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Abstract 12 

Conversion of medium-grade heat (temperature from 500 to 1000 K) into electricity is 13 

important in applications such as waste heat recovery, or power generation in solar thermal and 14 

co-generation systems. At such temperatures, current solid-state devices lack of either high 15 

conversion efficiency (thermoelectrics) or high-power density capacity (thermophotovoltaics 16 

and thermionics). Near-field thermophotovoltaics (nTPV) theoretically enables high power 17 

density and conversion efficiency by exploiting the enhancement of thermal radiation between a 18 

hot emitter and a photovoltaic cell separated by nanometric vacuum gaps. However, significant 19 

improvements are possible only at very small gap distances (< 100 nm), and when ohmic losses 20 

in the photovoltaic cell are negligible. Both requirements are very challenging for current device 21 

designs. In this work, we present a thermionic-enhanced near-field thermophotovoltaic (nTiPV) 22 

converter consisting of a thermionic emitter (graphite) and a narrow bandgap photovoltaic cell 23 

(InAs) coated with low-workfunction nanodiamond films. Thermionic emission through the 24 

vacuum gap electrically interconnects the emitter with the front side of the photovoltaic cell and 25 

generates an additional thermionic voltage. This avoids the use of metal grids at the front of the 26 

cell, and virtually eliminates the ohmic losses, which are unavoidable in realistic nTPV devices. 27 

We show that nTiPV operating at 1000 K and with a realizable vacuum gap distance of 100 nm, 28 

enables a 10.7-fold enhancement in electrical power (6.73 W/cm2) and a 2.8-fold enhancement 29 

in conversion efficiency (18 %) in comparison with a realistic nTPV device having a series 30 

resistance of 10 mΩ·cm2.  31 

                                                            
* Corresponding author: Alejandro Datas (a.datas@ies.upm.es) 
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1. Introduction 32 

Thermionics (TIC) 1,2 and thermophotovoltaics (TPV) 3,4 are highly efficient alternatives to 33 

thermoelectric generators (TEG) 5. In TIC, electrons are thermally emitted from a hot 34 

emitter/cathode and collected in a cold anode/collector, subsequently producing an electrical 35 

current. In TPV, thermally radiated photons are absorbed in a low-bandgap semiconductor and 36 

excite electron-hole pairs, which are selectively collected to produce an electrical current. Both 37 

TPV and TIC have already demonstrated higher conversion efficiencies than TEG at 38 

temperatures beyond 1000 ºC (~ 24 % for TPV 6,7 and ~ 11% for TIC 1). However, the power 39 

density is comparatively very low (e.g. less than 1 W/cm2 for TPV at 1039 ºC 6, while ~ 20 40 

W/cm2 for TEG at 595 ºC 8). The main reason is the lower energy flux of radiated particles 41 

compared with that carried by the electrons moved by a temperature gradient within a solid, as 42 

in TEG. 43 

Boosting the power density of TIC and TPV is the motivation of current research efforts that 44 

aim at increasing the flux of radiated photons (for TPV) and electrons (for TIC). For TIC, most 45 

of the research focuses on reducing the workfunction of the emitter and collector, along with 46 

reducing the accumulated space-charge by applying magnetic fields or by reducing the vacuum 47 

gap that separates the cathode and the anode to micrometric scales 1,2. For TPV, at least three 48 

strategies were proposed for increasing the energy flux of radiated photons at moderate 49 

temperatures: light-pipe TPV (LTPV) 9, thermophotonics (TPX) 10, and near-field 50 

thermophotovoltaics (nTPV) 11. Recently, a combination of the last two has been also proposed 51 

12. nTPV is the strategy with the highest theoretical potential. It consists of creating nanoscale 52 

vacuum gaps between the emitter and the photovoltaic (PV) cell, so that evanescent waves 53 

(photons) tunnel from the emitter to the cell and contribute to generating electrical power. Near-54 

field thermal radiation transport was thoroughly investigated from both theoretical and 55 

experimental points of view 13,14, and its potential use for heat-to-electricity conversion widely 56 

analyzed 15. Only very recently the proof-of concept of nTPV has been finally achieved by 57 

measuring a 40-fold enhancement of the electrical output power at gap distances of less than 58 

100 nm 16. However, nTPV has (at least) two main relevant issues that may impede its further 59 

deployment: first, the quite high ohmic losses due to the very high current densities that must 60 

flow laterally through thin semiconductor layers within the PV cell; second, the very small 61 

vacuum gaps that are needed to obtain a significant improvement in electrical power density.  62 

In this work, we present a theoretical analysis of a thermionic-enhanced nTPV device (nTiPV) 63 

that eliminates the ohmic losses and enables higher power densities at larger gap distances than 64 

conventional nTPV. It is the aim of this work to illustrate the theoretical potential of a specific 65 

device with a medium-grade heat source operating at a temperature of 1000 K. 66 
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2. Device concept 67 

Figure 1 shows the band diagram of the proposed device, which is the near-field counterpart of 68 

the hybrid thermionic-photovoltaic concept introduced previously 17. The system consists of a 69 

graphite emitter and an InAs (bandgap of 0.35 eV at 300 K) PV cell separated by a distance d. 70 

The emitter and the PV cell are coated with very thin (~ 1-2 nm) transparent H-terminated 71 

diamond films, which have been proved experimentally to provide workfunctions in the range 72 

of around 1.4 eV (N-doped films 18) down to around 0.9 eV (P-doped films 19). The emitter is 73 

heated by an external heat source, and subsequently radiates photons and electrons towards the 74 

PV cell. Due to the emission of electrons, the emitter surface is charged positively. Thus, the 75 

radiated electrons are attracted back, and if the distance d is relatively large, they accumulate in 76 

the vacuum gap. This regime of operation is named “space-charge-limited” mode, and it is 77 

characterized by additional potential barriers ɸEM and ɸCM that oppose to the electrons’ flow. On 78 

the contrary, if the distance d is small, the radiated electrons are effectively collected at the InAs 79 

PV cell surface, without accumulating in the gap, subsequently eliminating any kind of potential 80 

barrier, and leading to a drastic enhancement of the thermionic current. When the thermionically 81 

emitted electrons reach the PV cell surface, they recombine with the holes photogenerated in the 82 

PV cell. Ideally, no electrical potential is created in this process, as in ideal ohmic contacts. 83 

Therefore, the full PV cell front side behaves as a transparent collector that ensures the wireless 84 

electrical connection between the emitter and the PV cell. The output voltage is thus the 85 

addition of the thermionic voltage ( , generated between the emitter and the front side of the 86 

PV cell) and the photovoltaic voltage ( , generated between the front and rear sides of the PV 87 

cell). Remarkably, this design avoids the use of front metal grids, eliminating the subsequent 88 

shadowing losses, and mitigating the challenges of nano-gap implementation in space-89 

constrained near-field TPV devices. In conventional PV cells, either in front- or back-contacted 90 

configurations, the main contributors to the ohmic losses are the currents that flow laterally 91 

through the semiconductor and metal layers. These losses are fully eliminated in the nTiPV 92 

device, where the current flow is nearly unidirectional and transversal to the device’s area. 93 

Results will show that this is a particularly significant benefit for near-field operation, which 94 

involves very large current densities. 95 

The far-field counterpart of this device 17 is being experimentally developed 20,21. The 96 

experimental device operates in ultra-high vacuum (UHV) conditions and uses dielectric micro-97 

spacers to create a micrometer vacuum gap between the emitter and the PV cell. Modern 98 

microfabrication techniques already enabled the development of thermally and electrically 99 

insulated spacers that withstand large temperature gradients. These techniques eventually 100 

enabled the experimental demonstration of micron-gap TIC 22,23. Sub-micron separation 101 

distances were also experimentally realized using nano-spacers in the frame of near-field 102 
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thermal radiation experiments 24–27. Despite the recent experimental demonstration of nTPV 16 103 

was realized using a suspended emitter and precise alignment tools, current research efforts 104 

target the integration of spacers into stable nano-gap nTPV devices 28. All these recent 105 

progresses should be directly transferrable to the experimental implementation of nTiPV 106 

devices. 107 

3. Methods 108 

Analysis of the nTiPV device described above requires the calculation of the total net flux of 109 

photons and electrons through nanoscale vacuum gaps, along with the generated current-voltage 110 

characteristics for both thermionic and photovoltaic converters in the near field. 111 

For the thermionic part, the electrons’ energy flux ( ), the generated current density ( ) and 112 

output voltage ( ), can be calculated by neglecting collector’s back emission as  29 113 

2
 114 

 115 

 116 

where A is the Richardson-Dushman constant, k is the Boltzman constant, q is the electron’s 117 

charge, and  is the emitter temperature.  is the maximum of the electric potential created 118 

along the inter-electrode gap (Figure 1). In the space-charge-limited mode, 	  119 

or 	 ,  ( ) being the emitter’s (collector’s) workfunction. The 120 

values of energy barriers  and  can be calculated using the Langmuir theory 29. This 121 

theory assumes one-dimensional and collision-less electron flow with a half-Maxwellian 122 

distribution of velocities. In the so-called retarding mode,  is large enough to locate the 123 

maximum of the electrostatic potential at the collector’s surface, i.e. . The 124 

latter will be the most typical case in the near field, where the very small inter-electrode 125 

distance will nearly eliminate the barriers  and  and the maximum power point (MPP) 126 

will happen at  and . In order to analyze the theoretical potential of 127 

the concept, a Richardson constant of 120 A/cm2 is assumed. Significant deviations from this 128 

theoretical value are possible depending on the experimental conditions of the deposition of the 129 

emitter film, as well as on the interfacial layers that could be created during this process 18. 130 

For the photovoltaic part, the photons’ energy flux is calculated using fluctuational 131 

electrodynamics 30 and the S-matrix method for 1D-layered media 31. The current density ( ) – 132 

voltage ( ) characteristic is calculated by solving the minority carrier diffusion equation in 133 
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the frame of the low-injection approximation, using methods described elsewhere 32,33. The 134 

device consists of four layers sandwiched between two semi-infinite media, respectively made 135 

of graphite (emitter, semi-infinite), vacuum (gap with variable thickness d), p-doped InAs (Na = 136 

1018 cm-3, 0.75 m thick), n-doped InAs (Nd = 1016 cm-3, 6 m thick), gold (back surface 137 

reflector, 200 nm thick) and vacuum (semi-infinite). Radiative, Auger, and Shockley–Read–138 

Hall (SRH) recombination mechanisms are considered with parameters from 34, along with 139 

finite doping and temperature-dependent mobilities for electrons and holes 35. The model 140 

assumes that the thermionic layer on the PV cell does not modify the PV cell band diagram in a 141 

way that holes could not diffuse towards the thermionic collector. This is a reasonable 142 

assumption given the presence of electrically active defects in the semiconductor-diamond 143 

interface, as well as the very high doping levels of both the p-doped InAs layer and the diamond 144 

thin film, both effects preventing the creation of Schottky barriers in the semiconductor-145 

diamond interface 18,36,37. Optical properties of InAs corresponding to interband absorption and 146 

interactions with free carriers and phonons, are calculated using the method described in 38 and 147 

the Drude-Lorentz model 39, respectively, with the parameters of 40. The Drude model is used 148 

for gold 41. For the sake of simplicity, diamond layers are omitted in the radiation transfer 149 

calculations. Their impact on emission by the graphite emitter and absorption by the InAs cell is 150 

assumed to be negligible, because layers are every thin (~1-2 nm), diamond’s extinction 151 

coefficient is weak, and diamond’s refractive index is of intermediate level between that of 152 

graphite and indium arsenide 42. 153 

Finally, the nTiPV conversion efficiency is given by 154 

max 155 

where max is the maximum electrical power at a current density 156 

 and voltage . 2⁄  is the minimum 157 

amount of heat lost through the emitter’s leads having an electrical resistance ,  is 158 

the Lorentz number of the metal 29, and 2⁄  represents the heat generated in the 159 

leads by Joule effect that is turned back to the emitter,  being the device area, equal to 1 cm2 in 160 

the current study. The value of  can be optimized to fulfil a trade-off between heat losses 161 

and power generation that ultimately maximizes conversion efficiency. For comparison 162 

purposes, the conversion efficiency of a standalone nTPV device is calculated by 163 

max⁄ ,  being the PV cell series resistance in Ω·cm2. In every 164 

calculation involving the search for maximum values, the Nelder-Mead algorithm is used 43. 165 

 166 
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4. Results and Discussion 167 

Figure 2 (a) (Figure 2 (b)) shows the generated current density (voltage) of the nTiPV device as 168 

a function of gap distance d. Results are shown for two values of the emitter workfunction 169 

( 1.3 and 1.4 eV), a fixed collector’s workfunction ( 1 eV), and an emitter temperature 170 

of 1000 K. The lead resistance ( ) is optimized at every distance to maximize the 171 

nTiPV conversion efficiency. The voltage generated in the photovoltaic ( ) and thermionic 172 

( ) stages is also shown in Figure 2 (b), along with the voltage drop in the leads ( 	 ). 173 

As explained in the previous sections, both thermionic and photovoltaic currents must be 174 

identical within the nTiPV device due to the series interconnection, i.e. . This 175 

means that their respective internal voltages,  and  (see Figure 2 (b)), must be adapted to 176 

meet this condition. However, the maximum power density attainable for each sub-device 177 

would be higher if they were biased independently. This is illustrated in Figure 2 (a), which also 178 

shows the current densities at the MPP for the independently-biased thermionic ( ∗ ) and 179 

photovoltaic ( ∗ ) devices. This information is valuable for the following discussion. 180 

There are three main different regions in Figure 2 (a). For large distances, thermionic emission 181 

is strongly reduced by the space-charge effect, also illustrated by the larger thermionic voltage 182 

contribution in Figure 2 (b), and limits the total current of the nTiPV device. This causes the PV 183 

cell to be biased near open circuit. For intermediate distances, the space charge is mitigated and 184 

the flux of thermionically emitted electrons exceeds that of photogenerated charges in the PV 185 

cell. This causes an increase (decrease) of the thermionic (photovoltaic) voltage that reduces 186 

(increases) the thermionic (photovoltaic) current until both thermionic and photovoltaic currents 187 

are identical. In this region, the thermionic device undergoes the transition from space-charge-188 

limited to saturation mode, and the photovoltaic device undergoes the transition from far field to 189 

near field. The third region corresponds to the smallest distances at which photovoltaic 190 

photogeneration exceeds the thermionic electrons’ flux due to the strong near-field enhancement 191 

of photons’ flux. In this region, the thermionic current is already saturated, with no space-charge 192 

effect, and limits the total current of the nTiPV device. Saturation of the thermionic sub-device 193 

is characterized by voltages approaching  at very small distances (0.3 and 0.4 eV 194 

in Figure 2 (b)). The transitions through these three regimes take place at two specific distances 195 

for which both thermionic and photovoltaic currents are equal. There is one in the near field and 196 

another in the far field. Only at these specific distances, both thermionic and photovoltaic sub-197 

devices are biased simultaneously at their respective MPP. In all other situations, one of the 198 

devices produces a lower current and it is consequently biased at larger voltages than that of its 199 

MPP. 200 
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Figure 3 shows the maximum electrical power density (Figure 3 (a)) and conversion efficiency 201 

(Figure 3 (b)) of nTiPV as a function of gap distance. Figure 4 rearranges the results from these 202 

figures to show conversion efficiency as a function of electrical power density. Results for two 203 

kinds of “conventional” nTPV devices are also included: “ideal” nTPV assumes negligible 204 

ohmic losses, and “real” nTPV assumes a PV cell with a series resistance of 10 mΩ·cm2.  205 

nTiPV generally outperforms nTPV, especially when considering a “real” nTPV device with 206 

non-negligible ohmic losses. Even in the case of an “ideal” nTPV (with negligible ohmic losses) 207 

nTiPV outperforms nTPV provided that the inter-electrode distance is larger than 100 nm and 208 

the emitter workfunction is lower than 1.5 eV. Impact of the emitter workfunction is evident for 209 

small distances, where a low emitter workfunction (e.g. 1.3 eV) is needed to produce a 210 

high enough thermionic current and fully exploit the enhancement of the photovoltaic power 211 

generation in the near field. In the case of larger emitter workfunctions, the low thermionic 212 

current limits the total current of the device and near-field effects are not fully exploited. At 213 

larger distances, impact of the emitter’s workfunction is negligible because the nTiPV device is 214 

limited either by the photovoltaic current or by the space charge. Quite importantly, nTiPV 215 

produces a significantly higher power at larger (more feasible) gap distances (Figure 3 (a)). For 216 

instance, a nTiPV device with an emitter (PV cell) surface workfunction of 1.3 eV (1 eV) 217 

produces 6.73 W/cm2 for a gap distance of 100 nm. This is 3.7 times more electrical power than 218 

an idealized nTPV device with negligible ohmic losses (1.82 W/cm2), and 10.7 times more 219 

electrical power than a realistic nTPV device having a series resistance of 10 mΩ·cm2 (0.63 220 

W/cm2). Besides, the conversion efficiency is similar to that of an idealized nTPV device (~ 18 221 

%), but significantly higher than that of a realistic nTPV device with non-negligible ohmic 222 

losses (6.4 %). Generally speaking, we can state that nTiPV operating at 1000 K theoretically 223 

enables reaching power densities and conversion efficiencies greater than 10 W/cm2 and 15 %, 224 

respectively, while realistic nTPV is limited to ~ 1 W/cm2 and ~ 7 % (Figure 4). 225 

5. Conclusions 226 

We have established a conceptual thermionic-enhanced near-field thermophotovoltaic (nTiPV) 227 

device for the conversion of medium-grade heat into electricity. The converter comprises an 228 

InAs photovoltaic cell and a graphite emitter separated by a nanometric vacuum gap, both 229 

elements having engineered low workfunctions. Based on an analytical theoretical model that 230 

combines fluctuational electrodynamics and the Langmuir theory, we have shown that nTiPV 231 

produces significantly higher electrical power (6.73 W/cm2) and conversion efficiency (18 %) 232 

than conventional near-field thermophotovoltaics (nTPV) using moderately large gap distances 233 

(100 nm). The major advantages are the elimination of the ohmic losses and the enhancement of 234 
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the output voltage. According to these results, nTiPV could significantly outperform current 235 

thermoelectric devices for the conversion of medium-grade heat sources into electricity. 236 
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 344 

Figure 1. Band diagram of the proposed nTiPV device comprising a C thermal emitter and an 345 

InAs PV cell with engineered low workfunction materials and/or coatings. The thermally excited 346 

electrons having enough energy to overcome the emitter workfunction  and space-charge 347 

barrier  are radiated towards the InAs PV cell, which is separated by distance d from the 348 

emitter. The electrons are collected at the PV cell surface, also named collector, which is biased 349 

at voltage . The photons are absorbed within the PV cell and generate an electron-hole pair. 350 

The photogenerated holes recombine with the thermionically collected electrons coming from 351 

the emitter. The photogenerated electrons are collected in the rear contact, which also 352 

comprises a gold back surface reflector (BSR). The electrochemical potential of electrons 353 

gradually increases from µe1 (when injected in the emitter from the lead), to µe2 (after being 354 

collected in the PV cell surface) and finally to µe3 (when collected in the rear terminal of the PV 355 

cell). 356 

 357 

http://dx.doi.org/10.1063/1.5078602


12 
 

 358 

 359 

Figure 2. Current densities (a) and voltages (b) of nTiPV as a function of gap distance between 360 

the emitter and the PV cell. The current densities for the photovoltaic and thermionic sub-361 

devices are identical in the nTiPV device, but independently-biased photovoltaic and thermionic 362 

current densities are shown in (a) to illustrate which of them is limiting the total device current. 363 

Different workfunctions of the emitter (ɸE) are considered.  is optimized at every distance 364 

to maximize the nTiPV conversion efficiency. The device area is 1 cm2. 365 

 366 
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 368 

Figure 3. Electrical power density (a) and conversion efficiency (b) of nTiPV and nTPV 369 

converters as a function of gap distance between the emitter and the PV cell. Different 370 

workfunctions of the emitter (ɸE) are considered for nTiPV. “ideal” and “real” nTPV refer to 371 

the case with negligible ohmic losses and the more realistic case with a series resistance of 10 372 

mΩ·cm2, respectively.  is optimized at each distance to maximize the nTiPV conversion 373 

efficiency. The device area is 1 cm2. 374 
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 375 

Figure 4. Conversion efficiency as a function of electrical power density for nTiPV and nTPV 376 

converters, rearranged from the results shown in Figure 3. Different workfunctions of the 377 

emitter (ɸE) are considered for nTiPV. “ideal” and “real” nTPV refer to the case with 378 

negligible ohmic losses and the more realistic case with a series resistance of 10 mΩ·cm2, 379 

respectively.  is optimized at each distance to maximize the nTiPV conversion efficiency. 380 

The device area is 1 cm2. 381 
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