughter distribution functions satisfying (1.16b) include the power-law breakup distribution

B(z) = B1,ν(z) := (ν + 2)zν , z ∈ (0, 1) , ν > −1 , (1.17)

and the parabolic breakup distribution

B(z) = B2,ν(z) := (ν + 2)(ν + 1)zν−1(1− z) , z ∈ (0, 1) , ν > 0 . (1.18)

Indeed, B1,ν given by (1.17) satisfies (1.16b) for any p0 > 1 when ν ≥ 0 and for any p0 ∈ (1, 1/|ν|)
when ν ∈ (−1, 0). Similarly, B2,ν given by (1.18) satisfies (1.16b) for any p0 > 1 when ν ≥ 1 and
p0 ∈ (1, 1/(1− ν)) when ν ∈ (0, 1).
Before stating the main result, let us introduce some notation. Throughout the paper, for m ∈ R,

we set

Xm := L1((0,∞), xmdx) , Mm(h) :=

∫ ∞

0

xmh(x) dx , h ∈ Xm , (1.19)

and denote the positive cone of Xm by X+
m. We also denote the space Xm endowed with its weak

topology by Xm,w.

Theorem 1.1. Assume that the coagulation and fragmentation coefficients satisfy (1.15) and (1.16).
Given ̺ > 0 there exists at least a stationary (weak) solution ϕ ∈ X+

1 to (1.1) with the following
properties:
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(s1) M1(ϕ) = ̺;
(s2) there are p1 ∈ (1, p0) and m1 ∈ (λ, 1) such that

ϕ ∈ Lp1((0,∞), xm1+γdx) ∩
⋂

m>λ

Xm ;

(s3) for all ϑ ∈ Θ1 := {h ∈ W 1,∞(0,∞) : h(0) = 0},
1

2

∫ ∞

0

∫ ∞

0

K(x, y) [ϑ(x+ y)− ϑ(x)− ϑ(y)]ϕ(x)ϕ(y) dydx

=

∫ ∞

0

a(y)ϕ(y)

[

ϑ(y)−
∫ y

0

ϑ(x)b(x, y) dx

]

dy .

It is worth pointing out here that Theorem 1.1 (s2) does not exclude a non-integrable singularity
of ϕ as x → 0, a situation which may indeed occur, as we shall see below. This feature is not
encountered for the coagulation and fragmentation coefficients given by (1.14) and considered in [12]
when α < 0, as the unboundedness of the coagulation kernel for small sizes implies the vanishing of
the stationary solution as x → 0. This possible singular behaviour for small sizes is actually the main
difficulty to be overcome in the analysis carried out below and requires a more involved approach,
which we describe now.
The proof of Theorem 1.1 is carried out in two steps. We fix ̺ > 0. Using the dynamical approach

already alluded to, given ε ∈ (0, 1), we first construct a stationary solution ϕε ∈ X1 to

∂tf = Cεf + Fεf , (t, x) ∈ (0,∞)2 ,

f(0) = f in , x ∈ (0,∞) ,
(1.20)

satisfying M1(ϕε) = ̺, where the coagulation and fragmentation operators Cε and Fε are given by
(1.1c) with Kε := K + 2εK0 instead of K and (1.1d) with aε := a + a0ε

2 instead of a, respectively.
For this choice of coagulation and fragmentation coefficients, we actually build a closed convex and
sequentially weakly compact subset Zε of X1 such that solutions to (1.20) starting from an initial
condition in Zε remain in Zε for all positive times. Recalling that, according to the Dunford-Pettis
theorem, sequential weak compactness in X1 requires to prevent concentration and escape of mass
for small and large sizes, finding Zε amounts to derive time-independent estimates in Xm0

∩ Xm ∩
Lp2(0,∞) for some suitably chosen m0 < 1 < m and p2 > 1. While some of the moment estimates
can be obtained directly for ε = 0 (Section 2.1), it does not seem to be possible to derive uniform
integrability estimates without the positive lower bounds on Kε and aε (Section 2.2). Besides the
construction of Zε (Section 3.2), we also show the well-posedness of (1.20) in Section 3.1, as well as the
continuous dependence of solutions to (1.20) inX1,w with respect to the initial condition (Section 3.3).
To justify rigorously the computations performed in Section 2, an additional approximation is needed
and we shall actually work with truncated versions ofKε and aε. Thanks to this analysis, it remains to
apply [12, Theorem 1.2] to obtain the existence of a stationary solution ϕε ∈ Zε to (1.20) (Section 3.4).
To complete the proof of Theorem 1.1, we are left with taking the limit ε → 0. To this end, we
realize that, since we have payed special attention to the dependence on ε of the estimates derived in
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Section 2, there is a sequentially weakly compact subset Z in X1 such that Zε ⊂ Z for all ε ∈ (0, 1),
see Section 3.5. Consequently, there are ϕ ∈ Z and a subsequence (ϕεk)k≥1 of (ϕε)ε∈(0,1) such that
ϕεk ⇀ ϕ in X1. We finally combine this convergence with the properties of Z and (ϕεk)k≥1 to prove
that ϕ is a stationary weak solution to (1.1) as described in Theorem 1.1 (Section 3.5).

Theorem 1.1 only provides the finiteness of the moments of ϕ of order larger than λ and thus does
not provide much information on its behaviour for small sizes. In fact, the small size behaviour de-
scribed in Theorem 1.1 (s2) does not seem to be accurate. Indeed, formal asymptotics indicate that,
if ϕ is a stationary weak solution to (1.1) satisfying the properties (s1)-(s3) stated in Theorem 1.1
and

ϕ(x) ∼ Ax−τ as x → 0 (1.21a)

for some A > 0 and τ > 0, then τ can be identified and depends on the values of α, β, γ, and possibly
on B. Specifically,

− if γ > α, then
τ = α + 1 +m⋆ , (1.21b)

where m⋆ is defined in (1.22) below;
− if γ = α < β, then

τ = α+ 1 ; (1.21c)

− if γ = α = β and B = B1,ν , see (1.17), then

τ = α +
2

ν + 3
< α + 1 ; (1.21d)

− if γ < α, then
τ = λ+ 1− γ . (1.21e)

In particular, the prediction (1.21d) perfectly agrees with (1.13) when γ = α = β = λ/2 ∈ [0, 1/2)
and ν = 0 (B = B1,0). On the one hand, (1.21) implies that ϕ may have a non-integrable singularity
as x → 0 and, in particular, it is not expected to belong to Xα when γ < α. On the other hand,
different behaviours are predicted in (1.21), which vary according to the sign of γ−α, and seem to be
sensitive to the behaviour of B(z) as z → 0 when γ = α = β. We shall not attempt a complete proof
of (1.21) herein but, as a first step in that direction, we provide additional integrability properties
of ϕ which complies with (1.21).

Proposition 1.2. Consider ̺ > 0 and let ϕ be a stationary weak solution to (1.1) satisfying the
properties (s1)-(s3) stated in Theorem 1.1.

(m1) If γ > α, then ϕ ∈ Xm for any m > α +m⋆, where

m⋆ := inf
{

m ∈ R : B ∈ L1((0, 1), zmdz)
}

≤ 1− p0
p0

< 0 . (1.22)

Moreover, if m⋆ > −∞ and B /∈ L1((0, 1), zm⋆dz), then ϕ /∈ Xα+m⋆ ;
(m2) if γ = α < β, then ϕ ∈ Xm for any m ≥ β;
(m3) if γ = α = β, then ϕ ∈ Xm for any m ≥ α;
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(m4) if γ < α, then ϕ ∈ Xm for any m > λ− γ.

The proof of Proposition 1.2 is carried out in Section 4 and relies on the choice of suitable test func-
tions in Theorem 1.1 (s3). Comparing (1.21) and Proposition 1.2 reveals that the properties (m2)
and (m3) are not optimal. Improving Proposition 1.2 so that it matches (1.21) in these cases seems
to require a finer analysis which we have yet been unable to set up. We however hope to return to
this problem in the near future.

2. A truncated approximation

Let ̺ > 0 and assume that K, a, and b are coagulation and fragmentation coefficients satisfying
(1.15) and (1.16). Also, let f in be an initial condition satisfying

f in ∈ X+
0 ∩X2+γ with M1(f

in) = ̺ . (2.1)

We now introduce the approximation to (1.1) we are going to work with in this section. Besides
requiring a positive lower bound on the coagulation kernel and the overall fragmentation rate as
already mentioned, we also truncate both of them as in [12]. Specifically, we fix a positive integer
j ≥ 2 and a positive real number ε ∈ (0, 1) and set

Kj,ε(x, y) := 2εK0 +K (min{x, j},min{y, j}) , (x, y) ∈ (0,∞)2 , (2.2)

aj,ε(x) := a0
(

min{x, j}γ + ε2
)

, x ∈ (0,∞) . (2.3)

Since Kj,ε and aj,ε are bounded, we may proceed as in [4,12,26,28] to show, by a Banach fixed point
argument in X0 = L1(0,∞), that there is a unique non-negative strong solution

fj,ε ∈ C1([0,∞);X0)

to the coagulation-fragmentation equation

∂tfj,ε = Cj,εfj,ε + Fj,εfj,ε , (t, x) ∈ (0,∞)2 , (2.4a)

fj,ε(0) = f in , x ∈ (0,∞) , (2.4b)

where the coagulation and fragmentation operators Cj,ε and Fj,ε are given by (1.1c) with Kj,ε instead
of K and (1.1d) with aj,ε instead of a, respectively. A first consequence of (2.4a) is that, for t ≥ 0
and ϑ ∈ L∞(0,∞),

d

dt

∫ ∞

0

ϑ(x)fj,ε(t, x) dx =
1

2

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)χϑ(x, y)fj,ε(t, x)fj,ε(t, y) dydx

−
∫ ∞

0

aj,ε(y)Nϑ(y)fj,ε(t, y) dy ,

(2.5)

where

χϑ(x, y) := ϑ(x+ y)− ϑ(x)− ϑ(y) , (x, y) ∈ (0,∞)2 , (2.6a)

Nϑ(y) := ϑ(y)−
∫ y

0

ϑ(x)b(x, y) dx , y ∈ (0,∞) , (2.6b)
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Owing to (1.16c), an alternative formula for Nϑ reads

Nϑ(y) = ϑ(y)−
∫ 1

0

ϑ(yz)B(z) dz , y ∈ (0,∞) . (2.6c)

For the particular choice ϑ(x) = ϑm(x) := xm, x > 0, for some m ∈ R, we set χm := χϑm and
Nm := Nϑm for simplicity.
Owing to the boundedness of Kj,ε and aj,ε and the integrability (1.16b) of B over (0, 1), we infer

from (2.5) by an approximation argument that fj,ε is mass-conserving; that is, fj,ε ∈ L∞((0,∞), X1)
and

M1(fj,ε(t)) = ̺ , t ≥ 0 . (2.7)

Moreover, a similar approximation argument allows us to show that, if f in ∈ Xm for some m > 1,
then fj,ε ∈ L∞((0, T ), Xm) for any T > 0. We shall refine this result in the next section.

We now derive several estimates for the family {fj,ε : j ≥ 2 , ε ∈ (0, 1)}, which do not depend
on j ≥ 2. We also pay special attention to the dependence on ε ∈ (0, 1), if any. Throughout this
section, C and Ci, i ≥ 1, denote positive constants which depend only on K0, α, β, a0, γ, B, and ̺.
Dependence upon additional parameters will be indicated explicitly. For further use, we set

bm :=

∫ 1

0

zmB(z) dz for m > m⋆ and Bp
p :=

∫ 1

0

B(z)p dz for p ∈ [1, p0] , (2.8a)

which are finite by (1.16b) and (1.22), and satisfy

bm < 1 ⇐⇒ m > 1 (2.8b)

due to (1.16b). Also, Young’s inequality and (1.15) entail that

K(x, y) ≤ K0

(

xλ + yλ
)

, (x, y) ∈ (0,∞)2 . (2.9)

2.1. Moment Estimates. For m ∈ R we set

Mm,j,ε := sup
t≥0

{Mm(fj,ε(t))} ∈ [0,∞] (2.10)

and begin with the behaviour of fj,ε for large sizes.

Lemma 2.1. Let m ≥ 2 and assume that f in ∈ Xm. There is a positive constant µm ≥ Γ(m+ 1)̺m

depending only on K0, α, β, a0, γ, B, ̺, and m such that

Mm,j,ε ≤ max{Mm(f
in), µm} .

Proof. We first recall that there is cm > 0 depending only on m such that

χm(x, y) ≤ cm
(

xym−1 + xm−1y
)

, (x, y) ∈ (0,∞)2 , (2.11)
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see [5, Lemma 2.3 (ii)] for instance. Let t > 0. We infer from (2.5) with ϑ = ϑm, (2.8), (2.11), and
the symmetry of K that

d

dt
Mm(fj,ε(t)) ≤

cm
2

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)
(

xm−1y + xym−1
)

fj,ε(t, x)fj,ε(t, y) dydx

− (1− bm)

∫ ∞

0

xmaj,ε(x)fj,ε(t, x) dx

≤ cm

∫ ∞

0

∫ ∞

0

xym−1Kj,ε(x, y)fj,ε(t, x)fj,ε(t, y) dydx

− a0(1− bm)

∫ ∞

0

xm min{x, j}γfj,ε(t, x) dx .

On the one hand, by (2.7),

∫ ∞

0

xm min{x, j}γfj,ε(t, x) dx ≥
∫ ∞

1

xm min{x, j}γfj,ε(t, x) dx

≥
∫ ∞

1

xmfj,ε(t, x) dx

= Mm(fj,ε(t))−
∫ 1

0

xmfj,ε(t, x) dx

≥ Mm(fj,ε(t))− ̺ .

On the other hand, it follows from (2.7) and Hölder’s and Young’s inequalities that

∫ ∞

0

∫ ∞

0

xym−1fj,ε(t, x)fj,ε(t, y) dydx ≤ ̺Mm−1(fj,ε(t))

≤ ̺Mm(fj,ε(t))
(m−2)/(m−1)M1(fj,ε(t))

1/(m−1)

≤ a0(1− bm)

8cmK0

Mm(fj,ε(t)) + C(m) .

Similarly,

∫ ∞

0

∫ ∞

0

xym−1min{y, j}λfj,ε(t, x)fj,ε(t, y) dydx

≤ ̺Mm+λ−1(fj,ε(t))

≤ ̺Mm(fj,ε(t))
(m+λ−2)/(m−1)M1(fj,ε(t))

(1−λ)/(m−1)

≤ a0(1− bm)

4cmK0
Mm(fj,ε(t)) + C(m) ,
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and
∫ ∞

0

∫ ∞

0

xym−1min{x, j}λfj,ε(t, x)fj,ε(t, y) dydx

≤ M1+λ(fj,ε(t))Mm−1(fj,ε(t))

≤ ̺Mm(fj,ε(t))
(m+λ−2)/(m−1)M1(fj,ε(t))

(m−λ)/(m−1)

≤ a0(1− bm)

4cmK0
Mm(fj,ε(t)) + C(m) .

Collecting the previous inequalities and using (2.9), we obtain

d

dt
Mm(fj,ε(t)) ≤

2 + ε

4
a0(1− bm)Mm(fj,ε(t)) + C(m)

− a0(1− bm) (Mm(fj,ε(t))− ̺)

≤ −a0
4
(1− bm)Mm(fj,ε(t)) + C(m) .

Integrating the previous differential inequality gives

Mm(fj,ε(t)) ≤ e−a0(1−bm)t/4Mm(f
in) +

4C(m)

a0(1− bm)

(

1− e−a0(1−bm)t/4
)

for t ≥ 0. Therefore,

Mm(fj,ε(t)) ≤ max

{

Mm(f
in),

4C(m)

a0(1− bm)

}

, t ≥ 0 ,

from which Lemma 2.1 follows. �

From now on, we fix a positive real number

σ > max {1, ̺, µ2, µ2+γ} (2.12a)

such that

max
{

M2(f
in),M2+γ(f

in)
}

≤ σ . (2.12b)

A first consequence of (2.7), (2.12), Lemma 2.1, and Hölder’s inequality is that

M1+γ,j,ε ≤ σ and M2,j,ε ≤ σ . (2.13)

Next, owing to (2.7), (2.12), and (2.13), another application of Hölder’s inequality provides a
similar bound for moments of order m ∈ (1, 2), which we report now.

Corollary 2.2. For m ∈ (1, 2),

Mm,j,ε ≤ σ .

We next turn to the behaviour for small sizes and, to this end, derive estimates for moments of
order smaller than one.
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Lemma 2.3. Let m ∈ (λ, 1). There is µm ≥ Γ(m+ 1)̺m depending only K0, α, β, a0, γ, B, ̺, and
m such that

Mm,j,ε ≤ max{Mm(f
in), µm + σ} .

Proof. Let m ∈ (λ, 1) and t > 0. We first argue as in [14, Lemma 3.1] to estimate the contribution of
the coagulation term to the time evolution of Mm(fj,ε), see also [4, Lemma 8.2.12]. More precisely,
since j ≥ 2, χm ≤ 0, and Kj,ε(x, y) ≥ 2K0(xy)

λ/2 for (x, y) ∈ (0, 1)2, we obtain

− 1

2K0

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)χm(x, y)fj,ε(t, x)fj,ε(t, y) dydx

≥ 1

2K0

∫ 1

0

∫ 1

0

[xm + ym − (x+ y)m]Kj,ε(x, y)fj,ε(t, x)fj,ε(t, y) dydx

≥ Pj,ε(t) :=

∫ 1

0

∫ 1

0

[xm + ym − (x+ y)m] (xy)λ/2fj,ε(t, x)fj,ε(t, y) dydx . (2.14)

Since m < 1, it follows from the convexity of x 7→ xm−1 that, for (x, y) ∈ (0,∞)2,

xm + ym − (x+ y)m = x
[

xm−1 − (x+ y)m−1
]

+ y
[

ym−1 − (x+ y)m−1
]

≥ 2(1−m)xy(x+ y)m−2 .

Therefore,

Pj,ε(t) ≥ 2(1−m)

∫ 1

0

∫ 1

0

(x+ y)m−2(xy)(2+λ)/2fj,ε(t, x)fj,ε(t, y) dydx .

Introducing

xi := i−2/(m−λ) and Pj,ε(t, i) :=

∫ xi

xi+1

x(2+λ)/2fj,ε(t, x) dx , i ≥ 1 ,

we further obtain

Pj,ε(t) ≥ 2(1−m)
∞
∑

i=1

∫ xi

xi+1

∫ xi

xi+1

(x+ y)m−2(xy)(2+λ)/2fj,ε(t, x)fj,ε(t, y) dydx

≥ 2m−1(1−m)

∞
∑

i=1

xm−2
i Pj,ε(t, i)

2 . (2.15)

It next follows from the Cauchy-Schwarz inequality that
∫ 1

0

xmfj,ε(t, x) dx =

∞
∑

i=1

∫ xi

xi+1

xmfj,ε(t, x) dx ≤
∞
∑

i=1

x
(2m−2−λ)/2
i+1 Pj,ε(t, i)

≤
( ∞
∑

i=1

x2m−2−λ
i+1 x2−m

i

)1/2( ∞
∑

i=1

xm−2
i Pj,ε(t, i)

2

)1/2

. (2.16)

Since
x2m−2−λ
i+1 x2−m

i ≤ (2i)2(2+λ−2m)/(m−λ)i−2(2−m)/(m−λ) = 4(2+λ−2m)/(m−λ)i−2 ,
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the series in the right-hand side of (2.16) converges and we deduce from (2.15) and (2.16) that

Pj,ε(t) ≥ C1(m)

(
∫ 1

0

xmfj,ε(t, x) dx

)2

. (2.17)

Furthermore, as

Mm(fj,ε(t)) =

∫ 1

0

xmfj,ε(t, x) dx+

∫ ∞

1

xmfj,ε(t, x) dx

≤
∫ 1

0

xmfj,ε(t, x) dx+

∫ ∞

1

xfj,ε(t, x) dx

≤
∫ 1

0

xmfj,ε(t, x) dx+ ̺

by (2.7), we infer from Young’s inequality that
(
∫ 1

0

xmfj,ε(t, x) dx

)2

≥ Mm(fj,ε(t))
2

2
− ̺2 . (2.18)

Combining (2.14), (2.17), and (2.18) provides the existence of two positive constants C2(m) and
C3(m) such that

1

2

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)χm(x, y)fj,ε(t, x)fj,ε(t, y) dydx ≤ C2(m)− C3(m)Mm(fj,ε(t))
2 . (2.19)

Consequently, recalling that bm > 1 by (2.8) as m < 1, it follows from (2.5) with ϑ = ϑm, (2.13),
(2.19), and Young’s inequality that

d

dt
Mm(fj,ε(t)) =

1

2

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)χm(x, y)fj,ε(t, x)fj,ε(t, y) dydx

+ a0(bm − 1)

∫ ∞

0

xm
(

ε2 +min{x, j}γ
)

fj,ε(t, x) dx

≤ C2(m)− C3(m)Mm(fj,ε(t))
2 + a0bmMm+γ(fj,ε(t))

+ a0bmε
2Mm(fj,ε(t))

≤ C2(m)− C3(m)Mm(fj,ε(t))
2 +

a0bmγ

γ + 1−m
Mγ+1(fj,ε(t))

+ a0bm

[

1−m

γ + 1−m
+ 1

]

Mm(fj,ε(t))

≤ C4(m) [1 +Mm(fj,ε(t)) + σ]− C3(m)Mm(fj,ε(t))
2 .

As

Mm(fj,ε(t)) ≤
C3(m)

2C4(m)
Mm(fj,ε(t))

2 +
C4(m)

2C3(m)
,
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we finally obtain

d

dt
Mm(fj,ε(t)) ≤ −C4(m)Mm(fj,ε(t)) + C4(m)

[

1 +
C4(m)

C3(m)
+ σ

]

, t ≥ 0 .

Integrating the previous differential inequality gives

Mm(fj,ε(t)) ≤ e−C4(m)tMm(f
in) +

[

1 +
C4(m)

C3(m)
+ σ

]

(

1− e−C4(m)t
)

, t ≥ 0 .

Therefore,

Mm(fj,ε(t)) ≤ max

{

Mm(f
in), 1 +

C4(m)

C3(m)
+ σ

}

, t ≥ 0 ,

from which Lemma 2.3 follows. �

The next step is devoted to the derivation of additional estimates for small sizes but now with a
strong dependence on ε.

Lemma 2.4. There is µ0 ≥ 1 depending only on K0, a0, B, and ̺ such that

M0,j,ε ≤ max
{

M0(f
in), σ +

µ0

ε

}

.

Proof. It follows from (2.5) with ϑ ≡ 1, (2.8), (2.13), and Young’s inequality that, for t ≥ 0,

d

dt
M0(fj,ε(t)) = −1

2

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)fj,ε(t, x)fj,ε(t, y) dydx

− a0(1− b0)

∫ ∞

0

(

ε2 +min{x, j}γ
)

fj,ε(t, x) dx

≤ −εK0M0(fj,ε(t))
2 + a0b0ε

2M0(fj,ε(t)) + a0b0Mγ(fj,ε(t))

≤ −εK0M0(fj,ε(t))
2 +

γa0b0
1 + γ

Mγ+1(fj,ε(t))

+ a0b0

(

1

1 + γ
+ 1

)

M0(fj,ε(t))

≤ −εK0M0(fj,ε(t))
2 + a0b0σ + 2a0b0M0(fj,ε(t)) .

By the Cauchy-Schwarz inequality,

4a0b0M0(fj,ε(t)) ≤ εK0M0(fj,ε(t))
2 +

4a20b
2
0

εK0

.

Hence
d

dt
M0(fj,ε(t)) + 2a0b0M0(fj,ε(t)) ≤ a0b0σ +

4a20b
2
0

εK0
, t ≥ 0 .
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Integrating this differential inequality, we find

M0(fj,ε(t)) ≤ M0(f
in)e−2a0b0t +

(

σ

2
+

2a0b0
εK0

)

(

1− e−2a0b0t
)

≤ max

{

M0(f
in), σ +

2a0b0
εK0

}

for t ≥ 0, as claimed. �

The previous result actually extends to some moments of negative order.

Lemma 2.5. Let m ∈ (m⋆, 0) and set

εm,σ :=
1

σ
min

{

1,
K0̺

2

4a0bm

}

, (2.20)

where m⋆ and σ are defined in (1.22) and (2.12), respectively. There is µm > 0 depending only on
K0, a0, ̺, B, and m such that, if f in ∈ Xm and ε ∈ (0, εm,σ), then

Mm,j,ε ≤ max
{

Mm(f
in), µmσ

2ε−(γ+2−2m)/γ
}

.

We may also assume that µm ≥ Γ(m+ 1)̺m when m > −1.

Proof. For δ ∈ (0, 1), we set ϑm,δ(x) := (x+ δ)m, x > 0, and notice that

χϑm,δ
(x, y) ≤ −(x+ δ)m ≤ 0 , (x, y) ∈ (0,∞)2 .

Let ε ∈ (0, εm,σ) and t > 0. We infer from (2.5) with ϑ = ϑm,δ that

d

dt

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx ≤ −εK0

∫ ∞

0

∫ ∞

0

(x+ δ)mfj,ε(t, x)fj,ε(t, y) dydx

+

∫ ∞

0

aj,ε(y)fj,ε(t, y)

∫ y

0

ϑm,δ(x)b(x, y) dxdy .

On the one hand, by (2.7), (2.13), and the Cauchy-Schwarz inequality,

̺2 = M1(fj,ε(t))
2 ≤ M0(fj,ε(t))M2(fj,ε(t)) ≤ σM0(fj,ε(t)) ,

so that

Uj,ε(t) :=

∫ ∞

0

∫ ∞

0

(x+ δ)mfj,ε(t, x)fj,ε(t, y) dydx

= M0(fj,ε(t))

∫ ∞

0

(x+ δ)mfj,ε(t, x) dx

≥ ̺2

σ

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx .
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On the other hand, we infer from (1.16c), (2.13), and the negativity of m that

Vj,ε(t) :=

∫ ∞

0

aj,ε(y)fj,ε(t, y)

∫ y

0

ϑm,δ(x)b(x, y) dxdy

=

∫ ∞

0

aj,ε(y)fj,ε(t, y)

∫ 1

0

(yz + δ)mB(z) dzdy

≤
∫ ∞

0

aj,ε(y)fj,ε(t, y)

∫ 1

0

(yz + δz)mB(z) dzdy

≤ a0bm

∫ ∞

0

(x+ δ)m
(

ε2 +min{x, j}γ
)

fj,ε(t, x) dx .

Since

∫ ∞

0

(x+ δ)mmin{x, j}γfj,ε(t, x) dx ≤ ε2
∫ ε2/γ

0

(x+ δ)mfj,ε(t, x) dx

+ ε2(m−1)/γ

∫ ∞

ε2/γ
xγ+1fj,ε(t, x) dx

≤ ε2
∫ ∞

0

(x+ δ)mfj,ε(t, x) dx+ ε2(m−1)/γMγ+1,j,ε

≤ ε2
∫ ∞

0

(x+ δ)mfj,ε(t, x) dx+ σε2(m−1)/γ

by (2.13), we further obtain

Vj,ε(t) ≤ a0bm

(

2ε2
∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx+ σε2(m−1)/γ

)

.

Collecting the previous estimates and using the definition (2.20) of εm,σ lead us to the differential
inequality

d

dt

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx ≤ −εK0̺
2

σ

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx

+ 2a0bmε
2

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx+ a0bmσε
2(m−1)/γ

≤ 2a0bmε(ε− 2εm,σ)

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx+ a0bmσε
2(m−1)/γ

≤ −2a0bmεεm,σ

∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx+ a0bmσε
2(m−1)/γ .
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After integration with respect to time, we end up with
∫ ∞

0

ϑm,δ(x)fj,ε(t, x) dx ≤ e−2a0bmεεm,σt

∫ ∞

0

ϑm,δ(x)f
in(x) dx

+
σε−(γ+2−2m)/γ

2εm,σ

(

1− e−2a0bmεεm,σt
)

≤ max
{

Mm(f
in), µmσ

2ε−(γ+2−2m)/γ
}

, t ≥ 0 .

Since the right-hand side of the previous inequality does not depend on δ ∈ (0, 1) and is finite, we
may pass to the limit as δ → 0 and thereby complete the proof of Lemma 2.5. �

Remark 2.6. It is worth mentioning here that the positivity of γ is only used in the proof of
Lemma 2.5.

2.2. Integrability Estimates. We now turn to weighted Lp-estimates and actually derive two dif-
ferent estimates, one depending on ε but not on t, and the other one depending on t but not on ε.
For m ≥ 0, p ≥ 1, and h ∈ Lp((0,∞), xmdx), we set

Lm,p(h) :=

∫ ∞

0

xm|h(x)|p dx . (2.21)

Lemma 2.7. Consider m ∈ (λ, 1) and p ∈ (1, p0] satisfying

1 < p <
m+ 1

λ + 1
and p ≤ m+ γ

γ
, (2.22)

and assume that f in ∈ Lp((0,∞), xmdx). Then

Lm,p(fj,ε(t)) ≤ max

{

Lm,p(f
in),

Sj,ε(m, p)

ε2

}

(2.23)

and
1

t

∫ t

0

∫ ∞

0

xm min{x, j}γ(fj,ε(s, x))p dxds ≤ 1

a0t
Lm,p(f

in) + Sj,ε(m, p) , (2.24)

where

Sj,ε(m, p) := 2pBp
p

(

Mp
(m+1+γ−p)/p,j,ε +Mp

(m+1+γp−p)/p,j,ε + ε2Mp
(m+1−p)/p,j,ε

)

and Bp is defined in (2.8a).

Proof. We first note that (1.16a) and (2.22) ensure that

m+ 1 + γp− p

p
≥ m+ 1 + γ − p

p
≥ m+ 1− p

p
> λ ,

so that Sj,ε(m, p) is well-defined and finite by Lemma 2.3.
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Let t > 0. We first deal with the contribution of the coagulation term. As already observed
in [4,8,18,24], the sublinearity of x 7→ xm and the monotonicity of x 7→ Kj,ε(x, y) for all y > 0 allow
us to show that this contribution is negative. Indeed, it follows from the inequality

(x+ y)m ≤ xm + ym , (x, y) ∈ (0,∞)2 ,

the symmetry of Kj,ε, and Fubini’s theorem that

Pj,ε(t) := p

∫ ∞

0

xm(fj,ε(t, x))
p−1(Cj,εfj,ε)(t, x) dx

=
p

2

∫ ∞

0

∫ ∞

0

(x+ y)mKj,ε(x, y)(fj,ε(t, x+ y))p−1fj,ε(t, x)fj,ε(t, y) dydx

− p

∫ ∞

0

∫ ∞

0

xmKj,ε(x, y)(fj,ε(t, x))
pfj,ε(t, y) dydx

≤ p

2

∫ ∞

0

∫ ∞

0

(xm + ym)Kj,ε(x, y)(fj,ε(t, x+ y))p−1fj,ε(t, x)fj,ε(t, y) dydx

− p

∫ ∞

0

∫ ∞

0

xmKj,ε(x, y)(fj,ε(t, x))
pfj,ε(t, y) dydx

= p

∫ ∞

0

∫ ∞

0

xmKj,ε(x, y)(fj,ε(t, x+ y))p−1fj,ε(t, x)fj,ε(t, y) dydx

− p

∫ ∞

0

∫ ∞

0

xmKj,ε(x, y)(fj,ε(t, x))
pfj,ε(t, y) dydx

.

We next deduce from the convexity inequality

pUp−1V ≤ (p− 1)Up + V p , (U, V ) ∈ [0,∞)2 ,

that

Pj,ε(t) ≤ (p− 1)

∫ ∞

0

∫ ∞

0

xmKj,ε(x, y)(fj,ε(t, x+ y))pfj,ε(t, y) dydx

− (p− 1)

∫ ∞

0

∫ ∞

0

xmKj,ε(x, y)(fj,ε(t, x))
pfj,ε(t, y) dydx

≤ (p− 1)

∫ ∞

0

∫ ∞

y

(x− y)mKj,ε(x− y, y)(fj,ε(t, x))
pfj,ε(t, y) dxdy

− (p− 1)

∫ ∞

0

∫ ∞

y

xmKj,ε(x, y)(fj,ε(t, x))
pfj,ε(t, y) dxdy .

Now, the monotonicity of x 7→ xm and x 7→ Kj,ε(x, y) implies that

(x− y)mKj,ε(x− y, y) ≤ xmKj,ε(x, y) , 0 < y < x .
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Consequently,

Pj,ε(t) ≤ 0 . (2.25)

Concerning the contribution of the fragmentation term, it reads

Qj,ε(t) := p

∫ ∞

0

xm(fj,ε(t, x))
p−1(Fj,εfj,ε)(t, x) dx

= −pa0Λj(fj,ε(t))− pa0ε
2Lm,p(fj,ε(t)) +Rj,ε(t) , (2.26)

where

Λj(fj,ε(t)) :=

∫ ∞

0

xmmin{x, j}γ(fj,ε(t, x))p dx

and

Rj,ε(t) := p

∫ ∞

0

aj,ε(y)fj,ε(t, y)

∫ y

0

xmb(x, y)(fj,ε(t, x))
p−1 dxdy

= pa0

∫ ∞

0

min{y, j}γy−1fj,ε(t, y)

∫ y

0

xmB
(

xy−1
)

(fj,ε(t, x))
p−1 dxdy

+ pa0ε
2

∫ ∞

0

y−1fj,ε(t, y)

∫ y

0

xmB
(

xy−1
)

(fj,ε(t, x))
p−1 dxdy .

We infer from Hölder’s inequality that
∫ y

0

xmB
(

xy−1
)

(fj,ε(t, x))
p−1 dx

=

∫ y

0

xm/p min{x, j}−γ(p−1)/pB
(

xy−1
)

xm(p−1)/p min{x, j}γ(p−1)/p(fj,ε(t, x))
p−1 dx

≤
(
∫ y

0

xmmin{x, j}−γ(p−1)[B
(

xy−1
)

]p dx

)1/p(∫ y

0

xmmin{x, j}γ(fj,ε(t, x))p dx

)(p−1)/p

.

Since
(
∫ y

0

xmmin{x, j}−γ(p−1)[B
(

xy−1
)

]p dx

)1/p

≤
(
∫ y

0

(

xm−γ(p−1) + xm
)

[B
(

xy−1
)

]p dx

)1/p

≤ y(m+1−γ(p−1))/p

(
∫ 1

0

zm−γ(p−1)B(z)p dz

)1/p

+ y(m+1)/p

(
∫ 1

0

zmB(z)p dz

)1/p

,
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we further obtain
∫ y

0

xmB
(

xy−1
)

(fj,ε(t, x))
p−1 dx

≤ y(m+1−γ(p−1))/p

(
∫ 1

0

zm−γ(p−1)B(z)p dz

)1/p

Λj(fj,ε(t))
(p−1)/p

+ y(m+1)/p

(
∫ 1

0

zmB(z)p dz

)1/p

Λj(fj,ε(t))
(p−1)/p .

Similarly, by Hölder’s inequality,
∫ y

0

xmB
(

xy−1
)

(fj,ε(t, x))
p−1 dx

=

∫ y

0

xm/pB
(

xy−1
)

xm(p−1)/p(fj,ε(t, x))
p−1 dx

≤
(
∫ y

0

xm[B
(

xy−1
)

]p dx

)1/p(∫ y

0

xm(fj,ε(t, x))
p dx

)(p−1)/p

≤ y(m+1)/p

(
∫ 1

0

zm[B(z)]p dz

)1/p

[Lm,p(fj,ε(t))]
(p−1)/p .

Since 0 ≤ m− γ(p− 1) ≤ m and p ∈ [1, p0] by (2.22), we infer from (2.8a) that
∫ 1

0

zmB(z)p dz ≤
∫ 1

0

zm−γ(p−1)B(z)p dz ≤ Bp
p < ∞ .

Gathering the above estimates and using Young’s inequality, we end up with

Rj,ε(t) ≤ pa0BpM(m+1+γ−p)/p(fj,ε(t))Λj(fj,ε(t))
(p−1)/p

+ pa0BpM(m+1+γp−p)/p(fj,ε(t))Λj(fj,ε(t))
(p−1)/p

+ pa0ε
2BpM(m+1−p)/p(fj,ε(t)) [Lm,p(fj,ε(t))]

(p−1)/p

≤ p− 1

2
a0Λj(fj,ε(t)) + 2p−1a0Bp

pMp
(m+1+γ−p)/p,j,ε

+
p− 1

2
a0Λj(fj,ε(t)) + 2p−1a0Bp

pMp
(m+1+γp−p)/p,j,ε

+ (p− 1)a0ε
2Lm,p(fj,ε(t)) + a0ε

2Bp
pMp

(m+1−p)/p,j,ε . (2.27)

We then deduce from (2.26) and (2.27) that

Qj,ε(t) ≤ −a0
[

Λj(fj,ε(t)) + ε2Lm,p(fj,ε(t))
]

+ a0Sj,ε(m, p) . (2.28)

Combining (2.4), (2.25), and (2.28) leads us to the differential inequality

d

dt
Lm,p(fj,ε(t)) + a0

[

Λj(fj,ε(t)) + ε2Lm,p(fj,ε(t))
]

≤ a0Sj,ε(m, p) (2.29)
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for t > 0. We first infer from (2.29) that, for t > 0,

d

dt
Lm,p(fj,ε(t)) + a0ε

2Lm,p(fj,ε(t)) ≤ a0Sj,ε(m, p) .

Hence, after integration with respect to time,
∫ ∞

0

Lm,p(fj,ε(t)) ≤ e−a0ε2tLm,p(f
in) +

Sj,ε(m, p)

ε2

(

1− e−a0ε2t
)

≤ max

{

Lm,p(f
in),

Sj,ε(m, p)

ε2

}

.

from which (2.23) follows. We also infer from (2.29) that, for t > 0,

d

dt
Lm,p(fj,ε(t)) + a0Λj(fj,ε(t)) ≤ a0Sj,ε(m, p) .

Integrating with respect to time and using the non-negativity of Lm,p(fj,ε(t)), we obtain

a0

∫ t

0

Λj(fj,ε(s)) ds ≤ Lm,p(f
in) + a0tSj,ε(m, p)

for t > 0. Dividing the above inequality by a0t gives (2.24). �

Combining the outcome of Lemma 2.5 and Lemma 2.7 leads to an ε-dependent Lp-estimate for
(fj,ε)j≥2 for a suitable value of p.

Corollary 2.8. Let m0 ∈ (m⋆, 0), m1 ∈ (λ, 1), and p1 ∈ (1, p0) be such that

1 < p1 <
m1 + 1

λ+ 1
and p1 ≤

m1 + γ

γ
. (2.30)

For ε ∈ (0, εm0,σ) and t ≥ 0,

L0,p2(fj,ε(t)) ≤ max
{

Mm0
(f in), µm0

σ2ε−(γ+2−2m0)/γ
}

+max

{

Lm1,p1(f
in),

Sj,ε(m1, p1)

ε2

}

,

where

p2 :=
m1

m1 −m0
+ p1

|m0|
m1 −m0

∈ (1, p1) .

Proof. Since

m1

m1 −m0
m0 +

|m0|
m1 −m0

m1 = 0 ,



22 Philippe Laurençot

we infer from Young’s inequality that, if h ∈ Xm0
∩ Lp1((0,∞), xm1dx), then h ∈ Lp2(0,∞) and

L0,p2(h) = ‖h‖p2p2 =
∫ ∞

0

(xm0 |h(x)|)m1/(m1−m0) (xm1 |h(x)|)|m0|/(m1−m0) dx

≤ m1

m1 −m0

∫ ∞

0

xm0 |h(x)| dx+
|m0|

m1 −m0

∫ ∞

0

xm1 |h(x)|p1 dx

≤ Mm0
(|h|) + Lm1,p1(h) . (2.31)

Now, consider t ≥ 0. As ε ∈ (0, εm0,σ) and p1 satisfies (2.30), Corollary 2.8 readily follows from
Lemma 2.5 (with m = m0), Lemma 2.7 (with (m, p) = (m1, p1)), and (2.31) (with h = fj,ε(t)). �

2.3. Time Equicontinuity. The last estimate to be derived in this section provides the time
equicontinuity of the sequence (fj,ε)j≥2 in L1(0,∞), which is needed later to apply a variant of
the Arzelà-Ascoli theorem.

Lemma 2.9. There is a positive constant C5 > 0 such that

‖∂tfj,ε(t)‖1 ≤ C5

(

σ +M2
0,j,ε

)

, t ≥ 0 .

Proof. Let t > 0. It follows from (2.4a), (2.9), and Fubini’s theorem that

‖∂tfj,ε(t)‖1 ≤
3

2

∫ ∞

0

∫ ∞

0

Kj,ε(x, y)fj,ε(t, x)fj,ε(t, y) dydx

+ (1 + b0)

∫ ∞

0

aj,ε(x)fj,ε(t, x) dx

≤ 3K0

2

∫ ∞

0

∫ ∞

0

(

xλ + yλ + 2ε
)

fj,ε(t, x)fj,ε(t, y) dydx

+ a0(1 + b0)

∫ ∞

0

(

xγ + ε2
)

fj,ε(t, x) dx

≤ 3K0

[

Mλ(fj,ε(t))M0(fj,ε(t)) +M0(fj,ε(t))
2
]

+ a0(1 + b0) [Mγ(fj,ε(t)) +M0(fj,ε(t))] .

We then infer from (2.7), (2.12a), (2.13), and the inequalities

xλ ≤ 1 + x , xγ ≤ 1 + x1+γ , x ≥ 0 ,

that

‖∂tfj,ε(t)‖1 ≤ 3K0

[

M0(fj,ε(t))M1(fj,ε(t)) + 2M0(fj,ε(t))
2
]

+ a0(1 + b0) [Mγ+1(fj,ε(t)) + 2M0(fj,ε(t))]

≤ 3K0

[

̺2 + 3M2
0,j,ε

]

+ a0(1 + b0)
(

σ + 1 +M2
0,j,ε

)

≤ [3K0(̺+ 3) + 2a0(1 + b0)]
(

σ +M2
0,j,ε

)

,

and the proof is complete. �
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3. Stationary solutions by a dynamical approach: ε ∈ (0, 1)

In this section, we fix ε ∈ (0, 1) and study the coagulation-fragmentation equation (1.20) with
coagulation kernel Kε and overall fragmentation rate aε given by

Kε(x, y) = K(x, y) + 2εK0 , aε(x) = a(x) + a0ε
2 , (x, y) ∈ (0,∞)2 ; (3.1)

that is,

∂tf = Cεf + Fεf , (t, x) ∈ (0,∞)2 , (3.2a)

f(0) = f in , x ∈ (0,∞) , (3.2b)

where the coagulation and fragmentation operators Cε and Fε are defined in (1.20).
Several results are established in this section. We begin with the well-posedness of (3.2) for a

suitable class of initial conditions, the existence of solutions being obtained by passing to the limit as
j → ∞ in (2.4) (Section 3.1). We also establish the continuity of the solutions to (3.2) with respect
to the initial condition for the weak topology of X1 (Section 3.3) and construct an invariant set for
the dynamics of (3.2) (Section 3.2). Combining the outcome of this analysis with a consequence of
Tychonov’s fixed point theorem provides the existence of a stationary solution to (3.2a) (Section 3.4).
The estimates derived in the previous section are of course at the heart of the proofs of the results
of this section.

We fix
m0 ∈ (m⋆, 0) ∩ (−1, 0) , m1 ∈ (λ, 1) , p1 ∈ (1, p0) , (3.3a)

such that

1 < p1 <
m1 + 1

λ+ 1
and p1 ≤

m1 + γ

γ
. (3.3b)

We recall that (3.3) implies that

m2 ∈ (λ, 1) and m2 <
m1 + 1 + γ − p1

p1
<

m1 + 1 + γp1 − p1
p1

≤ 1 + γ , (3.4a)

where

m2 :=
m1 + 1− p1

p1
< 1 . (3.4b)

We also fix ̺ > 0 and σ > 0 satisfying

σ > max {1, ̺, µ2, µ2+γ} , (3.5)

recalling that µm is defined in Lemma 2.1 for m ≥ 2.
We next define a subset Yε of X

+
1 as follows: h ∈ Yε if and only if

h ∈ X+
1 ∩Xm0

∩X2+γ , M1(h) = ̺ , (3.6a)

max{M2(h),M2+γ(h)} ≤ σ , Mm2
(h) ≤ µm2

+ σ , (3.6b)

M0(h) ≤ σ + µ0ε
−1 , Mm0

(h) ≤ µm0
σ2ε−(γ+2−2m0)/γ , (3.6c)

Lm1,p1(h) ≤ σ1ε
−2 , (3.6d)
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where

σ1 := 2p1Bp1
p1
[2σp1 + 3(µm2

+ σ)p1 ] (3.7)

and Bp1 is defined in (2.8a).

3.1. Well-posedness of (3.2). We begin with the well-posedness of (3.2) in Yε, along with several
estimates for its solutions.

Proposition 3.1. Consider ε ∈ (0, εm0,σ) and f in ∈ Yε, recalling that

εm0,σ =
1

σ
min

{

1,
K0̺

2

4a0bm0

}

is defined in (2.20) with bm0
given by (2.8a). There is a unique weak solution

Ψε(·, f in) = fε ∈ C([0,∞), X+
0 ) ∩ C([0,∞), X1,w)

to (3.2) which satisfies

d

dt

∫ ∞

0

ϑ(x)fε(t, x) dx =
1

2

∫ ∞

0

∫ ∞

0

Kε(x, y)χϑ(x, y)fε(t, x)fε(t, y) dydx

−
∫ ∞

0

aε(y)Nϑ(y)fε(t, y) dy ,

(3.8)

for all t ≥ 0 and ϑ ∈ L∞(0,∞), the functions χϑ and Nϑ being defined in (2.6), and possesses the
following properties:

M1(fε(t)) = ̺ , t ≥ 0 , (3.9a)

sup
t≥0

Mm(fε(t)) ≤ σ , m ∈ (1, 2 + γ] , (3.9b)

sup
t≥0

Mm(fε(t)) ≤ max
{

Mm(f
in), σ + µm

}

, m ∈ (λ, 1) , (3.9c)

sup
t≥0

M0(fε(t)) ≤ σ + µ0ε
−1 , (3.10a)

sup
t≥0

Mm0
(fε(t)) ≤ µm0

σ2ε−(γ+2−2m0)/γ , (3.10b)

sup
t≥0

Lm1,p1(fε(t)) ≤ σ1ε
−2 , (3.11a)

sup
t≥0

L0,p2(fε(t)) ≤ κε := µm0
σ2ε−(γ+2−2m0)/γ + σ1ε

−2 , (3.11b)

and
1

t

∫ t

0

Lm1+γ,p1(fε(s)) ds ≤
1

a0t
Lm1,p1(f

in) + σ1 , t > 0 . (3.12)
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Moreover, if f in ∈ Xm for some m > 2 + γ, then fε ∈ L∞((0,∞), Xm) and

sup
t≥0

Mm(fε(t)) ≤ max{Mm(f
in), µm} , (3.13)

the constant µm being defined in Lemma 2.1.

Proof. Step 1: Existence. Let j ≥ 2 and recall that fj,ε is the strong solution to the coagulation-
fragmentation equation (2.4), see Section 2. Since f in ∈ Yε, it follows from (2.7) that

M1(fj,ε(t)) = ̺ , t ≥ 0 , j ≥ 2 , (3.14)

and from (2.12), (3.5), Lemma 2.1, and Corollary 2.2 that

sup
t≥0

Mm(fj,ε(t)) ≤ σ , m ∈ (1, 2 + γ] , j ≥ 2 . (3.15)

Next, (2.12), (3.5), (3.6b), and Lemma 2.3 guarantee that

sup
t≥0

Mm2
(fj,ε(t)) ≤ µm2

+ σ , j ≥ 2 , (3.16)

while, since ε ∈ (0, εm0,σ), we deduce from (2.12), (3.5), (3.6c), Lemma 2.4, and Lemma 2.5 that

sup
t≥0

M0(fj,ε(t)) ≤ σ + µ0ε
−1 , j ≥ 2 , (3.17)

sup
t≥0

Mm0
(fj,ε(t)) ≤ µm0

σ2ε−(γ+2−2m0)/γ , j ≥ 2 . (3.18)

Finally, by (3.4), (3.15), and Hölder’s and Young’s inequalities,

M(m+1+γ−p1)/p1(fj,ε(t))
p1 ≤ γ

p1(1 + γ −m2)
M1+γ(fj,ε(t))

p1

+
p1(1 + γ −m2)− γ

p1(1 + γ −m2)
Mm2

(fj,ε(t))
p1

≤ σp1 +Mm2
(fj,ε(t))

p1 ,

and

M(m+1+γp1−p1)/p1(fj,ε(t))
p1 ≤ γ

1 + γ −m2

M1+γ(fj,ε(t))
p1 +

1−m2

1 + γ −m2

Mm2
(fj,ε(t))

p1

≤ σp1 +Mm2
(fj,ε(t))

p1

for t ≥ 0 and j ≥ 2, so that, using also (3.7) and (3.16),

Sj,ε(m1, p1) = 2p1Bp1
p1 sup

t≥0
M(m+1+γ−p1)/p1(fj,ε(t))

p1

+ 2p1Bp1
p1
sup
t≥0

M(m+1+γp1−p1)/p1(fj,ε(t))
p1

+ 2p1Bp1
p1
ε2 sup

t≥0
Mm2

(fj,ε(t))
p1

≤ 2p1Bp1
p1
[2σp1 + 3 (µm2

+ σ)p1] = σ1 . (3.19)
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Combining (2.23), (3.6d), and (3.19), we conclude that

sup
t≥0

Lm1,p1(fj,ε(t)) ≤ σ1ε
−2 , j ≥ 2 . (3.20)

A straightforward consequence of (3.3b), (3.5), (3.9), (3.18), (3.20), and Corollary 2.8 is the bound

sup
t≥0

L0,p2(fj,ε(t)) ≤ µm0
σ2ε−(γ+2−2m0)/γ + σ1ε

−2 = κε , j ≥ 2 . (3.21)

Now, introducing the set

Wε :=







h ∈ Xm0
∩X2+γ ∩ Lp2(0,∞) :

M2+γ(h) ≤ σ , max{Mm0
(h), L0,p2(h)} ≤ κε







, (3.22)

it readily follows from (3.15), (3.18), and (3.21) that

fj,ε(t) ∈ Wε , t ≥ 0 , j ≥ 2 , (3.23)

while the Dunford-Pettis theorem ensures that

Wε is a relatively sequentially weakly compact subset of Xm (3.24)

for any m ∈ (m0, 2 + γ), and in particular of X0. Moreover, it follows from (3.17) and Lemma 2.9
that, for 0 ≤ t1 ≤ t2 and j ≥ 2,

‖fj,ε(t2)− fj,ε(t1)‖1 ≤
∫ t2

t1

‖∂tfj,ε(t)‖1 dt ≤ C5

[

σ +
(

σ + µ0ε
−1
)2
]

(t2 − t1) . (3.25)

Consequently, (fj,ε)j≥2 is equicontinuous at each t ≥ 0 for the norm-topology of L1(0,∞), and thus
it is also equicontinuous for the weak topology of L1(0,∞). This property, along with (3.23) and
the relative compactness (3.24) of Wε, allows us to apply a variant of the Arzelà-Ascoli theorem [27,
Theorem A.3.1] to conclude that there are a subsequence of (fj,ε)j≥2 (possibly depending on ε but
not relabeled) and fε ∈ C([0,∞), X0,w) such that

fj,ε −→ fε in C([0, T ], X0,w) for all T > 0 . (3.26)

A first consequence of (3.26) is that fε(t) ∈ X+
0 for all t ≥ 0. It next follows from (3.14), (3.15),

(3.17), (3.18), and (3.26) by a weak lower semicontinuity argument that fε satisfies (3.9b), (3.10a),
(3.10b), and

M1(fε(t)) ≤ ̺ , t ≥ 0 .

A similar argument allows us to deduce (3.9c) from Lemma 2.3 and (3.26). We then combine the
just established property (3.9b) with (3.15) and (3.26) to improve the convergence (3.26) to

fj,ε −→ fε in C([0, T ], X1,w ∩Xγ,w) for all T > 0 . (3.27)

Recalling (3.14), we readily infer from (3.27) that fε satisfies the mass conservation (3.9a). We
employ again weak lower semicontinuity arguments to deduce (3.11) and

1

t

∫ t

0

∫ R

0

xm+γ(fε(s, x))
p dxds ≤ 1

a0t
Lm1,p1(f

in) + σ1 , t > 0 , R ≥ 1 , (3.28)
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from (2.23), (2.24), (3.3b), (3.6d), (3.19), (3.20), (3.21), and (3.26). As the right-hand side of (3.28)
does not depend on R, we may let R → ∞ in (3.28) and use Fatou’s lemma to obtain (3.12).
Now, owing to (1.15), (1.16), (3.26), and (3.27), we may proceed as in [26], see also [4,10,12,19], to

deduce from (2.5) that fε is a weak solution to (3.2), in the sense that it satisfies (3.8). Furthermore,
we may argue as in the proof of Lemma 2.9 with the help of (3.9a), (3.9b), and (3.10a) to show that
∂tfε(t) belongs to X0 for any t ≥ 0 and satisfies

‖∂tfε(t)‖1 ≤ C5

[

σ +
(

σ + µ0ε
−1
)2
]

, t ≥ 0 , (3.29)

the constant C5 being defined in Lemma 2.9.

Step 2: Uniqueness. It is a consequence of [4, Theorem 8.2.55] (with ℓ(x) = 1 + xmax{1,γ}, x > 0,
and ζ = 1), see also [12].

Step 3: Higher moments. Finally, if f in ∈ Xm for somem > 2+γ, then the proof of (3.13) relies on
a weak lower semicontinuity argument as that of (3.9b) and follows from (3.26) and Lemma 2.1. �

3.2. Invariant Set. As a consequence of the various estimates derived in Proposition 3.1, we con-
struct a subset Zε of Yε which is left invariant by Ψε. Specifically, h ∈ Zε if and only if

h ∈ Yε ∩
⋂

m>2+γ

Xm , (3.30a)

Mm(h) ≤ µm , m > 2 + γ , (3.30b)

Mm(h) ≤ σ , m ∈ (1, 2 + γ] , (3.30c)

Mm(h) ≤ σ + µm , m ∈ (λ, 1) . (3.30d)

Proposition 3.2. Consider ε ∈ (0, εm0,σ) and f in ∈ Zε. Then Ψε(t, f
in) ∈ Zε for all t ≥ 0.

Proof. Set fε := Ψε(·, f in) and consider t > 0. We first deduce from (3.9a), (3.9b) (with m = 2 and
m = 2 + γ), (3.9c) (with m = m2), (3.10), and (3.11a) that fε(t) ∈ Yε. In addition, fε(t) ∈ Xm for
all m > 2+ γ and satisfies (3.30b) by (3.13), while (3.30c) and (3.30d) follow from (3.9b) and (3.9c),
respectively. �

3.3. Dynamical System in X1,w. We go on with the continuity properties of the map f in 7→
Ψε(., f

in) defined in Proposition 3.1 and actually show that Ψε is a dynamical system on Yε for the
weak topology of X1.

Proposition 3.3. Consider ε ∈ (0, εm0,σ), f
in ∈ Yε, and a sequence (f in

n )n≥1 of initial conditions in
Yε such that

f in
n ⇀ f in in X1 . (3.31)

Then, for any T > 0,

Ψε(·, f in
n ) −→ Ψε(·, f in) in C([0, T ], X1,w) .
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Proof. For n ≥ 1 we put fε,n := Ψε(·, f in
n ). On the one hand, it follows from (3.9b), (3.10b), and

(3.11b) that

fε,n(t) ∈ Wε , t ≥ 0 , n ≥ 1 , (3.32)

recalling that the set Wε is defined in (3.22). On the other hand, let 0 ≤ t1 < t2 and n ≥ 1. We infer
from (3.29) that

‖fε,n(t2)− fε,n(t1)‖1 ≤ C5

[

σ +
(

σ + µ0ε
−1
)2
]

(t2 − t1) .

Combining this estimate with (3.9b) gives, for R > 0,
∫ ∞

0

x |fε,n(t2, x)− fε,n(t1, x)| dx ≤ R‖fε,n(t2)− fε,n(t1)‖1

+
1

R

∫ ∞

R

x2 (fε,n(t2, x) + fε,n(t1, x)) dx

≤ C5

[

σ +
(

σ + µ0ε
−1
)2
]

(t2 − t1) +
2σ

R
.

Now, taking R = 1/
√
t2 − t1 in the previous inequality, we end up with

∫ ∞

0

x |fε,n(t2, x)− fε,n(t1, x)| dx ≤
{

C5

[

σ +
(

σ + µ0ε
−1
)2
]

+ 2σ
}√

t2 − t1 .

Consequently, the sequence (fε,n)n≥1 is equicontinuous at each t ≥ 0 for the norm-topology of X1

and thus also for the weak topology of X1. Recalling (3.24) and (3.32), we are again in a position to
use the variant of the Arzelà-Ascoli theorem stated in [27, Theorem A.3.1] to deduce that there are
Fε ∈ C([0,∞), X1,w) and a subsequence (fε,nk

)k≥1 of (fε,n)n≥1 (possibly depending on ε) such that

fε,nk
−→ Fε in C([0, T ], X1,w) (3.33)

for any T > 0. Since fε,nk
satisfies (3.9), (3.10), (3.11), (3.12), and (3.33) for k ≥ 1, we can argue as

in Step 1 of the proof of Proposition 3.1 to establish that Fε is a weak solution to (3.2) with initial
condition f in and also satisfies (3.9), (3.10), (3.11), and (3.12), along with

fε,nk
−→ Fε in C([0, T ], X0,w ∩Xγ,w)

for any T > 0. The uniqueness assertion in Proposition 3.1 then guarantees that Fε = Ψε(·, f in).
A consequence of the above analysis is that Ψε(·, f in) is the only cluster point of the sequence

(fε,n)n≥1 in the space C([0, T ], X1,w), whatever the value of T > 0. Together with the compactness of
(fε,n)n≥1, this observation ensures that it is the whole sequence (fε,n)n≥1 which converges to Ψε(·, f in)
in C([0, T ], X1,w) for any T > 0, thereby completing the proof of Proposition 3.3. �

3.4. Stationary Solution to (3.2). Thanks to the outcome of Sections 3.1-3.3, we are now in
a position to prove the existence of at least one stationary weak solution ϕε to the coagulation-
fragmentation equation (3.2) for ε ∈ (0, εm0,σ), along with some estimates on ϕε which will be needed
in Section 3.5 to carry out the limit ε → 0.
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Theorem 3.4. For ε ∈ (0, εm0,σ), the coagulation-fragmentation equation (3.2a) has a stationary
weak solution ϕε ∈ Zε ∩ Lp1((0,∞), xm1+γdx) satisfying

1

2

∫ ∞

0

∫ ∞

0

Kε(x, y)χϑ(x, y)ϕε(x)ϕε(y) dydx =

∫ ∞

0

aε(x)Nϑ(x)ϕε(x) dx (3.34)

for all ϑ ∈ L∞(0,∞) and

Lm1+γ,p1(ϕε) ≤ σ1 , (3.35)

the constant σ1 being defined in (3.7)

Proof. Let ε ∈ (0, εm0,σ). By Propositions 3.1 and 3.3, Ψε is a dynamical system on Yε for the weak
topology of X1 and, according to Proposition 3.2, the subset Zε of Yε is invariant under the action of
Ψε; that is, Ψε(t,Zε) ⊂ Zε for all t ≥ 0. Since x 7→ ̺−1e−x/̺ belongs to Zε, the set Zε is a non-empty
convex and closed subset ofX1. In addition, owing to the Dunford-Pettis theorem, Zε is a sequentially
weakly compact subset of X1. Thanks to these properties, we infer from [12, Theorem 1.2] that there
is ϕε ∈ Zε such that Ψε(t, ϕε) = ϕε for all t ≥ 0. In other words, ϕε is a stationary solution to (3.2)
as described in Proposition 3.1, and the weak formulation (3.34) readily follows from (3.8). We also
deduce from (3.12) that, for t > 0,

Lm1+γ,p1(ϕε) =
1

t

∫ t

0

Lm1+γ,p1(ϕε) ds ≤
1

a0t
Lm1,p1(ϕε) + σ1 .

Letting t → ∞ in the above inequality gives (3.35) and completes the proof of Theorem 3.4. �

3.5. Proof of Theorem 1.1. We are left with investigating the limit ε → 0 (if any) of the family
(ϕε)ε∈(0,εm0,σ)

of stationary weak solutions to (1.20) constructed in Theorem 3.4. To this end, we first
observe that, since ϕε ∈ Zε for all ε ∈ (0, εm0,σ), it satisfies

M1(ϕε) = ̺ , ε ∈ (0, εm0,σ) , (3.36)

Mm(ϕε) ≤ µm , m > 2 + γ , ε ∈ (0, εm0,σ) , (3.37)

Mm(ϕε) ≤ σ , m ∈ (1, 2 + γ] , ε ∈ (0, εm0,σ) , (3.38)

Mm(ϕε) ≤ σ + µm , m ∈ (λ, 1) , ε ∈ (0, εm0,σ) , (3.39)

and

Lm1+γ,p1(ϕε) ≤ σ1 , ε ∈ (0, εm0,σ) , (3.40)

see the definition (3.30) of Zε. We claim that these estimates guarantee that

(ϕε)ε∈(0,εm0,σ)
is relatively sequentially weakly compact in Xm for any m > λ . (3.41)
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Indeed, let E be a measurable subset of (0,∞) with finite measure and R > 1. We infer from Hölder’s
inequality that, for ε ∈ (0, εm0,σ),

∫

E

xmϕε(x) dx ≤
∫ 1/R

0

xmϕε(x) dx+

∫ R

1/R

xm1E(x)ϕε(x) dx

+

∫ ∞

R

xmϕε(x) dx

≤ R(λ−m)/2

∫ 1/R

0

x(m+λ)/2ϕε(x) dx+Rm|E|(p1−1)/p1

(
∫ R

1/R

ϕε(x)
p1 dx

)1/p1

+R−2−γ

∫ ∞

R

xm+2+γϕε(x) dx

≤ R(λ−m)/2M(m+λ)/2(ϕε) +R(mp1+m1+γ)/p1 |E|(p1−1)/p1Lm1+γ,p1(ϕε)
1/p1

+R−2−γMm+2+γ(ϕε) .

We now infer from (3.37), (3.38), (3.39), and (3.40) that
∫

E

xmϕε(x) dx ≤ Am,σ

(

R(λ−m)/2 +R(mp1+m1+γ)/p1 |E|(p1−1)/p1 +R−2−γ
)

, (3.42)

with
Am,σ := sup

ε∈(0,εm0,σ)

{

M(m+λ)/2(ϕε)
}

+ σ
1/p1
1 + µm+2+γ < ∞ .

Introducing

ηXm(δ) := sup

{
∫

E

xmϕε(x) dx : |E| < δ , ε ∈ (0, εm0,σ)

}

, δ ∈ (0, 1) ,

we deduce from (3.42) that

ηXm(δ) ≤ Am,σ

(

R(λ−m)/2 +R(mp1+m1+γ)/p1δ(p1−1)/p1 +R−2−γ
)

.

Hence, since p1 > 1,
lim sup

δ→0
ηXm(δ) ≤ Am,σ

(

R(λ−m)/2 +R−2−γ
)

.

We finally let R → ∞ to conclude that

lim
δ→0

ηXm(δ) = 0 . (3.43)

Similarly, for ε ∈ (0, εm0,σ) and R > 1, it follows from (3.37) that
∫ ∞

R

xmϕε(x) dx ≤ R−2−γµm+2+γ ,

and thus

lim
R→∞

sup
ε∈(0,εm0,σ)

{
∫ ∞

R

xmϕε(x) dx

}

= 0 . (3.44)
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The claim (3.41) is then a consequence of (3.43), (3.44), and the Dunford-Pettis theorem.
We now infer from (3.41) and the reflexivity of Lp1((0,∞), xm1+γdx) that there are a subsequence

(ϕεk)k≥1 of the family (ϕε)ε∈(0,εm0,σ)
and

ϕ ∈ X+
1 ∩ Lp1((0,∞), xm1+γdx) ∩

⋂

m>λ

Xm (3.45)

such that

ϕεk ⇀ ϕ in Xm , m > λ , (3.46)

ϕεk ⇀ ϕ in Lp1((0,∞), xm1+γdx) .

A straightforward consequence of (3.36) and (3.46) (with m = 1) is that

M1(ϕ) = ̺ . (3.47)

Let us now check that ϕ is a stationary weak solution to (1.1), as described in Theorem 1.1 (s3).
To this end, we consider ϑ ∈ Θ1 and first note that

|χϑ(x, y)| ≤ 2‖ϑ′‖∞min{x, y} , (x, y) ∈ (0,∞)2 , (3.48)

and
|Nϑ(x)| ≤ 2‖ϑ′‖∞x , x > 0 , (3.49)

by (1.16c) and (1.16b).
Let us begin with the coagulation term. By (3.36), (3.39), and Hölder’s inequality,

∣

∣

∣

∣

2εkK0

∫ ∞

0

∫ ∞

0

χϑ(x, y)ϕεk(x)ϕεk(y) dydx

∣

∣

∣

∣

≤ 4εkK0‖ϑ′‖∞M(λ+1)/2(ϕεk)M(1−λ)/2(ϕεk)

≤ 4εkK0‖ϑ′‖∞M(λ+1)/2(ϕεk)M1(ϕεk)
(1−λ)/2M0(ϕεk)

(1+λ)/2

≤ 4εkK0‖ϑ′‖∞(σ + µ(λ+1)/2)̺
(1−λ)/2M0(ϕεk)

(1+λ)/2 .

Since ϕεk ∈ Zεk ⊂ Yεk , we further deduce from (3.6c) that
∣

∣

∣

∣

2εkK0

∫ ∞

0

∫ ∞

0

χϑ(x, y)ϕεk(x)ϕεk(y) dydx

∣

∣

∣

∣

≤ 4εkK0‖ϑ′‖∞(σ + µ(λ+1)/2)̺
(1−λ)/2(σ + µ0ε

−1
k )(1+λ)/2

≤ 4K0‖ϑ′‖∞(σ + µ(λ+1)/2)̺
(1−λ)/2(σ + µ0)

(1+λ)/2ε
(1−λ)/2
k .

Consequently,

lim
k→∞

2εkK0

∫ ∞

0

∫ ∞

0

χϑ(x, y)ϕεk(x)ϕεk(y) dydx = 0 . (3.50)

Next, by (3.48),
|χϑ(x, y)|

x(2β+1−λ)/2y(2α+1−λ)/2
≤ 2‖ϑ′‖∞ , (x, y) ∈ (0,∞) ,
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and, since

χϑ(x, y)x
αyβϕεk(x)ϕεk(y) =

χϑ(x, y)

x(2β+1−λ)/2y(2α+1−λ)/2
x(1+λ)/2ϕεk(x)y

(1+λ)/2ϕεk(y) ,

it follows from (3.46) (with m = (1 + λ)/2) that

lim
k→∞

∫ ∞

0

∫ ∞

0

χϑ(x, y)x
αyβϕεk(x)ϕεk(y) dydx

= lim
k→∞

∫ ∞

0

∫ ∞

0

χϑ(x, y)

x(2β+1−λ)/2y(2α+1−λ)/2
x(1+λ)/2ϕεk(x)y

(1+λ)/2ϕεk(y) dydx

=

∫ ∞

0

∫ ∞

0

χϑ(x, y)

x(2β+1−λ)/2y(2α+1−λ)/2
x(1+λ)/2ϕ(x)y(1+λ)/2ϕ(y) dydx

=

∫ ∞

0

∫ ∞

0

χϑ(x, y)x
αyβϕ(x)ϕ(y) dydx . (3.51)

Similarly,

lim
k→∞

∫ ∞

0

∫ ∞

0

χϑ(x, y)x
βyαϕεk(x)ϕεk(y) dydx

=

∫ ∞

0

∫ ∞

0

χϑ(x, y)x
βyαϕ(x)ϕ(y) dydx .

(3.52)

For the fragmentation term, it readily follows from (3.36) and (3.49) that
∣

∣

∣

∣

a0ε
2
k

∫ ∞

0

Nϑ(x)ϕεk(x) dx

∣

∣

∣

∣

≤ 2a0ε
2
k‖ϑ′‖∞M1(ϕεk) = 2a0ε

2
k‖ϑ′‖∞̺ .

Hence,

lim
k→∞

a0ε
2
k

∫ ∞

0

Nϑ(x)ϕεk(x) dx = 0 . (3.53)

We finally infer from (3.46) (with m = 1 + γ) and (3.49) that

lim
k→∞

∫ ∞

0

xγNϑ(x)ϕεk(x) dx = lim
k→∞

∫ ∞

0

Nϑ(x)

x
x1+γϕεk(x) dx

=

∫ ∞

0

Nϑ(x)

x
x1+γϕ(x) dx =

∫ ∞

0

xγNϑ(x)ϕ(x) dx . (3.54)

Collecting (3.50), (3.51), (3.52), (3.53), and (3.54) allows us to take the limit εk → 0 in (3.34) and
conclude that ϕ is a stationary weak solution to (1.1) in the sense of Theorem 1.1 (s3). Recalling
(3.45) and (3.47), we have shown that ϕ satisfies the properties (s1)-(s3) stated in Theorem 1.1.



Stationary solutions to coagulation-fragmentation equations 33

4. Small Size Behaviour

This section is devoted to the proof of Proposition 1.2. The starting point is the finiteness of some
moments of order lower than λ when γ ≥ α.

Lemma 4.1. Let ̺ > 0 and consider a stationary weak solution ϕ to (1.1) satisfying the proper-
ties (s1)-(s3) stated in Theorem 1.1.

− If γ > α, then ϕ ∈ Xα;
− If γ = α, then ϕ ∈ Xβ.

Proof. For δ ∈ (0, 1), we set ζ0,δ(x) = xmax{x, δ}−1, x > 0. Then ζ0,δ ∈ Θ1 and satisfies

− χζ0,δ(x, y) ≥ 1(δ,∞)2(x, y) , (x, y) ∈ (0,∞)2 ,

−Nζ0,δ(x) ≤ b01(δ,∞)(x) , x > 0 .

It then follows from Theorem (1.1) (s3) that

K0

(
∫ ∞

δ

xαϕ(x) dx

)(
∫ ∞

δ

yβϕ(y) dy

)

=
1

2

∫ ∞

δ

∫ ∞

δ

K(x, y)ϕ(x)ϕ(y) dydx

≤ −1

2

∫ ∞

0

∫ ∞

0

K(x, y)χζ0,δ(x, y)ϕ(x)ϕ(y) dydx

= −
∫ ∞

0

a(x)Nζ0,δ(x)ϕ(x) dx ≤ a0b0

∫ ∞

δ

xγϕ(x) dx . (4.1)

− If γ > α, then we infer from Theorem 1.1 (s2) and Hölder’s inequality that
∫ ∞

δ

xγϕ(x) dx ≤
(
∫ ∞

δ

xαϕ(x) dx

)1/(1+γ−α) (∫ ∞

δ

x1+γϕ(x) dx

)(γ−α)/(1+γ−α)

≤ M1+γ(ϕ)
(γ−α)/(1+γ−α)

(
∫ ∞

δ

xαϕ(x) dx

)1/(1+γ−α)

and
(
∫ ∞

δ

yϕ(y) dy

)2−β

≤
(
∫ ∞

δ

yβϕ(y) dy

)(
∫ ∞

δ

y2ϕ(y) dy

)1−β

≤ M2(ϕ)
1−β

∫ ∞

δ

yβϕ(y) dy .

Combining (4.1) and the above inequalities gives

M2(ϕ)
β−1

(
∫ ∞

δ

yϕ(y) dy

)2−β (∫ ∞

δ

xαϕ(x) dx

)(γ−α)/(1+γ−α)

≤ a0b0
K0

M1+γ(ϕ)
(γ−α)/(1+γ−α) .
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Consequently,
(
∫ ∞

δ

yϕ(y) dy

)(2−β)(1+γ−α)/(γ−α) ∫ ∞

δ

xαϕ(x) dx

≤ M1+γ(ϕ)

(

a0b0M2(ϕ)
1−β

K0

)(1+γ−α)/(γ−α)

.

Owing to Theorem 1.1 (s1) and the positivity of ̺, we can take the limit δ → 0 in the previous
inequality to deduce that ϕ ∈ Xα.

− If γ = α, then (4.1) gives, since ϕ 6≡ 0 by Theorem 1.1 (s1),
∫ ∞

δ

yβϕ(y) dy ≤ a0b0
K0

for δ small enough, which obviously implies that ϕ ∈ Xβ after taking the limit δ → 0. �

Proof of Proposition 1.2. First, the integrability properties (m2) and (m3) stated in Proposition 1.2
readily follow from Lemma 4.1 and Theorem 1.1 (s2) by interpolation.

(m1): γ > α. Consider m ∈ (m⋆, 0) and recall that bm ∈ (1,∞) by (1.22) and (2.8b). We first
observe that, since γ > α, β ∈ [α, 1), ϕ ∈ Xα ∩ X1+γ, and ϕ 6≡ 0 by (1.15b), Theorem 1.1, and
Lemma 4.1,

0 < Mβ(ϕ) < ∞ and Mγ(ϕ) < ∞ . (4.2)

This implies that there is δ0 ∈ (0, 1) such that

rδ :=

(

K0

2a0bm

∫ ∞

δ

yβϕ(y) dy

)1/(γ−α)

> δ , δ ∈ [0, δ0) . (4.3)

Next, for δ ∈ (0, δ0), we define the function ζm,δ by ζm,δ(x) := xmax{x, δ}m−1, x > 0, and note that
ζm,δ belongs to Θ1. Moreover, since m < 0,

− for (x, y) ∈ (δ,∞)2,

−χζm,δ
(x, y) = xm + ym − (x+ y)m ≥ xm ;

− for (x, y) ∈ (δ,∞)× (0, δ),

−χζm,δ
(x, y) = xm + yδm−1 − (x+ y)m ≥ 0 ;

− for (x, y) ∈ (0, δ)× (δ,∞),

−χζm,δ
(x, y) = xδm−1 + ym − (x+ y)m ≥ 0 ;

− for (x, y) ∈ (0, δ)2 such that x+ y > δ,

−χζm,δ
(x, y) = xδm−1 + yδm−1 − (x+ y)m

≥ (x+ y)
[

δm−1 − (x+ y)m−1
]

≥ 0 ;
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− for (x, y) ∈ (0, δ)2 such that x+ y < δ,

−χζm,δ
(x, y) = xδm−1 + yδm−1 − (x+ y)δm−1 = 0 .

Also, by (1.16c) and (1.16b),

− for x ∈ (0, δ),

−Nζm,δ
(x) = δm−1

∫ x

0

yb(y, x) dy − δm−1x = 0 ;

− for x > δ,

−Nζm,δ
(x) =

∫ δ

0

yδm−1b(y, x) dy +

∫ x

δ

ymb(y, x) dy − xm

≤
∫ x

0

ymb(y, x) dy = bmx
m .

We infer from Theorem 1.1 (s3) and the previous inequalities that

K0

∫ ∞

δ

∫ ∞

δ

xα+myβϕ(x)ϕ(y) dydx ≤ K0

∫ ∞

0

∫ ∞

0

χζm,δ
(x, y)xαyβϕ(x)ϕ(y) dydx

=
1

2

∫ ∞

0

∫ ∞

0

χζm,δ
(x, y)K(x, y)ϕ(x)ϕ(y) dydx = a0

∫ ∞

0

xγNζm,δ
(x)ϕ(x) dx

≤ a0bm

∫ ∞

δ

xγ+mϕ(x) dx .

Therefore,

K0

(
∫ ∞

δ

yβϕ(y) dy

)
∫ ∞

δ

xα+mϕ(x) dx ≤ a0bm

∫ ∞

δ

xγ+mϕ(x) dx . (4.4)

Now, since γ > α, it follows from (4.2) and (4.3) that

a0bm

∫ ∞

δ

xγ+mϕ(x) dx ≤ a0bmr
γ−α
δ

∫ rδ

δ

xα+mϕ(x) dx+ a0bmr
m
δ

∫ ∞

rδ

xγϕ(x) dx

≤ a0bmr
γ−α
δ

∫ ∞

δ

xα+mϕ(x) dx+ a0bmr
m
δ Mγ(ϕ) .

Combining this inequality with (4.3) and (4.4) gives

K0

2

(
∫ ∞

δ

yβϕ(y) dy

)
∫ ∞

δ

xα+mϕ(x) dx ≤ a0bmr
m
δ Mγ(ϕ) .

Thanks to (4.2), we may let δ → 0 in the above inequality and use Fatou’s lemma to find

K0Mβ(ϕ)

2

∫ ∞

0

xα+mϕ(x) dx ≤ a0bmr
m
0 Mγ(ϕ) .

Hence, ϕ ∈ Xα+m for any m ∈ (m⋆, 0) which, together with Theorem 1.1 (s2) and an interpolation
argument implies that ϕ ∈ Xα+m for any m > m⋆.
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To prove the second assertion in (m1) when m⋆ > −∞ and bm⋆ = ∞, we argue by contradiction
and assume that ϕ ∈ Xα+m⋆ . Then, owing to (1.15b) and the assumption γ > α,

M := max {Mα+m⋆(ϕ),Mβ+m⋆(ϕ),Mα(ϕ),Mβ(ϕ),Mγ+m⋆(ϕ)} < ∞ . (4.5)

Consider next R > 1. Since bm⋆ = ∞, there is δR ∈ (0, 1) such that
∫ 1

√
δ

zm⋆B(z) dz ≥ R , δ ∈ (0, δR) . (4.6)

Fix δ ∈ (0, δR). It follows from the negativity of m⋆ and the definition of ζm⋆,δ that

0 ≤ −χζm⋆,δ
(x, y) ≤ xm⋆ + ym⋆ , (x, y) ∈ (0,∞)2 ,

and
−Nζm⋆,δ

(x) ≥ 0 , x > 0 ,

while (4.6) entails that, for x >
√
δ,

−Nζm⋆,δ
(x) ≥

(
∫ 1

δ/x

zm⋆B(z) dz − 1

)

xm⋆ ≥
(
∫ 1

√
δ

zm⋆B(z) dz − 1

)

xm⋆ ≥ (R− 1)xm⋆ .

Since ζm⋆,δ ∈ Θ1, we infer from (4.5), Theorem 1.1 (s3), and the previous inequalities that

a0(R − 1)

∫ ∞

√
δ

xγ+m⋆ϕ(x) dx ≤ −
∫ ∞

√
δ

a(x)Nζm⋆,δ
(x)ϕ(x) dx

≤ −
∫ ∞

0

a(x)Nζm⋆,δ
(x)ϕ(x) dx

= −1

2

∫ ∞

0

∫ ∞

0

K(x, y)χζm⋆,δ
(x, y)ϕ(x)ϕ(y) dydx

= −K0

∫ ∞

0

∫ ∞

0

xαyβχζm⋆,δ
(x, y)ϕ(x)ϕ(y) dydx

≤ K0 [Mα+m⋆(ϕ)Mβ(ϕ) +Mβ+m⋆(ϕ)Mα(ϕ)]

≤ 2K0M
2
.

Hence, using again (4.5),

a0R

∫ ∞

√
δ

xγ+m⋆ϕ(x) dx ≤ a0Mγ+m⋆(ϕ) + 2K0M
2 ≤ a0M + 2K0M

2
.

Taking the limit δ → 0 gives

a0RMγ+m⋆(ϕ) ≤ a0M + 2K0M
2
.

The above inequality being valid for all R > 1, we let R → ∞ to conclude that Mγ+m⋆(ϕ) = 0; that
is, ϕ ≡ 0, which contradicts Theorem 1.1 (s1).

(m4): α > γ. As in the proof of Lemma 2.3, we use a decomposition technique in the spirit
of [14, Lemma 3.1] and [4, Lemma 8.2.12], along with a truncation procedure, to estimate the
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contribution of the coagulation term. More precisely, for m ∈ (λ−γ, λ), we deduce from (1.15b) and
the assumption α > γ > 0 that

0 ≤ λ− 2α < λ− 2γ < m− γ < m < λ < 1 .

We define

ω := 2/(m+ γ − λ) > 0 , yi := i−ω , i ≥ 1 ,

and set ζi(x) := xmax{x, yi}m−γ, x > 0, i ≥ 2. Clearly, ζi ∈ Θ1 for all i ≥ 2 and we infer from the
convexity and monotonicity of x 7→ xm−γ−1 that,

− for (x, y) ∈ (yi,∞)2,

−χζi(x, y) = xm−γ + ym−γ − (x+ y)m−γ

= x
[

xm−γ−1 − (x+ y)m−γ−1
]

+ y
[

ym−γ−1 − (x+ y)m−γ−1
]

≥ 2(1 + γ −m)xy(x+ y)m−γ−2 ;

− for (x, y) ∈ (yi,∞)× (0, yi),

−χζi(x, y) = xm−γ + yym−γ−1
i − (x+ y)m−γ

= x
[

xm−γ−1 − (x+ y)m−γ−1
]

+ y
[

ym−γ−1
i − (x+ y)m−γ−1

]

≥ 0 ;

− for (x, y) ∈ (0, yi)× (yi,∞),

−χζi(x, y) = xym−γ−1
i + ym−γ − (x+ y)m−γ ≥ 0 ;

− for (x, y) ∈ (0, yi)
2 such that x+ y > yi,

−χζi(x, y) = xym−γ−1
i + yym−γ−1

i − (x+ y)m−γ−1

≥ (x+ y)
[

ym−γ−1
i − (x+ y)m−γ−1

]

≥ 0 ;

− for (x, y) ∈ (0, yi)
2 such that x+ y < yi,

−χζi(x, y) = xym−γ−1
i + yym−γ−1

i − (x+ y)ym−γ−1
i = 0 .

Also, by (1.16c) and (1.16b),

− for x ∈ (0, yi),

−Nζi(x) = ym−γ−1
i

∫ x

0

yb(y, x) dy − ym−γ−1
i x = 0 ;

− for x > yi,

−Nζi(x) =

∫ yi

0

yym−γ−1
i b(y, x) dy +

∫ x

yi

ym−γb(y, x) dy − xm−γ

≤
∫ x

0

ym−γb(y, x) dy = bm−γx
m−γ .
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Let I ≥ 2. Since

(xy)λ/2 ≤ 1

2

(

xαyβ + xβyα
)

=
K(x, y)

2K0

, (x, y) ∈ (0,∞)2 ,

we deduce from Theorem 1.1 (s3) and the above properties of ζI , χζI , and NζI that

K0(1 + γ −m)

∫ ∞

yI

∫ ∞

yI

(xy)(λ+2)/2(x+ y)m−γ−2ϕ(x)ϕ(y) dydx

≤ 1 + γ −m

2

∫ ∞

yI

∫ ∞

yI

xyK(x, y)(x+ y)m−γ−2ϕ(x)ϕ(y) dydx

≤ −1

2

∫ ∞

yI

∫ ∞

yI

K(x, y)χζI (x, y)ϕ(x)ϕ(y) dydx

≤ −1

2

∫ ∞

0

∫ ∞

0

K(x, y)χζI (x, y)ϕ(x)ϕ(y) dydx

= −
∫ ∞

0

a(x)NζI (x)ϕ(x) dx

≤ a0bm−γ

∫ ∞

yI

xmϕ(x) dx . (4.7)

Next, (yI , 1) =
⋃

1≤i≤I−1(yi+1, yi), so that

∫ ∞

yI

∫ ∞

yI

(xy)(λ+2)/2(x+ y)m−γ−2ϕ(x)ϕ(y) dydx

≥
∫ 1

yI

∫ 1

yI

(xy)(λ+2)/2(x+ y)m−γ−2ϕ(x)ϕ(y) dydx

≥
I−1
∑

i=1

∫ yi

yi+1

∫ yi

yi+1

(xy)(λ+2)/2(x+ y)m−γ−2ϕ(x)ϕ(y) dydx

≥ 2m−γ−2
I−1
∑

i=1

ym−γ−2
i J2

i , (4.8)

where

Ji :=

∫ yi

yi+1

x(λ+2)/2ϕ(x) dx , i ≥ 1 .
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Next, since m < (λ+ 2)/2, it follows from the Cauchy-Schwarz inequality that

∫ 1

yI

xmϕ(x) dx =
I−1
∑

i=1

∫ yi

yi+1

xmϕ(x) dx ≤
I−1
∑

i=1

y
(2m−λ−2)/2
i+1 Ji

≤
(

I−1
∑

i=1

y2m−λ−2
i+1 yγ+2−m

i

)1/2( I−1
∑

i=1

ym−γ−2
i J2

i

)1/2

≤ 2ω(λ+2−2m)/2

( ∞
∑

i=1

1

i2

)1/2( I−1
∑

i=1

ym−γ−2
i J2

i

)1/2

. (4.9)

We then infer from (4.8) and (4.9) that there is c1(m) > 0 depending only on K0, α, β, a0, γ, B, ̺,
and m such that

K0(1 + γ −m)

∫ ∞

yI

∫ ∞

yI

(xy)(λ+2)/2(x+ y)m−γ−2ϕ(x)ϕ(y) dydx

≥ c1(m)a0bm−γ

(
∫ 1

yI

xmϕ(x) dx

)2

.

(4.10)

In addition, since m < 1, we infer from Theorem 1.1 (s1) that

(
∫ ∞

yI

xmϕ(x) dx

)2

≤ 2

(
∫ 1

yI

xmϕ(x) dx

)2

+ 2

(
∫ ∞

1

xϕ(x) dx

)2

≤ 2

(
∫ 1

yI

xmϕ(x) dx

)2

+ 2̺2 . (4.11)

Collecting (4.7), (4.10), and (4.11) and using the Cauchy-Schwarz inequality, we end up with

(
∫ ∞

yI

xmϕ(x) dx

)2

≤ 2

c1(m)

∫ ∞

yI

xmϕ(x) dx+ 2̺2

≤ 1

2

(
∫ ∞

yI

xmϕ(x) dx

)2

+
2

c1(m)2
+ 2̺2 .

Hence,
∫ ∞

yI

xmϕ(x) dx ≤ 2

c1(m)

(

1 + c1(m)2̺2
)1/2

.

The above inequality being valid for any I ≥ 2 with a right-hand side which does not depend on I ≥ 2,
we may take the limit I → ∞ to conclude that ϕ ∈ Xm and complete the proof of Proposition 1.2. �
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[9] P. B. Dubovskĭı and I. W. Stewart, Trend to equilibrium for the coagulation-fragmentation equation, Math.

Methods Appl. Sci., 19 (1996), pp. 761–772.
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Toulouse Cedex 9, France

E-mail address : laurenco@math.univ-toulouse.fr


