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Abstract 11 

Transcription factors (TF) are key cellular components that control gene expression. 12 

They recognize specific DNA sequences, the TF binding sites (TFBS), and thus are 13 

targeted to specific regions of the genome where they can recruit transcriptional 14 

cofactors and/or chromatin regulators for fine-tuning spatiotemporal gene regulation. 15 

Therefore, the identification of TFBS in genomic sequences and their subsequent 16 

quantitative modeling is of crucial importance for understanding and predicting gene 17 

expression. Here, we review how TFBS can be determined experimentally, how the 18 

TFBS models can be constructed in silico, and how they can be optimized by taking 19 

into account features such as position interdependence within TFBSs, DNA shape 20 

and/or by introducing state-of-the-art computational algorithms such as deep learning 21 

methods. In addition, we discuss the integration of context variables into the TFBS 22 

modeling, including nucleosome positioning, chromatin states, methylation patterns, 23 

3D genome architectures and TF cooperative binding, in order to better predict TF 24 

binding under cellular contexts. Finally, we explore the possibilities of combining the 25 

optimized TFBS model with technological advances such as targeted TFBS 26 

perturbation by CRISPR to better understand gene regulation, evolution and plant 27 

diversity.  28 

Running title: Modeling TF binding sites in plants 29 
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Introduction 30 

Transcription factors (TFs) are sequence-specific DNA-binding proteins that regulate 31 

gene expression in all organisms (Lelli et al., 2012; Lambert et al., 2018). They 32 

constitute a large number of protein-coding genes (between 4% to 10%) in the 33 

genomes of all species (Babu et al., 2004). For example, in the model plant 34 

Arabidopsis thaliana, 2492 genes encode TFs, accounting for more than 9% of its 35 

total protein coding genes (Swarbreck et al., 2008; Pruneda-Paz et al., 2014). TFs 36 

orchestrate gene regulation by binding to their cognate DNA binding sites (TFBS) 37 

that are usually located in cis-regulatory regions. Upon binding to a TFBS, some TFs 38 

are able to recruit epigenetic factors, such as chromatin remodelers (e.g. BRAHMA 39 

and SPLAYED in plants (Bezhani et al., 2007)) or modifiers (e.g. Polycomb 40 

Repressive Complexes (PRC) (Xiao and Wagner, 2015)) to alter chromatin states. 41 

TFs can also interact with components of transcriptional machineries, such as co-42 

factor (e.g. Mediator and SAGA complexes in animals (Allen and Taatjes, 2015; 43 

Baptista et al., 2017)), general transcriptional factors (Müller et al., 2010) and RNA 44 

polymerase II for regulation of transcriptional initiation. The interplay between TFs 45 

and these factors together leads to robust and dynamic gene expression regulation 46 

(Spitz and Furlong, 2012; Voss and Hager, 2013). 47 

TFs recognize TFBS in a sequence-specific manner as revealed by structural studies 48 

of protein-DNA complexes (Paillard and Lavery, 2004; Rohs et al., 2010) and next 49 

generation sequencing (NGS) techniques such as SELEX-seq and ChIP-seq (Table 50 

1). In the last decade, these NGS techniques have revolutionized the exploration of 51 

the TF binding landscape both in vitro and in vivo (Koboldt et al., 2013). This has 52 

resulted in many databases for TFBS deposition and profiling, such as TRANSFAC 53 

(Matys et al., 2006), JASPAR (Khan et al., 2018), UniPROBE (Hume et al., 2015), 54 

HOCOMOCO (Kulakovskiy et al., 2013), CIS-BP (Weirauch et al., 2014) and 55 

SwissRegulon (Pachkov et al., 2013). Such efforts have substantially boosted our 56 

understanding of interactions between TFs and TFBSs in different species, tissues 57 

and different developmental stages. While a great deal of progress has been made to 58 

map TFBS, the resulting models are often poorly predictive of actual gene regulation. 59 

This can be due to poor modeling and prediction of TFBS, non-productive TF binding 60 

(i.e. that does not result in gene regulation) or a combination of the two. Here, we will 61 
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focus on the more tractable question of how to model TFBS. As transcriptional 62 

regulation is a highly dynamic process that occurs in a cell and tissue-specific 63 

manner, to better understand such a complex process unbiased quantitative 64 

modeling of TFBS with improved prediction power of TF binding is highly demanded. 65 

This includes taking into account of variables such as nucleosome positioning, 66 

chromatin states, methylation patterns and the 3D structure of the genome, all of 67 

which greatly impact transcription factor binding and, for a subset of these binding 68 

events, gene expression. Therefore, these variables need to be incorporated into any 69 

model to better describe functional TF binding in vivo and the concomitant gene 70 

regulation. 71 

In this review, we address how TFBS are identified experimentally, how the TFBS 72 

models can be built in silico, and their optimization strategies. We further integrate 73 

context variables into the TFBS model in order to better understand gene regulation 74 

networks, evolution and plant diversity (for an outline of the review, refer to Figure 1). 75 

Throughout the review, we use examples from case studies of TFs that are involved 76 

in flower development, a developmental transition that involves the activation of a 77 

wealth of genes that are otherwise silent and the concomitant repression of a subset 78 

of genes. 79 

TFBS modeling  80 

TFs read genomic DNA sequences in three fundamental ways, namely base readout, 81 

indirect readout and shape readout (Rohs et al., 2010; Slattery et al., 2014). In base 82 

readout, TFs recognize a given nucleotide sequence by physical interactions 83 

between amino acid side chains and accessible edges of the base pairs of DNA. 84 

These interactions include hydrogen bonding, hydrophobic interactions and the 85 

formation of salt bridges. Indirect readout involves mostly interactions between the 86 

TF and the DNA phosphate backbone, whose position is influenced by the nature of 87 

the base but not as strongly as in base readout. In shape readout (Abe et al., 2015; 88 

Yang et al., 2017), TFs recognize the structural features of DNA, such as DNA 89 

bending, groove width and unwinding (Stella et al., 2010; Chen et al., 2013; Hancock 90 

et al., 2013). Although once considered as mutually exclusive driving forces for DNA 91 

recognition, recent studies have shown that most TFs likely combine base, indirect 92 

and shape readout to recognize their TFBSs. Indeed, the integration of these 93 



 4 

features has been shown to improve TFBS prediction (Zhou et al., 2015; Mathelier et 94 

al., 2016). 95 

Experimental methods to identify TFBS 96 

With the emergence of NGS technologies, many NGS-based methodologies, both in 97 

vitro and in vivo, have been developed for determining TFBSs. Here we concentrate 98 

on some of the most widely used and recently developed methods and discuss their 99 

advantages and limitations (Table 1). 100 

ChIP-seq has long been the gold standard for detecting genome-wide TFBSs bound 101 

by a given TF in vivo (Johnson et al., 2007; Robertson et al., 2007; Kaufmann et al., 102 

2010). In a standard ChIP-seq protocol, sample tissues are treated with a 103 

crosslinking reagent and subjected to nuclei purification to isolate chromatin 104 

containing TF-DNA complexes. Generally, an additional step of chromatin shearing 105 

by sonication is applied before the final step of chromatin immunoprecipitation (IP) 106 

using a TF-specific antibody. The IP product containing enriched DNA fragments that 107 

are recognized by the TF of interest is then subjected to NGS sequencing. ChIP-seq 108 

has been successfully used routinely in many laboratories. However, standard ChIP-109 

seq protocols have intrinsic limitations and technical drawbacks (Park, 2009). One of 110 

the limitations comes from sonication, a process that is highly irreproducible and 111 

produces variable DNA fragment sizes that are difficult to sequence. The other 112 

limitation is crosslinking, which produces low signal to noise ratio and many false 113 

positives. To overcome such limitations, many ChIP-seq variant methods have been 114 

developed, including ORGANIC (Kasinathan et al., 2014), ChEC-seq (Zentner et al., 115 

2015), CUT&RUN (Skene and Henikoff, 2017) and SLIM-seq (Gutin et al., 2018) 116 

(refer to Table 1 for unique features and details of these methods), all of which use 117 

micrococcal nuclease (MNase) to fragment chromatin, therefore avoiding sonication. 118 

Due to the mild conditions of DNA fragmentation by MNase, these methods do not 119 

denature or disrupt TF-DNA complexes and eliminate the requirement of 120 

crosslinking. These protocols also require substantially lower amounts of input 121 

materials and are thus feasible for low-input applications. Processing of IP enriched 122 

DNA fragments for downstream NGS application poses another challenge in ChIP-123 

seq and is often time-consuming. To simplify the process, ChIPmentation applies 124 

Tn5 transposase directly to bead-bound chromatin, allowing single-step NGS 125 

compatible DNA library preparation (Schmidl et al., 2015) (Table 1). 126 
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ChIP-seq and its variants not only identify TFBSs in vivo, but also provide a wealth of 127 

information such as detection of binding sites bound by co-binders of the TF. As 128 

such, however, this also poses a challenge in distinguishing the true TFBSs from 129 

indirect binding mediated by a TF partner. ChIP-seq can be complemented by DNA 130 

binding assays performed in vitro using recombinant TFs. Among the most widely 131 

used in vitro techniques are protein binding microarrays (PBM) (Berger et al., 2006; 132 

Berger and Bulyk, 2009) and SELEX-seq (Jolma et al., 2010) (Table 1). Both 133 

methods allow high-throughput identification of TF binding specificities in vitro, with 134 

such information useful to predict TFBS in genomic sequences, however, they 135 

employ synthetic randomized DNA that lack at least some genomic DNA sequence 136 

properties known to impact TF binding, including non-physiological primary 137 

sequences, core motif flanking regions, and lack of chemical modifications, such as 138 

cytosine methylation. To overcome these biases, DAP-seq (DNA affinity purification 139 

sequencing) has been recently developed, which uses fragmented genomic DNA as 140 

substrates for IP and recombinant TFs (O’Malley et al., 2016; Bartlett et al., 2017) 141 

(Table 1). As DNA methylation patterns are conserved in genomic DNA, DAP-seq 142 

allows genome-wide mapping of the epicistrome and the discovery of TF binding 143 

specificity from genomic DNA. Furthermore, when combined with ampDAP-seq, 144 

which uses amplified and thus demethylated genomic DNA as substrates, a 145 

comprehensive mapping of both the cistrome and the epicistrome can be derived for 146 

a given TF. Compared with ChIP-seq and its variants, DAP-seq can be performed in 147 

a high-throughput manner with lower costs, as recently demonstrated (O’Malley et 148 

al., 2016). Despite these advantages, DAP-seq has its limitations, for example, some 149 

TFs are not stable when recombinantly expressed and thus not compatible with DAP-150 

seq, others require interacting partners for their DNA binding activity, and many TFs 151 

have distinct DNA binding properties in the presence of co-factors. These limitations 152 

have to be taken into account during experiment design and data analysis. Moreover, 153 

it has to be noted that DAP-seq lacks cellular chromatin context, therefore, 154 

combination of in vitro DAP-seq and in vivo ChIP-seq would be an informative 155 

approach regarding TFBS modeling and in vivo TF binding prediction. 156 

Model TFBS in silico  157 

In order to make accurate de novo prediction of binding sites of a given TF in the 158 

genome, a quantitative TFBS model that is representative of TF-DNA binding affinity 159 
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is required. This could be derived from a set of known TFBSs using computational 160 

methods. Here we discuss how conventional modeling methods could be improved 161 

by integrating complex features, such as sequence position dependencies and DNA 162 

shape features, which have been shown to play a role in determining TF-DNA 163 

specificity. We focus on the most recent and representative TFBS modeling 164 

algorithms (Table 2), other algorithms have been extensively reviewed elsewhere 165 

(Tompa et al., 2005; Hombach et al., 2016).  166 

Position weight matrix 167 

Position weight matrix (PWM) is the most widely used model to represent TF-DNA 168 

binding specificity (Schneider and Stephens, 1990; Stormo and Zhao, 2010). Briefly, 169 

from a collection of TFBSs, a matrix is built that gives the frequency of each 170 

nucleotide at each position of the motif. Based on these frequencies, a PWM or 171 

position specific scoring matric (PSSM) can be computed that gives a log-scale value 172 

to each nucleotide at each position. Based on the PWM, a score can be calculated 173 

for any sequence corresponding to the sum of all values at each position. The logo 174 

representation of a PWM illustrates the information content at each position and 175 

represents the four bases depending on their frequency (Figure 2). 176 

Dependencies 177 

PWMs provide good approximation of TF-DNA interactions in most cases, and can 178 

be generated from various datasets, ranging from a small set of known TFBSs to TF-179 

DNA binding data derived from high-throughput assays. However, standard PWM 180 

assumes that each position within a TFBS contributes to binding affinity independent 181 

of other positions, and is thus unable to represent inter-base dependencies, which 182 

have been observed for some TFs (Bulyk, 2002; Tomovic and Oakeley, 2007; Badis 183 

et al., 2009). Various models that take into account these dependencies have been 184 

shown to outperform standard PWM in de novo prediction. For example, the 185 

MORPHEUS program allows to introduce di- and tri-nucleotide position 186 

dependencies in PWM and has been successfully applied to plant TFs with, in some 187 

cases, improved predictive power (Moyroud et al., 2011; Minguet et al., 2015) (Table 188 

2).  189 

Several approaches can be taken with respect to how and what dependencies are to 190 

be integrated into the modeling algorithm. Some consider pairwise dependencies 191 
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between adjacent and/or distal positions, such as the binding energy model (BEM) 192 

(Zhao et al., 2012), dinucleotide weight matrices (DWM) (Siddharthan, 2010) and TF 193 

Flexible Model (TFFM) (Mathelier and Wasserman, 2013) (Table 2). Others 194 

introduce higher-order k-mer features, that take into account all possible sequences 195 

with length k, such as the feature motif model (FMM) (Sharon et al., 2008) (Table 2). 196 

In some cases, model complexity can increase dramatically when arbitrary positions 197 

or unconstrained k-mer features are used and become prone to be overfitting. 198 

Alternative approaches start from a model without dependencies, and use a greedy 199 

algorithm to improve the model by adding dependency features iteratively (Hu et al., 200 

2010; Santolini et al., 2014). Thus, dependency features are iteratively added until no 201 

further feature could be found to improve the model. Others use Bayesian Markov 202 

models (BaMM) of order k that take into account dependencies between one 203 

nucleotide and the k previous positions (Kiesel et al., 2018). Complex models 204 

integrating dependency features generally outperform simple PWM models, however, 205 

some of these models require more expertise to apply and repeated manual attempts 206 

to be trained correctly and are thus not facile to use. This constitutes one of the 207 

limiting factors that restricts these models from being used routinely in the community. 208 

In Table 2 we summarize features of some of the most recent models.  209 

Shape features 210 

Sequence-based models provide accurate estimation of base readout, however, it 211 

cannot explain why some TFs, which have highly conserved DNA-binding domains, 212 

bind different sequences genome-wide. For example, the TF paralogs, androgen and 213 

glucocorticoid receptors, which bind similar DNA motifs by a set of identical amino 214 

acids (Shaffer et al., 2004; Meijsing et al., 2009), share only a third of their genomic 215 

binding sites (Zhang et al., 2018a). It turns out that DNA shape features contribute 216 

significantly to distinguish bona fide TFBSs from others. In the last decade, many 217 

studies have revealed that indeed DNA shape features play an important role for 218 

determining TF-DNA binding specificity (Rohs et al., 2009; Abe et al., 2015; Yang et 219 

al., 2017). A most recent example is the MADS-box TF, SEPALLATA3 (SEP3), a key 220 

regulator of flower organ specification (Muiño et al., 2014; Hugouvieux et al., 2018). 221 

MADS-box TFs bind to CArG-boxes with consensus sequence of 5’-CC(A/T)6GG-3’, 222 

yet only a fraction of the CArG-boxes available genome-wide is bound by SEP3. 223 

Käppel and colleagues showed that SEP3-DNA binding affinity correlates well with 224 
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the width of minor groove of CArG-boxes probes, a shape readout mechanism 225 

involves a conserved arginine residue that contact minor groove (Käppel et al., 2018). 226 

Although shape features are mainly determined by the TFBS core motif, it can also 227 

be affected by flanking regions. In the past, these regions have been overlooked in 228 

characterizations of TF binding due to their low sequence information. Now both 229 

bioinformatic analysis and biochemical evidence have accumulated pointing towards 230 

their importance for TF binding. For example, Dror and colleagues showed a 231 

widespread role of the motif environment in TF binding by analyzing some 300 TFs 232 

binding data from SELEX-seq and ChIP-seq, and that the preference for a specific 233 

environment differs between distinct TF families (Dror et al., 2015). Selective binding 234 

of core motifs with different flanking sequences have also been observed by in vitro 235 

assays for several TFs (Gordân et al., 2013; White et al., 2013; Afek et al., 2014; 236 

Levo et al., 2015). 237 

Introducing shape features into TFBSs modeling requires integrating several distinct 238 

shape parameters, including Minor Groove Width, Propeller Twist, Roll and Helix 239 

Twist. These features have been shown to be distinguished by different TFs (Yang et 240 

al., 2014). Very recently, nine additional shape features were introduced to the 241 

repertoire in order to better describe the unique 3D structure encoded in a given DNA 242 

sequence (Li et al., 2017). Apart from ‘naked’ DNA shape features, DNA methylation 243 

on cytosine residues also affects DNA structure, making it a unique type of shape 244 

feature that could be recognized by many TFs (Lazarovici et al., 2013; Yin et al., 245 

2017; Rao et al., 2018). Several TFBS modeling methods that take into account 246 

shape features (some combined with sequence-based features) have been 247 

developed, and show improvement compared with only sequence feature-based 248 

models (Table 2). However, these models use DNA shape information generated 249 

from computational simulations, such as Monte Carlo or Molecular Dynamics, and 250 

potential biases exist. Improvements have already been obtained by integrating DNA 251 

shape information derived from experimental data, such as X-ray crystallography (Li 252 

et al., 2017). Thus, one major challenge regarding incorporating shape features into 253 

TFBS modeling is to derive unbiased DNA structural data in a high-throughput 254 

manner that has been robustly verified experimentally, which currently is a challenge. 255 

The other challenge is that both DNA conformation (Azad et al., 2018) and TF 256 

conformation (Patel et al., 2018) could be changed in an adaptation mechanism upon 257 
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interacting with each other due to both protein and DNA plasticity. This makes 258 

integrating shape feature even more difficult as it changes dynamically. 259 

Energy- and deep learning-based models 260 

Energy based biophysical models are a powerful alternative to probabilistic models 261 

such as PWM. They use the action mass law to characterize amino-acid and DNA 262 

interaction and are valid on a wider range of protein concentrations than probabilistic 263 

models, that in fact represent an approximation of energy-based models. Whenever 264 

they can be built, and several methods exist based on PBM or SELEX-seq for 265 

example, they should be preferred without disadvantages except PWM are the 266 

simplest to build (Zhao et al., 2009; Stormo, 2013; Ruan and Stormo, 2017). 267 

Machine learning methods, such as deep learning, are able to leverage very large 268 

datasets to discover intricate connections within them and make accurate predictions 269 

(Lecun et al., 2015). In the last few years, deep learning has been increasingly 270 

applied to resolve complex biological problems, including those from regulatory 271 

genomics (Angermueller et al., 2016). Several methods based on deep learning have 272 

been developed to model TF-DNA binding specificity or to predict TF in vivo binding, 273 

including DeepBind (Alipanahi et al., 2015), DeepSEA (Zhou and Troyanskaya, 274 

2015), TFImpute (Qin and Feng, 2017), DeFind (Wang et al., 2018a) and DFIM 275 

(Greenside et al., 2018) (Table 2). Advantages of these models include for example, 276 

1) they can be trained from various types of sequencing data in either alone or 277 

integrated manner, and can be further combined with other information, such as 278 

DNase I hypersensitivity data, for better in vivo TFBSs prediction (Zhou and 279 

Troyanskaya, 2015); 2) they can tolerate a certain degree of noise stemming from 280 

either data acquisition technology or sequencing biases; 3) they can train predictive 281 

models fully automatically, alleviating the need for time-consuming manual 282 

intervention and expertise; 4) they can accurately identify genomic variants in the 283 

regulatory region, and indicate how variations affect TF binding within a specific 284 

sequence. However, one of the yet to be tackled difficulties of deep learning models 285 

is that they are more difficult to interpret than PWMs given the hidden layers in the 286 

networks. More information of these models and their unique properties can be found 287 

in Table 2. To conclude, it is worth mentioning that, until now, no single model has 288 

been identified to be the best for all TFs and the nature of the most adequate model 289 

depends on the individual TF.  290 
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Link between models and TF 3D structure 291 

TFBS models derived from NGS allow a broad overview of where TFs are able to 292 

bind and their sequence specificity. Structures of TF-DNA complexes provide 293 

complementary information by identifying the amino acids and specific bases 294 

involved in TF-DNA interactions. These structural data not only explain base and 295 

shape readout at the residue and even atomic level, but also allow for the prediction 296 

of how amino acid mutations and/or changes in a given cis-element will affect TF 297 

binding. Indeed, many diseases resulting from gene misregulation are due to either 298 

mutations in a TF or alterations in its binding site. Combining the “go broad” NGS 299 

approach with the “go deep” structural approach provides a powerful tool in refining 300 

TFBS and gene regulation models.  301 

Recent modeling tools have attempted to use 3D structural data for improving 302 

predictions of TF-DNA binding and structure-based databases for TFBS data are 303 

currently available (Turner et al., 2012; Lin and Chen, 2013; Xu et al., 2013). 304 

Structure-based TFBS methods rely on different energy functions to score TF-DNA 305 

interactions. Such energy functions are used to describe all possible physiochemical 306 

interactions such as Van der Waals interactions, hydrogen bonding, electrostatic 307 

interactions and solvation energy. Energy functions can be divided into physics-308 

based molecular mechanics force fields (Liu et al., 2009a; Marcovitz and Levy, 2011; 309 

Yin et al., 2015) and knowledge-based potentials (Liu et al., 2005; Zhang et al., 2005; 310 

Takeda et al., 2013). While physics-based energy functions are able to accurately 311 

describe TF-DNA interactions they have a high computational cost and thus are less 312 

often applied than knowledge-based potentials. In knowledge-based potentials, 313 

statistical analysis is used to describe TF-DNA interactions at the atom or residue 314 

scale using known TF-DNA structures. These are simpler and less computationally 315 

expensive than physics-based energy models. Recent work combining aspects of 316 

both types of models to derive an “integrative energy” function have also been 317 

applied to TF-DNA modeling and shown to further improve, in some cases, the 318 

predictive power of structure-based TFBS models (Farrel et al., 2016; Farrel and 319 

Guo, 2017). 320 

A second way that 3D structural data can be used to help refining TFBS models is 321 

through the prediction of protein-protein interactions (PPIs), which may affect TF 322 

binding to DNA. Often in vitro TFBS models are relatively poor predictors of in vivo 323 
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TF binding due to the added complexity of interacting proteins in vivo. Pull-down 324 

assays, mass spectrometry and yeast two-hybrid allow the generation of at least a 325 

partial interacting network for a given TF (Yazaki et al., 2016; Trigg et al., 2017). 326 

These methods have limitations and often generate incomplete models due to the 327 

difficulty in determining true interaction partners and in detecting rare or transient 328 

interactions. Structural data can be incorporated to improve PPI models by providing 329 

quantitative parameters to determine whether a putative interaction is likely to occur 330 

based on energy calculations or homology modeling (Aloy and Russell, 2006; Beltrao 331 

et al., 2007). By adding partners to the simple TF-DNA model, differences between in 332 

vitro and in vivo binding are better accounted for and perturbations due to mutations, 333 

for example, can be more easily modeled as has been shown for mammalian TFs 334 

(Guturu et al., 2013). To our knowledge a full integration of structural data with TFBS 335 

models has not been implemented for plant TFs, however as many TF families are 336 

conserved across kingdom of life, suggesting these methods are applicable to plant 337 

TFs. 338 

Improve the predictive power of TFBS models-genome context 339 

Eukaryotic genomes contain numerous potential binding sites for a given TF, 340 

however, only a small fraction is actually bound in vivo, and that these sites vary 341 

substantially depending on contexts, such as cell types, developmental stages, and 342 

environmental or cellular conditions. In addition, only a subset of the bound sites 343 

drive transcription (Wasserman and Sandelin, 2004; Hu et al., 2007; Fisher et al., 344 

2012; Whiteld et al., 2012). Therefore, various contexts have to be taken into account 345 

to predict functional TFBSs precisely. This includes chromatin states (such as 346 

accessibility and epigenetic marks), methylation states, nucleosome positioning and 347 

genome 3D structures, and combinatorial binding of TFs. 348 

Nucleosome positioning, chromatin states and 3D genome 349 

In the nucleus of eukaryotic cells, DNA wraps around histone proteins to form 350 

nucleosomes (McGinty and Tan, 2015), which can be further compacted into highly 351 

condensed structure called heterochromatin by various mechanisms (Allshire and 352 

Madhani, 2017). This involves factors like linker histones (Fyodorov et al., 2017), 353 

repressive histone marks (Allis and Jenuwein, 2016), such as H3K27me1/3 and 354 

H3K9me2, and DNA methylation on cytosine residues (Kim and Zilberman, 2014; 355 
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Zhu et al., 2016) among others. Thus, chromatin structure is intrinsically repressive, a 356 

mechanism that helps to establish stable gene expression and prevents unwanted 357 

cell fate transitions. For gene activation, eukaryotic cells evolved various counter 358 

mechanisms for each of the chromatin compacting factors to create accessible 359 

chromatin, such as active histone marks (e.g. H3K4me2/3 and H3K27ac), chromatin 360 

remodelers (Ho and Crabtree, 2010) and demethylation machineries (Wu and Zhang, 361 

2014). The interplay between all these factors result in a highly dynamic chromatin 362 

environment, in which TFs have to find their cognate DNA binding sites. 363 

Nucleosome positioning 364 

In general, TFs preferentially bind to TFBSs in accessible chromatin regions, where 365 

nucleosomes are depleted (NDR-nucleosome depleted region). This is evidenced by 366 

large scale cis-element studies, which showed that the vast majority of the active cis-367 

elements reside in the NDR in different species (Thurman et al., 2012; Weber et al., 368 

2016), including Arabidopsis and maize (Zhang et al., 2012; Vera et al., 2014). 369 

Therefore, a precise in vivo TFBSs prediction model could integrate NDR as its first 370 

layer of filter to leave out sites/regions with well-positioned nucleosomes. Indeed, 371 

several TFBSs modeling methods that integrate DNase I hypersensitivity datasets, 372 

have shown increased prediction power for in vivo binding (Zhou and Troyanskaya, 373 

2015; Kelley et al., 2016; Wang et al., 2018b). Thus, it is essential to generate 374 

datasets representing chromatin accessibility. To address this, recent technological 375 

advances are available, such as DNase-seq, MNase-seq, FAIRE-seq and ATAC-seq 376 

(Meyer and Liu, 2014). Among them, ATAC-seq is a rising star method as it requires 377 

a minimal amount of input sample and even can be used at the single-cell level 378 

(Buenrostro et al., 2013; Buenrostro et al., 2015; Corces et al., 2017). This is 379 

particularly attractive for the plant biology community, where some plant tissues are 380 

extremely scarce, such as flower meristem cells, organ primordia and root tips. 381 

Furthermore, when combined with INTACT (isolation of nuclei tagged in specific cell 382 

types), which allows isolation of nuclei from individual cell types of a tissue by affinity-383 

based purification, ATAC-seq is able to map chromatin accessibility with high 384 

resolution and low noise from a specific cell type (Deal and Henikoff, 2011; Sijacic et 385 

al., 2018). 386 

Although a majority of TFs favor binding in NDRs, exceptions exist. A special group 387 

of TFs, so-called pioneer factors, are able to bind TFBSs even when nucleosomes 388 
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are present (Iwafuchi-Doi and Zaret, 2016; Zaret and Mango, 2016; Zaret, 2018). As 389 

exemplified by FoxA1 and GATA4, pioneer factors are able to outcompete 390 

nucleosomes or create NDR through various mechanisms, such as mimicking linker 391 

histones, recruiting chromatin remodelers and/or depositing active epigenetic marks 392 

(Mayran and Drouin, 2018). Therefore, pioneer factors have to be considered with 393 

care while modeling their in vivo binding. One of the first reported plant pioneer factor 394 

was LEAFY COTYLEDON1 (LEC1), a seed-specific TF and a master regulator of 395 

embryogenesis. Tao et al. showed that LEC1 can target mitotically silenced 396 

chromatin at the loci of floral repressor FLOWERING LOCUS C (FLC) and promote 397 

the initial establishment of an active chromatin state (Tao et al., 2017). This activates 398 

FLC expression de novo in the pro-embryo and leads to the reversal of the silenced 399 

chromatin state inherited from gametes. Three TFs, LEAFY (LFY), APETALA1 (AP1) 400 

and SEP3, which are key factors in floral development in Arabidopsis thaliana, have 401 

been shown to be likely pioneer factors. A combination of ChIP-seq and DNase-seq 402 

data suggested that LFY is able to bind its TFBSs in closed chromatin, and this 403 

activity is highly correlated with its oligomerization activity. This is a potential novel 404 

driving force for pioneer activity which has not been reported in other organisms 405 

(Sayou et al., 2016). For AP1 and SEP3, it has been shown that upon binding to their 406 

TFBSs both TFs are able to confer chromatin accessibility near those sites (Pajoro et 407 

al., 2014). Interestingly, both factors are able to form higher order homo and hetero- 408 

oligomers, with such activity essential for their function in vivo. Therefore, an 409 

attracting hypothesis is that oligomerization likely confers high binding affinity in order 410 

for them to bind TFBSs that are otherwise inaccessible due to the occupancy of 411 

histones at these sites. Although further evidence of pioneer activity of these TFs, 412 

including both genome-wide and biochemical studies, are required, modeling their in 413 

vivo binding requires examination of both closed and open chromatin regions. 414 

Chromatin states: histone modifications, histone variants and chromatin 415 

remodelers 416 

TF binding in vivo confronts various chromatin states that are established by various 417 

types of histone modifications, histone variants and remodelers. Histone 418 

modifications act as either active or repressive marks, corresponding to 419 

transcriptionally competent and inactive chromatin, respectively. These marks are 420 

deposited by epigenetic writers and removed by epigenetic erasers. For instance, the 421 
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PRC2 is a writer responsible for H3K27me3 deposition while the REF6 demethylase 422 

erases this mark (Hennig and Derkacheva, 2009; Li et al., 2016). For some, if not all, 423 

epigenetic marks there is a corresponding epigenetic reader that reads the specific 424 

mark and confers downstream responses. Histone variants are also determinants of 425 

chromatin states and affect transcription. For instance, the H3.3 and H3.1 variants 426 

differ only four amino acid (Ingouff and Berger, 2010), and while H3.1 is enriched in 427 

heterochromatin and preferentially carries repressive H3K27 methylation marks, H3.3 428 

is enriched in transcriptionally active regions and preferentially carries active H3K36 429 

methylation marks (Johnson et al., 2004; Stroud et al., 2012). Chromatin remodelers, 430 

which use ATP energy to evict, disassemble or slide nucleosomes, are also 431 

landmarks affecting TF binding. The increasing datasets for genome-wide profiling of 432 

histone variants, marks, writers, erasers, readers and of chromatin remodelers thus 433 

constitutes a highly informative resource to improve TFBS prediction. 434 

Cross-talk between TFs and chromatin factors co-regulate chromatin accessibility 435 

and exposure of cis-elements (Vachon et al., 2018). In these processes, TFs operate 436 

either by recruiting chromatin factors or directly competing with them for target sites. 437 

There are several examples of TF-mediated recruitment of chromatin factors in 438 

plants, such as that of REF6 by NF-Y TFs for H3K27 demethylation at SOC1, 439 

inducing flowering (Hou et al., 2014), or Polycomb mark reader TFL2/LHP1 440 

recruitment by SHORT VEGETATIVE PHASE at SEP3 for flower patterning (Liu et 441 

al., 2009b), or BRAHMA and SPLAYED ATPase recruitment by LFY and SEP3 at 442 

flower morphogenetic genes (Wu et al., 2012). Oppositely, several TFs were shown 443 

to compete with Polycomb complexes at target genes, such as NF-YC which 444 

prevents PRC2 binding to FLOWERING LOCUS T for floral transition (Liu et al., 445 

2018) and AG which evicts PRC2 from KNUCKLES for flower meristem termination 446 

(Sun et al., 2014). Interestingly, at the time of flower termination, AG also has the 447 

opposite effect at WUS, promoting PRC2 recruitment for deposition of H3K27me3 448 

(Liu et al., 2011). Differences in TF behaviour for eviction versus recruitment of PRC2 449 

may depend on the distance between the Polycomb recognition element (PRE) and 450 

the TFBS. To this regard, large-scale analyses of ChIP-seq data revealed TFBSs in 451 

plant PREs, thereby expanding the repertoire of TF-chromatin factor interactions and 452 

providing resources for further exploration of the relationship between cis-elements 453 

and TF/chromatin factor binding (Wang et al., 2016; Xiao et al., 2017). Taken 454 
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together, intricate and dynamic interplays among TFs and chromatin factors have to 455 

be carefully examined for TF binding in vivo as they define chromatin state of a 456 

region, where TFs in turn have to engage with. 457 

Methylation state 458 

DNA methylation at the 5’ position of cytosine plays an essential role in gene 459 

regulation and genome stability in plants and animals (Zhang et al., 2018b). Precise 460 

patterns of DNA methylation are crucial for plant growth and development, including 461 

flowering (Finnegan et al., 1998). Unlike animals, in which DNA methylation are 462 

predominantly found in the CG context, plant DNA methylation occurs in contexts 463 

including CG, CHG and CHH (H represents A, T or C) (Zhang et al., 2006; Lister et 464 

al., 2008). Most TFs favor not to bind to methylated TFBSs due to the fact that DNA 465 

methylation affects shape features of TFBSs and that methyl groups often clash with 466 

residues that form direct interactions with otherwise unmethylated DNA motifs. 467 

Interestingly, recent studies have revealed that some TFs preferentially bind to 468 

methylated DNA (Zhu et al., 2016; Yin et al., 2017; Zuo et al., 2017). In addition, 469 

these TFs seemed to be enriched in embryonic and organismal development, such 470 

as homeodomain TFs and pluripotent factors (e.g. OCT4), which are well-471 

characterized pioneer factors. Although proteins that specifically bind to methylated 472 

DNA are found in plants as exemplified by Methyl-CpG-binding domain proteins 473 

(Zemach and Grafi, 2007), they are not classified as TFs but epigenetic modifiers. To 474 

our knowledge, TFs that are insensitive to methylation have not yet been reported in 475 

plants, however, it is appealing to investigate whether aforementioned potential plant 476 

pioneer factors (i.e. LEC1, LFY, SEP3 and AP1) are insensitive to methylation. 477 

Another mechanism that affects TF binding is that widespread DNA methylation 478 

promotes repressive histone modifications such as H3K9me2 and inhibits permissive 479 

histone modifications such as histone acetylation, resulting in highly compacted 480 

heterochromatin (Zhang et al., 2018b), thus inaccessible to vast majority of the TFs, 481 

except pioneer factors. Taken together, traditional views suggested that methylation 482 

seem to inhibit TF binding to TFBSs, however, there are likely at least a subset of 483 

TFs, such as pioneer factors, that can target methylated sites. Therefore, their DNA 484 

binding affinity and specificity needs to be carefully examined with regard to 485 

prediction of their in vivo binding. There are several methods that are available to 486 

model the effects of DNA methylation, such as Cytomod (Viner et al., 2016) (Table 487 
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2), which uses the classical PWM approach with an extended alphabet (e.g. 5mC 488 

representing methylated cytosine). In some practices, multiple PWM logos are given 489 

for the same TF, for which the enriched methylated and non-methylated sequences 490 

are represented separately (Yin et al., 2017). In addition, apart from aforementioned 491 

DAP-seq, two additional experimental approaches are now available to investigate 492 

the effects of DNA methylation to TF binding in vitro, including Methyl-Spec-seq (Zuo 493 

et al., 2017) and methyl-SELEX (Yin et al., 2017) (details refer to Table 1). 494 

3D genome and TF mediated long-range gene interactions 495 

The linear nucleotide sequences are folded into highly organized 3D architectures in 496 

the nucleus of higher eukaryotes. Chromosome conformation capture (3C) 497 

techniques, such as Hi-C (Eagen, 2018), revealed widespread existence of long-498 

range gene interactions within the so-called topologically associating domains (TAD). 499 

Within the TAD, distal and proximal cis-elements relative to transcription starting sites 500 

(TSS) form cell-type specific long-range interactions that in many cases are 501 

established by architectural proteins such as cohesin (Yan et al., 2013; Rao et al., 502 

2017), CTCF (Phillips and Corces, 2009; Ren et al., 2017), Yin Yang 1 (Weintraub et 503 

al., 2018) and others (Rada‐Iglesias et al., 2018). Such interaction is a highly 504 

conserved mechanism for eukaryotes to achieve spatiotemporal gene expression 505 

(Sanyal et al., 2012; Harmston and Lenhard, 2013; Dekker and Misteli, 2015). TADs 506 

therefore form territories within which more frequent gene interaction occurs, 507 

whereas less interaction happens beyond these territories. Disruption of TAD 508 

boundaries can lead to ectopic activation of gene expression and eventually to 509 

noticeable phenotypes (Lupiáñez et al., 2015; Franke et al., 2016; Lupiáñez et al., 510 

2016). 511 

Although it seems that Arabidopsis thaliana does not form TADs likely due to not 512 

having the architectural proteins such as CTCF that is important for TAD 513 

maintenance (Liu et al., 2017), in many other plant species, such as maize, rice, and 514 

tomato, TADs are clearly detected according to Hi-C data (Dong et al., 2017). 515 

Nevertheless, long-range gene interactions are still widespread in the Arabidopsis 516 

genome but in a less compartmentalized manner compared with other plant species 517 

(Liu et al., 2016). Apart from architectural proteins, TFs are usually the links 518 

mediating cell-type specific long-range gene interactions, for which the 519 

transactivation domains (TD) found in majority of TFs appear to play an essential 520 
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role. In general, TDs are enriched with acidic and hydrophobic residues, and 521 

residues that are able to form intrinsically disorder structures, such as serine, glycine 522 

and proline (Staller et al., 2018). These properties appear to allow TDs to interact 523 

with or recruit various factors with modest affinity but high specificity under various 524 

contexts. One such factor is Mediator, a mega protein complex that can be recruited 525 

by divergent TFs to connect distal and proximal cis-elements (Soutourina, 2017). 526 

Another factor is the SAGA complex, which has recently been shown to be a general 527 

factor that is required for the construction of the pre-initiation complex at the TSS for 528 

transcription initiation in animal systems (Baptista et al., 2017). Despite being less 529 

well characterized in plants, homolog protein components for both factors are well 530 

conserved in plants (Elfving et al., 2011; Mathur et al., 2011; Moraga and Aquea, 531 

2015). 532 

With the accumulation of datasets from Hi-C and related methods, it is now possible 533 

to predict spatiotemporal TF binding more precisely. In plants, Hi-C has been carried 534 

out from species including Arabidopsis thaliana (Liu et al., 2016), rice (Oryza sativa) 535 

(Dong et al., 2018), barley (Hordeum vulgare) (Mascher et al., 2017), tomato 536 

(Solanum lycopersicum), maize (Zea mays), sorghum (Sorghum bicolor), foxtail millet 537 

(Setaria italica) (Dong et al., 2017) and cotton (Gossypium spp.) (Wang et al., 2017; 538 

Wang et al., 2018c). Considering that chromosome conformation is highly cell-type 539 

specific, these Hi-C datasets have to be carefully examined when applied to other 540 

cell types. For example, in the process of flowering initiation, it is more relevant to 541 

perform Hi-C using flower meristems at a certain stage in order to map long-range 542 

gene interactions of the stage. 3C assays can also be performed for a specific TF 543 

using chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) 544 

(Fullwood et al., 2009; Li et al., 2014) and HiChIP (Mumbach et al., 2016). These 545 

methods combine ChIP with 3C to produce a directed view of long-range interactions 546 

associated with a TF of interest. To our knowledge, ChIA-PET or HiChIP has not yet 547 

been applied in floral TFs despite its high potential to correlate chromatin 3D 548 

structure with TF binding. For example, MADS-box TF homo- or hetero-tetramer 549 

complex has been shown to bind to two CArG boxes in short linear distance to form 550 

loops that are essential for target gene expression (Melzer et al., 2009; Mendes et 551 

al., 2013). However, it is not clear if MADS-box TFs (or other oligomeric TFs) also 552 

enable long-range looping or even cause 3D chromatin structural rearrangement, 553 
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such as breaking TAD boundaries as shown for Yamanaka factors during cell fate 554 

reprogramming (Stadhouders et al., 2018). These are potential mechanisms that 555 

could explain functional diversity of MADS-box TFs and their potential pioneer activity 556 

in flower organ specification, respectively, for which ChIA-PET or HiChIP might 557 

provide valuable insight. 558 

TF cooperative binding 559 

Cooperative binding affects TF-DNA affinity and specificity. It is a widespread 560 

mechanism in eukaryotes for maximizing TF functional complexity by utilizing the 561 

minimum number of TFs. For example, Hox TFs in Drosophila bind highly similar 562 

sequences as monomers, whereas heterodimerization with the cofactor Extradenticle 563 

from the same TF family evokes significant differences in DNA binding affinity and 564 

specificity as revealed by SELEX-seq (Slattery et al., 2011). In plants, MADS-box 565 

TFs are prominent examples of cooperative binding. They form heterotetrametric 566 

complexes, so-called floral quartets, to regulate distinct set of genes in the processes 567 

of flower formation and flower organ specification (Ruelens et al., 2017; Hugouvieux 568 

and Zubieta, 2018). It has been shown, both in vivo and in vitro, that different 569 

combinations of MADS-box TFs confer unique DNA binding specificity and affinity 570 

(Smaczniak et al., 2012; Muiño et al., 2014; Smaczniak et al., 2017; Hugouvieux et 571 

al., 2018).  572 

In some cases, a co-factor can be a non-DNA binding protein. For instance, two non-573 

DNA-binding cofactors in yeast, MET4 and MET28, enhance DNA-binding specificity 574 

of TF Cbf1 through forming MET4-MET28-Cbf1 complex, which is required for 575 

activation of downstream genes (Siggers et al., 2011). In plants, the Evening 576 

Complex (EC), consists of ARRHYTHMO (LUX), EARLY FLOWERING 3 (ELF3) and 577 

ELF4, is a key component of the circadian clock (Greenham and McClung, 2015; 578 

Huang and Nusinow, 2016). While only LUX is a TF, the in vivo functioning of the EC 579 

in the process of temperature and circadian clock-dependent flowering pathway 580 

requires non-DNA binding cofactors ELF3 and ELF4 (Nusinow et al., 2011). 581 

Furthermore, ChIP-seq data showed that G-box motifs are enriched adjacent to LUX 582 

binding sites, indicating additional cofactors that likely co-bind with EC to obtain 583 

further specificity and cooperativity for transcriptional regulation (Ezer et al., 2017). 584 

Similar mechanisms have also been proposed for PHYTOCHROME INTERACTING 585 

FACTOR 4 (PIF4), a key TF involved in thermoresponsive flowering in Arabidopsis. 586 
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Its DNA binding activity can be sequestered by ELF3 (Nieto et al., 2015), or 587 

abrogated by DELLA proteins (Lucas et al., 2008), both through direct physical 588 

interactions. Taken together, it is crucial to taken into account of presence or 589 

absence of TF cofactors for in vivo binding prediction. 590 

Incorporating TFBS models in current and future analyses 591 

of gene regulation  592 

The capacity to detect TFBS, both in vitro and in vivo, in increasingly reliable ways 593 

offers the opportunity to better answer various types of biological questions. For 594 

example, it is now possible to manipulate TFBS with genome editing, study the way 595 

how TFBS are evolving, better predict gene regulation and understand the DNA 596 

recruitment of chromatin regulators.  597 

From DNA binding to gene regulation and to regulatory networks 598 

Once TFBSs are identified or reliably predicted, the next challenge is to understand 599 

whether, how and in which cellular context TF binding results in changes of target 600 

gene expression. Here, one can distinguish dedicated analyses of individual binding 601 

events and potential target genes (‘bottom up’) or make use of genome-wide 602 

expression data followed by mathematical modeling (‘top down’).   603 

A classical and powerful way to identify regulators of a given biological process or 604 

developmental transition consists of building lists of co-regulated genes and 605 

identifying cis-elements overrepresented in their promoters. Once identified, these 606 

motifs can be compared to motifs in TFBS databases to identify TFs or TF families 607 

that are candidate regulators. Combined with detailed TF expression data, this 608 

represents a way to identify regulators. Several bioinformatics tools were developed 609 

based on this approach, such as Cistome (Austin et al., 2016), PlantRegMap (Jin et 610 

al., 2017) and TF2Network (Kulkarni et al., 2017). These tools take as an input a set 611 

of genes for which predicted regulators are searched. As a result, a set of potential 612 

regulators is identified and can be further validated using experimental approaches. 613 

In the example of TF2Network, using a standard dataset based on experimental TF 614 

binding data revealed that it recovers 92% of the true regulators using the long region 615 

promoter definition and the overall of 56% of the correct regulators when fed with a 616 

set of differentially expressed genes (Kulkarni et al., 2017). In a related approach, 617 
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mathematical modeling using gene expression data can reveal gene network 618 

modules, and knowledge from known TF binding preferences can be used to validate 619 

predicted key gene-regulatory interactions (Ichihashi et al., 2014).  620 

TFBS models are now widely applied not only to characterize gene regulatory 621 

networks (GRN), but also to understand mechanisms underlying gene activation or 622 

repression. For example, TFBS prediction helped to identify TFs that mediate 623 

recruitment of repressive Polycomb protein complexes to specific genomic locations 624 

(Xiao et al., 2017; Zhou et al., 2018). A major challenge is still to identify and validate 625 

cell type-specific gene regulatory interactions, which can now be addressed by 626 

combining cell-type selection by Fluorescence Activated Cell/Nuclei sorting or 627 

INTACT with ChIP-seq or other epigenomic technologies (see review (Wang et al., 628 

2012)). Another promising technology is single-cell approaches (see review (Grün 629 

and Van Oudenaarden, 2015)), which at the moment are still under development for 630 

plant tissues (Brennecke et al., 2013). 631 

Targeted TFBS perturbation 632 

Testing the functional impact of a predicted TFBS usually involves targeted 633 

mutagenesis in a transgenic context, e.g. using reporter assays, or in an endogenous 634 

context using CRISPR-Cas9-based systems. By using reporter genes (e.g. GFP or 635 

luciferase) under control of the target gene regulatory regions with modified TFBSs it 636 

is possible to dissect spatiotemporal and quantitative changes in target gene 637 

expression depending on the presence or absence of a TFBS (Benn and Dehesh, 638 

2016; Díaz-Triviño et al., 2017). For example, the tissue specificity of the AP3 639 

promoter was altered by replacing native TFBS with the ones of predicted specificity 640 

towards SEP3-AG or SEP3-AP1 floral homeotic protein complexes (Smaczniak et al., 641 

2017). Combining results from TFBS prediction and reporter gene assays also helps 642 

reveal the mechanisms of TFBS recruitment in a native promoter context. For 643 

example, in Drosophila the combination of SELEX and reporter gene expression 644 

(lacZ and GFP) experiments revealed that clusters of low affinity binding sites are 645 

maintained and required for the proper tissue-specific expression of the Hox genes, 646 

homeotic genes crucial for segment specification (Crocker et al., 2015). To which 647 

extent the clusters of TFBSs regulate gene expression in plants is yet to be 648 

determined through similar approaches.  649 
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With the advent of new technologies such as CRISPR-Cas9, mutations can now be 650 

introduced in endogenous genomic locations. For example, when a regulatory region 651 

of AG gene located in the second intron was deleted by the CRISPR-Cas9, mutant 652 

plants show partial homeotic transformations of stamens to petals, supporting an 653 

important role of this regulatory region (Yan et al., 2016). One of the challenges for 654 

CRISPR-Cas9 strategy is that it requires TFBSs that contain a PAM motif 5'-NGG-3' 655 

for efficient cleavage. Thus, the generation of new versions of Cas9 with different 656 

sequence requirement or the possibility to perform directed mutagenesis with a 657 

template DNA will open new avenues for precise TFBS perturbation. Moreover, the 658 

modifications of the CRISPR-Cas9 system by fusing cytidine deaminases to 659 

catalytically inactive Cas9 allow for the targeted, programmable single nucleotide 660 

changes within a TFBS of interest (Yan et al., 2016). This is a paradigm shift as 661 

genetics until now has mainly challenged regulatory networks by modifying their 662 

nodes-the protein coding genes, and TFBS mutations will allow challenging the links 663 

without compromising all functions of a potentially pleiotropic TF. Recently, Barakat 664 

et al., reported an assay that combines ChIP and a massively parallel reporter assay 665 

(ChIP-STARR-seq) to identify functional TFBS in primed and naive human embryonic 666 

stem cells (Barakat et al., 2018) (Table 1). The resulting functional TFBSs of a given 667 

TF were further validated by CRISPR-Cas9 followed by a transient expression assay, 668 

proving the robustness of such method. This method is potentially applicable in 669 

plants, but with a limitation that maintaining and transfection of plant cells in culture 670 

(e.g. leaf protoplast) of a stage of interest is more challenging than that of 671 

mammalian system. 672 

Evolution of TFBS and plant diversity 673 

Studying the conservation of cis-elements containing TFBSs between different 674 

species or between promoters of closely related paralogous genes in a genome can 675 

shed light on the evolution of a GRN. How changes in cis-elements relate to 676 

alterations in the expression pattern of a gene and subsequently lead to novel gene 677 

functions is not yet fully understood. At another level, understanding the evolutionary 678 

dynamics of gene-regulatory interactions can provide deeper insights into how 679 

developmental programs evolve. The first step into this direction is to develop 680 

experimental approaches to study TFBSs in different species. In a genome-wide 681 

comparative ChIP-seq study, Muino et al. studied binding of SEP3 in two closely 682 
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related Arabidopsis species with similar flower morphology (Muino et al., 2016). They 683 

found that TF binding conservation was associated with sequence conservation of 684 

CArG-box motifs and with the relative position of the TFBS to its potential target 685 

gene, and that loss/gain of binding sites tended to be associated with changes in 686 

gene expression. Their study revealed clear differences in SEP3-bound regions 687 

between the two species. A high level of binding divergence (13 % overlap) was also 688 

reported for two orthologous MADS-box TFs, FLC in Arabidopsis and PERPETUAL 689 

FLOWERING1 in Arabis alpine (Mateos et al., 2017). Therefore, comparative ChIP-690 

seq studies can indicate conserved core target gene networks of developmental TFs 691 

in plants and distinguish plant lineage-specific functions and potentially less relevant 692 

binding sites. Interestingly, similar observation was also reported in animals, as 693 

revealed by ChIP-seq on livers of five vertebrates (Schmidt et al., 2010). The authors 694 

observed highly conserved TFBS motif for two TFs, but highly divergent binding 695 

events on conserved genes of different species. 696 

Besides genome-wide approaches, targeted analysis of individual promoters or 697 

regulatory regions can elucidate regulatory divergence after speciation or gene 698 

duplication. For example, absence/presence of a single CArG-box in the promoter 699 

regions of the two MADS-box TF paralogs, AP1 and CAL, determines spatiotemporal 700 

and quantitative differences in gene activity (Ye et al., 2016). Studying the TFBSs of 701 

homologues from different species can also reveal the evolution of their molecular 702 

function. For example, analyzing TF binding specificity of the LFY homologues from 703 

different plant species, land plants, mosses and algae, has revealed subtle changes 704 

in their preferred TFBSs motifs, suggesting that LFY DNA binding specificity changed 705 

during land plant evolution (Sayou et al., 2014). Thus, the combination of numerous 706 

TFBS models with novel genome sequences could ultimately unlock mechanisms of 707 

GRN evolution.  708 

Future perspectives 709 

Technological advances such as NGS has revolutionized TFBS identification. It is 710 

now possible to identify TFBSs for hundreds of TFs for any organism in a short time 711 

with limited costs. However, accurate quantitative TFBS modeling is not a trivial 712 

process and seems to lag behind the pace of NGS dataset generation. Innovative 713 

analyses will be required to better extract valuable information hidden in datasets and 714 
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compensate for the biases and drawbacks inherent to each particular method. As an 715 

example, by combining DAP-seq data for auxin response factor 5 (ARF5), list of 716 

auxin induced genes and PWM model for dimeric ARF binding, we have uncovered a 717 

new ARF binding site configuration (inverted repeat 13) that seems to favor 718 

regulation and was not noticed before ((Stigliani et al., 2018); co-submitted paper). 719 

This experience highlights that re-examination of the publicly available datasets could 720 

lead to novel findings, and that TFBS modeling requires careful planning and 721 

implementation. Therefore, an important future goal is full automation for TFBS 722 

modeling. In this regard, emerging artificial intelligence and machine learning are 723 

projected to make important contributions. Indeed, machine learning approaches 724 

have already played an important role in TFBS modeling and shown to be more 725 

powerful than conventional algorithms in several aspects as discussed earlier. 726 

Finally, integrating datasets from chromatin environments, such as chromatin 727 

accessibility and 3D genome maps, is of great importance to better predict TF 728 

binding and the concomitant transcriptional events. A dedicated and accessible tool 729 

that could integrate such complex datasets in a combinatorial way is still lacking and 730 

will likely be an important focus of future investigations. 731 
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 1486 

Figure 1. Schematic overview of the TFBS modeling and application. 1487 

  1488 
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 1489 

 1490 

 1491 

Figure 2. Workflow to generate PWM for a set of known TFBS. Here, ARF5 1492 
bound sequences are retrieved from DAP-seq (O’Malley et al., 2016). The 1493 
sequences of N different binding sites are aligned (a). The nucleotide frequency is 1494 
computed at each position of the binding site to yield the position frequency matrix 1495 
(b), which is then converted to a PWM (c). In the formula, W(b, i) stands for the 1496 
weight of a nucleotide b at position i, f(b,i) is the frequency of this nucleotide, and fexp 1497 
is the expected background frequency of the given nucleotide. If each nucleotide 1498 
appearance is equal, one can take fexp=N/4 (c). One can score a given sequence by 1499 
summing the corresponding PWM weights (d). The TFBS logo represents the 1500 
preference of the TF at each position of the binding site (e). This calculation 1501 
represents one possible method among several to calculate a sequence score 1502 
(Stormo, 2000; Wasserman and Sandelin, 2004; Stormo, 2013).  1503 
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Table1. Experimental methods to identify TFBS. 

Experimental methods Description 
in vivo or 

in vitro 
DNA ligand Unique features TF source References 

PBM (Protein binding 

microarrays) and variants 

PBM uses microarrays of randomized DNA to which 

TF binding can be assayed by fluorescent antibodies 

to the TF. 

in vitro 
synthetic and 

randomized 
High-throughput 

Recombinant, usually 

fused with tags, such 

as GST 

(Berger et al., 2006; 

Berger and Bulyk, 

2009) 

ChIP-seq (Chromatin 

immunoprecipitation followed 

by sequencing) and variants 

ChIP-seq couples chromatin immunoprecipitation 

with massively parallel sequencing, is capable of 

mapping genome-wide TFBSs in vivo 

in vivo genomic 

High-throughput and most widely 

used protocol for TFBSs mapping in 

vivo 

native protein or fused 

with an epitope tag 

(Johnson et al., 2007; 

Robertson et al., 

2007; Kaufmann et 

al., 2010; Rhee and 

Pugh, 2011) 

SELEX-seq (Systematic 

evolution of ligands by 

exponential enrichment 

followed by sequencing) and 

variants. 

SELEX-seq uses recombinant TF to IP randomized 

DNA sequence in one or more cycles. The enriched 

DNA are sequenced by NGS and used to infer a 

model of specificity, typically a PWM, for a TF. 

in vitro 
synthetic and 

randomized 

High-throughput, widely used, and 

allows to detect effects of DNA 

methylation (methyl-SELEX) and TF 

cooperative binding (CAP-SELEX). 

Recombinant or in 

vitro translated TF 

(Jolma et al., 2010; 

Jolma et al., 2015; Yin 

et al., 2017) 

ORGANIC (Occupied regions of 

genomes from affinity-purified 

naturally isolated chromatin) 

ORGANIC applies MNase to digest non-cross-linked 

chromatin then perform affinity purification by TF 

followed by NGS sequencing. 

in vivo genomic Avoiding sonication and cross-linking 

Endogenous TF or 

fused with an epitope 

tag 

(Kasinathan et al., 

2014) 

BunDLE-seq (Binding to 

Designed Library, Extracting, 

and sequencing) 

BunDLE-seq provides quantitative measurements of 

TF binding to thousands of fully designed sequences 

of 200 bp in length within a single experiment. 

in vitro 
synthetic and 

randomized 

Allows comprehensive 

characterization of TF binding 

determinants within and outside of 

core binding sites 

Recombinant TF (Levo et al., 2015) 
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ChEC-seq (Chromatin 

endogenous cleavage followed 

by sequencing) 

ChEC-seq uses fusion of a TF to MNase to target 

calcium-dependent cleavage to specific genomic loci 

in vivo. 

in vivo genomic 

Rapidly inducible nature of ChEC-seq 

allows separation of TFBSs based on 

their recognition by DNA sequence 

and shape or shape alone. 

Fused with MNase, 

produced in vivo 

under native or high 

inducible promotor 

(Zentner et al., 2015) 

ChIPmentation 

ChIPmentation introduces sequencing-compatible 

adaptors in a single-step reaction directly on bead-

bound chromatin, which reduces time, cost and 

input requirements, thus providing a convenient 

and broadly useful alternative to existing ChIP-seq 

protocols. 

 

in vivo genomic 

Avoids sequencing adaptor dimers 

which are common in standard ChIP-

seq protocol, and requires only a 

single DNA purification step before 

library amplification. 

Endogenous TF (Schmidl et al., 2015) 

(amp)DAP-seq (DNA affinity 

purification followed by 

sequencing) 

DAP-seq uses recombinant TF to affinity-purify 

genomic DNA fragments followed by NGS 

sequencing, capable of derive cistrome; ampDAP-

seq applies PCR amplification to remove 

methylation patterns of fragmented genomic DNA 

before affinity purification, capable of deriving epi-

cistrome. 

in vitro genomic 

Allows low-cost and high-throughput 

generation of cistrome and 

epicistrome maps for hundreds of 

TFs of an organism 

Recombinant or in 

vitro translated TF 

 (O’Malley et al., 

2016; Bartlett et al., 

2017) 

SMiLE-seq (selective 

microfluidics-based ligand 

enrichment followed by 

sequencing) 

SMiLE-seq applies microfluidics-based technology to 

perform a rigorous on-chip isolation of interacting 

TF-DNA complexes, allows robust identification of 

DNA-binding specificities of TF monomers, 

homodimers and heterodimers. 

in vitro 
synthetic and 

randomized 

Distinguish TF binding specificity 

from TF monomers and dimers of a 

TF (or hetero-/oligo-dimers of TFs) 

by microfluidics. 

Recombinant or in 

vitro translated TF 
(Isakova et al., 2017) 

SLIM-ChIP (short-fragment- 

enriched, low-input, indexed 

MNase ChIP) 

SLIM-ChIP combines enzymatic fragmentation of 

chromatin and on-bead indexing to map high-

resolution binding landscape of a TF. 

in vivo genomic 

Low material input and allows 

mapping DNA binding proteins and 

charting the surrounding chromatin 

Endogenous TF (Gutin et al., 2018) 
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occupancy landscape at a single-cell 

level 

CUT&RUN (Cleavage under 

targets and release using 

nuclease) 

CUT&RUN is an epigenomic profiling strategy in 

which antibody-targeted controlled cleavage by 

MNase releases specific protein–DNA complexes 

into the supernatant for NGS sequencing. 

in vivo genomic 

Avoids crosslinking and solubilization 

issues, and requires less sequencing 

depth. 

Endogenous TF 

(Skene and Henikoff, 

2017; Skene and 

Henikoff S, 2018) 

Methyl-Spec-seq 

Methyl-Spec-seq measures the effects of CpG 

methylation (mCPG) on TF binding affinity, allowing 

quantitative assessment of the effects at every 

position in a binding site. 

In vitro 
synthetic and 

randomized 

Facilitates the quantitative modeling 

of mCpG effects on gene regulation. 
Recombinant TF (Zuo et al., 2017) 

ChIP-STARR-seq 

ChIP-STARR-seq combines ChIP with a massively 

parallel reporter assay to identify functional 

enhancers genome-wide in a quantitative manner. 

This method is potentially applicable in plant 

system. 

In vivo genomic 

ChIP-STARR-seq allows high-

throughput identification of 

functional enhancer in vivo. 

Endogenous TF (Barakat et al., 2018) 
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Table 2.  TFBS modeling methods. 

TFBS modelling methods Description Features integrated Web server or source code Motif representation References 

PWM (position weight 

matrix) 

PWMs are normalized representations of the position-

specific log-likelihoods of a nucleotide’s probability to occur 

at each position in a sequence 

N.A (Not applicable) N.A PWM logo 

(Stormo et al., 1982; 

Schneider and 

Stephens, 1990) 

DWM (dinucleotide weight 

matrix) 

DWM considers the 16 combinations of dinucleotide 

instead of the 4 nucleotides used for PWM. 
Dinucleotides N.A DWM logo (Siddharthan, 2010) 

BEM (binding energy model) 
BEM introduces energy parameters of adjacent nucleotides 

to the binding affinity quantification. 

Dependencies (adjacent 

positions) and binding 

affinity data 

http://stormo.wustl.edu/TF-

BEMs/ 
Binding energy logo (Zhao et al., 2012) 

TFFM (TF Flexible Model) 
TFFMs model integrates a markov model to take 

dependencies and background into account. 

Dependencies (adjacent 

position) and background 

http://cisreg.cmmt.ubc.ca/cgi-

bin/TFFM/TFFM_webapp.py?rm=

start 

TFFM logo 
(Mathelier and 

Wasserman, 2013) 

PIM (pairwise interaction 

model) 

PIM is based on the principle of maximum entropy and 

describes pairwise correlations between nucleotides at 

different positions. 

Dependencies between all 

positions 

https://github.com/msantolini/PI

M 
PWM mixture model (Santolini et al., 2014) 

gkm-SVM (gapped k-mer 

support vector machine) 

gkm-SVM predicts regulatory sequence using gapped 

k-mer features. 
k-mers supporting gaps 

http://www.beerlab.org/gkmsvm

/ 
N.A (Ghandi et al., 2014) 

SeqGL 

SeqGL is a de novo motif discovery algorithm to identify 

multiple TF sequence signals from ChIP-seq, DNase-seq, 

and ATAC-seq profiles. 

K-mer, chromatin 

accessibility 

http://cbio.mskcc.org/public/Lesl

ie/SeqGL/ 
N.A 

(Setty and Leslie, 

2015) 

MORPHEUS MORPHEUS is a webtool for TF binding analysis using PWM Dependencies between all http://biodev.cea.fr/morpheus/ PWM logo with (Minguet et al., 2015) 



 49 

with dependencies. positions dependancies 

FeatureREDUCE 
FeatureREDUCE provides a flexible framework for building 

sequence-to-affinity models from PBM data. 

Dependencies between all 

positions 

http://software.bussemakerlab.o

rg 
N.A (Riley et al., 2015) 

Cytomod 
Cytomod models methyl-sensitive TF motifs with an 

expanded epigenetic alphabet. 
DNA methylation N.A 

PWM logo with an 

extended alphabet (e.g. 

5mC stands for 5-

Methylcytosine) 

(Viner et al., 2016) 

DeepBind 
DeepBind can learn several motifs to predict binding sites 

of DNA and RNA binding proteins. 
N.A 

http://tools.genes.toronto.edu/d

eepbind/ 

Weighted ensemble of 

PWM logos 

(Alipanahi et al., 

2015) 

DeepSEA (deep learning-

based sequence analyzer) 

DeepSEA predicts effects of noncoding variants with deep 

learning–based sequence model 

Integrate DNase I 

hypersensitivity data and 

histone-mark profiles 

http://deepsea.princeton.edu/jo

b/analysis/create/ 
N.A 

(Zhou and 

Troyanskaya, 2015) 

DWT (dinucleotide weight 

tensor) 

DWT is a regulatory motif model that incorporates arbitrary 

pairwise dependencies for TFBS prediction. 

Dependencies between all 

positions 
http://dwt.unibas.ch/fcgi/dwt DWT 'dilogo' motifs (Omidi et al., 2017) 

TFImpute 
TFImpute predict cell-specific TF binding trained by deep 

learning. 
N.A 

https://bitbucket.org/feeldead/tf

impute 
N.A (Qin and Feng, 2017) 

BEESEM (short for Binding 

Energy Estimation on SELEX 

with Expectation 

Maximization) 

BEESEM estimates binding energy models using SELEX-seq 

data based on expectation maximization method. 
N.A http://stormo.wustl.edu/beeml/ N.A (Ruan et al., 2017) 

DeFine 
DeFine quantifies TF-DNA binding affinity and facilitate 

evaluation of functional non-coding variants in the genome 

Integrate Hi-C data http://define.cbi.pku.edu.cn PWM logo (Wang et al., 2018a) 
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based on deep learning algorithms. 

DFIM (Deep Feature 

Interaction Maps) 

DFIM estimates pairwise interactions between features 

(such as nucleotides or subsequences) in any input DNA 

sequences by a neural network. 

Dependencies between all 

positions, interaction 

between motifs, core 

motif flanking region and 

chromatin accessibility 

https://github.com/kundajelab/d

m. 

DFIM with feature 

importance scores 

(Greenside et al., 

2018) 

NRLB (No Read Left Behind) 

NRLB provides scalable and quantitative method to identify 

functional in vivo binding sites of TF and to define relative 

binding affinities for any TF-DNA complex. 

N.A N.A 
Energy logo 

representation 
(Rastogi et al., 2018) 

KSM model (k-mer set 

memory) 

A k-mer finder (KMAC) finds k-mers that are over-

represented in TFBSs, and KSM allow accurates regulatory 

variant prediction. 

k-mers 
https://github.com/gifford-

lab/GEM3) 
KSM (k-mer set memory) (Guo et al., 2018) 

SelexGLM 
SelexGLM incorporates core motif flanking region for TFBS 

binding quantification. 
Core motif flanking region https://www.bioconductor.org 

Energy logo 

representation 
(Zhang et al., 2018a) 
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